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Abstract

Within last 20 years, a number of methods have been employed for classifying

remote sensing data, including parametric methods (e.g. the maximum likelihood

classifier) and non-parametric classifiers (such as neural network classifiers).

Each of these classification algorithms has some specific problems which limits

its use. This research studies some alternative classification methods for land

cover classification and compares their performance with the well established

classification methods. The areas selected for this study are located near Littleport

(Ely), in East Anglia, UK and in La Mancha region of Spain. Images in the optical

bands of the Landsat ETM+ for year 2000 and InSAR data from May to

September of 1996 for UK area, DAIS hyperspectral data and Landsat ETM+ for

year 2000 for Spain area are used for this study. In addition, field data for the year

1996 were collected from farmers and for year 2000 were collected by field visits

to both areas in the UK and Spain to generate the ground reference data set. The

research was carried out in three main stages.

The overall aim of this study is to assess the relative performance of four

approaches to classification in remote sensing - the maximum likelihood, artificial

neural net, decision tree and support vector machine methods and to examine

factors which affect their performance in term of overall classification accuracy.

Firstly, this research studies the behaviour of decision tree and support vector

machine classifiers for land cover classification using ETM+ (UK) data. This

stage discusses some factors affecting classification accuracy of a decision tree

classifier, and also compares the performance of the decision tree with that of the

maximum likelihood and neural network classifiers. The use of SVM requires the

user to set the values of some parameters, such as type of kernel, kernel

parameters, and multi-class methods as these parameters can significantly affect

the accuracy of the resulting classification. This stage involves studying the

effects of varying the various user defined parameters and noting their effect on

classification accuracy. It is concluded that SVM perform far better than decision

tree, maximum likelihood and neural network classifiers  for this type of study.
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The second stage involves applying the decision tree, maximum likelihood and

neural network classifiers to InSAR coherence and intensity data and evaluating

the utility of this type of data for land cover classification studies.

Finally, the last stage involves studying the response of SVMs, decision trees,

maximum likelihood and neural classifier to different training data sizes, number

of features, sampling plan, and the scale of the data used. The conclusion from the

experiments presented in this stage is that the SVMs are unaffected by the Hughes

phenomenon, and perform far better than the other classifiers in all cases. The

performance of decision tree classifier based feature selection is found to be quite

good in comparison with MNF transform. This study indicates that good

classification performance depends on various parameters such as data type, scale

of data, training sample size and type of classification method employed.
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Chapter 1

Introduction

1.1  Introduction

The interpretation of remotely sensed data uses techniques from a number of

disciplines including remote sensing, pattern recognition, artificial intelligence,

computer vision, image processing and statistical analysis. The move towards

automated analysis of remotely sensed data is encouraged by the ever increasing

volumes of data as well as by the high cost of ground surveying. The new

generation of satellite-borne instruments is providing higher spatial and spectral

resolution data, leading to the wider application of remotely sensed products and

further emphasising the need for more automated forms of analysis.

The methodology of pattern recognition applied to a particular problem depends

on the data, the data model, and the information that one is expecting to find

within the data (Bezdek, 1981). A number of methodologies have been developed

and employed for image classification from remotely sensed data within the past

20 years. Statistical image classification techniques are ideally suited for data in

which the distribution of the data within each of the classes can be assumed to

follow a theoretical model. The most commonly used statistical classification

methodology is based on maximum likelihood, a pixel-based probabilistic

classification method which assumes that spectral classes can be described by a

normal probability distribution in multispectral space (Swain and Davis, 1978).

This traditional approach to classification is found to have some limitations in

resolving interclass confusion if the data used are not normally distributed. As a

result, in recent years, and following advances in computer technology, alternative

classification strategies have been proposed.

Artificial intelligence and knowledge-based expert systems have been  used in

image classification. The major contribution of the artificial intelligence and

expert system paradigm to pattern analysis has been the study of how domain-

specific and heuristic knowledge can be represented and used to control the

process of extracting meaningful descriptors and objects from images. The
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problem with these classifiers is that heuristic knowledge requires a number of

experts to solve a single problem. Further details of these knowledge based

classifiers can be found in Civco (1989), Estes et al. (1986), Goldberg et al.

(1983),  Friedl et al. (1988), Nagao and Matsuyama (1980) and  Wharton (1987).

In most instances, human beings are good pattern recognisers. This observation

led researchers in the field of pattern recognition to consider whether computer

systems based on a simplified model of the human brain can be more effective

than the standard statistical and knowledge-based classification methods.

Research in this field led to the adoption of artificial neural networks (ANN),

which have been used in remote sensing over the past ten years, mainly for image

classification. Studies carried out using ANN suggest that, due to their

nonparametric nature, they generally perform better than statistical classifiers. The

performance of a neural network classifier depends to a significant extent on how

well it has been trained. During the training phase, the neural network learns

about regularities present in the training data and, based on these regularities,

constructs rules that can be extended to the unknown data. However, the user

must determine a number of properties such as the architecture of network,

learning rate, number of iterations and learning algorithms, all of which affect

classification accuracy. There is no clear rule to fix the values of these parameters,

and only rules of thumb exist to guide users in their choice of network parameters.

Kavzoglu (2001) discusses all these issue in detail.

Another type of classifier, called the decision tree (DT) classifier, is now being

used for image classification problems in remote sensing because, like ANN,

these classifiers are nonparametric. Unlike ANN, they do not need extensive

design   and  training (Friedl and Brodley,  1997,  Safavian  and  Landgrebe, 1991,

Hensen et al., 1996). They are trained by iterative selection of individual features

or a combination of features at each node of a tree. During classification, only

those features are considered that are needed for the test pattern under

consideration, so feature selection is implicitly built-in. However, the main

advantage of the decision tree classifier as compared to ANN, besides its speed, is

the possibility to interpret the decision rule in terms of individual features (Borak

and Strahler, 1999). Other studies using decision tree classifiers in image
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classification can  be found  in  Evans (1998),  Friedl et al. (1999),  Gahegan and

West (1998) and Muchoney et al. (2000).

Figure 1. 1. Principal stages in image classification (adapted from Townshend and
Justice, 1981).

Recently, a new classification technique based on statistical learning theory,

called support vector machines, has been applied to the problem of image

classification (Zhu and Blumberg, 2002; Huang et al, 2002; Gualtieri and Cromp,

1998; Chapelle et al., 1999). Support vector machines use optimisation algorithms

to find the optimal boundaries between classes, and generalise these boundaries to

Accuracy assessment

         Pre-processing

Sample area
selection

Class definition

Training a
classifier/generation of

training statistics

Extrapolation to other
areas

Post processing

Unsupervised Classification

Supervised Classification

Unsupervised and supervised classification



4

unseen samples with the least errors among all possible boundaries separating the

classes and minimising confusion between classes.

Image classification involves the execution of several stages (Figure 1.1).

Moreover, within each of these principal stages there are several substages and

hence further decisions  need  to   be   made. The   performance  of  a  classifier

depends  on  the interrelationship between sample size, number of features, and

classifier complexity. One of the important stages in image classification is that of

collection of samples for training and testing the classifier. Sample size has an

influence on the classification accuracy with which estimates of statistical

parameters are obtained for statistical classifiers. Sample selection also depends

on a number of factors which finally affect classification accuracy. The factors

affecting sample selection are:

1. Number of training sites for sample collection.

2. Sampling method (random or systematic sampling).

3. Data source for labelling training sites (ground data, air photographs etc).

4. Timing of data collection.

With high-dimensional data sets, such as those acquired by an imaging

spectrometer, the training set size requirements for the correct application of a

classification system may be too high. It is well known that the probability of

misclassification of a decision rule does not increase as the number of features

increases, as long as number of training samples is arbitrarily large. However, it

has been observed in practice that additional features may degrade the

performance of a classifier if the number of training samples that are used to

design the classifier is small relative to the number of features. This behaviour is

referred to as the "peaking phenomenon" (Raudys and Jain, 1991; Jain and

Chandrasekaran, 1982). Several authors, including Hord and Brooner (1976),

Fitzpatrick-Lins  (1981), Congalton (1988, 1991), Mather (1999) and Tso and

Mather (2001) study the effect of sample size and sampling plan in detail.
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1.2  Objective of this research

The work reported in this thesis focuses on the various factors that influence the

accuracy of remote sensing classifications. As reported by a number of studies

(Raudys and Pikelis, 1980; Congalton, 1988; Mather, 1999; Swain and Davis,

1978; Markham and Townshend, 1981) several factors, such as type of classifier

and data used, sample size and sampling plan, and the scale of the data have a

significant effect on the resulting classification accuracy. Although individual

studies have highlighted specific problems, no comprehensive research study has

attempted to consider all these aspects in the context of the classification of

remotely sensed images. This study is designed to evaluate the behaviour of

different classifiers with optical and radar data as well as data at different scales.

Further, the behaviour of different classification algorithms with changing training

data set size and different sampling plans is explored.

The experiments reported in this thesis were undertaken in order to achieve the

objectives listed below, while at the same time addressing a variety of other issues

that are extremely important for successful applications of any classification

algorithm for land cover classification studies.

Decision tree classifiers have been used in land cover classification over the last

few years. However, a number of issues related to the performance of these

classifiers have not yet been fully discussed in the literature. The main issues that

need further clarification are:

1. Determining how different attribute selection measures and pruning

methods   affect classification accuracy.

2. Determination of optimal number of samples required to train the decision

tree classifier.

Other problems relating to the use of the decision tree classifier that have been

recognised in the literature and which need further investigation are:

1. Effect of  boosting on classifier performance.
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2. Type of decision tree classifier (i.e., univariate or a multivariate), and

under what conditions each is to be used.

Although a few studies have highlighted specific problems, such as the influence

of boosting on the results produced by the decision tree classifiers, or the effect of

using univariate and multivariate decision tree classifiers on classification

accuracy, no research study to date has attempted to consider all of the factors

listed above in the context of the classification of remotely sensed images.

The level of classification accuracy achieved using  support vector machines is

also affected by several factors. The research reported here discusses the

following points:

1. How classification accuracy changes by using various kernels and

different multi-class methods of generating support vector machines.

2. The effect of training set size on classification accuracy, and

3. Comparing the performance of this classifier with neural and decision tree

classifiers using hyperspectral data with small training data set sizes.

In addition to the above topics, this study involves the comparison of the

classification accuracy, training time, ease of use, and various user defined

parameters required for training neural, decision tree and support vector

classifiers.

Irrespective of the classifier used, the nature of the data (and of derived features

such as texture) also influences the accuracy of land cover classification. In view

of this, some further objectives that are set for this study are:

1. To study the effect of ETM+ panchromatic band and its texture features

for land cover classification in combination with ETM+ multispectral data.

2. To study the use of interferometric SAR data, especially coherence

images, for land cover classification in combination with the InSAR

intensity images. To improve the classification accuracy, the use of texture

features (based on GLCM, the MAR model, and fractals) derived from
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coherence and intensity images were also studied, and feature selection

techniques were used to reduce the dimensionality of the datasets.

The research reported in this thesis involves a range of other experiments that are

carried out to achieve the following objectives:

1. To conduct an extensive study to investigate the effect of number of

training data with changes in the number of features, the sampling plan

used to select the pixels for training and testing classifiers, and the scale

(resolution) of remote sensing data on classification accuracy using DAIS

hyperspectral and ETM+ data of the same area.

2. To study the effectiveness of feature extraction methods such as maximum

noise fraction (MNF) applied to hyperspectral data for land cover

classification accuracy.

3. To study the effectiveness of decision tree classifiers for feature selection

with hyperspectral data.

1.3  Thesis structure

The work described in this thesis covers the period October 1999 to mid 2002.

Initially, attention was focused on the use of interferometric SAR in agricultural

crop classification. This work is reported in chapter 6. It proved more difficult

than expected to obtain suitable InSAR data for the study area, and so the scope of

the research was broadened to cover factors influencing the accuracy of

agricultural crop classification derived from remotely sensed data. The present

structure of the thesis reflects this re-orientation of the research. Naturally, new

ideas developed over the study period, and research is still progressing in areas

such as the use of support vector machines.

This study consists of eight chapters including this introductory chapter describing

the details of problem, techniques and methodologies used and analysis of results

obtained using different methodologies. The early chapters mainly provide

background information about the theory of classification and  fundamentals of

decision tree and support vector machine classifiers.
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• In chapter 2 the classification process and various classification algorithms

including unsupervised and supervised, parametric and non parametric

classification techniques, are discussed in detail. A general idea of the

incorporation of spatial information including context and texture in

classification is also discussed. Finally,  the methodologies used to assess

classification accuracy, such as the Kappa value and its confidence limits,

are described.

• Chapter 3 consists of a detailed description of the decision tree classifier

and support vector machines to be used for image classification problems.

Various methods of designing a decision tree are discussed critically.

Details of various attribute selections and pruning methods used with

different decision tree classifiers are also discussed.  A section is devoted

to a comparative study  of various types of decision tree classifiers. Ways

of using continuous attributes in decision tree classifier are described. The

second part of this chapter deals with a recently developed nonparametric

classification technique, called the support vector machine (SVM) for

remote sensing image classification, which includes the theory behind the

development of this type of classifier. Finally,  a new way to create an

ensemble of  same base classifiers using boosting and bagging techniques

are discussed in detail.

• Chapter 4  considers the relevance of the type of data on the outcome of a

classification. The principles of interferometric SAR, including differential

interferometry, are discussed in detail, with details of  the derivation of

coherence images. Various factors affecting the magnitude of coherence

are  also discussed. Some details of Landsat 7 ETM+ and DAIS

hyperspectral data are also provided. The problems associated with the use

of DAIS data are also discussed.

• Chapter 5 presents the results achieved by decision tree and support vector

machine classifiers for a land cover classification problem. The various

factors that affect land cover classification accuracy are investigated using

both classification systems. A comparison of the results obtained using

decision tree classifiers, neural networks, support vector machines and
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maximum likelihood classifiers is presented. The advantages and

disadvantage of using decision tree and support vector machine classifiers

are compared to those associated with neural network classifiers. Finally

the effect of including the Landsat ETM+ panchromatic band and its

internal texture on classification accuracy using a decision tree classifier is

discussed. The effects of changing the values of user defined parameters

affecting the classification accuracy of SVMs are also considered.

• Chapter 6 discusses the results obtained using interferometric SAR images

for land cover classification studies. The usefulness of texture information

derived from coherence as well as intensity images is also discussed. This

chapter contains a detailed consideration of the main approaches to texture

extraction used in this study (based on GLCM, the MAR model, and

fractals) as well as the method used to choose the most appropriate number

of features for a specific classification problem.

• Chapter 7  discuss the effects of factors such as sampling plan, sample

size, and scale of data on land cover classification using hyperspectral and

ETM+ data. Factors such as feature extraction using orthogonal techniques

and decision trees are also discussed. Results obtained using data at

different scales, with different number of features with fixed numbers of

training patterns as well as changing training patterns with fixed number of

features are discussed, so as to examine the relevance of the Hughes

phenomenon with four different classification systems.

• In chapter 8, overall conclusions drawn from this research are presented.

This chapter also summarises the major findings of this research, and

provides a number of recommendations for future work using different

classifiers.
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Chapter 2

Classification

2.1 Introduction

The science of remote sensing consists of interpretation of measurements of

electromagnetic energy reflected from or emitted from a target.  Sensors mounted

on aircraft or satellite platforms records this electromagnetic radiation. The first

civilian satellite, known as Television and Infrared Observation Satellite (TIROS),

was launched in 1960 for the purposes of meteorological observation, acquiring

images of weather patterns for use in forecasting. Landsat-1 was launched in 1972

to monitor the earth’s land surface using a multispectral imaging system. The

Landsat series has since proved to be one of the main sources of global

environmental information and still continues to provide coverage for the planet

between 082  N and 082  S, making a repeat coverage every 16-18 days

(Wilkinson, 2000; Mather, 1999).

According to Wilkinson (2000), "The main advantage of satellite remote sensing

over alternative forms of environmental data gathering is that large global surface

areas can be monitored without the need for ground level surveys. In addition,

satellite observations are less costly than aerial surveys for long term and large-

area mapping and monitoring".

Remote sensing satellites record data in digital form, which is then processed by

computer. Computer processing applications range from calibration of the data for

the effects of factors such as the changing response of sensors over time to the

identification of patterns in multi- and hyper-spectral data that relate to features on

the ground.

Classification of satellite images is one of the most commonly applied techniques

used in remote sensing data processing. "Classification involves performing a

transformation from the numerical spectral measurements into a set of meaningful
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classes or labels, which can describe a landscape. Classification effects a

transformation from a physical measurement into a cartographic or thematic

description of the earth’s surface, for examples into terms such as forest, built-up

area, water bodies, etc. As such, classification can be viewed as a signal inversion

process" (Wilkinson, 2000). A number of techniques exist in the literature for

classification of remotely sensed data (Mather, 1999; Richards, 1993; Swain and

Davis, 1978; Schowengerdt, 1997).

Classification is a method by which labels are attached to pixels in view of their

character (Richards, 1993). This character is generally their response in different

spectral ranges. Labelling is implemented through pattern classification

procedures. The term “pattern” refers to the set of radiance measurements

obtained in the various wavebands for a given pixel, and spectral pattern

classification refers to the family of classification procedures that utilises this

pixel-by-pixel spectral information as the basis for land cover classification. In

contrast, spatial pattern recognition involves the classification of image pixels on

the basis of their spatial relationship with pixels surrounding them. Temporal

pattern recognition uses change in spectral reflectance over time as the basis of

feature identification.

 The classification process has two main stages. In the first stage, the number and

nature of the categories are determined, whilst in the second stage every unknown

or unseen element is assigned to one of the categories according to its level of

resemblance (or similarity) to the basic patterns. These stages are often called

classification and identification, respectively. In the context of remote sensing, the

categories could be land cover features or cloud types, and the assignment to one

of the categories is carried out by allocating numerical labels, corresponding to

the classes, to individual pixels. Hence, for a researcher working in the remote

sensing field, classification basically means determining the class membership of

each pixel in an image by comparing the characteristics of that pixel to those of

categories known a priori.
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2.2 The classification process

Image classification is the process of creating a meaningful digital thematic map

from an image dataset. The classes shown on the map are derived either from

known cover types (such as wheat or soil) or by algorithms that search the data for

similar pixels. Once data values are known for the distinct cover types in the

image, a computer algorithm can be used to divide or segment the image into

regions that correspond to each cover type or class. The classified image can be

converted to a land use map if the use of each area of land is known. The term

land use refers to the purpose for which people use the land (e.g. city, parks, and

road), whereas cover type refers to the material that an area is made from

(concrete, vegetation). Image classification can be done using a single image

dataset, multiple images acquired at different times, or image data with additional

information such as elevation measurements, or expert knowledge about the area.

Traditionally, land cover classification based on remotely sensed data involves

several steps (Schowengerdt, 1997), as shown in Figure 2.1:

(i) "Feature extraction: The term feature refers to a single element of a

pattern (such as one of the Landsat ETM+ bands). More generally, a

feature can be thought of “…as a distillation of that information contained

in the measurements which is useful for deciding on the class to which the

pattern belongs” (Swain and Davis, 1978). The original data may contain

information relating to atmospheric and topographic conditions. In

addition data are often highly correlated between spectral bands, which

may not be useful for land cover classification and even may reduce

classification accuracy. Thus, feature extraction performs two functions:

(1) separation of useful information from noise or non-information and

(2) reduction of the dimensionality of the data in order to simplify the

calculations performed by the classifier, and to increase the efficiency

of statistical estimators in a statistical classifier.

These aims can be achieved by applying spatial or spectral transform to

the image, such as selection of a subset of bands, or a principal

component transformation to reduce the data dimensionality.



This step is optional in classification of remotely sensed images i.e. the

images can be used directly, if desired.

(ii) Training: The term “training” arose from the fact that many pattern

recognition systems were “trainable”; i.e., they learned the discriminant

functions in the feature space by adjusting their parameters when applied

to a training pattern (pixel vector) whose true class is known. This process

of training a classifier is either supervised by the analyst or unsupervised.

Figure
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 2. 1. The classification process (Adapted from Schowengerdt, 1997)

abelling: The process of allocating individual pixels to their most likely

ss is known as labelling. This process of labelling can be approached in

e of two ways. If the analyst knows the number of separable pixels that

ist in the area covered by the image, and if it is possible to estimate the

tistical properties of the values taken on by the features describing each
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of these pixels (in statistical classifiers), then individual pixels (test pixels)

can be labelled as belonging to the classes based on these statistical

properties. The other method is where the analyst has no clear idea of the

number and character of the land cover classes present in the images. A

method of allocating and reallocating the individual pixels to one of an

initial set of randomly-chosen pixels is used. At each stage, each pixel in

turn is given the label of one of these randomly chosen pixels using some

classifier. At the end of first iteration, when every pixel has been labelled,

the randomly chosen pixels can be altered in character (either by

combining, splitting, and removing some of the pixels) according to the

nature of the pixels which have been associated with them. This process of

pixel labelling is repeated until the process converges. At this stage the

user can relate these pixels to some land cover class" (Schowengerdt,

1997).

2.3  Classification techniques

The methodology of pattern classification applied to a particular problem depends

on the data, the model of the data, and the information that one is expecting to

find within the data (Bezdek, 1981). The data may be qualitative, quantitative,

numerical, pictorial, textual, linguistic, or any combination of the above. Pictorial

data carry information about the object in the scene depicted in the image. Image

information can be described at many levels of abstraction. A description may

range from one expressed in terms of meaningful attributes of the scene depicted

in the image to one that describes only the spatial variation of intensity. Any of

these descriptions can be expressed with a model that captures only the relevant

features of the image at that level of abstraction and leaves others unspecified.

The role of a model is to convert information in the image into usable form and,

therefore, to enable the user to draw conclusions about the properties of the

objects being studied. The model used must be such that it transforms the data and

makes them compatible with the search and matching strategies to be used. Each

search and matching strategy corresponds to a different pattern classification

methodology. This is the reason for the use of different approaches to pattern
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classification, e.g., mathematical or statistical, heuristic, and structural etc (Tou

and Gonzalez, 1974).

Human problem solving is generally an exercise in studying input conditions to

predict an outcome based upon previous experience with similar situations. Using

a computer program for developing rules based upon a series of these experiences

is called ‘‘supervised’’ learning. Supervised learning is used for data sets with

cases having known outcomes; this type of learning is the more common form

because data are usually collected with some outcome in mind. Unsupervised

learning, on the other hand, is not guided - the classes into which data fall are not

known a priori. Such might be the case for a new problem for which the user has

little experience.

 Generally, image classification techniques in remote sensing can be divided into

supervised and unsupervised methods based on the involvement of the user during

the classification process. Methods can be further sub-divided into  parametric and

non-parametric techniques, based on whether or not the classifier employs some

distributional assumption about the data.

Supervised classification techniques require training areas to be defined by the

analyst in order to determine the characteristics of each category. Each pixel in the

image is, thus, assigned to one of the categories using the extracted discriminating

information. Problems of diagnosis, pattern recognition, identification, assignment

and allocation are essentially supervised classification problems, since in each

case the aim is to classify an object into one of a pre-specified set of classes.

Unsupervised classification, on the other hand, searches for natural groups of

pixels, called clusters, present within the data by means of assessing the relative

locations of the pixels in the feature space. In these classification systems, an

algorithm is used to identify unique clusters of points in feature space, which are

then assumed to represent unique categories. These are automated procedures and

therefore require minimal user interaction.

Supervised learning is the more useful technique when the data samples have

known outcomes that the user wants to predict. On the other hand, unsupervised
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learning is more appropriate when the user does not know the subdivisions into

which the data samples should be divided. Prior categorical division may not be

obvious because the problem may be a new one, for which the user has little

experience. In such a case, an unsupervised learning procedure can provide insight

into groupings that may make physical sense and facilitate future analysis.

Parametric classification procedures use some statistical measures to derive rules

from the data, which leads to some assumptions. The most common assumption of

this kind is that of the normal (Gaussian) frequency distribution of the data being

used. However, non-parametric methods do not make any assumptions about the

frequency distribution of the data used, and do not use statistical estimates. The

minimum distance and maximum likelihood classifiers are examples of statistical

classification methods, whilst the artificial neural network, support vector

machine, and decision tree methods can be given as examples of non-parametric

classification methods. Detailed information about unsupervised and supervised

and parametric and non-parametric classification methods is given in the

following sections.

2.3.1  Unsupervised classification

When ground information concerning the characteristics of individual classes is

not available in land cover classification problems, an unsupervised classification

technique is used to identify a number of distinct or separable categories. In other

words, an unsupervised classification method is used to determine the number of

spectrally-separable groups or clusters in an image for which there is insufficient

ground reference information available. These unsupervised methods can be

viewed as techniques of identifying natural groups, or structures, within

multispectral image data. While applying an unsupervised method, the analyst

generally specifies only the number of classes (or the upper and lower bound on

the number of classes) and some statistical measure, depending upon the type of

clustering algorithms used. These methods generate the specified number of

clusters in feature space, and the user assigns these clusters (spectral classes) to

information classes depending on his or her knowledge of the area. Determination

of the clusters is performed by estimating the distances or comparison of the
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variance within and between the clusters. These automated classification methods

are expected to delineate (or extract) those land cover features that are desired by

the analyst. After the specified number of groups is determined, they are labelled

by allocating pixels to land cover features present in the scene. However, some

groups may be inappropriate since they represent either irrelevant categories for

the purpose of the study or else they are mixed classes. Therefore, the spectral

characteristics of the area of interest should be sufficiently well known to the

analyst to allow him/her to correctly label the clusters representing actual land

cover features. Unsupervised classification techniques generally require user

interaction in specifying the number of groups to be recognised and in labelling

the correctly identified areas with the individual feature (or class) label. Owing to

the minimal amount of user involvement, they are usually considered as

automated procedures. Clustering has been used for several decades in various

fields for grouping data. There are numerous clustering algorithms that can be

used to determine the natural spectral grouping present in the data set, each having

its own characteristics. Some procedures iterate to a local minimum for the

average distance from each pixel to the nearest cluster means. The most popular

clustering algorithms used in remote sensing image classification are ISODATA,

a statistical clustering method, and the SOM (self organising feature maps), an

unsupervised neural classification method. The details of other clustering

algorithms can be found in Jain and Dubes (1988) and Mather (1999).

2.3.1.1  ISODATA method

In the migrating means (or ISODATA, or nearest mean) algorithm (Ball and Hall,

1965), the value of the function to be minimised is the average Euclidean distance

between each sample point and the corresponding cluster mean. Intuitively, this is

equivalent to generating spherical clusters with small variances or scatter. There is

no analytical method for generating clusters that minimises the value of this

function. There are a number of different forms of this algorithm, but in all of

them at least two parameters must be specified by the user: the number of clusters

and the maximum number of iterations. The latter parameter ensures the method

will terminate if convergence is not achieved.
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2.3.1.2  Self-organising Feature Maps (SOM)

This is an artificial neural network algorithm that has been used for unsupervised

data clustering in remote sensing (Schalle and Furrer, 1995; Tso, 1997). The self-

organising map neural network algorithms developed by Kohonen (1989) is a

unique type of neural network, having only two layers, the input (sensory cortex)

and output (mapping cortex) layers.  A SOM’s learning strategy is based on the

competitive learning concept. The training procedures for SOM can be separated

into two stages: unsupervised and supervised training. At the learning stage, the

SOM is firstly driven by an unsupervised training algorithm. At the end of the

learning stage the weights connecting the two layers are adjusted in order to

simulate the input data distribution. The patterns in the input space are therefore

clustered. However, if a supervised classification task is to be performed, a second

stage of supervised training is carried out in order to label the output layer

neurones in terms of real-world objects. A SOM models data via a

multidimensional array of competing neurones, each of which learns to represent

a prototype cluster from a given data set. The learning algorithm for the SOM

accomplishes two important things. It starts by clustering the input data and then

proceeds to spatial ordering of the neurones in the competitive layer so that

similar input patterns tend to produce a response in units that are spatially close to

each other. After initialising the competitive layer with normalised random

vectors, the input pattern vectors are presented to all competitive units in parallel

and the best matching (nearest) unit is chosen as the winner. The topological

ordering is achieved by using a spatial neighbourhood relation between the

competitive units during training. The array of neurons effectively becomes a map

of the natural relationship between the patterns (spectral measurements) given to

the networks. SOM have been found to be powerful tools for complex pattern

recognition problems. "Their usefulness is not universally agreed upon as it has

also been found that they demand excessive computation time in comparison with

other methods for data clustering in the remote sensing context" (Wilkinson,

2000).

ISODATA and SOM are the most widely used clustering algorithms in remote

sensing image classification. Although the description of these methods as
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automated procedures seems complicated and powerful, the results of such

methods are generally inferior to those achieved by supervised methods. This is

partly because most real-world features exhibit complexity in their nature, and

therefore may not be easily separable in terms of their spectral characteristics. In

addition, the assumption forming the basis of the unsupervised approach, that the

pixels belonging to a particular class will have similar spectral values in feature

space, and all classes are relatively distinct from each other in feature space, is

difficult to satisfy in practice. It also depends upon the user’s expertise in defining

appropriate parameter values and in correlating the clusters with information

classes. Consequently, the accuracy of the results obtained by unsupervised

classification methods is limited.

2.3.2   Supervised classification

Supervised classification methods are most commonly used in remote sensing and

based on the knowledge of the area to be classified. "These methods are often

central to the image analysis process, since these concerns the direct

transformation from pixel counts to thematic map" (Wilkinson, 2000). Supervised

classification may be defined as the process of identifying unknown objects by

using the spectral information derived from training data provided by the analyst.

The result of the identification is the assignment of unknown pixels to pre-defined

categories. The main difference between the unsupervised and supervised

classification approaches is that supervised classification requires training data.

The analyst locates specific sites in the remotely sensed image that represent

homogeneous examples of known land cover types. These areas are commonly

referred to as training sites because the spectral characteristics of these known

areas are used to train the classifier.  The training data thus extracted is used to

find the properties of each individual class. The training data are generally derived

from fieldwork, analysis of aerial photographs, from the study of appropriate

maps, or from personal experience.

For the purposes of this research, four supervised classifiers: Maximum

Likelihood (ML), Artificial Neural Network using backpropagation (ANN), the

Decision Tree (DT), and Support Vector Machines (SVMs) are used to label
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image pixels. These supervised classifiers perform a decision-making function on

a data vector by assigning it to one of a given set of possible classes. The data

vector can be derived from any set of measurements and, in the case of remotely

sensed data, the measurements are generally levels of reflected or emitted

electromagnetic energy. The measurements of the spectral bands form an n

dimensional vector, which is the input to the classifier used.

In the supervised approach (Figure 2.2) the information required from the training

data varies from one algorithm to another. The Maximum Likelihood classifier

requires estimates of the mean vector and variance-covariance matrix for each

class. In contrast, neural network models, support vector machines, and decision

tree classifiers do not use any statistical information to identify unknown pixels

present in an image, and no assumption is made about the frequency distribution

of the data.

Supervised classification is performed in two stages; the first stage is the training

of the classifier, and the second stage is testing the performance of the trained

classifier on unknown pixels. In the training stage, the analyst defines the regions

that  will  be used  to  extract training data, from  which  statistical estimates of the

Figure 2.2. Principle of supervised classification.

Training
pixels

Test pixels

   Full Image Data

                                          Classifier Used
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data properties are computed. At the classification stage, every unknown pixel in

the test image is labelled in terms of its spectral similarity to specified land cover

features. If a pixel is not spectrally similar to any of the classes, then it can be

allocated to an unknown class. As a result, an output image, or thematic map is

produced, showing every pixel with a class label. The characteristics of the

training data selected by the analyst have a considerable effect on the reliability

and the performance of a supervised classification process. The training data must

be defined by the analyst in such a way that they accurately represent the

characteristics of each individual feature and class used in the analysis. Two

features of the training data are of key importance. One is that data must represent

the range of variability within class and the other is that the size of the training

data set should be sufficient. In order to have a representative set of data, the

pixels should be so selected that they correctly represent the spectral diversity of

each class. Pixels should be selected from each of the fields to include all spectral

classes. The best sampling strategy is to select training pixels randomly from the

whole test image. Unfortunately, this is generally not possible in practice, as

ground data for the whole area are generally not available.

The size of the training data set is also very important in supervised classification,

if statistical estimates are to be reliable. Sample size is mainly related to the

number of features whose statistical properties are to be estimated. Typically, it is

recommended that the minimum training set size is some 10-30 times the number

of wave bands per class being used for classification (Mather, 1999; Piper, 1992).

Generally, a large training set is required for mapping from multispectral data

sets. Supervised classification methods require more user interaction, especially in

the collection of training data.  The accuracy of supervised classification is

determined partly by the quality of the ground truth data and partly by how well

the set of ground truth pixels are representative of the full image. In order to

measure the accuracy, it is common practice to use only part of the ground truth

data for training the classifier and to use the remaining pixels for testing, that is to

see if the classifier output corresponds to reality.
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2.3.3  Parametric classifiers

Parametric approaches to classification make use of a parameterised model of the

classes in the spectral feature space. These are generally more powerful than non-

parametric methods and lead to higher overall classification accuracy if the data

used satisfy the requirements of the model. The maximum likelihood method is

the most common parametric approach. This procedure models classes according

to the frequency distributions of the training pixels. Most often classes are

modelled by using the multivariate form of the normal probability density

function. Pixels are then classified by assigning them to the class to which they

have the highest statistical likelihood of belonging.

2.3.3.1  Maximum Likelihood classifier

In the past thirty years or so, maximum likelihood classification has found wide

application in the field of remote sensing.  Based on multivariate normal

distribution theory, the maximum likelihood classification algorithm has been in

use since the late 1940s. Providing a probabilistic method for recognising

similarities between individual measurements and pre-defined standards, the

algorithm found increasing use in the field of pattern recognition (Nilsson, 1965).

In remote sensing, the development of multispectral scanning technology in the

1970s to produce layered multispectral digital images of land areas provided the

opportunity to use the maximum likelihood procedure to produce thematic

classification maps of large areas for the purpose of land use/land cover

determination.

The maximum likelihood method is a well known supervised classification

algorithm that is based on the assumption that the probability density function for

each class is normal (Gaussian) (Tou and Gonzalez, 1974). The normal

distribution describes the probability of a single feature and it is specified by two

parameters, the mean and the variance. The mean of the distribution controls the

location of the distribution and the variance controls the spread of the data. When

more than one feature is involved, then the multivariate generalisation of the

normal distribution has to be used, i.e. the multivariate normal distribution.

Instead of a single mean controlling the location of the distribution there is now
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one mean for each feature making up a mean vector. The multivariate equivalent

of the variance is the variance-covariance matrix, representing the variability of

pixel values for each feature within a particular class and the correlations between

the features. These two parameters are computed for each sample, and they are

used to describe each class.

The maximum likelihood classifier generates estimates of both the variance-

covariance matrix and mean of the category spectral response patterns during the

classifier training process. These estimates are derived by selecting samples that

represent each class to be recognised from the total population to be classified.

The assumption of normality is generally reasonable for common spectral

response distributions. Under this assumption, the distribution of a class response

pattern can be completely described by the mean vector and the covariance

matrix. With these parameters, it is possible to compute the statistical probability

of a given pixel being a member of a particular land cover class. The pixel is

assigned to the class for which the probability of membership is the highest.

Although in practice the assumption of “normally distributed” data is not

generally met, the classifier generally outputs an acceptable result.

For the multivariate case, statistical theory describes the probability that an

observation vector ( )nxxxXX ,.....,,, 21=  belongs to class jk , j = 1, 2, ….,c, based

on the following formula:

         ( ) ( ) ( ) ( )
jk

1
jk

T
jk

jj

X.X2/12/1

k
2/1

k e2XP
µ−µ−−−

ρ− ∑ −

×π= ∑         (2.1)

where ( )XP jk  is the probability density value associated with the observation

vector X quantified for class jk , ∑ jk is the covariance matrix of the class jk with

dimension ρρ × , jkµ is the mean vector of the class jk , and .  represents the

determinant of the given matrix. As applied in a maximum likelihood decision

rule,, equation 2.1  allows the calculation of the separate probabilities that an

observation is a member of each of k classes. The individual is then assigned to

the class for which the probability value is greatest. In an operational context, the
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above equation can be reduced to the following expression by taking logarithms to

the base e.

( )[ ] ( ) ( ) ( )
jjjjj k

1
k

T
kkk mX.D.mX

2

1
Dln

2

1
2ln.

2

1
XPln −−−−πρ−= −   (2.2)

where jkD is the estimate of matrix ∑ jk and jkm is the estimate of  jkµ . These

estimates are computed from the training data. From equation 2.2 it is clear that

the use of the logarithmic form reduces the computational efforts, while using this

classifier. As the term ( )πρ 2ln  is the same for all classes it can be regarded as a

constant and omitted. The remainder of the equation 2.2 can be written in the

following way:

                -2 ( )[ ] ( ) ( )
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where the expression
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is the measure of the distance of one observation vector from the class mean

j
k

m , corrected for the variance and covariance of the class jk , and is known as

the Mahalanobis distance. An observation vector will be assigned to the class for

which the value -2 ln )]x(P[
j

k
 is the smallest.

The reliability of the results obtained with this classifier declines when the

frequency distribution of the data departs from normality, especially when the

distribution is bimodal. In extreme cases, where the multivariate normal

assumption does not properly describe the data distribution in feature space, the

results can be misleading. The other drawback of this method is the computational

cost required to  classify each pixel. This is particularly important in

circumstances where data to be classified are measured in a large number of
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spectral bands, or include many spectral classes to be discriminated. The

reliability of the estimates of mean vector and variance-covariance matrix, which

are fundamental to the calculation of the likelihood, is affected by the relationship

between sample size and the number of features. It should also be noted that all

features are used to discriminate between classes, rather than the minimum

effective set. It is not possible to use categorical data with this classifier as the

classifier assumes that the data forming each class are normally distributed. The

maximum likelihood classification method is available in almost all remote

sensing and image processing software packages, and it is generally used as the

standard supervised classification method.

2.3.4  Non-parametric classifiers

Many types of supervised classification algorithm are used for land cover

classification in remote sensing, and most software packages used by satellite

image analysis offer alternatives. The objective of training a classifier is to define

discrimination surfaces that divide the multidimensional feature space into regions

corresponding to different thematic classes.  The simplest forms of classifier rely

on non-parametric methods, because these algorithms make no assumptions about

the probability distribution of the data, and are often considered robust because

they may work well for a wide variety of class distributions, as long as the class

signatures are reasonably distinct. A wide variety of non-parametric spectral

classifiers is available. These consist of statistical methods such as the

parallelepiped or box classifier, the minimum distance classifier, and non-

statistical methods such as the neural network, support vector machines, and

decision tree classifiers.

2.3.4.1   Parallelepiped classifier

This classifier, also known as the box classifier, is perhaps the simplest of all

nonparametric classification systems because this requires the least information

from the user of the supervised classification methods. In this method, for each of
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the class specified, the user provides an estimate of minimum and maximum

values of each of the features used, from the training data. Another way is to

define a range, by adding and subtracting a given number of standard deviations

(generally 2-3) on either side of the mean of each feature can be used. This range

allows the estimation of the position of the boundaries of each parallelepiped

(Figure 2.3). An unknown pixel is classified if it lies inside any of the

parallelepipeds. If the pixel does not lie inside any of the regions defined by the

parallelepipeds, such pixels are of unknown type.

The problem with the parallelepiped technique occurs when a pixel lies inside two

or more overlapping parallelepipeds, which makes the labelling process difficult.

Classification  of such  pixels  and  allotting these pixels to their correct class is of

Figure 2. 3.  Parallelepiped classification strategy.

great importance, as overlapping parallelepipeds are common in remotely sensed

data analysis. Several suggestions have been made to overcome this problem. The

easiest way for these types of problems is to allocate the pixel to the first or some

other arbitrary-selected parallelepiped inside whose boundaries it falls. The

problem with this approach is to select the correct parallelepiped and there is no

rule that can be used to find out the correct parallelepiped. The second solution is

to employ another, generally more complicated, decision rule, such as to calculate

     Class 1

     Class 2

     Class 3

f2

f1
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the Euclidean distance between the doubtful pixel and the centre point of each

parallelepiped and use a minimum distance rule to allocate these pixels to a

specified class. To solve these problems, Lillesand and Kiefer (1994) suggested

another method of using a series of rectangles with stepped borders in place of the

single rectangle.

2.3.4.2   The Minimum Distance classifier

This is another simple non-parametric classification method, which uses the

minimum distance between the pixel and the centroid of the training class. This

classification method uses the Euclidean distance (or in a little more complicated

way by adopting the Mahalanobis distance) in multidimensional feature space to

measure  the degree of  dissimilarity between  pixels and class centroids computed

Figure 2. 4. Minimum distance to mean classification strategy

from training data. The pixel is assigned to the least dissimilar class centroid. Like

the parallelepiped classifier, this algorithm does not take all the training data into

consideration. It considers the mean (or average) spectral value in each band for

each class. The mean centre of each class is estimated from the training dataset,

which results in a mean vector. In order to assign a pixel to a specified class,

Euclidean distances are calculated for each mean (or centroid) centre, and then the

      Class 1

      Class 2

      Class 3

f2

f1
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minimum value, i.e. the shortest distance, is determined. As a result, the pixel is

allocated to the class that is the closest in terms of the estimated multidimensional

Euclidean distance from mean centres (Figure 2.4).

.

This type of classifier is mathematically simple and computationally efficient, but

has certain limitations. Most importantly, it is sensitive to different degrees of

variance in the spectral response data. Due to these problems, this classifier is not

widely used in applications where spectral classes are close to one another in

measurement space and have high variance. However, it can give results that are

comparable to other statistical classifiers, such as the maximum likelihood

classifier in cases where the classes are well defined in feature space.

2.3.4.3   Artificial Neural Network classifiers

Since the late 1980s, supervised classification of satellite image data has also been

carried out using neural network classifiers. These classifiers differ significantly

from the parallelepiped and minimum distance algorithms in their approach to

classification. A neural network is a form of artificial intelligence that imitates

some function of the human brain. Neural networks are general-purpose

computing tools that can solve complex non-linear problems (Fischer, 1996). The

network comprises a large number of simple processing elements linked to each

other by weighted connections according to a specified architecture. These

networks learn from the training data by adjusting the connection weights

(Bishop, 1995). They have been used in remote sensing and image analysis

including supervised classification (Benediktsson et al., 1990; Hepner et al., 1990;

Heerman and Khazenie, 1992; Foody and Arora, 1997) and unsupervised

classification (Baraldi and Parmiggiani, 1995; Schaale and Furrer, 1995; Tso,

1997).

There are a range of artificial neural network architectures designed and used in

various fields, including pattern recognition (Bishop, 1995; Aleksander and

Morton, 1991). In remote sensing applications the multi-layered feedforward

network, also called the multi-layer perceptron, and the Kohonen networks are

generally used. These networks differ from each other in their approach to



classifying the remotely sensed data. In this study, a feed-forward neural network

with back propagation learning algorithm is used, as suggested by various

researchers for remote sensing data (Benediktsson, 1990; Zhang and Scofield,

1994; Foody, 1995(a)).

The basic element of a back-propagation neural network is the processing node.

Each processing node behaves like a biological neuron and performs two

functions. First, it sums the values of its inputs. This sum is then passed through

an activation function to generate an output. Any differentiable function can be

used as an activation function, f.
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re 2.5. A back-propagation neural network, showing the input layer, one
en layer and the output layer, with interconnecting links being associated with
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the processing nodes are arranged into layers, each fully interconnected to the

owing layer. There is no interconnection between the nodes of the same layer.

 back propagation neural network, generally, there is an input layer that acts as

stribution structure for the data being presented to the network. This layer is

used for any type of processing. After this layer, one or more processing
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layers follow, called the hidden layers. The final processing layer is called the

output layer. Figure 2.5 show the structure of a commonly used back propagation

neural network.

All the interconnections between each node have an associated weight. When a

value is passed from the input layer, down these interconnections, these values are

multiplied by the associated weight and summed to derive the net input ( jn ) to the

unit

                                               ∑=
i

ijij own

where jiw is the weight of the interconnection to unit j from  unit i (called input )

and io is the output of the unit i. The net input obtained by the above equation is

then transformed by the activation function to produce an output ( jo ) for the unit

j. The sigmoid function is defined as:

                                                 ( )
jnj e1

1
nf −+

=

The shape of the sigmoid function can be modified by multiplying jn  by a

constant, called the gain parameter, which is often set to the value one (Schalkoff,

1992). The values of the interconnecting weights are not set by the analyst but are

determined by the network during the training process, starting with randomly

assigned initial weights. There are a number of algorithms that can be used to

adjust the interconnecting weights to achieve minimal overall training error in

multi-layer networks (Bishop, 1995). The generalised delta rule, or back-

propagation (Rumelhart et al., 1996) is one of the most commonly used methods.

This method uses an iterative process to minimise an error function over the

network output and a set of target outputs, taken from the training data set. The

training data consists of a pair of data vectors. The training data vector is the

pattern to be learned and the desired output vector is the set of output values that

should be produced by the network. The goal of training is to minimise the overall

error difference between the desired and the actual outputs of the network. The

process of training begins with the entry of the training data to the network. These

data flow forward through the network to the output units. At this stage, the

network error, which is the difference between the desired and actual network
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output, is computed. This error is then fed backwards through the network

towards the input layer with the weights connecting the units being changed in

relation to the magnitude of the error. This process is repeated until the error rate

is minimised or reaches an acceptable level, or until a specified number of

iterations has been accomplished.

The neural network weights are adjusted either after the entire sum is obtained for

all training patterns, called batch or epoch training, or after each training pattern is

presented, called sequential training. The sequential training method allows more

flexibility with the training data but requires more training time as compared to

the batch training, because weights are adjusted with every training pattern instead

of at the end of the cycle in batch training.

Training a neural network involves the setting of several initial parameters that

strongly influence network performance, especially in terms of speed and

accuracy. Even if these parameters are selected judiciously there is no guarantee

that the neural network will provide an acceptable solution. The user-selected

values influencing the neural classifier are:

•  Learning parameters - the back-propagation learning algorithm requires

that the user provides values of the learning rate and momentum. The

value of these parameters significantly influence the performance of a

network.

•  Initial weights - the initial weight settings of the pre-trained network

influence the network performances. These settings are generally chosen

randomly.

•  Number of training iterations - this is a very important parameter as it

controls the degree of generalisation as opposed to specialisation of the

solution: if network is trained using very large number of iterations on

training data, it might not function well on the test data and if it is not

trained well enough it will not be able to separate the classes.

•  Number of hidden layers and units - this determines the capacity of the

network to learn and generalise.
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•  Number of input patterns - several studies suggested that classification

accuracy is affected by the number of training patterns.

 In this study, all of the above parameters are set as suggested in an earlier study

carried out by Kavzoglu (2001).

2.3.4.4   Decision Tree classifiers

Decision tree induction algorithms have long been popular in machine learning,

statistics, and other disciplines for solving classification and related tasks (Morgan

and Sondquist, 1963; Hunt et al., 1966; Friedman, 1977; Breiman et al., 1984;

Quinlan 1993). A decision tree can be used to classify a query (or test) case as

follows.

Given a query q to classify, a tree is traversed along a path from its root to a leaf

node, whose class label is assigned to q. Each internal node contains a test that

determines which of its subtrees is traversed for q.  A test typically evaluates a

feature used to describe cases, or a boolean or linear combination of features. A

decision tree algorithm has four inputs:

1. a training set, in which each case is defined by a set of features and their

respective values, and a class label,

2. a set of candidate tests that partition or split a set of training cases into

subsets,

3. a heuristic evaluation function that assesses the quality of a given test and

resulting partition, and

4. a stopping criterion function that defines when to terminate tree expansion.

The algorithm outputs a decision tree whose leaves typically bear a single class

label. Decision trees are usually induced from the root downwards using a

recursive divide-and-conquer algorithm (Quinlan 1993). The task of constructing

a tree from the training data is called tree induction. Most existing tree induction

systems proceed in a top-down fashion, starting with an empty tree and the entire

training set. Decision tree classifiers are discussed in detail in chapter 3.



33

2.3.4.5  Support Vector Machines

Support vector machines (SVM) are  classification and regression methods which

have been derived from statistical learning theory (Vapnik, 1995). These

classification techniques are based on the principle of optimal separation, in

which - if the classes are separable - this method selects, from among the infinite

number of linear classifiers that separate the data, the one that minimise the

generalisation error,  or at least an upper bound on this error, derived from

structural risk minimisation. Thus, the selected hyperplane will be one that leaves

the maximum margin between the two classes, where margin is defined as the

sum of the distances of the hyperplane from the closest point of the two classes

(Vapnik, 1995).

If the two classes are non-separable, the SVM tries to find the hyperplane that

maximises the margin and that, at the same time, minimises a quantity

proportional to the number of misclassification errors. The trade off between

margin and misclassification error is controlled by a positive constant that has to

be chosen beforehand.

This technique of designing a SVM can be extended to allow for non-linear

decision surfaces. This can be achieved by projecting the original set of variables

into a higher dimensional feature space and formulating a linear classification

problem in the feature space. Further details of SVM based classifiers are

discussed in chapter 3.

2.4  Incorporation of nonspectral features

Though, spectral information alone provides useful information about the

characteristics of land cover features, the addition of a different kind of

information may help in the identification of different classes that are not easily

distinguished using spectral data alone. Spatial information, such as texture and

context, which depends on the neighbourhood of the pixel, has been widely used,

while the second kind of information represents external or non-remotely-sensed

information such as elevation values or data derived from soil or geology maps.
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Spectral, textural, and contextual features are the fundamental pattern elements

used in human interpretation of satellite images. Spectral features describe the

tonal variations in the various bands of the image, obtained in different bands of

the electromagnetic spectrum, whereas textural features contain information about

the spatial distribution of tonal variation within a band. Contextual feature contain

information derived from blocks of image data surrounding the area being

analysed.

A number of textural measures have been proposed in literature, including the

grey-level co-occurrence matrix (Haralick et al. (1973), auto-regressive models

(Frankot and Chellappa, 1987), fourier transform, and fractal based texture (Keller

and Chen, 1989). Recently, wavelet-based texture features (Fukuda and Hirosawa,

1999) have been used in classification of remotely sensed data. A considerable

amount of research has been carried out to investigate the effectiveness of texture

features for the classification of remotely sensed images. For example, Weszka

et al. (1976) perform a comparative study of texture measures including the

Fourier power spectrum, second-order grey-level statistics, and first-order

statistics of grey-level differences in a study aimed at identifying three geological

terrain types. Recently Mather et al. (1998) investigate the effectiveness of

spectral and textural information in the identification of surface rock type in an

arid region using Landsat TM and SIR-C SAR image data. A number of other

studies (Barber and LeDrew, 1991 and Peddle and Franklin, 1991) have shown

that classification accuracy can be improved by using the texture features in

combination with image.

Generally, contextual information can be used in classification processes for

smoothing purposes. The smoothing techniques can be categorised into pre-

smoothing and post-smoothing. In pre-smoothing processes, contextual

information is incorporated before classification by increasing the dimensionality

of the data with additional bands in which contextual information is present, while

post-smoothing processes are usually more or less smoothing filters (Townshend,

1986), so they work on previously classified images.
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2.5  Accuracy assessment

The results of any classification process applied to remotely sensed data

classification must be quantitatively assessed in order to determine their accuracy.

As suggested by Lillesand and Kiefer (1994), a classification process is not

complete until its accuracy is assessed. There may be different ways to assess the

accuracy of a classification process. Accuracy assessment can be qualitative or

quantitative, expensive or inexpensive, quick or time consuming, well-designed

and efficient. The purpose of quantitative accuracy assessment is the identification

and measurement of map errors. Quantitative accuracy assessment involves

comparison of an area on a map against reference information of the same area,

assuming reference data to correct. There are number of ways to determine the

degree of error in the end-product, which is typically a thematic map or image, but

for this research accuracy assessment is carried out by measuring overall

classification accuracy, and calculation of the Kappa statistics for a given number

of test data.

2.5.1 Confusion matrix

The accuracy of classification has traditionally been measured by the overall

accuracy by generating a confusion matrix (Table 2.1) and determining accuracy

levels by dividing the total number of correctly classified pixels (sum of major

diagonal of confusion matrix, also called actual agreement) by the total number of

reference pixels. However as a single measure of accuracy, the overall accuracy

gives no insight into how well the classifier is performing for each of the different

classes (Fitzgerald and Lees, 1994). In particular, a classifier might perform well

for a single class that accounts for a large proportion of the test data and this will

create a bias in overall accuracy, despite low class accuracies for other classes. To

avoid such a bias when assessing the accuracy of a classifier, it is important to

consider the individual class accuracies. Individual class accuracy can be obtained

by dividing the total number of correctly classified pixels in that category by the

total number of pixels of that category. Individual class accuracy can be

determined by using the reference data (called producer's accuracy). The resulting

percentage accuracy indicates the probability that a reference pixel will be

correctly classified. Story and Congalton (1986) suggested that producer's



accuracy is a measure of error of omission. However, a misclassification error is

not only an omission from the correct class but also a commission into another

class. Individual class accuracy obtained from the classified data in that category

(user's accuracy) is a measure of  error of commission (Story and Congalton,

1986). Before confusion matrices were the standard accuracy reporting

mechanism, it was common to report the overall accuracy and either only the

producer's or user's accuracy. Example in Table 2.1 demonstrate the need of the

entire confusion matrix so that all three accuracy measures can be computed.

Table 2.1. Confusion matrix

Class 1 2 3 4 5 6 7 8 Total Users
36

Considering the confusion matrix shown in Table 2.1, there exist considerable

differences between the user’s and producer’s accuracies for corresponding

classes. The values of user's and producer's accuracies shows significant variation

from the overall accuracy (69.9%). If the overall accuracy is solely taken into

account, it can be concluded that the classifier has an average accuracy of about

70%, without giving the effectiveness of the classification on a particular class,

which could be misleading. If the overall accuracy and one of the individual class

accuracy measures are considered, the analyst could again reach some misleading

conclusions. For example, a producer’s accuracy of 57.4% is achieved for the

class 3, which is quite low when compared to the overall accuracy. The analyst

can conclude at this stage that, although the overall accuracy is average, the class

3 can be classified with lower accuracy (57.4%). Drawing such a conclusion could

be a mistake because the user’s accuracy of the class 3 is 62.3%. This means that

1 423 0 70 0 0 0 2 14 509 83.1
2 0 500 0 0 0 0 0 0 500 100
3 43 0 287 10 6 0 12 103 461 62.3
4 1 0 15 312 108 6 43 34 519 60.1
5 3 0 12 79 307 9 12 13 435 70.6
6 0 0 6 11 37 449 56 12 571 78.6
7 3 0 18 47 38 31 182 73 392 46.4
8 27 0 92 41 4 5 73 251 493 50.9

Total 500 500 500 500 500 500 380 500 3880
Produc 84.6 100 57.4 62.4 61.4 89.8 47.9 50.2

Overall accuracy = 69.9 Kappa value = 0.655
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although 57.4% of the class 3 areas have been correctly identified as class 3,

62.3% of the areas called class 3 on the classification map are actually class 3 on

the ground. Thus, suggesting that a careful analysis of the confusion matrix is

necessary to present the results and conclusions in a meaningful way.

Generally, the confusion matrix is an appropriate tool for assessing the accuracy

of land cover classifications. However, Congalton (1991) suggested the use of the

Kappa coefficient as a suitable measure of the accuracy of a thematic

classification. It is a measure of the randomness of the classification results. It

measures the difference between the actual agreement in the confusion matrix

(i.e., the agreement between the remotely sensed classification and the reference

data as indicated by the major diagonal) and the chance agreement which is

indicated by row and column totals. It provides a better measure of the accuracy

of a classifier than the overall accuracy, and it takes into account the whole

confusion matrix rather than the diagonal elements alone.

The Kappa statistic is calculated from the confusion matrix by using the following

formula:
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Where      n = total number of pixels used for testing the accuracy of a classifier

                 p = number of classes

               ∑ iix   = sum of diagonal elements of confusion matrix

                ∑ iox  = sum of row i

                ∑ oix  = sum of column i

Kappa value computed for each confusion matrix is a measure of how well the

remotely sensed classification agrees with the reference data. The value of the

Kappa coefficient vary from +1.0 to –1.0. A positive value of the Kappa
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coefficient is expected to have a positive correlation between the image and

reference data being used for classification. A value of zero indicates no

agreement in classification, while a value of 1.0 indicates perfect agreement

between the classifier output and the reference data.

Confidence intervals can be calculated for the Kappa value using the approximate

large sample variance. The approximate large sample variance of  Kappa is

calculated as follows (Bishop et al., 1975):
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A test of significance for the Kappa statistic  can be performed for each confusion

matrix separately to determine if the agreement between the classification and the

reference data is significantly greater than zero. In other words, a test can be

performed to see if the classification is significantly better than a random

assignment of land cover categories to pixels. The significance of a single

confusion matrix can be calculated by

                                          
( )K

KZ
σ

=                                                                (2.7)

where Z is standardised and normally distributed and σ is the large sample

variance of the Kappa coefficient.

A pair-wise test of significance can be performed between two independent Kappa

values using the normal curve deviate to determine if the two confusion matrices
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are significantly different (Cohen, 1960). The test statistic for significant

difference in large sample is given by

                                      ( ) ( )
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where Z is standardised and normally distributed and 
1

K  ,
2

K  are the two Kappa

coefficients being compared. This test between two independent Kappa values

allows any two error matrices to be compared in order to determine if they are

significantly different. In other words, error matrices generated from several

classification algorithms can be compared, two at a time, to determine which

classifications are significantly better than the others. The computed value of Z is

compared with a critical value 2/Zα for some predefined confidence level (i.e., α/2

is the confidence level of the two-tailed Z test and the degrees of freedom are

assumed to be infinity), and if 2/ZZ α≥ the classification is significantly better than

a random classification.

2.6  Conclusions

This chapter reviews the philosophy underlying classification procedures used in

remote sensing. Classification techniques, categorised using four criteria

(supervised and unsupervised, parametric and non-parametric) are discussed in

detail. Some of the advantages and disadvantages of the techniques are also

discussed. The most appropriate classification system used is dependent upon the

characteristics of the data (such as scale and type of data) used and also on the

nature of the classifier to be employed (the assumption on which classifier is

working). A short discussion is also included about incorporating spatial

information, texture and context, as both texture and context are sources of spatial

information which are widely used for image classification.
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Chapter 3

Advanced Classification Algorithms

3.1  Introduction

 Statistical procedures such as the maximum likelihood classifier require that data

must be based on some pre-defined model (usually the Gaussian normal

distribution). The performance of a statistical classification will thus depend on

how well the data match the pre-defined model. If the data are complex in

structure then to model them in an appropriate way can become a real problem.

These types of classifiers are also called single-stage classifiers because an

observation is given the label of one of a predetermined number of classes in a

single step. The statistical approach to classification has two significant

drawbacks (Swain and Hauska, 1977):

1. Only one of the possible combinations of features is used in the

classification.

2. Each sample is tested against all classes, which leads to a relatively high

degree of inefficiency.

An inherent weakness of the maximum likelihood procedure is that the subset of

features used in classification is not necessarily the optimal choice for all classes.

Usually, a set of features is selected by the criterion of maximum average

interclass separability, i.e., in a multi-class multi-feature classification the set of

features for which the average pair-wise separability is largest is used. The

problem of using only one feature subset as the basis of a classification is

particularly severe when there is a large number of classes. In principle, one could

combine the features that are useful in discriminating between all possible

combinations of pairs of classes and use the combination of these features in a

single stage classifier.
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Much research effort in the past ten years has been devoted to analysis of the

performance of artificial neural networks in image classification. The preferred

algorithm is feed-forward multi-layer perceptron using back-propagation, due to

its ability to handle any kind of numerical data, and to its freedom from

distributional assumptions (section 2.3.4.3). A number of studies have reported

that users of neural classifiers have problems in setting the choice of various

parameters during training. The choice of architecture of the network, the sample

size for training, learning algorithms, and number of iterations required for

training are some of these problems.

In practice, and especially since the advent of hyperspectral data, the so-called

dimensionality problem can be encountered, i.e., with a fixed and relatively small

sample size, the classification accuracy may actually decrease as the number of

features is increased (Hughes, 1968). Hence, if a large number of features is used,

then a corresponding increase in the number of training and testing samples is

required in order to ensure that the results obtained are reliable. Furthermore,

some patterns may not need all the features in order to arrive at the correct

classification, but a one stage classifier uses these features anyway, which results

in decreased efficiency.

As progress in new sensor technology for earth observation remote sensing

continues, increasingly high spectral resolution multi-spectral imaging sensors are

being developed. These sensors give more detailed and complex data for each

picture element and greatly increase the dimensionality of the data compared with

multispectral systems. As the number of features, number of samples, and

classification accuracy are interrelated in a complex fashion, one may need to

know how many features should be used to maximise the overall classification

accuracy. Where training sample size is limited and the dimensionality of the

feature space is high, then the estimate of first and second-order statistics (e.g., as

required by maximum likelihood classifier) cannot accurately summarise all

information which is contained in the data and results are thus less reliable.

For such problems, it would be preferable to have a classification system which

could decompose the multi-class classification problem into several stages, and
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which finally may simplify the decision-making process by taking partial

decisions at successive stages, or alternatively to use a classification system that is

independent of the dimensionality of the feature space. The technique of

decomposing the multi-class classification problem into several stages is termed

multistage classification. It has several attractive features, the most important of

which, perhaps, is understandability. In many instances, taking such partial

decisions is conceptually simpler, as each involves only that information relevant

to the current stage. This also saves the expense of gathering information not

required for the current stage. These points have contributed to the increased

popularity of multistage decision making in several engineering problems,

especially in pattern recognition.

Another classification system, called the support vector machine, is said to be

independent of the dimensionality of feature space. The main idea behind this

classification technique is to separate the classes with a surface that maximise the

margin between them, using  boundary pixels to create the decision surface. It has

been observed that the optimal hyperplane is determined by only a small fraction

of the data points, thus requiring a small number of training data even at high

dimensionality.

This chapter discusses various stages for the development of multistage and

support vector machine classification algorithms.

3.2   Multistage classifiers

A large number of multistage classification techniques have been proposed for

pattern recognition. These techniques can be categorised into three groups.

1. Converting a decision table to an optimal decision tree.

2.  Dynamic tree development.

3. Hierarchical classification methods.

 The problem of converting a decision table to an optimal decision tree is to

design a decision tree to efficiently evaluate the value of a multiple input, multiple
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output function given the values of independent variables. Each of the

independent variables has a finite domain. In pattern recognition, the range of the

output is the set of classes. There are a number of table conversion methods

available in the literature for pattern recognition problems. The details of these

methods can be found in Meisel and Michalopoulos (1973), Stoffel (1974), and

Sethi and Chatterjee (1977).

Dynamic tree development methods select a feature and split its region at every

stage (node). Later stages handle smaller regions of the feature space and repeat

the procedure. These are essentially top-down methods. Swain and Hauska (1977)

used an evaluation function to optimise decision trees. Every node in a tree is

taken as a classifier and a performance measure is defined for the node. All

possible specifications are searched to find the best node configuration. A variety

of other techniques use simple dynamic data splitting to design binary trees. For

further details readers are referred to Breiman et al. (1984), Casey and Nagy

(1984), Friedman (1977), Rounds (1980), and You and Fu (1976).

Hierarchical classifiers are multistage pattern classifiers in which  classes are

sequentially rejected along a path to a finally accepted class label. The

hierarchical subgrouping of classes, the features required at nonterminal nodes of

the hierarchy and the decision rules are interdependent. With a class hierarchy,

individual nodes themselves acts as a pattern classifiers. However the node

classifiers cannot be designed independently of each other. In the analysis process

the potential advantages of using hierarchical classification are an increase in the

accuracy, speed, and the level of details which can be reached.

 Classification trees offer an effective implementation of hierarchical classifiers.

Indeed, classification trees have become increasingly popular due to their

conceptual simplicity and computational efficiency. A decision tree classifier has

a simple form, which can be compactly stored, and it classifies new data

efficiently. A decision tree classifier carries out automatic feature selection and

complexity reduction, and the tree structure gives easily understandable and

interpretable information regarding the predictive or generalisation ability of the

data.
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Another significant advantage of decision tree classifiers is that they are non-

parametric, i.e., capable of handling non-normal and non-homogenous data sets

(Quinlan, 1993) and can be very useful for land cover classification in remote

sensing due to their simplicity, flexibility, and computational efficiency (Friedl

and Brodley, 1997).

3.3   Decision tree classifiers

In general, there are two approaches to the design of decision trees (Swain and

Hauska, 1977). These approaches are similar in principle, but differ significantly

in the way the tree is designed in practice.

1. Manual design method

2. Heuristic search method

Manual methods use statistics such as the mean vector and covariance matrix,

which are calculated for all classes. Then a graph is derived in which the means

and variances for all the classes are plotted for each feature. This graph is called a

coincident spectral plot. It is often possible to estimate suitable decision

boundaries from this graph such that all classes are separated in a number of

decision steps. As long as one feature is used in each stage, this is roughly

equivalent to estimating a simple distance measure between the classes. This

method is not suitable, firstly, when two or more features are to be used in a given

stage of the tree, because the graph does not show how the interactions between

features can be used, and secondly,  if the  data are not normally distributed, thus

making it difficult to estimate the covariance matrices in an unbiased way.

The coincident spectral plot provides an estimate of interclass separability based

on single features. If the difficulty of discriminating the classes requires the use of

a combination of several features, the manual design approach based on the

spectral plot is severely limited. In general, a more analytical design procedure is

desirable when the complexity of the problem in terms of the number of classes or

the number of features required for adequate classification accuracy is significant.



45

To construct a classification tree using the heuristic approach, it is assumed that a

training data set consisting of feature vectors and their corresponding class labels

is available. The feature set is selected on the basis of problem-specific

knowledge. The decision tree is then constructed by recursively partitioning the

training data set into purer, more homogenous, subsets on the basis of a set of

tests applied to one or more attribute values at each branch or node in the tree.

This procedure involves three steps: splitting nodes, determining which nodes are

terminal nodes, and assigning class label to terminal nodes. The assignment of

class labels to terminal nodes is straightforward: labels are assigned based on a

majority vote or a weighted vote when it is assumed that certain classes are more

likely than others.

A tree is composed of a root node (containing all the data), a set of internal nodes

(splits), and a set of terminal nodes (leaves). Each node in a decision tree has only

one parent node and two or more descendent nodes (Figure 3.1). A data set is

classified by moving down the tree and sequentially subdividing it according to

the decision framework defined by the tree until a leaf is reached.

The method of constructing a decision tree is as follows (Quinlan, 1993):

To construct a decision tree from a set T of training data having m classes denoted

by    { 1C , 2C ,…., mC }. There are three probabilities:

•   If T contains one or more objects, all belonging to a single class iC , then

the decision is a leaf identifying class iC .

•  If T contains no data, the decision tree is again a leaf determined from

information other than T.

•  If T contains data that belongs to a mixture of classes then a test is chosen,

based on a single attribute or a combination of attributes, that has one or

more mutually exclusive outcomes }O.......,OO{ k2,1 . T is partitioned into

subsets ,T,........,T,T k21  where iT contains all the data in T that have

outcome iO  of the chosen test. The decision tree for T consists of a

decision node identifying the test, and one branch for each possible



outcome. The same tree building process is applied recursively to each

subset of training data.

A typical decision tree for classification is shown in Figure 3.1. The elliptical

nodes are decision nodes whose two descendants are determined by a threshold

iη on a specified feature value ix . The same feature may occur in different parts

of the tree associated with a different threshold. The rectangular nodes are

terminal nodes and are assigned a class label. Based on the outcome of testing a

feature value against a threshold, either a 'yes' or a 'no' branch will be taken. When

an unknown feature vector is submitted for classification, the feature vector is

assigned the class label of the terminal node that it reaches.
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igure 3. 1.  A classification tree for a five dimensional feature space and three
lasses. The ix  are the feature values, the iη  are the thresholds, and Y is the class
abel.
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3.4   Decision tree design approaches

Numerous tree construction approaches have been developed in the last thirty or

so years, but most of the research in decision tree classifier design has

concentrated in the area of finding splitting rules, which finally gives the idea of

the termination rules. A number of algorithms have been developed to split the

training data at each internal node of a decision tree into regions that contain

examples from just one class, and this is the most important element of a decision

tree classifier. These algorithms either minimise the impurity of the training data

or maximise the goodness of split. The approaches to design a decision tree are:

• Bottom-up approach.

• Top-down approach.

• Hybrid approach.

• Growing-pruning approach.

3.4.1   Bottom-up approach

In the bottom-up approach (Landeweered et al., 1983), a binary tree is constructed

using the training set and some distance measure, such as the Mahalanobis

distance. The pairwise distances between a priori defined classes are computed

and in each step the two classes with the smallest distance are merged to form a

new group. The mean vector and covariance matrix for each group are computed

from training samples of classes in that group, and the process is repeated until

one is left with a single group at the root. In a tree constructed this way, the more

obvious discriminations are done first, near the root, and more difficult ones at

later stages of the tree.

3.4.2  Top-down approach

In top-down approach, the design of a decision tree classifier consists of the

following three tasks:

1. Selection of a node splitting rule,

2. Decision as to which nodes are terminal,
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3. Assignment of each terminal node to a class label.

The class assignment problem is the easiest of above-mentioned tasks. Terminal

nodes are assigned to the classes that have the highest probabilities by using a

basic majority rule; i.e., assign to the terminal node the label of the class that has

most samples at that terminal node. The basic idea in choosing any splitting

criterion at an internal node is to make the data in the descendent nodes purer.

The overall approach adopted by this process is to choose the attribute that best

divides the training data into classes and then partition the data according to the

value of that attribute. This process is applied recursively to each partitioned

subset, with the procedure terminating when all examples in the current subset

have the same class. The result is represented as a tree in which each node

specifies an attribute and each branch emanating from a node specifies a possible

value of that attribute.

Thus, the main task of this process is to select the attribute to be used as criterion

because at each node in the development of a decision tree there will be a set of

observations and a number of attributes to classify them. One cannot select an

individual attribute without first determining the "quality" of all of the attributes,

and seeing how well each one separates the data into various classes. The quality

of an attribute should reflect the useful information provided by that attribute.

There are two major approaches to estimating the quality of an attribute.

In the first approach, the quality of an attribute may be estimated by ignoring the

other attributes, therefore assuming, for the purpose of estimation, the

independence of attributes. In the second approach,  the quality of an attribute

may be estimated in the context of other attributes. The first approach is also

called the myopic approach (Kononenko and Hong, 1997), which has the

advantage of computational speed. The latter approach is computationally more

demanding but has the potential to discover higher-order dependencies among the

attributes.
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3.4.2.1    Attribute selection measures

There are many approaches to the selection of attributes used for decision tree

induction, and these approaches have been studied in detail by researchers in

machine learning (Brieman et. al., 1984, Murthy et. al., 1994; Kononenko and

Hong, 1997; Mingers, 1989 (b); Quinlan, 1993). Some approaches measure the

“goodness of split” (Brieman et. al., 1984) while other approaches try to minimise

the impurity of the training data.

The quality of an attribute in classification is defined in term of the purity of

classes of training observations and most approaches assign a quality measure

directly to the attribute. A set of observations is pure if all the observations belong

to the same class, while the set is maximally impure if the proportion of

observations in all classes is uniform. The impurity function measures the

impurity of a set of observations and achieves the minimum for a pure set, and

maximum for a maximally impure set. Impurity functions are mainly used in

selecting the best attribute to further split the current node. The most frequently-

used impurity measures in decision tree induction are:

1. Information Gain and Information Gain Ratio criterion (Quinlan, 1986,

1987, 1993).

2. Gini Index  (Brieman et. al., 1984).

3. Twoing rule (Brieman et. al., 1984).

4. Chi-square statistics (Mingers, 1989 (b)).

3.4.2.1.1    Information Gain and Information Gain Ratio criterion

Quinlan (1993) proposed the use of the information gain and information gain

ratio, based on a classic formula from information theory that measures the

theoretical information content of a code as ( )∑− ii pp log , where ip  is the

probability of the i-th message. The value of this measure depends on the

likelihood of the various possible messages. If they are all equally likely (i.e., the

ip  are equal), there is the greatest amount of uncertainty and the information
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gained will be greatest. The less equal the probabilities, the less information there

is to be gained. The value of the function also depends on the number of possible

messages.

The information gain and information gain ratio measures (Quinlan, 1993) are

developed in the following way:

For a given training set T, selecting one case at random and saying that it belongs

to some class iC , has the following probability of being correct:

                                        f ( iC , T)/ |T|

Where f ( iC , T) stands for the number of cases in T that belongs to class iC  and

T  denotes the number of cases in T. So the information it conveys is:

                                 2log− (f ( iC , T)/ |T|) bits.                                                 (3.1)

Then the amount of information required to identify the class for an observation in

T can be quantified as

                  info(T) =   -∑
=

m

i 1
 f ( iC , T)/ |T| × 2log  (f ( iC , T)/ |T|) bits.            (3.2)

This quantity is known as the entropy of the set T.

If a test Z  that can partition T into k outcomes is defined, then a similar measure

can be defined that quantifies the total information content after applying Z:

                                info z (T) = ∑
=

k

j 1 T

Tj  × info ( jT )                                         (3.3)

Using this approach, the information gained by splitting T using Z can be

measured by the quantity:
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                                 gain (Z) = info (T) - info z (T)                                            (3.4)

This criterion is called the gain criterion (Quinlan, 1993). The gain criterion, then,

select a test to maximise the information gain. This is also known as the "mutual

information between the test Z and the class"(Quinlan, 1993).

The major drawback of the gain criterion is that it has a strong bias in favour of

tests with many outcomes. The bias inherent in the gain criterion can be rectified

by a kind of normalisation in which the apparent gain with many outcomes is

adjusted. If the information content of a message pertaining to a case that

indicates not the class to which the case belongs but the outcome of the test then,

by analogy with the definition of info (T) (Quinlan, 1993), the information

generated by dividing Z into n subsets is given by

                  Split info (Z) = -∑
=

k

j 1 T

Tj
× 2log (

T

Tj )                                              (3.5)

This gives an idea of the potential information generated by dividing Z into k

subsets, whereas the gain measures the information useful for classification that

arises from the same division. Then, the ratio

                gain ratio (Z) = gain (Z)/split info (Z)                                                (3.6)

gives the proportion of information generated by a split that is useful for

classification.

Using this criterion, T is recursively split such that the gain ratio is maximised at

each node of the tree. This procedure continues until each leaf node contains only

observations from a single class, or further splitting yields no increase in

information.
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3.4.2.1.2    The Gini Index

Brieman et al. (1984) use a measure called the Gini index of diversity. The Gini

function measures the impurity of an attribute with respect to the classes. For a

given training set T, selecting one case at random and saying that it belongs to

some class iC  has the following probability of being correct:

                                            f ( iC , T)/ |T| .

The general Gini function, or measure of impurity, is

                 ( ) ( ) )T/T,Cf)(T/T,Cf( j
ij

i∑∑
≠

                                             (3.7)

which can also be written as

                               ( ) ( ) T/T,CfT/T,Cf
j

j
2

2

j
j ∑∑ −











or

                                     ( ) T/T,Cf1
j

j
2∑−                                                   (3.8)

The Gini index is simple and can be computed quickly. This index uses the rule

that assigns an object selected at random from the node to the class i with

probability f ( iC , T)/ |T|, instead of using the plurality rule to classify objects in a

node.

3.4.2.1.3    The Twoing rule

The Twoing rule is described by Brieman et al. (1984). It uses a different

approach to attribute selection in decision tree construction.

Denote the set of classes by C, i.e., C = {1,…., j}. At each node, separate the

classes into two super-classes, 1C  = { njj ,....,1 }, and 12 CCC −= . For a given

split of a node, the decrease in impurity that results from this split of the node can

be computed as:
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2

i
RiLiRL T/RT/L*T/T*T/T 








−∑                   (3.9)

Where LT  and RT  are the number of examples on the left and right of a split at

the node and iL  and iR  are the number of examples in category i on the left and

right side of the split. This decrease in impurity is known as the twoing value. The

twoing value is actually a goodness of fit measure rather than an impurity

measure.

3.4.2.1.4    The Chi-square Contingency Table statistic ( 2χ )

Mingers (1989 (b)) discusses the use of this measure to select attributes for

decision tree induction. It is based on traditional statistics for measuring the

association between two variables in a contingency table, and is based on

comparing the observed frequencies with the frequencies that one would expect if

there were no association between the variables. The resulting statistic is

distributed approximately as chi-square, with larger values indicating greater

association. The basic equation for this function is

                                        ∑∑
−

=
ij

ijij

E
Ex 2

2 )(
χ

                                            (3.10)

Where N/xxE jiij = , i.e., the expected value for each cell in the contingency

table.

The final stage in top-down decision tree classifier design is the determination of

when splitting should be stopped. Initial approaches to selecting terminal nodes

were of the form where a threshold β > 0 is set, and  node t is declared as a

terminal node if

                                            
TS∈

max ∆ i (S (t),t) < β
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One way to accomplish this task is to define an impurity function i(t) (Breiman et

al., 1984) at every internal node t. If a candidate split S divides the internal node t

into left child node Lt  and right child node Rt  such that a proportion Lp  of the

cases in t go into Lt  and a proportion Rp  go into Rt , then the goodness of the split

S can be measured by the decrease in impurity:

                              ∆ i (S, t) = i (t) – i ( Lt ) Lp  - i ( Rt ) Rp

Hence a split is chosen that minimises ∆ i (S, t) over all splits S in some set of

data T.

The problem with this rule is that partitioning is frequently halted too soon at

some nodes and too late at some others. Brieman et al. (1984) found that the

stopping rule has a greater impact on the efficiency of decision tree classifier than

the splitting rules. They suggested that, instead of using a stopping rule, one

should continue splitting until all the terminal nodes are pure, or nearly pure, thus

generating a large tree. This large tree is then selectively pruned, producing a

decreasing sequence of subtrees. Finally, use cross validation to pick out the

subtree that has the lowest estimated misclassification rate.

3.4.3   Hybrid approach

Hybrid methods of designing a decision tree classifier use both the bottom-up and

top-down approaches sequentially (Kim and Landgrebe, 1991). The procedure for

designing this type of classifier is as follows. First, considering the entire set of

classes, a bottom-up approach is used to divide the data into two subgroups. Then

the mean and covariance of each subgroup are calculated and used in a top-down

approach to generate two new subgroups. Each subgroup is checked to see if it

contains only one class. If so, that subgroup is labelled as terminal; otherwise, the

previous procedure is repeated. The procedure terminates when all the subgroups

are labelled as terminals.

Hybrid classifiers are found to have several advantages over both top-down and

bottom-up approaches (Kim and Landgrebe, 1991). They are found to converge to
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classes of informational value, because the cluster initialisation provides early

guidance in this direction, while the straightforward top-down approach does not

guarantee such convergence. The hybrid approach can use overlapping classes,

while there are no overlapping classes in the bottom-up approach. Covariance

information can be applied in the hybrid approach to separate nonspherical

subgroups.

3.4.4  Growing-pruning method

Gelfand et al. (1991) proposed this method of constructing a decision tree

classifier for the following reasons:

1. A large decision tree is grown with the entire data set where partitioning

continues until all terminal nodes have pure class membership. If we then

attempt to prune it back by minimising an estimate of the error rate based

on the same data set, then that estimate of the error rate will be biased and

will result in selecting the large tree as the optimally pruned sub tree of

itself.

2. The above problem can be avoided by splitting the entire data set into two

subsets of nearly equal size, and using one data set for growing and other

data set for pruning the tree. But it is not clear how to use this method both

to grow and prune the tree with a small data set.

3. Brieman et. al. (1984) suggested a cost-complexity pruning method but

Gelfand et. al. (1991) found that the problem of tree pruning is reduced to

a problem of complexity parameter estimation so that cross validation may

be used. They suggested that in this method a pruned sub-tree is selected

by minimising over a parametric family of pruned sub-trees, and this

parametric family may not include the optimal or even a good pruned sub-

tree.

To overcome these difficulties, Gelfand et al. (1991) suggested the following

method of tree growing and pruning, while using all of the data to both grow and

prune a classification tree.
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First, divide the entire data set into two subsets of nearly equal size. A large tree is

grown with pure terminal nodes using first data subset. A pruned sub-tree is then

selected by minimising an estimate of the error rate based on the second data

subset over all pruned sub-trees. This procedure is then iterated, using the second

subset to grow a tree starting from the terminal nodes of the previously selected

pruned sub-tree. The first subset is now used to select a new pruned sub-tree, and

so on. This process is continued till the sequence of selected pruned sub-trees

converges.

3.5  Classification algorithms based on data splitting method

Decision tree classification algorithms can be defined according to whether a

uniform or a heterogeneous set of algorithms is used to estimate the splits at

internal nodes. Such algorithms are described as having homogenous or

heterogeneous hypothesis space, respectively. Traditional approaches to the

design of decision trees are based on homogenous classification models for which

a single algorithm is used to estimate each split. Generally speaking, there are two

types of decision trees based on homogenous hypothesis space: univariate

decision trees and multivariate decision trees.

A hybrid hypothesis space is one that combines different homogenous hypothesis

spaces. The learning algorithms used to estimate a hybrid tree allow different

splitting methods to be applied within different subtrees of the larger decision tree

(Friedl and Brodley, 1997).

3.5.1  Univariate decision trees

A univariate decision tree is a type of decision tree in which the decision

boundaries at each node of the tree are defined by a single feature of the input data

(Swain and Hauska, 1977). At each internal node in a univariate decision tree, the

data are split into two or more subsets on the basis of a test on a single feature of

the input data, and each test is required to have a discrete and finite number of

outcomes. Thus, a univariate decision tree classification proceeds by recursively
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partitioning the input data until a leaf node is reached, and the class label

associated with the leaf is then assigned to the observation. The specific values of

the decision boundaries in a univariate decision tree are estimated empirically

from the training data. In the case of continuous data, a boolean test of the form

iX > b is estimated at each internal node of a decision tree from the training data,

where iX  is a feature in the data space and b is a threshold in the observed range

of iX . The  value of  b can  be  estimated  by  using  some objective  measure that

maximises dissimilarity  or minimises similarity of the descendent nodes. As each

test in univariate decision tree is based on one of the input variables, it is restricted

to representing a split of the feature space that is orthogonal to the axis

representing that variable axis, as shown in Figure 3.2.

Figure 3. 2.  Axis-parallel decision boundaries of a univariate decision tree.

3.5.2   Multivariate decision trees

Where the class structure can be revealed only by combinations of variables, a

univariate decision tree will perform poorly at uncovering the structure of the data

(Brieman et al, 1984; Utgoff and Brodley, 1990; Brodley and Utgoff,1992). In

problems where a linear structure is suspected, the set of allowable splits is

extended to include linear combinations of  features in the input data (Figure 3.3).
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Multivariate decision trees are similar to univariate decision trees except that the

splitting test at each node is based on more than one feature of the input data. A

set of linear discriminant functions is estimated at each interior node of a

multivariate decision tree, and the coefficients for the linear discriminant function

at each interior node are estimated from the training data. The test at each node

has the form:

                                                      ∑
i

ii Xa  ≤ c

Where iX  represent the features in the data space, a is the vector of coefficients of

the linear discriminant functions, and c is a threshold value. Multivariate decision

trees are often found to be more compact and can also be more accurate (Brodley

and Utgoff, 1992). The higher complexity of multivariate relative to univariate

decision tree algorithms introduces a number of factors that affect their

performance. First, different algorithms can be used to estimate the splitting rule

at internal nodes and each of these methods can have different degrees of

performance depending on the data and classification problem. Second, as the

split at each internal node of a multivariate decision tree is based on one or more

features, so several different algorithms are available to perform feature selection

at each internal node within a multivariate decision tree. These algorithms include

sequential forward selection and sequential backward elimination. Another

problem   with  multivariate  decision   tree  algorithms  is  that   these  algorithms

Figure 3. 3.  Decision boundaries for a multivariate decision tree classifier.



perform local feature selection rather than global feature selection.  They choose

the features to include in each test on the basis of the data observed at a particular

node, rather than selecting a uniform set of features on which to base tests for the

entire tree.

3.5.3  Hybrid decision tree classifier

A hybrid decision tree is a decision tree in which different classification

algorithms may be used in different subtrees of a larger tree. These algorithms can

be linear discriminant functions, k nearest-neighbour classifiers, or any other

classification algorithms. The motivation for implementing hybrid decision

classification approach is based on the fact that different algorithms exhibit

selective superiority in regard to their performance in classification (Friedl and

Brodley, 1997) and the optimal classification algorithm depends on the data set to

be classified. If different classification algorithms are allowed within the

framework of a single hybrid tree, the data set can be partitioned in a fashion such

that  the  different classifiers  can be applied to different subsets of the data.

Figure 3.4 shows an example of this type of classification structure in which three

different types of  classification  algorithms LDF (linear discriminant function),

K-NN (K-nearest neighbours) and UDT (univariate decision tree) are used to

classify a data set within a single classification tree.

F
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igure 3. 4. A hybrid decision tree classifier (adapted from Friedl and Brodley,

997).

LDF

K-NN UDT

 Class A   Class C Class A Class B
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3.6  Tests on continuous attributes

As continuous attributes contain arbitrary thresholds, it is necessary to have some

test to find a threshold, which can be used to design a decision tree classifier. The

algorithm for finding appropriate thresholds for continuous attributes (Brieman et

al., 1984, and Quinlan, 1993) is as follows:

The training cases are first sorted on the values of the attribute being considered.

As there are only a finite number of these values (m), they can be ordered as { 1v ,

2v , . . ., mv }. Any threshold value lying between iv  and 1+iv  will have the same

effect of dividing the cases into those whose value of the attribute lies in { 1v ,

2v ,…., iv } and those whose value is in { 1+iv , 2+iv , …, mv }. There are thus m-1

possible splits on the attribute, all of which are examined. It is usual to choose the

midpoint of each interval as the representative threshold, the ith such being

                                                ( iv  + 1+iv )/2.

 Each threshold divides the training data into two subsets, and so the value of the

splitting criterion is a function of the threshold. The ability to choose the threshold

so as to maximise the value of the splitting criterion gives a continuous attribute

an advantage over a discrete attribute and also over other continuous attributes

that have fewer distinct values in the training data set. That is, the choice of  test

will be biased towards continuous attributes with numerous distinct values.

Quinlan (1996) proposed a correction for this bias based on the Minimum

Descriptive Length (MDL) principle (Rissanen, 1993), which adjust the apparent

information gain from a test of a continuous attribute.

Let a sender and receiver both possess an ordered list of the cases in the
training data showing each case’s attribute values. The sender also knows
the class to which each case belongs and must transmit this information to
the receiver. The person first encodes and sends a theory of how to classify
the cases. Since this theory might be imperfect, the sender must also identify
the exceptions to the theory that occurs in the training cases and state how
their classes predicted by the theory should be corrected. The total length of
the transmission is thus the number of bits required to encode the theory (the



61

theory cost) plus the bits needed to identify and correct the exceptions (the
exceptions cost). The sender may have a choice among several alternative
theories, some being simple but leaving many errors to be corrected while
other are more elaborate but more accurate. The minimum descriptive
length principle may then be stated as: choose the theory that minimises the
sum of the theory and exceptions costs (Quinlan, 1996, page 79-80).

MDL thus provides a framework for trading off the complexity of a theory against

its accuracy on the training data T. The exceptions cost associated with a set of

cases T is asymptotically equivalent to ( )ToinfT × , so that ( )Z,TgainT ×

measures the reduction in exceptions cost when T is partitioned by a test Z.

Partitioning T in this way, however, requires transmission of more complex

theory that includes the definition of Z.

A test on continuous attributes with numerous distinct values will now be less

likely to have the maximum value of the splitting criterion among the family of

possible tests, and so is less likely to be selected. Further, if all thresholds on a

continuous attribute have an adjusted gain that is less than zero, this attribute is

not considered any further.

3.7  Softening thresholds

In the case where continuous attributes are used for testing, each value is

compared against a threshold obtained by using a suitable attribute selection

measure. Such a test acts as a switch that refers a case being classified to one or

other of the subtrees, which may not resemble each other at all. Sending a case

down one path or an other is reasonable when an attribute value lies clearly to one

side of the threshold. If the value lies close to the threshold, however, so that

small changes can move the value across the threshold, insignificant differences

might produce radically different classifications. For some domains, this sudden

change is quite appropriate. For other applications, though, it is more reasonable

to expect classification decisions to change more slowly with changes in attribute

values.
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A simple scheme proposed by Quinlan  (1993) defines subsidiary cutpoints −Z

and +Z  below and above each threshold Z. If a test on continuous attribute A is

encountered while classifying a case whose value of A is V, the probability of the

outcome A ≤ Z is determined as follows:

1. If V is less than −Z , the probability is 1.

2. If V lies between −Z  and Z, interpolate between 1 and 0.5.

3. If V lies between Z and +Z , interpolate between 0.5 and 0.

4. If V is greater than +Z , the probability is 0.

To calculate −Z and +Z Quinlan (1993) suggests that if the threshold Z were to be

changed to a new value 'Z , the decision tree would classify some cases of the

training set differently. The number of training cases misclassified by the tree can

be determined for a value of 'Z  in the neighbourhood of Z. If E of the training

cases T are misclassified when the threshold has its original value, the standard

deviation of the number of errors can be estimated as

                                    ( ) ( ) TETE /5.05.0 −−×+ .

−Z and +Z are then chosen so that, if the threshold were set to either of them, the

number of misclassified training cases associated with this test would be one

standard deviation more than E. This approach allows for either sharp or vague

threshold effects. In the former situation, errors increase rapidly as Z is changed

so that −Z and +Z are close to Z. In the latter situation, cases with values near the

threshold might be expected to be classified equally well by the subtree associated

with either outcome, so error increase relatively slowly and the interval from −Z

to  +Z is larger.

3.8  Pruning decision trees

Decision tree classifiers divide the training data into subsets, which contain only a

single class. The result of this procedure is often a very large and complex tree. In
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most cases, fitting a decision tree until all leaves contain data for a single class

may overfit to the noise in the training data, as the training samples may not be

representative of the population they are intended to represent. If the training data

contain errors, then overfitting the tree to the data in this manner can lead to poor

performance on unseen cases. To reduce this problem, the original tree can be

pruned to reduce classification errors when data outside of the training set are to

be classified.

A decision tree is not usually simplified by deleting the whole tree in favour of a

leaf. Instead, parts of the tree that do not contribute to classification accuracy on

unseen cases are removed, thus producing a less complex and more

comprehensible tree. There are two ways in which a decision tree classifier can be

modified to produce a simpler tree (Breiman et al., 1984):

1. Deciding not to divide a set of training data any further, and

2. To remove retrospectively some part of the tree structure built by recursive

partitioning.

The first approach, sometimes called stopping or pre-pruning, has the advantage

that time is not wasted in assembling a structure that is not used in the final

simplified tree. The approach is to look at the best way of splitting a dataset and to

assess the split from the point of view of a factor such as information gain or

error reduction. If this assessment falls below some threshold, the division is

rejected and the tree for the data is just the most appropriate leaf. The problem

with this approach is to specify a correct stopping rule (Breiman et al., 1984). If

the threshold value is too high it can terminate division before the benefits of

subsequent splits become evident, while too low a value results in little

simplification of the tree.

In the second approach, the tree is allowed to grow to its full depth, when all

leaves contain data for a single class. This overfitted tree is then pruned. This

method needs more computation in building parts of the tree that are subsequently

discarded, but this cost is offset against benefits due to more thorough exploration

of possible partitions. Pruning a decision tree will cause it to misclassify more of
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the training data. Thus, the leaves of the pruned tree will not necessarily contain

training data from a single class. Instead of a class associated with a leaf, there

will be a class distribution specifying, for each class, the probability that a training

data at the leaf belongs to that class.

The example below shows a decision tree before and after pruning .

Decision tree:

                                                  band2 <= 59 : 1 (343.0/2.0)

                                                  band2 > 59 :

                                                  |   band2 <= 61 : 2 (55.0/21.0)

                                                  |   band2 > 61 :

                                                  |   |   band1 <= 79 : 2 (293.0/18.0)

                                                  |   |   band1 > 79 :

                                                  |   |   |   band1 <= 87 : 2 (101.0/16.0)

                                                  |   |   |   band1 > 87 :

                                                  |   |   |   |   band2 <= 75 : 1 (3.0)

                                                  |   |   |   |   band2 > 75 : 2 (5.0/1.0)

Simplified decision tree:

                                                  band2 <= 59 : 1 (343.0/3.9)

                                                  band2 > 59 : 2 (457.0/64.7)

while the subtree

                                                   band2 > 59 :

                                                  |   band2 <= 61 : 2 (55.0/21.0)

                                                  |   band2 > 61 :

                                                  |   |   band1 <= 79 : 2 (293.0/18.0)

                                                  |   |   band1 > 79 :

                                                  |   |   |   band1 <= 87 : 2 (101.0/16.0)

                                                  |   |   |   band1 > 87 :

                                                  |   |   |   |   band2 <= 75 : 1 (3.0)

                                                  |   |   |   |   band2 > 75 : 2 (5.0/1.0)
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has been replaced by the leaf "class 2" in the simplified tree after pruning. As

shown in the tree above every leaf is followed by a cryptic (n) or (n/m). For

observation the last leaf of the simplified decision tree is 2 (457.0/64.7), for which

n is 457 and m is 64.7. The value of n is the number of data that are mapped to

this leaf, and m is the number of items that are classified incorrectly by the leaf.

(A non-integral number of cases can arise because, when the value of an attribute

in the tree is not known, the See5.0 decision tree software splits the case and sends

a fraction down each branch.)

Decision trees are usually simplified by removing one or more subtrees and

replacing them with leaves if it is possible to predict the error rate of a tree and of

its subtrees, including leaves. The process is started from the bottom of the tree

and each nonleaf subtree is examined. This procedure is called the bottom-up

approach. Alternatively, the  process starts from the root and moves towards the

leaves of the tree by examining the branches. This is called the top-down

approach. The tree is pruned if replacement of a subtree with a leaf, or with its

most frequently used branch, would lead to a lower predicted error rate. The error

rate for whole tree decreases as the error rate of any of its subtrees is reduced, and

this process will lead to a tree whose predicted error rate is minimal with respect

to the allowable form of pruning. As mentioned earlier,  pruning always increases

error on training data, so it is necessary to have a suitable technique for predicting

error rates.

Two families of techniques to predict error rates of a tree are available. In the first

family, the error rate of the tree and its subtrees is predicted by using a new set of

data that is separate from the training data. Since these cases were not examined at

the time the tree was constructed, the estimate obtained from them will be

unbiased and, if we have enough data, the estimate will also be reliable. In the

second approach the training data are used to predict these error rates and pruning

the tree. The techniques for pruning the decision tree are as follows:

1. Cost-complexity pruning (Breiman et al., 1984)

2. Reduced-error pruning (Quinlan, 1987)

3. Pessimistic pruning  (Quinlan, 1993)



66

4. Error based pruning: (Quinlan, 1993)

5. Critical value pruning (Mingers, 1989 (a))

3.8.1  Cost-complexity pruning

In cost-complexity pruning, the predicted error rate of a tree is modelled as the

weighted sum of its complexity and its error on training data, with the separate

data set being used primarily to determine an appropriate weighting. This

technique is a two-stage process in which a sequence of sub-trees k10 T,....,T,T

(denoted as )(T max α ) of maxT (original decision tree generated by using training

data set)  is generated. Each sub-tree 1iT + is obtained by replacing one or more

sub-trees of iT  with leaves until the final tree kT  is just a leaf.

Consider a decision tree T that is used to classify each of the n(t) data items in the

training set  from which T was generated, and let e(t) of them be misclassified. If

L (T) is the number of leaves in T, then the cost-complexity of T is defined

(Breiman et al., 1984) as the sum:

                                                 ( )
( )tn
te  + α×L (T)

for some parameter α. Now, suppose some sub-tree S of  the tree T is replaced by

the best possible leaf, the new tree would misclassify m(t) more of the cases in the

training set but would contain L(S)-1 fewer leaves. This new tree would have the

same cost-complexity as T if:

                                               ( )
( ) ( )( )1SLtn

tm
−×

=α

To produce 1iT +  from iT , each non-leaf subtree of iT  is examined to find the

minimum value of α, as calculated above. Any subtrees with the values of  α are

then replaced by their respective best leaves.

 

In the second stage of this process, the best tree in ( )αmaxT  with respect to the

predictive accuracy criterion is chosen. There are two ways of estimating the true
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error rate of each tree in the family. One is based on cross-validation sets, and the

other on an independent pruning set. Assume that some test set containing 'N

cases and use each iT  to classify all of the available test data. Let 'E  be the

minimum number of errors observed with any iT , with the standard error of 'E

being given by

                                         Se( 'E )  = ( )
'

'''

N
ENE −×

The tree selected is the smallest iT  whose observed number of errors on the test

set does not exceed 'E + Se( 'E ).

3.8.2  Reduced-error pruning

This method assesses the error rates of the tree and its components directly on a

separate set of test data. In this method, the original tree classifies all the test data.

For every non-leaf subtree S of T, the changes in misclassification over the test

data that would occur if S were replaced by the best possible leaf are examined. If

the new tree would give an equal or smaller number of errors, and if S contains no

subtree with the same property, then subtree S is replaced by the leaf. The process

continues until any further replacements would increase the number of errors over

the test set.

As with the cost-complexity pruning, this process generates a sequence of trees.

The final tree is the most accurate subtree of the original tree with respect to the

test data set and is the smallest tree with that accuracy. The disadvantages of this

method are, first, it requires a separate test data set and, second, “ …that part of

the original tree corresponding to rarer special cases not represented in the test set

may be excised” (Quinlan, 1987, pp. 226). These techniques of pruning may not

be much of a disadvantage when training and test data are abundant, but can lead

to poorer-performing trees when data are scarce. This makes it necessary to have a

technique for pruning a tree which uses only the training set from which the tree

was built.
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3.8.3  Pessimistic pruning

This method increases the estimated error rates of subtrees to reflect the size and

composition of the training subsets, then replaces every subtree whose predicted

error rate is not significantly lower than that of a leaf. This method of pruning is

described by  Quinlan (1987). It aims to avoid the necessity of a separate test data

set. A continuity correction for the binomial distribution is used to obtain a more

realistic estimate of the misclassification rate.

If n(t) represents  the  number of  training set examples at  a node t in the tree and

e (t) represents the number of examples misclassified at node t, then

                                           ( ) ( )
( )tn
tetr =

is an estimate of the misclassification rate. The rate with the continuity correction

is

                                      ( ) ( )
( )tn

tetr 2/1, +
=                                                         (3.11)

For a sub-tree tT , the misclassification rate will be:

                                      ( ) ( )
( )∑

∑=
in
ie

Tr t

where i covers the leaves of the sub-tree. Thus, the corrected misclassification rate

is:

                  ( ) ( )( )
( )

( )
( )∑

∑
∑

∑ +
=

+
=

in
nie

in
ie

Tr T
t

2/2/1,                                         (3.12)

where Tn  is the number of leaves.



69

In equations (3.11) and (3.12), ( ) ( )∑= intn  as they refer to the same set of

examples; therefore, the misclassification rates can be simplified to numbers of

misclassifications:

                              ( ) ( ) 2/1, += tetn   for a node

                              ( ) ( )∑ += 2/,
Tt nieTn  for a sub-tree.

Using training data, the sub-tree will always make fewer errors than the

corresponding node, but this is not so when the corrected figures are used, since

they depend on the number of leaves, not just on the number of errors. However,

it is likely that even this corrected estimate of the number of misclassifications

made by the sub-tree will be optimistic. Hence, the algorithm only keeps the sub-

tree if its corrected figure is more than one standard error better than the figure for

the node. The standard error for the number of misclassifications is derived from:

                        ( )( ) ( ) ( ) ( )( )
( )tn

TntnTn
TnSE tt

t

,,
, −×

=                                         (3.13)

 Quinlan (1993) suggests pruning the sub-tree unless its corrected number of

misclassifications is lower than that for the node by at least one standard error. As

this algorithm evaluates each node starting at the root of the tree. This means that

it does not need to consider nodes that are in subtrees which have already been

pruned.

3.8.4  Error based pruning

This pruning method is an improvement on the "pessimistic pruning" method, and

it is based on a far more pessimistic estimate of the expected error rate. Unlike the

method described in section 3.7.3, this method visits the nodes of the full-grown

tree according to a bottom-up, post-order traversal strategy instead of a top-down

strategy.
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Taking the set of examples covered by a leaf t as a statistical sample, it is possible

to estimate a confidence interval )]t(U),t(L[ CFCF  for the posterior probability

of misclassification of t. The upper limit of the interval is of particular interest for

a worst case analysis, and is defined as the real value such that

( ) ( )( ) CFUtn/teP CF =≤ , where CF is the confidence level. Under the further

assumption that errors in the training set are binomially distributed with

probability p in n(t) trials, it is possible to compute the exact value of CFU  as the

value of p for which a binomially-distributed random variable X shows e(t)

successes in n(t) trials with probability CF, that is, p (X≤e (t)) = CF. In other

words, if X has a binomial distribution with parameters ))t(n,U( CF , the equality

above must hold. The value of CFU  depends on both e(t) and n(t) so, having found

the upper limit, the error estimates for leaves and subtrees are computed assuming

that they are used to classify a set of unseen cases of the same size as the training

set. Thus the predicted error rate for t will be n (t)· CFU  (Esposito et. al., 1997).

The sum of the predicted error rates of all the leaves in a branch tT  is considered

to be an estimate of the error rate of the branch itself. Thus, by comparing the

predicted error rate for t with that of the branch tT  and of the largest sub-branch

'tT  rooted in a child 't  of  parent of t, one can decide whether it is convenient to

prune tT , to graft 'tT  in place of parent of t, or to keep tT .

3.8.5  Critical value pruning

This method relies on estimating the importance or strength of a node from

classifications done at the tree creation stage. In creating the original tree, a

goodness of split measure determines the attribute at a node. The value of the

measure reflects how well the chosen attribute splits the data between the classes

at the node. The pruning method specifies a critical value and prunes those nodes

which do not reach the critical value, unless a node further along the branch does

reach that value. The larger the critical value selected, the greater the degree of

pruning and the smaller the resulting tree. In practice, a series of pruned trees is

generated using increasing critical values (Mingers, 1989 (a)). A single tree can be
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chosen in the same way as for cost-complexity pruning. The particular critical

value used depends on the measure used in creating the tree.

3.9  Problems in the use of decision tree classifiers

Although decision tree classifiers are an effective and general learning tool, and

are used intensively in the field of machine learning research, few uses of decision

trees have been reported in the field of remote sensing image classification. Like

other classifiers based on different assumptions, these classifiers inevitably have

some limitations that may have an impact on their performance. There are fewer

factors affecting the accuracy of decision tree classifiers compared with the neural

classifier, where a number of factors affect the classification accuracy. The factors

affecting the decision tree classifiers can be summarised as:

1. Type of classifier, whether it is univariate or multivariate.

2.  Attribute selection measure used in designing a classifier.

3. Pruning methods used to prune the tree.

4. Number of training pattern required for the optimum classification results.

A small number of studies report the effects of these factors on land cover

classification accuracy. Friedl and Brodley (1997) studied the behaviour of

different decision tree classifiers, such as univariate, multivariate and hybrid

classifiers, for land cover classification. They found that hybrid decision

classifiers outperform other types of decision tree. Except for this study, no other

studies have used remotely sensed data to study the effects of other factors on

classification accuracy. Brieman et al. (1984) and Mingers (1989 (a) (b)) use other

types of data and suggest that it is the pruning method that most affects the

classification accuracy. They also found that attribute selection measures have

little or no effect on classification accuracy. Oates and Jenson (1997) studied the

behaviour of a univariate decision tree classifier (C4.5) with five different pruning

methods, and found that increasing training set size often results in a linear

increase in tree size, even when that additional complexity results in no significant

increase in classification accuracy. On the other hand, Quinlan (1993) found that

in situations where the division of feature space by an oblique hyperplane
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(multivariate decision tree) is easier, the number of training cases required to

approximate this oblique division by a collection of hyper-rectangles (univariate

decision tree) will be large, which increases the complexity of the decision tree

classifier.

3.10 Support Vector Machines (SVM)

This section gives an overview of another recent development in classification

methodology, called support vector machines (SVM) or sometimes support vector

networks. This classification system is based on statistical learning theory as

proposed by Vapnik and Chervonenkis (1971), which is discussed in detail by

Vapnik (1995, 1999). The SVM can be seen as a new way to train polynomial,

radial basis function, or multilayer perceptron classifiers, in which the weights of

the network are found by solving a Quadratric Programming (QP) problem with

linear inequality and equality constraints using structural risk minimisation rather

than by solving a non-convex, unconstrained minimisation problem, as in standard

neural network training technique using empirical risk minimisation. Empirical

risk minimises the misclassification error on the training set, whereas structural

risk minimises the probability of misclassifying a previously unseen data point

drawn randomly from a fixed but unknown probability distribution. The name

SVM results from the fact that one of the outcomes of the algorithm, in addition to

the parameters for the classifiers, is a set of data points (the "support vectors")

which contain, in a sense, all the information relevant to the classification

problem. A brief review of statistical learning theory is given in section 3.11.

3.11  Statistical learning theory

3.11.1  Empirical risk minimisation

In the case of two-class pattern recognition, the task of learning from examples

can be formulated in the following way: given a set of decision functions

                                     ( ){ },:f Λ∈αα x        →α
NR:f {-1, 1}

where Λ is a set of abstract parameters (Osuna et. al., 1997), and a set of examples
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                       ( ) ( )kk11 y,...,,.........y, xx ,           ∈∈ i
N

i y,Rx  {-1, 1}

drawn from an unknown distribution P(x, y). The aim is to find a function that

provides the smallest possible value for the average error committed on

independent examples randomly drawn from the same distribution P(x, y), called

the expected risk:

                           ( ) ( ) ( )∫ −=α α dydy,PyfR xxx                                          (3.14)

The functions αf are usually called hypotheses, and the set ( ){ }Λ∈αα :f x is called

the hypothesis space, and is denoted by H. The expected risk is therefore a

measure of the capability of a hypotheses to predict the correct label y for a point

x. The set of functions αf  could be, for example, a set of radial basis functions or

a multilayer perceptron with a certain number of hidden units. In this case, the set

Λ is the set of weights of the network (Osuna et. al., 1997).

Since the probability distribution P(x, y) is unknown, it is not possible to compute,

and therefore minimise, the expected risk R(α). Thus, the straightforward

approach is to compute a stochastic approximation of R(α), the so called empirical

risk:

                              ( ) ( )∑
=

α
−=α

k

1i
iiemp

yf
k

1R x                                          (3.15)

A common approach consists in minimising the empirical risk rather than the

expected risk. The value ( )αempR  is a fixed number for a particular choice of α  and

a particular training set. The term ( ) ( ) ii y,f21 −αα x is called the loss. If the

number of training patterns (k) used to train the classifier is limited, the empirical

risk calculated in equation 3.15 may not guarantee a small actual risk. This can be

put another way: a low error value on a training set does not necessarily imply

that the classifier has a high generalisation ability, and the empirical risk

minimisation principle is therefore said to be non consistent. This problem is often

referred to as overfitting.

Vapnik and Chervonenkis (1971, 1991) showed that necessary and sufficient

condition for consistency of the empirical risk minimisation principle is the fitness
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of the VC-dimension h of the hypothesis space H. The VC-dimension of the

hypothesis space H (or the VC-dimension of classifier αf ) is a natural number,

which is, loosely speaking, the largest number of data points that can be separated

in all possible ways by that set of functions αf . The VC-dimension is a measure of

the complexity of the set H, and it is often, but not necessarily, proportional to the

number of free parameters of the classifier αf .

The theory developed by Vapnik and Chervonenkis (1971) also provides a bound

on the deviation of empirical risk from the expected risk. For the learning problem

described, choosing some η  such that 0 ≤ η ≤ 1 (e.g. for a 95% confidence level,

η= 0.05)  the  Vapnik and  Chervonenkis  bound, which  holds  with  probability

1 - η, has the following form (Burges, 1998):

                     ( ) ( )
( )
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h
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where the confidence term φ  is defined as
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where h is the VC-dimension of a set of functions and the right hand side of

inequality 3.16 can be called the "risk bound". This value describes the capacity

of a set of functions. From this bound it is clear that, in order to achieve a small

expected risk, that is, good generalisation performances, both the empirical risk

and the ratio between the VC-dimension and the number of data points has to be

small. The empirical risk is usually a decreasing function of h; thus, for a given

number of data points, there is an optimal value of the VC-dimension. The choice

of an appropriate value of h is crucial in order to get good performance, especially

when the number of data points is small. When using a multilayer perceptron or a

radial basis functions network, this is equivalent to the problem of finding the

appropriate number of hidden units (Osuna et. al., 1997).
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3.11.2  Structural risk minimisation

The technique of structural risk minimisation developed by Vapnik (1982) is an

attempt to overcome the problem of choosing an appropriate VC-dimension.

Equation 3.16 suggests that a small value of the empirical risk does not

necessarily imply a small value of the expected risk. A different induction

principle, called the Structural Risk Minimisation (SRM) principle, was proposed

by Vapnik (1982). The principle is based on the observation that, in order to make

expected risk small, both sides in equation 3.16 should be small. Therefore, both

the VC-dimension and the empirical risk should be minimised at the same time. In

order to implement the SRM principle a nested structure of hypothesis space is

introduced by dividing the entire class of functions into nested subsets

                                            ......H.....HH n21 ⊂⊂⊂⊂

with the property that h(n) ≤ h(n + 1) where h(n) is the VC-dimension of the set

nH . For each subset, a value of h or a bound on h is computed. SRM then finds

that subset of function which maximise the bound on actual risk. This can be

achieved by training a set of machines, one for each subset and choose that trained

machine whose sum of empirical risk and VC confidence is minimal (Osuna et.

al., 1997).

 The SRM principle is well founded mathematically, but it is difficult to

implement for the following reasons (Osuna et. al., 1997):

1. The VC-dimension of nH  could be difficult to compute, and there are only

a small number of models for which it is possible to compute the VC-

dimension.

2. Even, if it possible to compute the VC-dimension of nH , it is not easy to

solve the minimisation problem in equation 3.16. In most cases one will

have to minimise the empirical risk for every set nH , and then choose the

nH , that minimise the equation 3.17.

Therefore, the implementation of this principle is not easy, because it is not trivial

to control the VC-dimension of a learning technique during the training phase.
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The Support Vector Machine (SVM) algorithm achieves this goal of minimising a

bound on the VC-dimension  and the number of training errors at the same time.

3.12  Design of support vector machines

3.12.1 The linearly separable class

Linearly separable classes are the simplest case on which to train a support vector

machine. Let the training data with k number of samples be represented by

{ }iy,ix , i = 1, …, k, where NR∈x is an N-dimensional space and ∈y {-1, +1} is

the class label (Osuna et. al., 1997). These training patterns are said to be linearly

separable if there exists a vector w (determining the orientation of a

discriminating plane) and a scalar b (determine offset of the discriminating plane

from origin) such that

                                     1b +≥+⋅ ixw          for all y = +1                                 (3.18)

                                     1b −≤+⋅ ixw          for all y = -1                                  (3.19)

inequalities 3.18 and 3.19 can be combined into a single inequality:

                                       ( ) 01by ii ≥−+⋅ xw                                                     (3.20)

The hypothesis space in this case is therefore the set of functions given by

                                       ( )bsignf b, +⋅= xww                                                    (3.21)

The decision surface in equation 3.21 will remain unchanged if the parameters w

and b are scaled by the same quantity. In order to remove this redundancy, and to

make each decision surface correspond to one unique pair (w, b), the following

constraint is imposed:

                                        =+⋅
=

bmin i
k,...,1i

xw  1                                                    (3.22)

where k1,.......xx are the points in the dataset. The set of hyperplanes that satisfy

equation 3.22 are called canonical hyperplanes (Osuna et. al., 1997). All linear

decision surfaces can be represented by canonical hyperplanes, and the constraint

in equation 3.22 is just a normalisation. Vapnik (1995) suggested that if no further

constraints are imposed on  the  pair  (w, b),  the  VC-dimension of  the  canonical

hyperplanes  will  be (N + 1), that is, the total number of free parameters. In order

to be able to apply the structural risk minimisation principle, one need to construct

sets of hyperplanes of varying VC-dimension, and minimise both the empirical

risk (the training classification error) and the VC-dimension at the same time.



It can be shown that the distance from a point x to the hyperplane associated to the

pair (w, b) is:

                                      ( )
w
wx

wx
b

b,;d
+⋅

=                                                    (3.23)

According  to equation 3.22  the  distance  between  the  canonical  hyperplane

(w, b) and the closest of the data points is simply w1 . If the set of examples is

linearly separable, the goal of the SVM is to find, from among the canonical

hyperplanes that correctly classify the data, the one with minimum norm, or

equivalently minimum 2w , because keeping this norm small will also keep the

VC-dimension small. Minimising 2w , in this case of linear separability, is

equivalent to finding the separating hyperplanes for which the distance between

the classes of training data, measured along a line perpendicular to the hyperplane,

is maximised. This distance is called the margin (Burges, 1998).
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gure 3. 5.  Hyperplanes for the linearly separable data sets. Dashed line passes
ough the support vectors.
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 into two different classes, using the smallest norm of coefficients. This can be

formulated as follows:

                                             2

b
2
1

min w
w,

 subject to

                              ( ) 01byi ≥−+⋅ ixw      i = 1, …..,k.                                     (3.24)

This problem can be solved using standard Quadratic Programming (QP)

optimisation  techniques and  is  not  very  complex  since  the  dimensionality is

N + 1, where N is the dimension of the input space. The quadratic optimisation

problem in equation 3.24 can be solved by replacing the inequalities with a

simpler form determined by transforming the problem to a dual space

representation using Lagrangian multipliers. The Lagrangian is formed by

introducing positive Lagrange multipliers iλ , i = 1,….,k and multiplying the

constraint equations by these Lagrange multipliers, and finally subtracting the

results from the objective function (i.e, ( ) 221 w ). The solution of this

optimisation problem can be obtained by locating the saddle point of the Lagrange

function and, can be written as:

              ( ) ( )∑ ∑
= =

λ++⋅λ−=
k

1i

k

1i
iiii

2 byw
2

1
,b,L xwλw                        (3.25)

The solution of this optimisation problem requires that ( )λ,b,L w  be minimised

with respect to w and b and simultaneously, that the derivatives of ( )λ,b,L w  with

respect to all iα  vanish, given iλ ≥ 0, thus generating the following conditions:

                                               ∑λ=
i

ii x  w iy                                                   (3.26)

                                                  ∑ =λ
i

ii 0y                                                     (3.27)

By substituting equation 3.26 and 3.27 into equation 3.25, the optimisation

problem becomes one of maximising:

                   ( ) )(yy
2

1
L

j,i
jiji

i
i ji xxλ ⋅λλ−λ= ∑∑                                     (3.28)
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under constraints iλ ≥ 0, i = 1, …..,k.

Once the vector solution ( )a
k

a
1

a ,......,λλ=λ  of the maximisation problem in equation

3.28 has been found, the optimal separating hyperplane (hyperplane for which the

distance to the closest point is maximal) has the following expansion:
                                         

i
i

a
ii

a y xw ∑ λ=                                                     (3.29)

The Karush-Kuhn-Tucker (KKT) conditions (Fletcher, 1987) play a central role in

both the theory and practice of constrained optimisation. For the above problem,

the KKT conditions may be stated as:

                                            
( )

0
,b,L

=
∂

∂
w

λw

                                            
( )

0
b

,b,L
=

∂
∂ λw

                                            ( ) 01byi ≥−+⋅ ixw        i = 1, …..k.                     (3.30)

                                                iλ ≥ 0, for i = 1, …..,k

                                                ( )( ) 01by iii ≥−+⋅λ xw   i = 1, …..k

According to KKT theory, only points that satisfy the equalities in equations 3.18

and 3.19 can have non-zero coefficients a
i

λ . These points lie on the two parallel

hyperplanes shown in Figure 3.5 and are called support vectors. In other words,

support vectors are the points for which a
i

λ > 0 and satisfy equalities in equation

3.18 and 3.19. For a two-class problem the decision rule that separates the two

classes can be written as (Osuna et. al., 1997)

                                  ( ) ( ) 







+⋅λ= ∑

=

k

1i
iii bysignf xxx                                    (3.31)

3.12.2  Non-separable data

Cortes and Vapnik (1995) generalised the method of finding the optimal

hyperplane to the case of non-separable data, in which there is no opportunity to

place a hyperplane such  that  data can be separated completely into two classes

(Figure 3.6). For this type of problem, Cortes and Vapnik (1995) suggested that

the restriction that every training vector of a given class lie on the same side of the



optimal hyperplane be relaxed by introducing a positive "slack variable" iξ , that

takes the value iξ  ≥ 0. Equation 3.20 can now be written as:

                                         ( ) 01by ii ≥ξ+−+⋅ ixw                                            (3.32)

In this case, the SVM algorithm searches  for the hyperplane that maximises the

margin and that, at the same time, minimises a quantity proportional to the

number of misclassification errors. This trade-off between margin and

misclassification error is controlled by introducing a positive constant C such that

∞ > C > 0. Cortes and Vapnik (1995)  introduce a new term ∑ξ iC with i = 1,…, k,

into equation 3.24 that balances the contribution of minimising ( ) 2w21  with

penalising solutions, for which iξ becomes large. The optimisation problem for

non-separable data thus becomes:

                            











ξ+ ∑

=ξξ

k

1i
i

2

,....,b
Cw

2

1
min

k1w,
                                             (3.33)

                                          ( ) 01by iii ≥ξ+−+⋅ xw                                            (3.34)

                                          0i ≥ξ          i = 1, ……k.                                         (3.35)
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Figure 3. 6.  Hyperplanes for non-separating data sets.
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becomes a formulation for the separable data case. Thus, C is a parameter chosen

by the user and a large C means assigning a higher penalty to errors. Minimising

the first term in equation 3.33 means minimising the VC-dimension of the

learning machine and minimising the second term in equation 3.33 controls the

empirical risk, which is the first term on the right hand side of equation 3.16. This

approach, therefore, constitutes a practical implementation of structural risk

minimisation on the given set of functions. In order to solve the equation 3.33 for

non separable data, equation 3.25 can be written as:

 ( ) ( ){ }∑ ∑ ∑ ξµ−ξ+−+⋅λ−ξ+=
i i i

iiiiiii
2 1byC

2

1
,,,b,L xwwµξλw   (3.36)

where the iµ  are the Lagrange multipliers introduced to enforce positivity of the

iξ .

The solution of equation 3.36 is determined by the saddle points of the Lagrangian

(equation 3.36), by minimising with respect to w, ξ and b, and maximising with

respect to iλ  ≥ 0 and iµ  ≥ 0.

3.12.3  Nonlinear support vector machines

In the situations where it is not possible to have a decision surface (a hyperplane)

defined by the linear equations on the training data, the techniques discussed in

section 3.12.1 and section 3.12.2 can be extended to allow for non-linear decision

surfaces. A technique introduced into machine learning as a part of the support

vector machine by Boser et al. (1992) is discussed next.

Boser et al. (1992) propose that a feature vector, NR x ∈ , is mapped into a higher

dimensional Euclidean space (feature space) F (Figure 3.7), via a non-linear

vector function F: N aRΦ . The optimal margin problem in the space F can be

written by replacing ji xx ⋅ with ( ) ( )ji xΦxΦ ⋅ , then solving the optimisation

problem for iλ  in the transformed feature space by association with the iλ > 0. By

using this mapping, the solution of the SVM has the form:
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                        ( ) ( ) ( ) 







+⋅λ= ∑ bysignf

i
ii ixΦxΦx                                    (3.37)

Figure 3. 7.  The idea of a non-linear support vector machine.

As suggested by equation 3.37, the only quantities that one need to compute are

the scalar products, of the form Φ(x) . Φ(y). It is therefore convenient to introduce

the concept of the kernel function K (Vapnik, 1995) such that:

                                             ( ) ( ) ( )jiji ,K xΦxΦxx ⋅=                                          (3.38)

In this optimisation problem, only the kernel function is computed in place of

computing ( )xΦ , which could be computationally expensive. By doing this, the

training data are moved into a higher-dimensional feature space where the training

data may be spread further apart and a larger margin may be found for the optimal

hyperplane. Thus, equation 3.28 can be written as:

                    ( ) ( ) ( )( )∑∑ Φ⋅Φλλ−λ=
j,i

jiji
i

i yy
2

1
L ji xxλ                            (3.39)

A number of kernel functions are used within SVM. To find a way to choose

among various kernels and the parameters of the kernel function, readers are

referred to Vapnik (1995). For this study, several kernels are considered in order

Φ

Input space Feature space
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to compare the effect of choice of kernel type and associated parameters for land

cover classification. The kernels used for this study are:

• The simple dot product:                                    K(x,y) = x·y.

• The simple polynomial kernel of degree d:      ( ) ( )( )d1,K +⋅= yxyx .

• A radial basis function:                               
2

e yx−γ−  with γ defined by user.

• A two-layer neural network:                        ( )( )cbtanh −⋅ yx  where b and c

are user defined.

• A linear spline with an infinite number of points:

           ( ) ( )( ) ( )( )
3

,min
min

2
,min1

3
ji2

ji
ji

jijiji
xx

xx
xx

xxxxxx +
+

−++ .

In order to find the optimal decision surface, the support vector training algorithm

tries to separate, as best as possible, the clouds of data points representing each

class. Data points closer to the boundary between the classes are more important

in the classification than are data points that are far away, since data points closer

to the boundary are harder to classify. These data points help shape and define

better decision surface than other points. The support vector machine tries to find

data points that are closest to the separating surfaces, therefore the support vectors

are border points, and due to this reason support vectors are very few. Finally,

SVMs are based on a QP optimisation problem that has only a global optimum.

The absence of local minima is a significant difference from standard pattern

recognition techniques such as neural networks (Osuna et. al., 1997).

3.13  Multi-class classifier

SVM was initially designed for binary (two-class) problems. When dealing with

several classes, as the case of land cover classification, an appropriate multi-class

method is needed. Different possibilities for this includes:

• Modify the design of SVM, such that it incorporate the multi-class

learning   directly in the quadratic solving algorithm (Weston and Watkins,

1998).
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•   Combine several binary classifiers: the "one against the rest" approach

(Vapnik, 1995) compares a given class with all the others put together,

thus generating n classifiers, where n is the number of classes. The final

output of this SVM is the class that corresponds to the SVM with the

largest margin, the value of the argument of the sign function in equation

3.37.

•   Combine several classifiers: the "one against one" approach (Knerr et al.,

1990) applies pairwise comparisons between classes. In this method, all

possible two-class classifiers are evaluated  from the training set of  n

classes, each classifier being trained on only two out of n classes. There

would be a total of n(n-1)/2 classifiers. Applying each classifier to the

vectors of the test data gives one vote to the winning class. The pixel is

given the label of the class with most votes.

In this study, the "one against one" and "one against the rest" approaches are

used so as to compare the results obtained. Two SVM based classification

software systems were used. One was obtained from Royal Holloway College

and AT&T, University of London; the other, LIBSVM,  was provided by Chih-

Chung Chang of the University of Taiwan.

3.13 Problems in the use of SVM

So far, few studies have reported the use of support vector machines for

classification of remote sensing data (Huang et al., 2002; Zhu and Blumberg,

2002; Gualtieri and Cromp, 1998). In comparison to neural classifiers few factors

affect the performance of these classifiers and Huang et al. (2002) discussed some

of them in detail. Some of the factors that affect the classification accuracy of

SVM classifiers are:

1. Choice of kernel used.

2. Choice of the parameters related to a particular kernel.

3. Method used to generate the SVM for multi-class classification problems.

4. Choice of parameter C.
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This study is designed to study the effect of all these parameters on classification

accuracy of remotely sensed data, details of which is provided in chapter 5

(section 5.2).

3.14 Ensemble of classifiers

In recent years, a number of papers proposing the combination of multiple

classifiers to produce a single classification have been published in the remote

sensing literature. The resulting classifier, referred to as an ensemble classifier, is

generally found to be more accurate than any of the individual classifiers making

up the ensemble. Some papers report the use of ensembles of neural networks

(Giacinto and Roli, 1997) and the integration of classification results of different

type of classifiers (Roli et al., 1997), and they find that this technique is  effective

in improving classification accuracy. Much of this research is focused on

improving classification accuracy, as accuracy is the primary concern in all

applications of learning. So far, very few works (Friedl et al., 1999) have reported

the use of boosting, another technique that can  improve the performance of any

learning algorithm, in image classification. The basic difference between the use

of ensembles of classifiers and boosting is that boosting uses the same learning

algorithm that consistently generates multiple classifiers in an iterative manner.

3.14.1 Boosting

Boosting is a general method for improving the performance of any learning

algorithm. Boosting can be used to reduce the error of any weak learning

algorithm that consistently generates classifications on various distributions over

the training data, and then combines the classifications produced by the weak

learner into a single composite classification. Figure 3.8 illustrates the basic

framework for a classifier ensemble.

In this study, a boosting algorithm called AdaBoost M1 (Freund and Schapire,

1996) is used with the C4.5 decision tree (Quinlan, 1993) as the base algorithm.

Boosting assigns a weight to each observation - the higher the weight, the more

that observation influences the classifier. At each trial, the vector of weights is
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adjusted to reflect the performance of the corresponding classifier, with the result

that the weight of misclassified observations is increased. The final classifier

aggregates the classifiers generated after each iteration by voting,  but each

classifier’s vote is a function of its accuracy.

Following Freund and Schapire (1996), let x
tw  be the weight assigned to

observation x at trial t where, for every x, and t=1,

                                                      N/1w x
1 =

where N is the total number of observations in the training set and t is the iteration

or trial number (t = 1, 2, …..., T). At each trial, a classifier tC  is constructed from

the given observations under the distribution tw (i.e., as if the weight xtw of

observation x reflects the probability of its occurrence). The error tε  of this

classifier is also measured with respect to the weights, and consists of the sum of

the weights of the observations that it misclassifies. If  tε  is greater than 0.5, the

trials are terminated and the value of T becomes t-1. Conversely, if tC  correctly

classifies all observations so that tε  is zero, the trials terminate and the value of T

becomes t. Otherwise, the weight vector x1tw + for the next trial is generated by

                                      ( )ttxtx1t 1/ww ε−ε×=+

Conversely, if the observation was not correctly classified, xw  is unchanged and

at each iteration the weight xw is normalised so that

                                                       ∑ = 1wx .

By applying the above process, a new tree with a different error level is estimated

at each step. The final, boosted classifier is the result of a voting procedure, where

the vote for classifier tC  is worth

                                                    ( )t/1log β  units.

with

                                                    ( )ttt 1/ ε−ε=β .
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 Studies carried out by  Quinlan (1996) using a variety of data sets have shown

that boosting tends to reduce misclassification error rate by 25% on average, and

improvement in classification accuracy tends to stabilise by about 10 iterations. In

remote sensing, only a few studies have been carried out (Friedl et al., 1999 and

Muchoney et al., 2000), and these studies suggests that boosting helps to improve

the accuracy of classification by 5-12%.

Figure 3. 8.   A classifier ensemble of decision tree classifier.

3.14.2 Bagging

Brieman (1996) suggests another technique, called bootstrap aggregating or

bagging, to improve the accuracy of a base classifier by creating a number of

classifiers by manipulating the training data. In this method, each classifier’s

training set is generated by randomly drawing, with replacement, N examples,

where N is the size of the original training set. In this situation, many of the

original examples may be repeated in the resulting training set while others may

be left out. The learning system generates a classifier from the sample and

aggregates all the classifiers generated from the different trial to form the final

Classifier 1 Classifier 2 Classifier 3

Combine classifier outputs
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output
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classifier. To classify an instance, every classifier records a vote for the class to

which it belongs, and the instance is labelled as a member of the class with the

most votes.

3.15  Conclusions

The fundamental principles underlying the design and use of decision tree and

support vector machine classifiers are discussed in this chapter. The main steps in

the design of a decision tree classifier, such as the choice of an attribute selection

measure, pruning methods, and various cases for the design of support vector

machines are described in detail. Boosting is a new technique that is used to

improve classification accuracy, and this technique is discussed in detail along

with another technique, called bagging, to create ensemble of classifiers using the

same classifier as the base classifier. So far few studies (Friedl and Brodley, 1997;

Gahegan, 1998; Huang et al., 2002) have compared the behaviour of support

vector machines and decision tree classifiers with statistical and neural classifiers.

These studies suggested that SVM and DT classifiers outperform statistical

classifiers but so far no study has attempted to compare the behaviour of SVM

and DT classifiers with neural and statistical classifiers in detail.

The question of relative performance of  statistical, neural network, support vector

machines, and  decision tree classifiers and various factors affecting these

classifier in term of ease of use is examined in the following chapters of this

thesis.
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Chapter 4

Data Sets

4.1 Introduction

Several types of remote sensing data can be used in land cover classification. Data

can be taken from the optical or microwave regions of the spectrum, and can be

hyperspectral or multispectral in nature, depending on their availability and

quality for a particular region. Usually medium spatial resolution satellite sensor

data, such as Landsat TM/ETM+ and SPOT, have been used in several researches.

Data acquired by these sensors, which operate in the visible and near-infrared part

of the electromagnetic spectrum, are often hindered by clouds or haze. It may be

difficult to acquire cloud free data when using conventional optical satellite

sensors, thus impeding the regular updating of land cover maps, especially in

areas like the UK. Active microwave sensors, however, acquire data independent

of weather, cloud, solar angle, or solar illumination. This independence from

weather and illumination conditions allows data to be collected by these sensors at

any stage of the crop growth cycle.

Studies reporting on the use of optical and microwave data for land cover

classification suggest that choice of data type has an effect on classification

accuracy. This research is designed to evaluate the performance of both optical

(ETM+) and microwave (InSAR) data for the same area in the UK for land cover

classification, using different classification algorithms. DAIS hyperspectral data

of an area in Spain are employed to study the behaviour of different  classification

algorithms with different training dataset sizes and increasing number of features.

As few studies have used interferometric SAR data for land cover classification, a

detailed description of the technique is given in this chapter.

4.2  Synthetic Aperture Radar(SAR)

A radar sensor operates by transmitting a pulse of electromagnetic energy and

then intercepting the backscattered or reflected radiation with an aperture of some
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physical dimension. In traditional (non-SAR) systems, the angular resolution (the

angular spread of the radar beam) is governed by the ratio of the wavelength of

the electromagnetic radiation to the aperture size. The spatial resolution of the

image is the angular resolution times the distance from the sensor to the earth’s

surface. Therefore, as the sensor altitude increases, the spatial resolution of the

image decreases unless the physical size of the aperture is increased. At visible

and near infrared wavelengths, a high resolution image can be obtained even from

orbital altitudes for modest aperture sizes. However, for a microwave instrument,

which uses wavelengths that are very long compared to those of visible light, high

resolution imagery from a reasonably-sized antenna aperture is not possible.

Hence, to improve resolution without increasing physical antenna size, Synthetic

Aperture Radar (SAR) technology is employed. SAR is a coherent imaging

system in that it retains both the phase and magnitude (amplitude) component of

the backscattered signals. The value of a pixel in a complex SAR image may be

divided into phase and intensity parts in the following way:

                             ( ) ( ) ( )y,xiey,xIy,xZ φ=

Where  Z(x,y)       is the complex pixel

               x,y         are image coordinates

                 I           is the intensity of the pixel

Φ is the phase of the pixel

i           is the imaginary unit

The phase information contained in a single SAR image is practically useless and

SAR intensity is generally used.

SAR operates on the principle of using the along track sensor motion to transform

a single physically short antenna into an array of such antennae that can be linked

together mathematically as part of the data recording and processing procedures

(Curlander and Mcdonough, 1991; Elachi, 1987). The successive positions of the

real antenna along the flight line are treated mathematically as if they were simply

successive elements of a single, long synthetic antenna. Points on the ground at
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near range are viewed by proportionately fewer antenna elements than those at far

range, meaning effective antenna length increases with range. Through this

process, long antennas can be synthesised with spaceborne SAR systems. A SAR

system is therefore capable of achieving a given resolution independent of sensor

altitude. This characteristic makes SAR an extremely valuable instrument for

remote sensing. The major advantages of SAR are that it can provide high

resolution images of extensive areas of the earth’s surface irrespective of weather

conditions or solar illumination. The resistance to weather conditions derives from

the use of wavelengths of the order of centimetres, with X-band (3 cm), C-band (6

cm) and L-band (24 cm) being favoured. This all-weather and day/night capability

makes SAR a most attractive tool for environmental monitoring in regions

affected by clouds or darkness. An essential element of monitoring changes in the

earth’s environment is the ability to observe a study area on a regular and reliable

basis. Over many parts of the globe this is not possible using optical and infrared

radiation, so SAR not only has the ability to operate at all the times of the year but

also has sufficient resolution to detect environmental changes. A spaceborne SAR

generates a radar backscatter map by scanning the earth’s surface in a side-

looking fashion as shown in figure 4.1. While the sensor is moving along its

orbital path it transmits microwave pulses at the rate of pulse repetition frequency

and receives the echoes from each pulse via the same antenna. The spot on the

ground that is illuminated by a single pulse is referred to as the antenna footprint,

and the entire imaged strip is the swath.

In remote sensing radars, the size of a resolution cell on the surface is always

much larger than the signal wavelength and is generally significantly larger than

the size of the individual scattering objects. Microwave signals returning from a

given resolution cell on the earth's surface can be in phase or out of phase by

varying degree when received by the sensor. The image thus obtained has a

random pattern of brighter and darker pixels, giving them a distinctly grainy

appearance called speckle. Speckle can be reduced through the application of

image processing techniques such as averaging neighbouring pixel values, or by

special filtering and averaging techniques but it is more difficult to remove from

the image than is additive noise. One technique useful for reducing speckle is

multi-look processing (Lillesand and Kiefer 1994).
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Figure 4. 1.  Geometry of a SAR (adapted from http://www.ccrs.nrcan.gc.ca/ccrs).

This is usually done by computing some number of nominally independent

images (looks) of the same scene produced by different portions of the synthetic

aperture, and averaging them, pixel by pixel to produce a smoother image. The

image thus obtained will be called as multi-look image. Multi-looking is thus a

method for reducing speckle noise in SAR data. The SAR data can be multi-

looked to a specified number of looks, number of lines and samples, or azimuth

and range resolution. In addition to speckle reduction, multi-looking is often used

to give SAR data square pixels.



93

4.3  Interferometric Synthetic Aperture Radar

Global high-resolution digital topographic information is necessary for many

geographical applications. The simultaneous requirements of global coverage,

high spatial resolution, and high vertical accuracy pose severe demands that

cannot be met easily with conventional mapping techniques. A technique which

may meet these requirements, Interferometric Synthetic Aperture Radar (InSAR)

mapping was introduced by Graham (1974). Radar interferometry is a technique

for extracting three-dimensional information about the earth's surface by using the

relative phase difference of two coherent synthetic aperture radar images obtained

by  two receivers  separated  by a cross-track baseline  to derive an estimate of the

Figure 4. 2. Principle of interferometric synthetic aperture radar (adapted from
Gens and Van Genderen, 1996).

earth surface deviation. The horizontal resolution (range and azimuth resolution)

of the  system is  dictated by  the SAR  bandwidth (frequency  range  contained  in

a signal) and the antenna length. These parameters can be selected so as to satisfy

topographic resolution requirements. The vertical accuracy of the system is

ultimately limited by the wavelength used by the SAR which, for  microwaves, is

on  the centimetric scale. The general geometry of SAR interferometry is

illustrated in figure 4.2.

ξ

θ

xB zB
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The phase difference φ between the signals received from the same surface

element at the two antenna positions is

                                          Φ = 4π(r2 - r1)/λ                                                       (4.1)

                 

                                          Φ = ( )θθ
λ
π cossin4

zx BB −                                     (4.2)

Where λ is the SAR wavelength  (which must be the same for the two

observations) and r1 and r2 are the distances between the radar antenna and the

scatterers for platform positions O1 and O2 in figure 4.2, xB  and zB  are the

baseline components and θ  is the local incident angle.

The height of the point N can then be determined by

                                     Z  = H - r1 θcos

                                         = H – r1 ( ) ( )( )ξθξξθξ −−−− sinsinsin1cos 2      (4.3)

   where H is the flying height and ξ  is the baseline tilt angle.

There are three main ways to acquire SAR interferometric data. These are by the

use of along track, across track, and repeat-track (multi-pass) interferometry. In

across-track interferometry two SAR antenna systems are mounted

simultaneously on a single platform, which can be an aircraft or a space shuttle.

The geometry of the across-track interferometry is shown in Figure 4.3.

The terrain height can be calculated by

                            h = H – r1 1cosθ                                                (4.4)
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The ground range is determined by

                                                    y = r1 1sinθ                                                      (4.5)

and the phase difference can be calculated by equation 4.1.

Figure 4. 3. Geometry of  across-track interferometry (adapted from Gens and van
Genderen, 1996).

Along-track interferometry does not differ very much from across-track

interferometry in term of geometry. In principle, only the x- and y-axes are

changed, as shown in Figure 4.4.

The phase difference between the corresponding pixels in the two SAR images in

this geometry is caused by the movement of the object during measurement. The

velocity of the object, u can be derived from the expression

                                         u = 
xB
V

π
φλ
4

                                                               (4.6)

where λ  is the radar wavelength, φ  is the phase, V is the velocity of the aircraft

and xB  is the baseline component.
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Figure 4. 4.  Geometry of along-track interferometry (adapted from Gens and van
Genderen, 1996).

Repeat-pass interferometry requires only one antenna and is therefore most suited

to spaceborne SAR sensors. The satellite has to accomplish two close orbits

giving coverage of the area of interest in order to acquire two images of the area

with slightly different viewing geometry within a short space of time (usually a

few days). Alternatively, images from two identical instruments carried onboard

different satellites can be used. This is called "tandem mode" operation (e.g. ERS-

1 and ERS-2).The geometry of repeat-pass interferometry is shown in Figure 4.5.

In Figure 4.5, “ ….the two observation points O1 and O2 are not antenna phase

centre positions but points on the motion compensation reference paths which

dictates the cycles in phase difference across the swath” (Gens and van Genderen

1996). The separation of the sensor locations O1 and O2 determines the

correlation in the two complex images (contains both backscatter amplitude and

phase information and in mathematical sense it has a real and imaginary part).

The interferometric baseline can be described by the horizontal separation h and

vertical separation v of the reference paths, assuming that the reference paths are

parallel. The  values of h and v are often not differentiated, but this approximation

is acceptable to show the principle of repeat-pass interferometry. The difference in

slant range r is given by

    r1

   r2

y

x

Flight path1θ

 H

h
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                                          r = r1 – r2 = ( )
r
B

r
vhHgh

2

2

−
−−                              (4.7)

where

                                                        r = (r1+ r2)/2

                                                       B = 22 vh +

The phase difference can be derived from the path difference by the equation

                                                      φ = -4πr/λ                                                     (4.8)

Figure 4. 5. Geometry of repeat-pass interferometry (adapted from Gens and van
Genderen, 1996).

4.4  Differential interferometry

 In addition to measuring the topography, an interferometric SAR may be used to

measure surface motion, provided that such motion is coherent. Coherence is

maintained if the group of scatterers within one resolution cell do not change
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significantly from the first pass to the second pass of the SAR sensor, and

provided that the scattering mechanism of the individual scatterers does not

change significantly between the two passes. If these assumptions are valid, then

it is possible to measure surface motion between the two passes of the SAR sensor

using repeat-pass interferometry. Differential interferometry provides relative

measures in the order of a few centimetres, or less, for movements in the vertical

and planimetric directions. In this technique a differential interferogram is

generated by the difference of two interferograms, which contains information

about small-scale displacements that occur between the times of data acquisition.

A differential interferogram can be produced in two different ways. Based on two

phase-unwrapped interferograms, the difference of these interferograms can be

calculated. Alternatively, an existing digital elevation model can be registered to

the viewing geometry of a calculated interferogram. The result of this approach is

a simulated interferogram. The difference of the original and simulated

interferogram is the required differential interferogram.

4.5  Coherence

The phase component in conventional SAR imagery is determined by two terms.

Firstly, the two-way electrical path length from the sensor to a specific resolution

cell and, secondly, the interference between different scatterers within the cell.

Constructive and destructive interference will introduce speckle and therefore

produces no useful phase information in one single SAR image. A second

observation from a different angle will, in principle, have the same speckle

interference term provided that the change of angle is small. The phase difference

between the two images will therefore be determined by the path length difference

between the two observation points to the resolution cell. The two images can

either be obtained by using two different sensors or the same platform (single-pass

interferometry) or by using the same sensor at two different parallel or nearly

parallel passes over the area (repeat-pass interferometry) as described above.

 In SAR interferometry, coherence is defined as a measure of the degree of

resemblance of radar phase between two SAR images of the same area, and the

degree of correlation that exists between the two SAR images is called the
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complex degree of coherence. The value of this coefficient varies between zero

and one, where a zero value means no interference, which implies that there will

be no interferometric fringes.

4.5.1  Coherence magnitude estimation

The complex coherence of two zero-mean complex signals 1g  and 2g  for

stationary random processes is defined as (Born and Wolf, 1980):

                                
[ ]

[ ] [ ]2
2

2
1

*
21

gEgE

ggE
=γ                                            (4.9)

Where *
2g  is the conjugate value of signal 2g  and E[ ] denotes the expectation

value. The magnitude of γ ( γ ) is called the degree of coherence and the phase of

γ is called interferometric phase. Under the assumption that the processes involved

in equation (4.9) are ergodic in mean,1 the ensemble average is found by

coherently averaging the complex values of N single look pixels. The coherence is

then defined as:
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                                       (4.10)

In equation (4.9), it can be noted that 1g and 2g ,which are assumed to be

stationary, are also jointly stationary.

                                                
1 There are two ways to calculate the mean of a random variable: 1. Time average: by integrating a
particular member function over all time or 2. Ensemble average: average together the values of all
member functions evaluated at some particular point in time. A random variable is ergodic if and
only if (1) the time averages of all member functions are equal, (2) the ensemble average is
constant in time, and (3) the time average and the ensemble average are numerically equal. Thus,
for ergodic random variables, time average and ensemble average are interchangeable.
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Stationarity of the processes ( 1g , 2g  and *
21gg ) is required such that the time

average of each process converges to a finite limit. Ergodicity in mean is also

required so that different time averages of each process   converge   to  the  same

limit, i.e. the  ensemble  average. The  ensemble averages can then be substituted

in equation (4.9) with the time average and sample coherence of equation (4.10)

to provide an estimate of coherence. The coherence estimation considered above

is for stationary scenes in which the processes ( 1g , 2g  and *
21gg ) involved in

equation (4.9) are stationary. Such conditions are satisfied in homogeneous scenes

(Touzi et al., 1999).

In nonstationary areas, the processes ( 1g , 2g  and *
21gg ) involved in equation (4.9)

may not be stationary in mean and the sample coherence of equation (4.10) will

lead to a meaningless result (Foster and Guinzy, 1967). In practice, stationarity in

mean (the assumption that the mean E[ ] does not vary) may be relaxed: all that is

required is that E[ ] does not change within the observation interval (Foster and

Guinzy, 1967). If this condition is satisfied by each of the processes involved in

equation (4.9), the nonstationary processes can be considered to be locally

stationary (also called “stationary in increment”) and the coherence can be

estimated over a moving window.

In certain nonstationary areas, the processes involved in equation (4.9) cannot be

assumed to be stationary in increments, and coherence cannot be estimated even

locally. In some applications, the source of signal nonstationarity might be

removed and coherence can then be estimated. Especially in SAR interferometry,

nonstationarity of the cross channel product *
21gg is assigned to the phase changes

due  to  topographic variations. The phase  nonstationarity  is compensated  at  the

spatial position i with a phase factor ije φ− for the local imaging geometry, and  the

sample phase corrected coherence is used instead of sample coherence of equation

(4.10) (Touzi et al., 1999)
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After phase compensation, and under the assumption that the unique source of

signal nonstationarity is topographic phase variations, all processes involved in

equation (4.11) are stationary in the region of interest and the channels can still be

assumed to be zero-mean jointly gaussian. The results obtained in stationary

regions with the sample coherence of equation (4.10) can then be extended to the

modified sample coherence as given in equation (4.11) (Touzi et al. 1999).

The statistical confidence level of the sampled coherence depends on the number

of independent samples N that are combined to produce the coherence estimate.

Sampled coherence is usually estimated using a square estimator window. As a

first approximation, the standard deviation of the estimator is defined as (Prati et

al., 1994)

                                                 
N

1
=σ −

γ
                                                    (4.12)

where N is the number of pixels in the window.

In practice, coherence has to be estimated from the combination of many pixels in

order to limit the statistical errors. The effects of the topography of the target

inside the estimator window have to be compensated for. This was not necessary

in this study due to extremely flat topography.

Another coherence estimator, suggested by Guarnieri and Prati (1997), is intended

for selection of interferometric pairs with good coherence, as its implementation is

quick. It is described as

                                  =aγ 12 −ρ For  ρ >1/2
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                                                Otherwise    aγ =0

where

                                 

∑ ∑

∑

= =

==ρ
N

1i

N

1i

4
i,2

4
i,1

N

1i

2
i,2

2
i,1

gg

gg
                                 (4.13)

In SAR interferometry, interferometric correlation or degree of coherence as

expressed in a coherence image has potential as an input to classification for

different land surfaces. The degradation of coherence between two images is due

to several effects. The most important are spatial decorrelation (due to observation

angle change) and temporal decorrelation (due to changing scatterer

characteristics between the two images).

4.5.2 Image processing and generation of coherence images

4.5.2.1  Co-registration and common band filtering

In interferometric processing, two single-look complex images (SLC) are co-

registered at sub-pixel accuracy; an accuracy better than 0.2 pixels is required in

order not to degrade the interferometric correlation by more than 5%. In this

study, the GAMMA interferometric software was used for all interferometric

processing. The co-registration of the images in an interferometric pair was done

by calculating the local spatial correlation of the image intensities for at least 100

small square areas throughout the two images. The offset polynomial relating the

geometries of the two images was determined by finding the image offsets, which

maximises the local correlation in these small areas. The advantage of this method

is that it is possible to co-register images that have no interferometric correlation

into a common geometry, the only requirement being that there is some contrast in

the SAR intensity images. Before interferogram generation, common band

filtering (Gatelli et al., 1994) was performed in order to include only the parts of

the range and azimuth spectra common to the two interfering images. Common

band filtering improves the coherence estimate by minimising the effects of the

baseline geometry.



4.5.2.2  Interferogram generation and flat earth correction

After co-registration and common-band filtering, normalised interferograms and

intensity images were generated by cross-correlating the two co-registered

images. At this stage, multi-looking in the range and azimuth direction was also

performed to improve the estimate of interferometric phase and coherence. The

resulting multi-look interferogram was then flattened by removing the phase trend

corresponding  to a  flat earth. Flattening  was  performed  by  estimating the local
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4. 6. Interferograms of the study area. (a) without flat earth correction and
h flat earth correction.

frequency on a topographically flat area using a 2-D fast Fourier transform,

btracting this estimated phase trend from the unflattened interferogram.

ing that there are no atmospheric artefacts, the interferometric phase of a

d interferogram is related to the surface topography. On an extremely flat

ch as the study area near Littleport the phase of the flattened interferogram

ed to differential phase effects, such as changes in the dielectric constant of

d surface.

  Coherence estimation

terferometric correlation or coherence was estimated from the flattened

ook interferograms and the co-registered intensity images. In this study, a

um likelihood coherence estimator with a square estimator window is used.

is always a trade-off between spatial resolution and estimation accuracy at

herence values when choosing the estimator window size. In addition, a
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weighing function, decreasing linearly with increasing distance from the central

pixel, was applied in the coherence estimation. With the data sets shown in Table

4.1, the following coherence images were generated (Figure 4.7):

1 1-day coherence image using 02/05/1996 and 03/05/1996 SLC.

2 35-day coherence image using 16/08/1996 and 20/09/1996 SLC.

3 70-day coherence image using 07/06/1996 and 16/08/1996 SLC.

Table 4. 1. The date and corresponding sensor of the SLC used in the study.

Sensor                     Date

ERS-1 02 May 1996

ERS-2 03 May 1996

ERS-2 07 June 1996

ERS-2              16 August 1996

ERS-2 20 September 1996

Due to the large base line length (>1000 m) and the time interval involved, the

phase coherence obtained at 35 days and 70 days was not very good. Hence, in

this study, only the 1-day coherence image and five intensity images produced

during the interferometric processing of the single look complex images are used

for land use classification.

4.5.2.4  Image coregistration

The 1-day coherence image used in this study was registered to the Ordnance

Survey (OS) of Great Britain’s National Grid using the ERDAS Imagine image

processing  software by  applying a first-order  polynomial transformation using

fifteen ground control points. The RMS error value estimated for image

transformation was of the order of 0.87 pixels. Later, all the five intensity images

were co-registered to the coherence image. The nearest neighbour resampling

method was used and the spatial resolution (i.e. pixel size) of the image was

reduced to 20 metres. A 286-pixel by 386-pixel portion of the image covering the



area of interest was extracted and used for further stages of classification and

texture extraction.

F

35-day
1-day coherence image of the study area.

  

 coherence image          70-day coherence image
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igure 4. 7.  Coherence images of the study area.
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4.5.2.5  Speckle suppression

In remote sensing radar images, the size of a resolution cell on the surface is

always much larger than the signal wavelength and is generally significantly

larger than the size of individual scattering objects. Because of the random

orientation of terrain surface elements, returns from multiple scatterers within a

resolution cell add incoherently to give a net backscattering coefficient, which has

a random distribution in the image plane. The image thus obtained has a randomly

fluctuating intensity at each pixel, which leads to a grainy appearance. This

random multiplicative noise/grainy appearance within a SAR resolution element

is called speckle. Speckle is one of the main problems in the use of synthetic

aperture radar image interpretation and classification because a zone that is

homogeneous on the ground has a granular appearance on image. For the purpose

of classification, it is desirable to reduce these fluctuations and to cluster the

observed intensities closer to the mean intensity, since it is the mean intensity that

expresses the required image information.  In order to decrease the effects of

speckle, several different approaches can be used. These includes averaging of

images (Ulaby et al., 1986), filtering of images using adaptive filters (Nezry et al.,

1996), the use of texture features (Ulaby et al., 1986).

In this study, all of the intensity images obtained from interferometric processes

are single look images. A number of filters (Lee (Lee, 1986) Frost (Frost et al.,

1982) and Kuan (Kuan et al., 1985)) have been developed and tested for speckle

reduction in radar data. When applying the speckle filter, selection of window size

is important, because speckle suppression will not be satisfactory with a small

window size and with a large window size, the original image will also be

degraded by oversmoothing. There is a trade-off between speckle reduction and

preservation of image quality. In this study, a median filter with a window size of

5×5 is used for speckle reduction in all intensity and coherence images. The

median filter operates on the image so that the centre pixel of the filter window is

replaced by the median value of the pixels in window. In other words, low and

high valued pixels are considered as noise and are removed (Richards, 1993).

These filtered images were then used for classification studies.
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4.5.3  Factors affecting coherence

As mentioned earlier, interferometric coherence is a by-product of SAR

interferometry and it provides a measure of the phase correlation between two

images of the same target obtained from two different positions, possibly at

different times. Phase coherence is affected by a number of factors, the most

important being:

1. Instrument parameters, including wavelength, signal to noise ratio, range

resolution, and number of independent looks.

2. Parameters related to the geometry, such as the baseline length and

incidence angle. The spatial extent of the baseline is one of the major

performance drivers in an interferometric radar system. If the baseline is

too short the sensitivity to signal phase differences will be undetectable,

while if the baseline is too long then additional noise due to spatial

decorrelation corrupts the signal. It can be shown that coherence (phase

correlation) decreases approximately linearly with the increase in baseline

length (Rodriquez et al., 1992). The length of the baseline for which the

attainable coherence is zero is called the critical baseline length, which

occurs when the change in look angle between the interfering images is

sufficient to cause backscatter from each pixel to become completely

uncorrelated. The critical baseline length for ERS-1/2 interferometry on

flat terrain is approximately 1100m. The effect of baseline decorrelation

may be reduced by the use of spectral filtering during interferometric

processing.

3. Volume scattering and temporal changes, i.e., movement of the scatterers

due to wind effects, growth, and loss of foliage. In other words, it is not

possible to illuminate the same patch of surface from two different aspect

angles and expect the signals to be fully correlated. This is also called

decorrelation due to the rotation of the targets with respect to the radar

look direction. Temporal effects which follows from physical changes in

the surface over the time period between observations. In practice, the

amount of temporal decorrelation depends on the soil and vegetation type
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of the target area, as well as the weather conditions between the radar

passes.

4. Variation in the dielectric constant due to freezing, wetting, and drying of

surface, thus causing temporal decorrelation.

As long as the data used are from same system, instrument parameters remain the

same and have no effect on coherence. Common spectral band filtering2 (Gatelli et

al., 1994) of the SAR image  pair before  computation  of  the  interferogram

helps  to  reduce  the decorrelation introduced by baseline geometry3, if baseline

length is within an acceptable range. Repeat pass SAR interferometry is very

sensitive to temporal changes, i.e., change occurring between the two data

acquisition times.

4.6 ETM+ data

The main instrument carried by Landsat 7 is  the Enhanced Thematic Mapper Plus

(ETM+). This instrument  maintains the essential characteristics of Thematic

Mapper carried by Landsats 4 and 5 (Table 4.2). Ground resolution for ETM+

data remains unchanged at 30 m, except for the thermal band in which the

resolution is increased from 120 to 60 m. A panchromatic band with 15 meter

resolution is also added for rectification  and  image  sharpening. Landsat 7

provides data  with a swath width of 185 km and  a repeat coverage interval of 16

days. For this study, ETM+ multispectral data for both study areas in the UK and

Spain acquired on 19 June 2000 and 28 June 2000 respectively, are used.

Panchromatic data for the UK study area is used to study its influence on

classification accuracy in combination with multispectral data.

                                                
2 Accounting for the spectral shift induced by the slight difference in incidence angle between two
SLC images. After this processing only the range spectrum interval common to the two SLC
images is retained.
3 The distance between the satellite on the first pass and second pass should not be too large. As
this distance increases, the coherence is increasingly lost. The loss of coherence in this way is
called baseline decorrelation.
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Table 4. 2.  Landsat 7 ETM+ data characteristics.

Band number Spectral range (microns) Ground resolution (m)
1 0.450 - 0.515 30
2 0.525 - 0.605 30
3 0.630 - 0.690 30
4 0.750 - 0.900 30
5 1.550 - 1.750 30
6 10.40 - 12.50 60
7 2.090 - 2.350 30

Panchromatic 0.520 - 0.900 15

4.7 DAIS hyperspectral data

The DAIS (Digital Airborne Imaging Spectrometer) sensor is a new generation

hyperspectral sensor, designed by the Geophysical Environmental Research

Corporation (GER) and funded by the European Union (EU). The development

was initiated in 1993 after European Remote Sensing Capabilities (EARSEC) and

European Commission (EC) decided to fund and support the development of an

imaging spectrometer. The sensor is operated by the German Space Agency or

German Aerospace Research Establishment, which is also known as the German

Aerospace Centre (DLR) since 1995 (Strobl and Zhukov 1998). Between 1996 to

1999, the Large-Scale Facility was developed. In the framework of the DAIS

Large-Scale Facility, DLR operates its Digital Airborne Imaging Spectrometer

(DAIS 7915) on board a DO-228 aircraft. It is a 79 channel imaging spectrometer

(Table 4.2) which measures energy in the range from visible to the thermal

infrared  wavelengths. The spatial  resolution  of  the  sensor can vary from 5 to

20 m, depending on the altitude of the aircraft. The DAIS is a whisk broom

scanning instrument with an optomechanical scanner. The scanning principle is of

Kennedy type with a four-sided rotating polygon mirror. The advantages of this

technique are mainly the solely reflective optics, the large aperture realisable and

the high scan efficiency. These advantages are counterweighted by the high

susceptibility to produce striping (Strobl et al. 1997) and the presence of intrinsic

background signals ( (Strobl and Zhukov 1998).
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Table 4. 3. The DAIS 7915 system specifications.

Spectrometer Bands Wavelength range (micrometer)

VIS/NIR 32 0.50 - 1.05

SWIR I 8 1.50 - 1.80

SWIR II 32 1.90 - 2.50

MIR 1 3.00 - 5.00

TIR 6 8.70 - 12.50

The DAIS data show moderate to severe striping problems in the optical infrared

region between bands 41 and 72. Initially,  the first 72 bands in the wavelength

range 0.4 µm to 2.5 µm were selected. All 72 bands were visually examined to

determine the severity of striping. Seven bands with very severe striping (bands

41, 42 and 68 to 72) were removed from further study. The striping in the

remaining bands was removed by automatically enhancing the Fourier transform

of the image (Cannon et al., 1983; Srinivasan et al., 1988). The input image is first

divided into overlapping 128-by-128-pixel blocks. The Fourier transform  of each

block is calculated and the log-magnitudes of each FFT block are averaged. The

averaging removes all frequency domain quantities except those which are present

in each block; i.e., some sort of periodic interference. The average power

spectrum is then used as a filter to adjust the FFT of the entire image. When the

inverse Fourier transform is performed, the result is an image with periodic noise

eliminated or significantly reduced.

4.8  Conclusion

This chapter gives a brief introduction to the data used for this study.

Interferometric SAR and the way interferometric coherence is calculated by using

the phase information in the radar return is discussed in detail. The factors

affecting the coherence are also discussed because - as mentioned in this chapter -

coherence is a by-product of SAR interferometry and it very important to know

these factors before selecting the Single Look Complex images to generate

coherence maps.



111

Some details of ETM+ and DAIS hypespectral data as well as the problems of

striping in DAIS data  and the method used to remove these striping using Fourier

transformation are also discussed.
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Chapter 5

Crop classification using decision tree and support
vector machine classifiers

5.1. Decision tree classifiers

5.1.1 Introduction

The effective management and use of land resources requires knowledge of the

properties and spatial distribution of these resources. The rapid evolution and

increasing number of applications of remote sensing methods in the last 20 years

shows that such methods are becoming more widely accepted for the purposes of

terrestrial resource survey, especially for the observation of land cover that

comprises the base for development projects. The cost of surveys using remote

sensing is less than that of ground-based methods. Other advantages include large

area of coverage under the same atmospheric conditions, and repeatability.

Multispectral and multitemporal properties are of great importance to land cover

studies. Nowadays, satellite products are widely used for the study and

classification of land cover, using data  from the Landsat, SPOT, ERS and IRS

systems.

Accurate classification of terrain from remotely sensed data is essential, especially

for agricultural and forest monitoring, ecological monitoring of vegetation

communities, land cover mapping and monitoring, and many other similar

applications. Much work related to the classification of land use/land cover

categories using satellite data is reported in the literature. To achieve an accurate

classification of terrain, an image at a suitable resolution for the terrain needs to

be acquired first, and then the characteristics of each small segment of the image

must be classified accurately. A number of different types of classifiers are now in

routine use in remote sensing. The classification methodology implemented in

remote sensing has so far used statistical-based approaches, such as the maximum

likelihood classifier, unsupervised classifiers such as the ISODATA clustering

algorithm, and neural network classifiers, which offer a non-parametric



113

classification approach. Statistical classifiers basically depend on some pre-

defined data model (e.g. Gaussian normal distribution), and, therefore, the

performance of these classifiers will depend on how well the data match the pre-

defined model. The performance of these classifiers can be good if the distribution

of input data are approximately normal. For clustering algorithms, knowledge of

the area is very important because these classifiers basically depend on input from

the analyst. Within the last ten years, neural classifiers have been extensively

tested by the remote sensing community (Benediktsson et al., 1990; Civco, 1991;

Heermann and Khazenie, 1992; Foody, 1995(a)(b)) due to their non-parametric

nature (independence of frequency distribution), ability to handle data acquired at

different levels of measurement, precision, and - once trained - rapid data

processing. Although neural networks may generally be used to classify data at

least as accurately as statistical classification approaches, there are a range of

factors that limits their use (Wilkinson, 1997). Some of these factors are discussed

in section 2.3.4.3. Perhaps one of the most important problems is that

classification is highly subjective (Johnston, 1968). Despite the apparent

objectivity of the method, the analyst has control over a range of network

parameters that influences network performance and, even if these parameters are

selected judiciously, there is no guarantee that the neural network will provide an

acceptable optimal solution.

Decision tree classification techniques have been used successfully for a wide

range of classification problems but have not been tested in detail by the remote

sensing community (Safavian and Landgrebe, 1991). These techniques have

substantial advantages for remote sensing classification problems because of their

flexibility, nonparametric nature, and ability to handle nonlinear relations between

features and classes. Just like other classification algorithms, the accuracy of a

classification produced by a decision tree classifier can be a function of a number

of factors, such as size and composition of the training set, attribute selection

methods, various pruning methods, and boosting. So far, few studies have been

carried out to study the effects of these factors. Friedl et al. (1999) and Muchoney

et al. (2000) studied the effect of boosting of classifications using decision trees

on land cover classification accuracy. No study in remote sensing has tried to

assess the effects of training data size, various pruning methods, and attribute
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selection measures on land cover classification accuracy. Studies carried out by

Brieman et. al., (1984) and Mingers (1989 a) suggest that the pruning method

affects the classification accuracy, whatever may be the attribute selection

measure. Oates and Jenson (1997) suggest that increasing the number of training

data only affects the size of the tree but has a little affect on the classification

accuracy.

This chapter presents an investigation into the effects of these factors on the

accuracy of crop classification using decision tree classifiers. Besides decision

tree classifier, maximum likelihood and neural classifiers have been used for

comparison, because these classifiers have already been used in numbers of

studies and give acceptable results.

5.1. 2  Study area

The study area selected is an agricultural area located near the town of Littleport

in Cambridgeshire, in the eastern part of England. ETM+ data acquired on 19

June 2000 are used. The classification problem involved the identification of

seven land cover types, namely, wheat, potato, sugar beet, onion, peas, lettuce and

beans that cover the bulk of the area of interest.

The ERDAS Imagine image processing software (version 8.4) was used to register

the images to the Ordnance Survey of Great Britain’s National Grid by applying a

linear transformation. The RMSE (Root Mean Square Error) values estimated for

image transformations were less than one pixel. An area of 307-pixel (columns)

by 330-pixel (rows) covering the area of interest was then extracted for further

analyses.

For this study field data for the relevant crops were collected from farmers and

their representative agencies, and other areas were surveyed on the ground. The

field boundaries visible on the multispectral image were then digitised using Arc

Info software. A  polygon file was created by applying a buffering operation of

one pixel width to remove the boundary pixels during the classification process

and each  polygon is assigned  a label corresponding to the crop it contained.



Finally a ground reference image is generated by using the polygon file (Figure

5.1.1).

5.1.3  Methods

A series of classifications was performed in order to evaluate the effects of

training set size, attribute selection measure, pruning methods and boosting on the

accuracy of the output from a decision tree classifier. To study the effects of

various attribute selection measures, error based pruning was used while for the

purposes of studying the effects of pruning methods  on  classification  accuracy,

the gain  ratio was  used  as a  selection measure. The effects of training set size

were evaluated using two different decision tree classifiers, See5.0, a univariate

classifier, and QUEST (Loh and Shih, 1997), a multivarite decision tree classifier.
115

Figure 5.1.1. The ground reference image of the ETM+ data.
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5.1.3.1  Training set size

The characteristics of the data used to train a supervised classification have a

considerable influence on the quality of the resulting classification (Campbell,

1981, Labovitz, 1986). It is essential that the training data provide a representative

description of each class. For the maximum likelihood classifier, a key

requirement is to have the training data size for each class equal to from 10-30

times the number of features (Mather, 1999). The required training set size may

therefore be large, and acquiring such training sets may be difficult where a large

number of classes is involved or utilising data acquired in many wavebands.

Consequently, many investigations have been based on a sample size that is less

than the generally accepted guidelines and thus the information content of

remotely sensed data may not have been fully exploited. The lack of distributional

assumptions makes neural classifiers an attractive alternative to the conventional

statistical techniques. It has been proposed that neural network classification can

be performed successfully using  smaller training data sets (Hepner et al., 1990;

Foody et al., 1995 (b)). Further investigations into the effects of training set

characteristics on the performance on neural network classification  have revealed

that the training set size has a major effects on the classification accuracy (Foody

et al., 1995 (b); Foody and Arora, 1997; Kavazoglu, 2001).

So far few studies (Huang et al., 2002) have discussed the effects of training set

size on classification of remote sensing data using decision tree classifiers. It  is

therefore   important to investigate the effect of training set size on these

classifiers for crop classification problems. For this study, seven categories of

training set size were formed. Each category contains randomly selected pixels

representative of each class. The training sets contained 700, 1050, 1400, 1750,

2100, 2450 and 2700 pixels in total, respectively and a total of 2037 pixels was

used for testing the classifier. Figure 5.1.2 shows the variation of accuracy with

increase in training set using a univariate decision tree classifier.

For each of the training data sets a classification was performed and a confusion

matrix was generated to calculate the overall accuracy and the Kappa coefficient.

Comparing the classification accuracies obtained from different training sets

revealed that the rate of increase in classification accuracy with increasing training
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set size is linear up to fifth data set (300 pixels per class). As the training set size

increases from 700 to 2100 pixels (100 per class to 300 pixels per class), there is a

marked  increase  in overall  classification  accuracy   ranging  from 78.3 to 84.1%

Figure 5.1.2.  Variation of classification accuracy with increasing number of
training patterns using a univariate decision tree classifier.

and the Kappa values increase from 0.746 to 0.815. However, further  increases in

training set size, using  the sixth and seventh data sets , produced a lesser increase

in classification accuracy and even shows a slight decrease in classification

accuracy with the sixth data set (using 2450 pixels for all classes). These results

indicate that the accuracy of a univariate decision tree classification increases as

the size of the training set is increased but suggests that there is no requirement of

very large training sets to be used. These results do not concur with the study

carried out by Oates and Jenson (1997) in that the rate of increase in classification

accuracy was found to be independent of training set size.

A second study was carried out to study the behaviour of a multivariate decision

tree classifier ((Figure 5.1.3) with increasing number of training patterns using the
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same set of training and test data as were used to test the univariate decision tree

classifier. It was concluded that classification accuracy increases with the increase

in training set size and this increase is almost linear up to fourth data set (100

pixels per class to 250 pixels per class). Accuracy then starts to fall with the fifth

and sixth data sets but rises again so that the highest classification accuracy is

achieved by the  seventh data set. These results suggest that classification

accuracy increases with the size of the training set, but only up to a point.

Figure 5.1.3.  Variation of classification accuracy with increasing number of
training patterns using mulivariate decision tree classifier.

The behaviour of the multivariate classifier was found to be somewhat

unpredictable as the training pattern increases beyond a certain limit. It is evident

also that  the performance of the multivariate classifier is no better than the

univariate classifier for this data set. As the training time is always greater with a

multivariate decision tree classifier, it is suggested that the use of univariate

decision tree classifiers may be adequate for this type of data.
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5.1.3.2  Attribute selection measure

It is reasonable to choose the attribute that best divides the data into their classes,

and then partition the data according to the value of that attribute. At each node in

the development of a decision tree there will be a set of data and a number of

attributes available to classify the data. One selects the best attribute for splitting

by seeing how well each one separates the data into the various classes. A number

of these splitting measures have been proposed by various authors in the literature

and are  discussed in detail in section 3.4.2.1. The purpose of this section is to

examine the various attribute selection measures in terms of comparative

performance for land cover classification studies. Earlier studies carried out by

Breiman et al. (1984) and Mingers (1989 b) suggest that the predictive accuracy

of decision trees is not sensitive to the goodness of split measure or attribute

selection measures. For the present  study, a univariate decision tree classifier

with error-based pruning and four different attribute selection measures is used. A

total of 2700 patterns for training and 2037 for testing were used for this study

(Figure 5.1.4).

  Figure 5.1.4.  Variation of accuracy with different attribute selection measures.
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Figure 5.1.4 essentially confirms the findings of Breiman et al. (1984) and

Mingers (1989 b) that classification accuracy is not seriously affected by the

choice of attribute selection measure, and shows that this conclusion applies to

remote sensing data also. Except for the information gain ratio, the accuracy

obtained with all four selection measure is almost the same, and the increase in

accuracy resulting from the use of the information gain ratio is less than 1%. It is

therefore concluded that the selection measure does not affect the predictive

accuracy of the decision tree.

5.1.3.3  Pruning methods

Studies carried out by the machine learning community and described  in section

5.1.3.2 show that overall accuracy of a decision tree classifier on unseen data is

not sensitive to the goodness of the split. It is further suggested that the predictive

accuracy of the decision tree classifier depends on the pruning methods used in

the design of the tree. This section examines the effect of various pruning methods

on classification accuracy. Five different pruning methods are used with the

information gain ratio as the attribute selection measure in a univariate decision

tree classifer (C4.5). The pruning methods employed are: Reduced Error Pruning

(REP), Pessimistic Error Pruning (PEP) Error-Based Pruning (EBP) proposed by

Quinlan (1987,1993); Critical Value Pruning (CVP) proposed by Mingers (1989

a); and Cost-Complexity Pruning (CCP) proposed by Brieman et al. (1984).

Figure 5.1.5 show the variation in classification accuracy with respect to the

different pruning methods used.

As suggested by Figure 5.1.5, each of the five pruning methods produces a

different classification accuracy. The performance of the REP method is worst of

all the pruning methods employed in this study. The reason for this could be the

requirement of separate data set for pruning, a conclusion also suggested by

Esposito et al. (1997). Pessimistic error pruning gives the highest accuracy of

82.9% as compared to other four pruning methods but the study carried out by

Esposito et al. (1997) suggests that the introduction of the continuity correction

(section 3.8.3) in the estimation of error rate has no theoretical justification and

such a factor is improperly compared to an error rate, which may lead to either

underpruning or overpruning of the tree. The performance of  CVP is affected by
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the choice of the critical value set to prune a tree. CCP uses a separate data set or a

cross validation approach for pruning, while EBP uses training data for pruning

the tree. These results suggests that the choice of pruning method is important in

the design of a decision tree classifier.  Error-based pruning, which gives an

accuracy of 82.8%, is used in this research for further studies.

Figure 5.1.5.  Variation of classification accuracy with different pruning methods.

5.1.3.4  Boosting

Classification accuracies and Kappa values obtained from unboosted and boosted

decision trees, estimated by using 2700 training and 2037 test data, are shown in

Table 5.1.1. The   boosted   decision  tree  classifications   were   estimated   using

Table 5.1.1.  Results from boosted and unboosted decision tree.

Accuracy (%) Kappa value

Unboosted decision tree 84.24 0.816

Boosted decision tree 88.46 0.865
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fourteen iterations of the base decision tree algorithm. In this study, different

numbers of boosting iterations varying from 2 to 20 were used  to see how

variation in the number of iterations affects accuracy. It was found that little

change in accuracy is gained by performing different boosting runs after fourteen

iterations (Figure 5.1.6). These results confirm that the degree of accuracy

improvement achieved through the use of boosting starts to stabilise after eight

iterations  and   results   indicates   that  relatively  little  increase   in  accuracy  is

Figure 5.1.6.   Classification accuracies for boosted decision trees for varying
number of boosting iterations.

gained  beyond the  twelfth iterations. This result suggests that ten to fifteen

boosting iterations is enough to achieve the best attainable accuracy for this type

of data. The result also concurs with those studies carried out using non-remote

sensing data. Quinlan (1996) concludes that about ten iterations provide the

maximum improvement in classification accuracy, and that little is gained by

performing additional boosting runs.
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Figure 5.1.7.   Difference of classified images with ground reference image  (a)
unboosted decision tree classifier (b) boosted decision tree classifier. Visual
comparison of individual fields shows that within-field variation is reduced by
boosting.

               

(a)

              
(b)
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It is apparent that classification accuracy increases by more than four percent

following boosting (confusion matrices are listed in Appendix A). Although  4%

may   appear to   be a  small  increase, it  should be  borne in mind that even small

percentage increases are difficult to generate when the overall classification

accuracy level exceeds 80%. We can, therefore, conclude that boosting is a useful

technique for improving the performance of decision tree classifiers. As can be

seen  from  Figure 5.1.7(a), there  are  number  of  incorrectly  classified   pixels

in several fields. After boosting the classifier, the number of incorrectly classified

pixels reduces significantly (Figure 5.1.7 (b)), as this boosting algorithm assigns a

weight to each training observation and those observations that were misclassified

in the previous iteration are assigned a higher weight value in the next iteration.

Thus,  boosting forces the classification algorithm to concentrate on those

observations that are more difficult to classify.

5.1.4  Results with ML and neural classifiers

In order to compare the results obtained from decision tree classifier and avoid the

situation in which the observed results may be classifier dependent, the data set

used in the decision tree experiments was inputted to both maximum likelihood

and neural network classifiers. For this study, a standard back-propagation neural

classifier with one hidden layer having twenty six nodes was used. Table 5.1.2

and Figure 5.1.8 show the results obtained by using the same number of training

and test data, as used with decision tree classifier (confusion matrices are listed in

appendix  A).

Table 5.1.2.  Results from Maximum likelihood and neural network classifier.

Classifier Accuracy (%) Kappa value

Maximum Likelihood 82.9 0.801

Neural network 85.1 0.829
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Figure 5.1.8.  Classified images of the study area using (a) Maximum Likelihood
classifier and (b) Neural network classifier. The colour palette is the same as in
Figure 5.1.8 (a).

                                       (a)

                                        (b)
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Results shown in Tables 5.1.1 and 5.1.2 shows that the decision tree classifier

performs better than a maximum-likelihood classifier, and its performance is

comparable to a neural network, even without boosting.  As suggested by Table

5.1.1, after boosting, the performance of the decision tree classifier improves by

about 3.26 percent as  compared to  the neural  network classifier. Thus, these

results indicates that the boosted decision tree classifier performs better than the

neural network classifier. As discussed in section 2.3.4.3, a number of factors

affect the classification accuracy achievable by a neural network classifier

(Kavzoglu, 2001). The use of a decision tree classifier requires only the choice of

attribute selection measure and pruning method. This study suggests that only the

pruning method affects the predictive accuracy of a decision tree classifier, not the

attribute selection measure.

Another study was carried out to compare the training time of the decision tree

and neural classifier using the same training data. All other factors affecting the

neural network classifier were set as recommended by Kavzoglu (2001). The

training time for the neural network classifier was about 58 CPU minutes on a Sun

machine as compared to 0.7 CPU second using a personal computer with a

Pentium II processor by a decision tree without boosting.  Even after using

boosting the decision tree classifier took about 7.1 CPU seconds for 14 iterations,

which is still far less than the time taken by a neural network classifier.

5.1.5  Inclusion of panchromatic band and its texture

Further studies were carried out to include information derived from the ETM+

panchromatic band with multispectral data for classification. In order to evaluate

the performance of different data sets, a statistical separability measure called the

Jeffreys-Matusita distance (JM distance) is used. Signature separability is a

measure of the statistical distance between two signatures. Separability can be

calculated for any combination of bands that is used in the classification enabling

the user to compare the contribution made by each or band combination to the

class separability using,  the spectral distance between the mean vectors of each

pair of signatures. If the spectral distance between two samples is not significant
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for any pair of bands, then signatures may not be distinct enough to produce a

successful classification.

Generally, three different formulae are used for calculating separability. These

three formulae take into account the covariances of the signatures of the bands

being compared as well as the mean vectors of the signatures. The first

separability index is called divergence and is denoted by ijD . It is derived from

the likelihood ratio of any pair of classes i and j. For multivariate Gaussian

distributions, ijD for classes i , j is defined by:
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where tr denotes the trace of a matrix, C is the sample class covariance matrix, µ

is the class mean vector, and T denotes the transpose of a matrix. The second

separability measure is called Transformed Divergence, represented by ijTD  and

is calculated from

                          )]8/Dexp(1.[2000TD ijij −=                                                     (5.1.2)

where ijD is the divergence index. Transformed Divergence gives an exponentially

decreasing weight to increasing distance between the classes. The scale of

divergence values can range from 0 to 2000. According to Jenson (1996) if the

value is more than 1900, then the classes can be separated easily. Between 1700

and 1900, the class separation is fairly good and if this value is below 1700, the

class separation is poor.

A third method of computing the separability is to calculate the JM distance

between two classes i and j as

                            ( )α−−= exp1.2ijJM                                                           (5.1.3)

in which α (the Bhattacharyya distance) is given by
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where iC  is the determinant of iC (covariance matrix). The Bhattacharyya

distance is widely used as a measure of class separability because of its analytical

form and its relation to the Bayes error (obtained from the Bayes classifier

designed with an infinite number of training samples). The first terms and the

second term represent the class separability due to the mean difference and due to

the covariance difference, respectively. Note that the “mean difference” used here

is in the sense of the Mahalanobis “distance” rather than the Euclidean distance.

JM distance is used in this research to measure how class separability changes

with the addition of extra features with ETM+ multispectral data.

Initially a texture measure called internal texture was extracted from the

panchromatic band in a way to reduce the image to 30m resolution. A program  to

calculate  the  difference  between   the  maximum and minimum  value  in  a  2×2

4 6 2 7 9 1 2 5 4 6 2 7 9 1 2 5

2 1 4 7 4 9 3 3 2 1 4 7 4 9 3 3

1 5 4 7 1 7 3 2 1 5 4 7 1 7 3 2

3 3 8 9 1 5 4 6 3 3 8 9 1 5 4 6

4 9 3 9 2 7 1 8 4 9 3 9 2 7 1 8

7 1 3 7 5 8 1 1 7 1 3 7 5 8 1 1

Figure 5.1.9.  Movement of pointer to extract internal texture of the panchromatic
image.

 window  was  used. The  movement of the pointer after each iteration is shown in

Figure 5.1.9. In this way the image size is reduced from 15m to 30m resolution

while simultaneously generating the texture image. The image generated by this

procedure is georeferenced to the multispectral image and an area of 307 column

and 330 rows was extracted for further study in combination with multispectral
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data. All the three classifiers were used to evaluate the effect of the inclusion of

internal texture on classification accuracy (Table 5.1.3).

Comparing the results shown in Table 5.1.3 with those shown in Tables 5.1.1 and

5.1.2 suggests that there is little or no increase (in the case of decision tree

classifier this increase is only 0.06%) in classification accuracy with all the three

classification systems used in this study, thus indicating that the addition of an

internal texture feature derived from the panchromatic band of ETM+ does not

help in increasing the classification accuracy. The JM distance for this data set

was 1329 as compared to 1320 for ETM+ data alone.

Table 5.1.3.  Results obtained by using internal texture of panchromatic band with
ETM+ multispectral data.

Classifier Accuracy (%) Kappa value

Maximum Likelihood 83.1 0.803

Neural Network 85.4 0.832

Decision Tree 84.3 0.816

Further studies were carried out to include the panchromatic band, internal texture

and GLCM features derived from the panchromatic band in combination with

ETM+ multispectral data. As the resolution of the ETM+ panchromatic data is

15m, bilinear resampling was used in this study to reduce the resolution to 30m

(i.e. the resolution of ETM+ multispectral data). The texture features used for this

study were extracted from the 30m resolution resampled panchromatic image. For

this study two different data sets were used. These are:

1. Combination of multispectral, panchromatic band and internal texture of

panchromatic band referred to as data set 1.

2. Combination of data set 1 and three GLCM based texture features

(correlation, entropy, and inverse different moment) of panchromatic band,

referred to as data set 2.
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Table 5.1.4.  JM distance for data set 1 and data set 2.

Data set JM distance

1 1330

2 1369

Table 5.1.5.  Results obtained by using data set 1 (Table 5.1.5 (a)) and data set 2
(Table 5.1.5 (b)).

Table 5.1.5 (a)

Classifier Accuracy (%) Kappa value

Maximum Likelihood 82.6 0.798

Neural Network 85.6 0.836

Decision Tree 85.1 0.829

Table 5.1.5(b)

Classifier Accuracy (%) Kappa value

Maximum Likelihood 84.8 0.823

Neural Network 87.7 0.858

Decision Tree 86.1 0.838

Decision Tree (boosted) 89.6 0.879

Though the value of the JM distance for the data set 1 is greater than the value

obtained from the ETM+ data but the results from Table 5.1.5 (a) suggest that the

inclusion of the panchromatic band and internal texture feature with multispectral

data does not increase classification accuracy by a large amount and may even

result in a poorer performance. For example, the performance of ML classifier
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decreases by a small amount as compared to the results obtained by using

multispectral data alone. Otherwise, the results obtained from the neural and

decision tree classifiers improve by about one percent. Further, using data set 2

(Table 5.1.5(b)) gives the highest JM distance of 1369 but the classification

accuracies with all the three classification algorithms improve by about 1 to 2.5%,

thus suggesting the limited utility of panchromatic data and its texture for land

cover classification.

5.1.6  Conclusions

The main objective of the work reported in this section is to assess the utility of

decision tree classifiers for land cover classification. The specific objectives are to

study the behaviour of decision tree classifiers with changes in training data size,

different attribute selection measures, pruning methods, and boosting. The results

suggest several main conclusions. First, in spite of being non-parametric in nature,

the performance of the decision tree classifier is always affected by the size of the

training data set used. This study also concludes that it is the pruning method that

has the most significant effect on classification accuracy and not the attribute

selection measure, as suggested by some earlier studies. Boosting is found to

improve classification accuracy by about 3-4%. We can conclude that boosting is

a useful technique and should be used for crop classification problems using

remotely sensed data.

Studies carried out using maximum likelihood and neural classifiers for the same

data sets used with decision tree classifier show that the decision tree performs

better than the maximum likelihood classifier, while the performance of neural

classifier is better (but not significant in the statistical sense) than the unboosted

decision tree classifier for this type of data in crop classification studies. As

suggested by a number of earlier studies (Kavzoglu, 2001; Foody and Arora,

1997), the performance of a neural classifier depends on a number of user-

determined factors, and the training time is very large compared to that of the

decision tree classifier. Training time increases only slightly if boosting is used.

Inclusion of the ETM+ panchromatic band and its texture measures increases the

classification accuracy by about 1 to 2.5%.
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5.2  Support vector machine classifiers

5.2.1  Introduction

Much research effort in the past ten years has been devoted to analysis of the

performance of artificial neural networks, particularly the feed-forward multi-

layer perceptron using back-propagation, due to their ability to handle any kind of

numerical data, and to their freedom from distributional assumptions (section

2.3.4.3). A number of studies have reported that uses of neural classifiers have

problems in setting various parameters during training. The choice of architecture

of the network, the sample size for training, choice of learning algorithms, and

number of iterations required for training are some of these problems. Within the

last few years, another nonparametric classification algorithm - the decision tree

classifier (chapter 3) has become more popular, due to its simplicity in use and

their performance, which is comparable and even better than neural classifiers.

Despite their simplicity in use, decision tree classifiers present some problems

which influence classification accuracy (section 3.9 and section 5.1.3).

This section gives the results of another recent development in classification

methodology, called support vector machines (SVM) using ETM+ data. Some of

the factors affecting support vector machines are discussed and the value of some

parameters affecting these classifier are suggested for this type of data.

5.2.2  Study area and methods

Details of the study area used in this part of the research are given in section 5.1.2.

As the main aim of this study is to compare the performance of decision tree,

neural network and SVM classifiers for land cover  classification, the training and

testing data sets for the SVM classifier are the same as those used for the DT and

neural classifiers. To investigate the behaviour of the SVM classifier with the

variation in number of training patterns, seven training data set were used (section

5.1.3.1).
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5.2.2.1  Effect of kernel choice

As discussed in section 3.12.3, in situations with non-linear decision surfaces,

support vector classifiers use a mapping to project the data in a higher

dimensional feature space, while to make computation simpler, the concept of the

kernel was introduced. A number of kernels are discussed in the literature, but it is

difficult to choose one which gives the best generalisation. In this study, five

different kernels are used in order to investigate the effect of kernel choice on

classification accuracy. Both the chosen kernel type and the values of other

parameters associated with these kernels affect the level of classification

accuracies. Another factor that affects the level of classification accuracy is the

choice of the value of the parameter C (section 3.12.2). After a number of trials,

the values of C used with various kernels are given in Table 5.2.1.

This comparison suggests that a value of C within the range 1000 to 5000 is

effective for this type of land cover classification study, depending on the type of

kernel used. Training time also increases as the value of C rises. The parameter

values found to be suitable for the various kernel functions are as follows:

• degree of polynomial  = 5 for the polynomial kernel.

• γ = 2 for the radial basis function.

• b = 0.04 and c = 0.001 for the neural network.

Table 5.2.1.  Values of parameter C with different kernels.

Kernel Parameter C

Polynomial 1000

Radial basis function 5000

Linear splines 10000

Simple dot product 5000

Neural network 5000

The classification accuracies achieved using the above values of C and the user-

defined parameters for different kernels are shown in Figure 5.2.1. For a
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polynomial kernel, increasing the degree of the polynomial increases training time

but not the classification accuracy.

Figure 5.2.1 suggests that the radial basis and the linear splines perform equally

well and achieve the highest accuracy. The poor performance of the simple dot

product kernel function may be due to the fact that decision boundaries between

the  classes may be non-linear. The reason of  poor performance of neural network

kernel function may lie in the selection of appropriate values of the user defined

parameters, which is a topic that needs further study. The performance of the

polynomial function is comparable to that of the radial basis function. A radial

basis kernel function is used for the evaluations of SVM in the remainder of this

section.

Figure 5.2.1.  Variation in classification accuracy with different kernel functions.

5.2.2.2  Training sample size

A support vector machine works on the principle of optimal separation of the

training data, if the classes are separable, the optimum solution hyperplane is that

which maximally separates the classes. The training of the SVM defines the

optimal hyperplanes and, in doing  so, selects the data points which lie on or  near

the class boundary closest to the neighbouring classes. It follows that by using
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these pixels (the support vectors) for defining the decision surfaces, the use of a

very small number of training pixels can provide a good degree of generalisation.

To check this deduction, seven data sets containing 700, 1050, 1400, 1750, 2100,

2450 and 2700 training pixels  in  total,  and  a set  of  2037 pixels was used for

testing the results of the SVM classifier. For all these data sets a "one against one"

multi-class technique and a radial basis kernel were used in generating SVM. The

accuracy of classification obtained using each data set is plotted in Figure 5.2.2

(confusion matrices are listed in appendix  B).

Figure 5.2.2 suggests that classification accuracy increases as the number of

training patterns increases, thus indicating that SVM-based classification is

affected by training data size, in spite of the fact that this classification system

uses very few pixels to create decision surfaces. The probable reason for this

increase in classification accuracy with increasing number of training patterns

could be due to the quality of training pixels used, so that as the number of pixels

increases the system finds pixels that define better discriminating surfaces.

Figure 5.2.2. Variation in classification accuracy with change in training patterns.
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5.2.2.3  Use of different multi-class methods

In this part of the study, two methods of generating multi-class support vector

machines are discussed, with respect to training time and classification accuracy.

Table 5.2.2 gives the classification accuracy as well as the training time taken

using SVM classifier from Royal Holloway College, University of London,

running on a Sun workstation.

The results shown in the Table 5.2.2 suggest that the time taken by using one

against the rest method is much higher than the one against one technique, thus

suggesting the use of one against one method for generating multi-class support

vector machines. Further, the accuracy obtained by using one against the rest

method is not as high as with the one against one method. One possible reason

could be unbalanced training data sizes in two classes while using  the one against

the rest multi-class method and not finding suitable decision boundaries which

may affect the performance of classifier and affecting the final classification

accuracy.

Further studies carried out using the LIBSVM classifier using a one against one

multi-class technique suggests that this classifier takes only 0.30 CPU minutes to

train the SVM using 2700 training pixels and attains an accuracy of 87.9%

accuracy. Figure 5.2.3 shows a SVM classified image of the study area.

Table 5.2.2.  Classification accuracy and training time using different SVMs and
different multi-class methods.

Multi-class
method

Number of
training pixels

Accuracy (%) Training time
(CPU minutes)

700 76.19 6.09One against rest

2700 79.73 505.27

700 84.19 0.27One against one

2700 87.37 21.54



5.2.3  Conclusions

The main objective of this part of the study is to investigate the utility of a support

vector machine for  crop  classification  studies. It can be concluded  from the

results of this study that this algorithm can be very useful in land cover

classification. Comparison of results obtained by SVM with the results of other

classifiers (Tables 5.1.1 and 5.1.2) suggests that SVM performance is better than

all other classifiers, and approaches that of the boosted decision tree classifier.

Like neural classifiers, the effective use of an SVM depends on the values of a

few user defined parameters. This study suggests values for these parameters for

this type of classification problem. The performance of the SVM is also affected

by the number of training pixels as well the type of the kernel used. A recent

study carried out by Huang et al. (2002) suggests that the training time for a SVM

can be very high. This could be due to two reasons: (1) for their study they

replicated the sample size of smaller class, thus increasing number of training

patterns, and (2) they used a one against the rest strategy for generating the SVM,

which is not a good choice for multi-class problems.
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Figure 5.2.3.   Classified image of the study area.



This study also suggests that training time taken  by SVM  generated  by using

one against one technique is far less than that with the one against the rest

strategy used by Huang et al. (2002). Even the performance of SVM by using one

against the rest is found to be  very poor as compared to that with one against one

multi-class strategy. Further, a probable reason for the small training time using

LIBSVM could be the use of a good optimisation strategy to solve the QP

optimisation problem.

1. 

2. 

•

•

•

3. 

4. 
Decision tree classifier performance is affected by the choice of

pruning method to be used, while the performance of a neural

classifier is affected by several user defined parameters.

Performance of decision tree classifiers, both univariate and

multivariate, is affected by number of training patterns used:

 Accuracy of a univariate decision tree classifier varies from 78.3%

to 84.1% when training data size varies from 100 pixels/class to 300

pixels/class. Further addition of training data has no significant

change in classification accuracy.

 Multivariate decision tree classifier accuracy changes from 78.15 %

to 82.72% as data size changes from 100 pixels/class to 250

pixels/class.

 Univariate decision trees perform as well as or better than the

multivariate classifier with this type of data.

Performance of a DT classifier is better than that of a maximum

likelihood classifier, while neural classifier performed better than

a univariate decision tree classifier.

Boosting a decision tree gives a significant improvement in

classification accuracy as compared to neural classifier.
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5. 

6. 

• 

• 

• 

• 

7. 

8. 

9. 
Training time of a univariate decision tree classifier is quite

small, even after applying boosting, in comparison with neural

classifier.

Performance of SVM is affected by several factors such as:

Choice of kernel

Choice of multi-class method used

Parameters for a particular kernel

Parameter C

SVM perform significantly better than decision tree and neural

classifier, even with very small training datasets.

Training time for SVM is small, even comparable with the

training time taken by the boosted decision tree classifier, if the

one against one technique is used to generate multi-class output.

The one against the rest technique is not suitable to generate

multi-class outputs.
139



140

Chapter 6

 Crop Classification Using INSAR Data

6.1  Introduction

The ERS-1/2 SAR is a coherent sensor measuring both the magnitude and phase

of the backscattered signal. It operates at 5.3 GHz, vv-polarisation, at incidence

angles between 20 and 26 degrees, with a swath of 100 km and with a repeat cycle

of 35 days. Traditionally, only the backscatter intensity was interpreted. Now, by

means of SAR interferometry, the phase component  has proven to be a very

valuable source of information. More recently, it has been demonstrated (Askne

and Hagberg, 1993; Wegmueller and Werner, 1994, 1995, 1996, 1997) that the

coherence component (which is a measure of accuracy of estimation of

interferometric phase) derived by using phase information from an interferometric

image pair gives useful information that can be used effectively for land cover

classification.

In this chapter, a classification scheme using both intensity and coherence

information derived from INSAR data is developed. In order to evaluate the

capability of SAR intensity and coherence images to discriminate between

agricultural crops, the classification experiments reported in this study are carried

out by using statistical, neural and decision tree classifiers. In particular, the

usefulness of texture features derived by using GLCM, the MAR model, and

fractal geometry from the intensity and coherence images for land cover

classification is also studied. The limitations of tandem and 35-day repeat-pass

interferometry for this application are also discussed.

6.2  Description of study area

The study area is located near Littleport, Ely Cambridgeshire, in the eastern part

of England. This area is close to sea level and the agriculture of the region is

characterised by the use of rotational crop planting techniques. Five SLC images,

from 2nd May to 20th September 1996, are selected for land cover classification.
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Since the main purpose of this study is crop discrimination, it is necessary to

ensure that the selected images cover the entire crop growing period, which helps

to identify various crops during their growth period. After a detailed study of the

cropping pattern of the area, the SLC images listed in Table 4.1 were selected. As

mentioned in sections 4.5.2.3 and 4.5.2.4, one coherence and five intensity images

and  an area of interest covering 286 pixels (columns) and 386 pixels (rows) was

used for further studies.

6.3  Ground reference image generation

The purpose of generating a ground reference image is to allow the collection of

pixels for training and testing the classifiers. Before creating a ground reference

image, field boundaries should first be defined. If no map reference data are

available, image segmentation can be used to identify the field boundaries. In this

study, the field boundaries were generated through on screen digitisation of

images. Reference data for the crop types in the year 1996 were collected from

farmers. On the basis of examination of the areas covered by each crop and the

geographical scale of the study, seven cover categories were selected. These are:

potatoes, sugar beet, wheat, barley, carrot, onions and peas. The field boundaries

were  digitised  using  ARC-INFO  software, by   using   a  colour   composite   of

all the   five   intensity images   generated   by   interferometric   processing. The

field boundary file was transformed from arc into polygon format by applying a

buffering  operation of 1 pixel  width so as to remove the boundary pixels during

the classification process. This polygon file is then used to assign a unique label to

each of the polygons according to the crop type associated with that parcel. By

using the crop map, digital identifiers from “1” to “7” (each number represents a

particular class as shown in the Table 6.1) are assigned to the corresponding

fields. The digital identifier “0” is assigned to the unknown fields. The final

ground reference image is shown in Figure 6.1, which also shows the colours used

to represent each crop.



Table 6. 1. Crops being used for classification with digital numbers in reference
image.
Digital Number Crop type
1 Barley
2 Wheat
3 Sugar Beet
4 Potato
5 Onion
6 Peas
7 Carrot
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Figure 6. 1.  Ground reference image of the study area.
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6.4  Feature extraction and selection

Methods to generate features based on combinations or transformations of

primary features are called feature extraction methods. Image derived features,

such as measures of spatial and spectral features, may provide useful information

for classification. Some features obtained by transforming primary features tend

to suppress  undesirable variability in remote sensing signatures, such as noise, so

it is wise to use such features in classification because they allow the classifier to

better distinguish spectral classes.

Spectral and spatial features are not independent. They always simultaneously

exist in the image, although sometimes one will dominate the other, depending on

how fine or how rough the object is. Spectral features describe average tonal

variation, whilst spatial features reflect the spatial distribution of tonal variation.

Generally the words texture and context are used to represent this form of spatial

relationship in tonal variation. Texture features contain information about the

spatial distribution of tonal variations within a band while contextual features

contain information derived from blocks of image data surrounding the area being

analysed.

The concept of tone is based on the varying shades of the grey of the resolution

cells making up an image and the texture is concerned with the spatial distribution

of grey tones. Texture and tone are not independent concepts; rather, they bear a

very close relationship to one another. Texture is a natural property of objects. It

contains important information about the structural arrangement of surfaces and

their relationship to the surrounding environment.

A number of methods have been developed to deal with spectral and spatial

information, in order to achieve improved classification performance. In

comparison with tonal measures, the definition of texture features appears more

difficult. The main difficulty faced by the researcher is to define a set of

meaningful features to characterise texture properties.

Based on the texture descriptors available in the literature, four approaches are

used in this study. The first approach uses the grey-level co-occurrence matrix

(Haralick et al., 1973). The second approach uses the features derived from local
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statistics. The third approach is based on the fractal geometry of the image (Sarkar

and Chaudhuri, 1994), and the fourth approach is based on the multiplicative

autoregressive random field model (Frankot and Chellapa, 1987).

 6.5  Grey Level Co-occurrence Matrix (GLCM)

This section describes texture feature extraction based on the Grey Level Co-

occurrence Matrix (GLCM), or the grey-tone spatial-dependency matrix. A co-

occurrence matrix for an image region contains partial second order statistical

information about the image pixel intensities. When generating a co-occurrence

matrix, it is assumed that the intensity distribution is in a wide sense stationary

over a region of uniform texture. The main concept of the GLCM is that the

texture information contained in an image is defined by the adjacency

relationships that the grey tones in an image have to one another. In other words,

it is assumed that the texture information is specified by values 
d

ijf  within the

matrix, where d
ijf denotes the frequency of occurrence of two cells of grey tone i

and j respectively separated by distance d with a specific direction on the image.

Values of  d
ijf can be calculated by any direction and distance d inside the image

but only four directions corresponding to angles 00 , 045 , 090 , and 0135 are

generally used.

The appropriate frequency normalisation for each cell inside the matrices are

easily computed. For the horizontal direction process, with d = 1 and angle equals

to 00 , and the if the image to be analysed has 
C

N resolution cells in the horizontal

direction (number of columns) and 
R

N  resolution cells in the vertical direction

(number of rows), there will be 2× (
C

N – 1) neighbouring resolution cell pairs in

each row. As a result, the total number of nearest horizontal neighbour pairs can

be obtained by the expression 2× (
C

N – 1) ×
C

N . When the relationship between the

cells is nearest right-diagonal neighbour, with d=1 and angle = 045 , there will be

2(
C

N -1) 045  neighbouring resolution cell pairs for each row except the first, for

which there are none. This provides a total of 2(
C

N -1)( 
R

N -1) nearest right-
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diagonal neighbour pairs. By symmetry there will be 2(
R

N -1)
C

N  nearest

neighbour pairs for the vertical direction and  2(
R

N -1)(
C

N -1) nearest left-diagonal

neighbour pairs. For the right-diagonal direction, by symmetry, the number of

nearest pairs is the same as left diagonal. After the total number of neighbouring

resolution cell pairs used in computing a particular GLCM has been obtained, the

matrix is normalised by dividing each cell in the matrix by the total number of

pairs. Figure 6.2 shows a generated GLCM for a small image segment.

Figure 6. 2. (a) A 3×3 image with three grey levels; (b)-(e) GLCM for angles of
angles 00 , 045 , 090 , and 0135 respectively.

1 1 2

2 0 2

0 1 1
(a)

2 0 1
0 0 2
1 2 0

                (c)

0 2 0
2 0 2
0 2 0

                (e)

0 1 2
1 4 1
2 1 0

               (b)

0 2 1
2 0 2
1 2 2

                (d)
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6.5.1  Texture extraction from GLCM

If the texture contained in an image is coarse, and the measured distance d is

relatively small in comparison with texture structure, the neighbouring pairs being

measured should have very similar grey levels. As a result, the joint neighbouring

pair distribution within the GLCM will produce higher values concentrated

around its left diagonal direction (i.e. cells (i, j), i = j). Conversely, for a fine

texture, if the measured distance d is comparable to the texture structure or is

relatively large in scale, the grey level of points separated by distance d will be

quite different. Therefore, the values in the GLCM should be spread out more

uniformly.

Haralick et. al. (1973) proposed fourteen texture measures based on the GLCM.

These texture measures, called textural features, are found to be very useful for

image classification. Some of these measures relate to specific textural

characteristics of the image such as homogeneity, contrast, and the presence of

organised structure within the image.  Other measures characterise the complexity

and nature of gray level transitions which occur in the image. In this study, five

indices are used as texture measures obtained from coherence and intensity

images. In what follows, g(i, j) denotes the (i, j)th entry in a normalised GLCM,

and gN  denotes number of distinct grey levels in the quantised image. The

selected texture methods are:

(1) Angular Second Moment (ASM):

                                  ASM  =    ( )[ ]∑∑
i j

jig
2

,                                                 (6.1)

The measure is smallest when the g(i, j) are all as equal as possible and is largest

when some values are high and others low, e.g., when the values are concentrated

near the origin. This parameter measures the homogeneity of the image.
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(2) Contrast (Con):

                             Con = ( )∑ ∑∑
−

= = = 













1

0 1 1

2 ,
g g gN

n

N

i

N

j

jign                                           (6.2)

This is the second moment of g(i, j), i.e., its moment of inertia about the origin.

This is a measure of the contrast or the amount of local variation present in an

image.

(3) Correlation (Cor):

                              Cor =  

( ) ( )

yx

i j
yxjigji

σσ

µµ∑∑ −,,

                                            (6.3)

where xµ  and xσ  are the means and standard deviations of the rows of GLCM,

and yµ  and yσ  are means and standard deviations of the columns. This feature is

used to reflect the degree to which the rows or columns resemble each other. It is

high when the values are uniformly distributed in the GLCM matrix, and low

otherwise, e.g., when the values off the diagonal are small. This is a measure of

gray-tone linear dependencies in the image.

(4)  Inverse Different Moment (IDM):

                                IDM =  
( )

( )jig
ji

i j

,
1

1
2∑∑ −+

                                          (6.4)

This measure will generate higher values for an image having large homogenous

patches because such an image will show high values on the main diagonal of the

GLCM. It gives lower weight to those elements g(i, j) that are away from the main

diagonal.

(5)  Entropy (Ent):

                                 Ent = ( ) ( )( )∑∑−
i j

jigjig ,log,                                           (6.5)
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This measure is largest for equal g(i, j) and small when the values of g(i, j) are

very unequal.

6.5.2  Feature based on local statistics

 Only one feature, “variance”, is calculated based on local statistics. It can be

calculated from the following formula using a moving window:

                                      Variance = 
( )

1

2

−

−∑
n

DNij µ
                                          (6.6)

where ijDN  represents the DN value of pixel at position (i, j), n is the number of

pixels in a moving window and µ  represents the mean of the moving window,

which is calculated from:

                                                 
n
DNij∑=µ .

6.6   Fractal dimension

Simple objects can be described by the ideal shapes such as cubes, cones and

cylinders, but most natural objects are complex and so they can not be described

by these simple shapes. Hence, the concept of self-similarity found an important

role in the description of  nature. When each piece of a shape is geometrically

similar to the whole, that is, when an object is composed of copies of itself and

each copy is scaled down by the same ratio in all directions from the whole, both

the shape and the cascading process that generates it are said to be self-similar.

The complex and erratic shape description in term of self-similarity was

introduced by  Mandelbrot (1983), who proposed the fractal geometry of nature

and defined  a fractal as"… a shape made of parts similar to the whole in some

way" (Mandelbrot, 1986, p. 8). One of the most important properties of fractals is

scaling. Mandelbrot (1983) defined scaling to mean invariance under certain

transformations of scale.
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Self-similarity is manifested in two ways: it can be exact or statistical. The

concept of exact self-similarity is defined as follows: if one were to take a portion

of the perimeter of an object and look at it under a microscope, the magnified

portion would look exactly the same as the original large part of the boundary.

Objects in nature rarely exhibit such exact self-similarity. Nevertheless, they do

often posses a related property, statistical self-similarity. Statistical self-similarity

means that upon magnification a small portion of an objects looks very much like,

but never exactly like, the configurations at other scales. The simplest example of

statistically self-similar fractals is a coastline.

An important concept in fractal geometry is fractal dimension. In the Euclidean

universe, the dimension of an object is defined as the number of distinct

coordinates needed to specify a position on or within the object. A point object

has zero dimension; a line, whether straight or curved, has one dimension. Any

point on the line can be represented by a single parameter. However, this

definition of dimension is not satisfactory for a proper understanding of

irregularity or fragmentation in nature. The fractal concept provides a more

appropriate mathematical framework to study the irregular, complex shapes found

in nature. Fractal geometry has had a major impact in modelling and analysis in

the natural and physical sciences.

Two important types of dimension are commonly used in fractal research: the

topological dimension and the fractional dimension (D) (Xia and Clarke, 1997).

The topological dimension is always an integer and coincides with the intuitive

dimension in Euclidean geometry. The notion of a fractional dimension was

introduced by Hausdorff  (1919) in order to put a size to a highly irregular non-

rectifiable sets. Thus the fractional dimension is sometimes called the "Hausdorff

dimension" or "Hausdorff-Besicovitch dimension". The Hausdorff-Besicovitch

dimensions of all cases studied in fractal geometry are greater than their

topological dimensions. In order to emphasise the fact that a fractal may also have

an integer dimension and to avoid the confusion of Hausdorff-Besicovitch

dimension with the dimension of the Hausdorff topological space, Mandelbrot

(1983, p. 15-17) proposed to call D the fractal dimension. On the other hand, most

people continue using the terms fractional dimension, Hausdorff dimension,

Hausdorff-Besicovitch dimension and fractal dimension interchangeably. The
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fractal dimension is a real number that measures the degree of irregularity or level

of complexity of an object.

The concept of fractal dimension can be useful in the measurement, analysis, and

classification of shape and texture. The characterisation of surface roughness by a

fractal dimension has been applied to fracture surfaces  and it has been used to

obtain shape information and to distinguish between rough textured regions for

imaged three-dimensional surfaces (Pentland, 1984, 1986).

A number of approaches exists in literature to estimate the fractal dimension (D).

Peleg et al. (1984) used the ε-blanket method, in which an image can be viewed as

a hilly terrain surface whose height above a datum is proportional to the image

gray value. All points at a distance ε from the surface on both sides creates a

blanket of thickness 2ε. The estimated surface area is the volume of the blanket

divided by  2ε. For different ε, the blanket area is iteratively estimated and fractal

dimension can be derived from least squares linear fit of the log-log plot of A(ε)

and ε, where A(ε) is defined as

                                            ( ) D2eFA −⋅=ε                                                           (6.7)

where F is a positive constant.

This approach is a 2-D generalisation of the original approach suggested by

Mandelbrot (1983). Pentland (1984) considered the image intensity surface as a

fractal Brownian function and estimated the fractal dimension from Fourier power

spectrum of fractal Brownian function. Gangepain and Roques-Carmes (1986),

Keller and Chen (1989) and Sarkar and Chaudhuri (1994) used variations of the

box-counting approach to estimate the fractal dimension.  This method uses

different scale boxes denoted by lB  to cover the data set and measures the number

of boxes  needed to cover the whole set. The slope of the regression line of these

ll NB loglog −  pairs gives an estimate of the fractal dimension. In this study the

method based on box-counting  proposed by Sarkar and Chaudhri (1994) and

found to perform well with SAR data (Tso, 1997) is used.

This method is described as follows: consider that the image of size M×M pixels

has been divided into grids of size s×s, where M/2 ≥ s > 1 and s is an integer.
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Consider the image as a 3D surface with (x, y) denoting 2-D position and the third

co-ordinate (z) being grey level. The (x, y) space is divided into grids of size s×s.

Thus for each grid there is a column of boxes of size 'sss ×× , where s can be a

multiple of the side length of a pixel in (x, y) and 's  can be a multiple of the grey

level in z-direction.  If the total number of grey level is G then 's  is calculated

from the expression

                                     







=








s
M

s
G

'                                                                     (6.8)

where symbol    indicates the integer part of the argument.

Assign the numbers 1, 2, …., n in turn to each box in the column from bottom to

top. Let the minimum and maximum grey level of the image on the (i, j)th grid

fall in boxes number p and k, respectively. Then the number of boxes needed to

cover the surface on the (i, j)th grid is

                                       ( ) =j,inr  = p – k + 1                                                    (6.9)

  where

                                                r = s/M

Because of the differential nature of computing rn , this method is called

differential box-counting approach. After taking contributions from all grids, the

total number of boxes needed to cover the whole image with box size 'sss ××  is

                                                ( )∑=
j,i

rr j,inN                                                      (6.10)

rN is counted for different values of s. The fractal dimension D is estimated from

the least square linear fit of log ( rN ) against log (1/r). This method is

computationally efficient and counting rN  in this manner gives a better

approximation to the boxes intersecting the image intensity surface  when there is

sharp grey level variation in neighbouring pixels in the images.
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6.7   Multiplicative Autoregressive Random Field (MAR) model

Research carried out to study the behaviour of the radar returns have found that

radar returns are corrupted by speckle (Ulaby, 1980). Thus, the use of lognormal

models for radar have been suggested for homomorphic filtering to separate

multiplicative illumination and reflective components (Stockham, 1972).

Frankot and Chellapa (1987) proposed the gaussian autoregressive random field

models for the logarithm of radar image intensity in two dimensions, which they

called the lognormal multiplicative autoregressive (MAR) model and suggested

that these models are useful for estimating spatial correlation structures which,

together with the image intensity distribution model, fits a variety of radar

imagery.  Initially, the MAR concept was originally used to model image data,

and the parameters of the model have been found to be highly correlated with the

spatial distribution of image intensities. For this reason, they can be used as a

texture descriptors for image classification (Solberg and Jain, 1997; Tso, 1997).

Lognormal random fields with multiplicative spatial interaction are a special case

of the gaussian autoregressive random fields.

Let an image p(s), Ω∈s , with size M×M, be represented by the following white-

noise-driven multiplicative system:

                          ( ) ( )[ ] ( )∏
∈

θ ⋅+=
Nr

svrspsp r                                                  (6.11)

where Ω = {0, 1, . . . ., M-1}×{0, 1, . . .., M-1}, N is the neighbourhood set

defining model support (i.e., the number and location of pixels contributing to the

central pixel, as shown in Figure 6.3, v(s) is a lognormal white-noise process

referred to as the driving process, rθ is an exponent weighting factor for

neighbourhood r, and s = (m, n), a 2-D index to an image.

The random field p(s) is said to obey a lognormal MAR model if q(s) = ln p(s)

obeys the following gaussian autoregressive  random field model with w(s) = ln

v(s):

                         ( ) ( )∑
∈

++⋅θ=
Nr

r )s(wrsqsq                                                    (6.12)
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where w(s) is zero mean white gaussian noise. The covariance of w(s) is given by
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where wσ denotes the variance of w.

6.7.1  Estimation of parameters in the MAR model

The parameters of the MAR model, the neighbourhood weighting parameter

vector θ, the noise variance 2
wσ , and the mean value qm  of the stationary random

process q are estimated for each image, using a least squares estimation method

(Kashyap and Chellappa, 1983) and used as texture features. The neighbourhood

N = {(0,-1), (-1,-1), (-1,0)} is used to compute these three parameters (Figure 6.3).

Figure 6. 3. Neighbourhood supp
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while mean is defined as:

                                          ( )∑
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where

                                   ( ) =sz ( ) qmrsq −+ ,    Nr∈

6.8  Feature selection

In real-world situations, all features relevant to the classification of an object are

often unknown a priori. Therefore, a number of candidate features are often

introduced to better represent the image classification problem. Unfortunately,

many of these features are either partially or completely irrelevant or redundant

for the problem concerned. A relevant feature is neither irrelevant nor redundant

while an irrelevant feature does not affect the results in any way, and a redundant

feature does not add anything new to the results. In many applications, the size of

a dataset is so large that learning might not work well unless these unwanted

features are removed. Reducing the number of irrelevant/redundant features

drastically reduces the running time of a learning algorithm as well as increasing

its effectiveness. Feature selection methods try to pick a subset of features that are

relevant to the problem.

A basic problem in pattern classification is to determine which features should be

employed for minimum error and maximum efficiency in classification. A large

number of pattern classification problems involve classification of patterns into

one of a set of classes, which are defined only by a limited number of labelled

representative patterns (which are pixel vectors in remote sensing). Feature

extraction can be viewed as finding a set of vectors that adequately represent an

observation but in a lower dimensional feature space. In pattern recognition, it is

desirable to extract features that have the highest discriminating power between

classes. Although a reduction in dimensionality is desirable, the error resulting

from the reduction in dimension has to be acceptably low. The development of
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feature extraction methods has been a prominent research area in the field of

pattern analysis.

Feature selection is defined by many authors by looking at the problem from

various angles. But, as expected, many of the solutions are similar in intuition

and/or content. The following are some of the definitions those are conceptually

different and cover a range of definitions.

1. Idealised: find the minimally sized feature subset that is necessary and

sufficient to the target concept (Kira and Rendell, 1992).

2. Classical: select a subset of M features from a set of N features, M < N,

such that the value of a criterion function is optimised over all subsets of

size M (Narendra and Fukunaga, 1977).

3. Improving prediction accuracy: the aim of feature selection is to choose a

subset of features for improving prediction  accuracy or decreasing the size

of the structure without significantly decreasing prediction accuracy of the

classifier built using only the selected features (Koller and Sahami, 1996).

4. Approximating original class distribution: the goal of feature selection is to

select a small subset such that the resulting class distribution, given only

the values for the selected features, is as close as possible to the original

class distribution given all feature values (Koller and Sahami, 1996).

The third definition emphasises the prediction accuracy of a classifier, using only

the selected features, whereas the last definition emphasises the class distribution

given the training data set. These two approaches are quite different conceptually.

Feature selection is a difficult task in classification because it is both dependent

on the input data and on the classifier used. The quality of a feature is measured

by its relevance, discriminative power, and ease of computation. Additionally, by

excluding redundant, irrelevant, or inconsistent features from the training set,

higher accuracy on an independent validation dataset can often be achieved.

The problem of feature selection is defined as follows: given a set of candidate

features, select a subset that performs best (according to some criterion) under
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some classification system. This procedure can reduce both the cost of

classification by reducing the number of features that need to be collected and, in

some cases it can provide a higher classification accuracy due to finite sample size

effects. The term "feature selection" is taken to refer to algorithms that output a

subset of the input feature set. The procedure of feature selection must be based

on two components. First, a criterion must be defined by which it is possible to

judge the performance of each feature. Second, a systematic procedure must be

found for searching through candidate subsets of features. In principle, the feature

selection criterion should be the same as that used to assess the misclassification

rate for a image classification problem. Similarly, the search procedure could

simply consist of an exhaustive search for all possible subsets of features since

this is, in general, the only approach that is guaranteed to find the optimal subset.

In a practical application, however, a simplified selection criterion as well as a

non-exhaustive search procedure is used in order to limit the computational

complexity of the search procedure. A number of studies of feature selection

methods have been carried out in image classification (Jain and Zongker, 1997;

Kavzoglu, 2001). In this study, following Kavzoglu's (2001) guidelines,

Hotelling’s 2T  statistical method is used to determine the best three texture

features out of the ten features of each intensity and coherence image.

6.8.1  Hotelling’s 2T

Several multivariate statistical techniques can be used to determine the degree of

discrimination between the classes present in a given dataset, by using the means

and co-variance matrices of the classes. Hotelling’s 2T  statistic (Hotelling, 1931)

is one of the most popular statistical tests to estimate the discriminating power of

a feature or relative importance of a feature.

Hotelling’s 2T  statistic is used to test the null hypothesis that the (population)

multivariate means of the two groups under study do not differ significantly. It

provides a multivariate generalisation of the Student’s t test and is related to the

problem of how best to discriminate between two groups. 2T  is calculated from:
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where 2D  is the measure known as Mahalanobis’ D-squared, which measures the

overall similarity between the two groups.  ∑ −1  is the inverse matrix of the

pooled co-variance matrix ∑ , and 1m  and 2m  are the mean vectors for the

groups, which contain 1n  and 2n  individuals, respectively.

The value of Hotelling’s 2T  increases as inter-class separation increases. The

statistical significance of 2T  can be evaluated using a transformation to the F

distribution. It should be noted that the number of observations need not be the

same for the two samples, but the number of features must be the same.

Hotelling’s 2T  is used to identify only three best texture features for each image

(five intensity images and one coherence image) to be used for land cover

classification. For intensity and coherence images, nine texture features, including

five grey-level co-occurance features (asm, con, crr, ent and idm), two features

from the MAR model (markov mean and covariance), one feature calculated from

fractal geometry and one feature from first order statistics (variance) are used for

feature selection. With intensity images, the four best features selected for use in

further classification are the fractal dimension, the intensity image itself, contrast

from GLCM and variance from first order statistics. For the coherence image, the

four features selected are coherence, markov mean, plus correlation and entropy

from GLCM (Table 6.2).

6.9   Classification results and discussion

6.9.1  Results

Extensive experiments were carried out in order to test the performance of

classifiers using intensity images, the coherence image, and the texture features

derived from these, for crop classification. In order to achieve a comprehensive
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analysis, different data types derived from the original intensity and coherence

images are included in the experimental process. Besides using the median-

filtered intensity and coherence images, other data sets used in this study include

texture features derived from coherence and intensity images based on GLCM,

local statistics, the MAR model and the fractal models. For each intensity and

coherence image, five features from GLCM, one feature from local statistics, two

features from the Markov autoregressive model and one feature from the fractal

model are derived (discussed in section 6.7). As the number of features becomes

large, a feature selection method is used to reduce the dimensionalty of the data

used for classification. For this study the different data sets used for classification

are:

1. All five median filtered intensity images.

2. A combination of filtered coherence image with all five intensity images.

3. Coherence, one intensity image obtained from 02 and 03 May 1996

(tandem pair of SLC) and the difference between the two intensity images

obtained from this pair.

4. A combination of the coherence image and its three best texture features

with all five median-filtered intensity images.

5. A combination of the coherence image and five intensity images with the

two best texture features for each of the coherence and intensity images.

6. All five intensity images in combination with the texture features of all

these five intensity images.

7. The coherence image, all five intensity images, and the three best texture

features for each of the coherence and intensity images.

Three different classifiers (maximum likelihood, neural network and decision

tree) were used. The user-defined parameters (section 2.3.4.3) for the neural

network are set according to the recommendations made by Kavzuglu (2001). The

best three texture features used to recognise land cover classes in the classification
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process and obtained by employing the Hotelling’s 2T  statistic are shown in

Table 6.2.

Table 6. 2.  Various features obtained by applying Hotelling’s 2T  feature
selection method and used in final classification process.

Image Features selected Hotelling’s 2T

value

Coherence image Correlation and entropy from GLCM

and MAR mean

709.15

Intensity images Variance from local statistics, contrast

from GLCM and fractal dimension

476.18

Random sampling was used to collect the training and test pixels from the ground

reference image for all datasets. These pixels were divided into two subsets, one

for training and one for testing the classifiers, so as to remove any bias resulting

from the use of the same set of pixels during training and testing. The number of

observations to be used in training the classifiers should be enough so as to assure

that each class is properly sampled and the analysis performed for accuracy

assessment is statistically valid. Mather (1999) recommend that to generate a

representative training sample for the statistical classifier (multivariate case), there

should be at least 30 training pixels for each features per class, and preferably

more. In this study, different numbers of training data for every combination of

features were used to examine the above requirement. The same number of

training and test pixels was used for all the three classifiers.

To analyse the results, confusion matrices were generated using the three

classifiers for each of the combinations listed above. Overall classification

accuracy (in percentage) and Kappa coefficients are shown in Table 6.3. Figure

6.4  shows the classified images using coherence with five intensity images and

three best texture features for each, using neural and decision tree classifiers

respectively. The confusion matrices are listed in appendix C.
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Table 6. 3. Total classification accuracies for different data sets used in the
classification process. Table 6.3(a) is for maximum likelihood, Table 6.3 (b) for
the neural network and Table 6.3(c) for decision tree classifier.

Table 6.3(a)

Data sets used Number of
features

Overall
Classification

accuracy

Kappa value

1 5 59.2 0.524
2 6 68.7 0.635
3 3 49.7 0.413
4 9 70.6 0.657
5 18 78.0 0.744
6 20 68.7 0.634
7 24 77.1 0.733

Table 6.3(b)

Data sets used Number of
features

Overall
classification

accuracy

Kappa value

1 5 60.8 0.572
2 6 69.7 0.664
3 3 30.5 0.279
4 9 73.7 0.705
5 18 79.1 0.765
6 20 73.1 0.701
7 24 82.9 0.805

Table 6.3(c)

Data sets used Number of
features

Overall
classification

accuracy

Kappa value

1 5 69.9 0.650
2 6 77.8 0.741
3 3 47.4 0.390
4 9 77.9 0.742
5 18 80.2 0.769
6 20 78.6 0.750
7 24 82.7 0.797
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6.9.2  Discussion

Comparison of the results shown in Table 6.3 (data sets 1 and 2) suggests that the

inclusion of coherence information with the intensity images results in a

substantial improvement in overall classification accuracy for all of the three

classifiers used. The increase in accuracy with the maximum likelihood classifier

is from 59.2% to 68.7% (Kappa value 0.524 to 0.635), for the neural classifier the

increase is from 60.8% to 69.7% (Kappa value 0.572 to 0.664), while the overall

accuracies from the decision tree classifier  rises from 69.9% to 77.8% (Kappa

value 0.65 to 0.741). There is an increase of about 8-9% in accuracy when

coherence information is added, irrespective of the classifier used. Wegmuller and

Werner (1994) found that the combination of coherence, one intensity and the

difference of intensity images obtained by interferometric processing of a tandem

pair to be very promising for land cover classification studies, so we carried out

classification using this combination also (data set 3). This combination performs

badly for this particular land cover classification problem. It gives a maximum

accuracy of 49.7% using a decision tree classifier, a result that is far lower than

the accuracy obtained with data set 1.

Evaluation of the results presented so far in this study suggests that the decision

tree classifier performs better than either the maximum likelihood or the neural

classifiers. It gives a considerable increase in accuracy (of about 10%) as

compared to both of the other classification systems with data sets 1 and 2.

The study further suggests that the inclusion of texture measures helps to improve

classification accuracy. A total of nine features per intensity and coherence image

was extracted using GLCM (five features), MAR model (two features), the

variance based on first order statistics, and the fractal model (one feature) making

a total of sixty features. It is necessary to apply feature selection so as to reduce

the dimensionality of the input feature space and to overcome the problem of

dimensionality (Hughes, 1968). For this study, the three best texture features are

selected for each intensity and coherence image. Initially, data set 4, which

includes texture features obtained from the coherence image, was used for

classification. The results suggests that an improvement of 4% in classification

accuracy  is achieved  by using  the neural  network  classifier as compared to data
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Figure 6. 4.  Classified images of data set 7 using  (a) decision tree classifier and
(b) with neural classifier.
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set 2, while use of the maximum likelihood  and the decision tree classifiers

suggests no major improvement in classification accuracy.

When all five intensity images with their associated texture features (data set 6)

are used, a significant improvement in classification accuracy is shown as

compared to the data set 1. Classification accuracy increases by an amount

ranging from 8.7% to 12.3% depending on the classifier used, suggesting the

importance of texture features with InSAR intensity images in land cover

classification. Further studies were carried out after adding the coherence and its

texture features with dataset 6 (data set 7). An increase of between 4 and 9% in

classification  accuracy as compared to data set 6 suggests that the coherence

image provides discriminating information about the land surface and can be used

effectively for land cover classification in combination with intensity images

obtained from interferometric SAR data. The highest accuracy obtained by this

combination (data set 7) is 82.9% with a neural classifier, which is slightly higher

than the overall accuracy of the decision tree classifier (82.7%). Another study

using data set 5 was carried out, using only two texture features per coherence and

intensity image. The results in Table 6.3 suggest that the accuracy reached by this

combination is not comparable to the performance of data set 7. The highest

accuracy of 80.2% was achieved by the decision tree classifier, but the accuracy is

still less than the highest accuracy achieved with data set 7.

6.10  Conclusions

A number of combinations of data sets derived from interferometric SAR

intensity and coherence images have been evaluated for crop discrimination. The

results obtained from seven different datasets (Table 6.3) shows that the use of the

coherence image in combination with the intensity images provides additional

discriminating power in land cover classification studies. The performance of

dataset 3 was found to be the worst among the different combination tested, which

contrasts with the results for land cover classification reported by Wegmuller and

Werner (1997). The highest accuracy obtained is about 82.9% while using 24

features, justifying the importance  of  the  texture  features, as  suggested  by



earlier  work by Dutra and Huber (1999). However, in practice, one often

encounters the so-called dimensionality problem, i.e., with a fixed relatively small

sample size, the classification accuracy may actually decrease when the number of

features is increased (Hughes, 1968). This means that the use of a larger number

of features requires a corresponding increase in the number of training samples, so

that the results obtained are reliable.

It has also been found that decision tree classifier achieves better results (in terms

of overall accuracy) than the statistical and neural classifiers in almost all cases,

except with dataset 7, where the overall classification accuracy achieved with a

decision tree classifier is slightly less than that of the neural classifier. The same

number  of  training  data  were used  for  the  three classifiers  for  dataset 7, thus

indicating the limitations of univariate decision tree with limited training data size

as the number of features increases.

1. 

2. 

3. 
Coherence information provides additional discriminating power

in land cover classification studies.

Texture information is quite useful in improving classification

accuracy of InSAR data.

Tandem SLC pair is more suitable for good coherence

information.
164
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CHAPTER 7

Issues in the classification of remote sensing data

7.1   Introduction

One of the fundamental characteristics of a remotely sensed image is its spatial

resolution, or the size of the area on the ground from which the measurements that

comprise the image are derived. Spatial resolution is analogous to the scale of the

observations. In most scientific works, the investigator selects the scale at which

observations are collected but, in case of remotely sensed imagery obtained from

space-borne sensors, investigators are limited to specific scales of observations.

Until 1990, this choice was extremely limited, with data being available at

medium resolution (such as 80m for Landsat MSS and 20m for SPOT) as well as

coarse resolution (NOAA). With the availability of airborne scanners and space-

borne sensors providing data at up to one-metre resolution, a problem of choice is

created. There are considerations beyond spatial resolution concerning the

spectral, temporal, and radiometric characteristics of the data, as well as the

sample size and sampling plan used for collection of test and training datasets.

The dimensionality of the dataset poses additional problem. Accuracy assessment

requires that an adequate number of samples per class be gathered so that any

analysis performed is statistically valid. In addition to the sample size, choice of

sampling scheme plays an important part in any accuracy assessment by

generating an error matrix that is representative of the entire map. Different

sampling schemes assume different sampling models and  also determine the

distribution of the samples across the landscape, which in turn will significantly

affect accuracy assessment.

While sample size and sampling plan have been recognised as important factors in

classification accuracy assessment, it is becoming apparent that the factor of scale

also plays an important role in the planning of remote sensing investigations. In

the past, the selection of an appropriate scale has been left to the experience of

individual investigators. A series of studies (Sadowski et al., 1977; Markham and
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Townshend, 1981; Irons et al., 1985; Cushnie, 1987) has assessed the effect of

spatial resolution on the ability to classify land use/land cover types using digital

classification techniques. The conclusions of these studies are that a change in

spatial resolution could significantly affect the classification accuracies and that,

in many cases, the use of higher spatial resolution data resulted in lower

classification accuracy. Woodcock and Strahler (1987) suggested that this may be

due to an increase in within-class spectral variability which confuses per-pixel

classifiers.

The aim of this chapter is to study the behaviour of different classification

algorithms in term of their overall classification accuracy, with fixed number of

training data and varying number of features as well as with fixed number of

features and varying number of training data. This study also  considers the effect

of sampling plan on the classification accuracy of a classifier. Further, this study

investigate the effect of scale on classification accuracy, using data for the same

region at two different resolutions.

7.2   Scale

In general sense, scale refers to the spatial, temporal, quantitative, or analytical

dimensions used to measure and study objects and processes. The problem in

defining scale is that its meaning varies between disciplines. Conceptually,

"..scale represents the window of perception, the filter or the measuring tool

through which a landscape may be viewed or perceived" (Levin, 1992). Thus,

changing the scale changes the view of reality, which has obvious implications for

understanding the dynamics of any environmental system. The term "scale" has a

variety of meanings and has been used in different contexts in various disciplines.

Landscape ecologists define scale as having two components: grain and extent.

Grain corresponds to the smallest spatial sampling units used to gather a series of

observations. Extent is the total area over which observations of a particular grain

are made. To a cartographer, scale is defined simply as the ratio between distance

on the map and the distance on the ground. This issue is complicated further by

the use of scale as a basic dimension of generalisation. The effect of
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generalisation is to introduce the uncertainty into the representation of a real

phenomenon that could only be mapped perfectly at a much larger scale.

To most scientists, the term “scale” is likely to imply a small linear dimension.

For remote sensing data, scale corresponds to spatial resolution (Woodcock and

Strahler, 1987) which refers to the ability of a sensor to record and display fine

spatial detail as separated from its surroundings. For other data types it may be

more difficult to identify a single linear dimension to characterise the

observations. In short, a small linear dimension representing spatial data “scale” is

well defined for some types of digital data, but not well defined for other types.

Geographic scale is important because it defines the limit to our observations of

the earth. All earth observation must have a small linear dimension, defined as the

limiting spatial resolution, the size of the smallest observable objects, the pixel

size, the grain of the photographic emulsion, or some similarly defined parameter.

Geographic scale is also important because it is often a parameter in the physical

and social processes that shape geographic phenomenon.

Further to the use of scale in spatial context, scale may also be used in a temporal

context. This is important in many remote sensing investigations where an ability

to monitor changes over time periods that ranges from hours (e.g., in

meteorology) through years (e.g., in urban growth) to centuries (e.g., soil

development) is vital. For a variety of reasons, notably practical constraints of

data handling and manipulation, the spatial and temporal aspects of scale need to

be considered together in many remote sensing applications.

7.2.1   Definition

Scale is one of the primary attributes in describing geographic data. As discussed

earlier,  the concept of scale has a variety of meanings. Marceau (1999) defines

scale in relation to the absolute and relative representations of space. In an

absolute framework, scale can be defined in operational terms and refers to a

practical, standard system used to partition geographical space into operational

spatial units. In a relative framework, scale becomes a variable intrinsically linked

to the spatial entities, patterns, forms, functions, processes, and the rate under



investigation.  In this study, the focus is on spatial scale. Within the spatial

domain, at least four meanings of the term scale can be identified in the literature

(Cao and Lam, 1997) (Figure 7.1):

(

(

(

          Scale
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Figure 7. 1.  Meaning of scale (adapted from Cao and Lam, 1997).

1) The cartographic or map scale refers to the proportion of a distance on a

map to the corresponding distance on the ground. A large scale may cover

a small area and show more detailed information. On the other hand, a

small-scale map covers a larger area and the map often contains less

detailed information.

2) The geographic or observational scale refers to the size or spatial extent of

the study. A large scale (geographic) study covers a larger area, as opposed

to a small scale study which covers a smaller area. For example, a study of

the distribution of forests on a global level is considered a large scale study

compared with a study of crop classification in some part of

Cambridgeshire, UK.

3) The operational scale refers to the scale at which certain processes operate

in the environment. This scale is referred as the scale of action by some

researchers, and methods have been suggested to determine this scale of

action. The operational scale is inherited from the geographic phenomena,

    Spatial                       Spatial-Temporal                        Temporal

Cartographic             Geographic                          Operational                       Measurement
                                (observational)                                                                    (resolution)
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as it is compared to the observational scale, which could be rather

subjective depending on the observer. Finding the operational scale of

phenomena is an important step in determining the observational scale of

the study because a phenomenon is best observed at its operational scale.

Also, a phenomenon observed at one scale may not exist at another scale.

(4) Spatial resolution refers to the smallest distinguishable parts of an object,

such as a pixel in remotely sensed imagery, and can be considered as a

measurable scale.

These four meanings of scale are closely related. Thus, small scale cartographic

maps are often used in large scale geographic studies, and only certain processes

can be observed from a map with a specific cartographic scale. In remote sensing,

a measurement scale of 30 m (in ETM+ data) results in a pixel size (spatial

resolution) of 30 m, but it takes a number of pixels (operational scale) for a

feature to be recognised and much larger area (geographical scale) to understand

the spatial pattern of the feature. The main concern in all the definitions of the

scale is the relative size of the object and its spatial representation or

generalisation. Scale dependency is an inherent property of geographic

phenomena. If the geographic pattern under consideration varies with scale, the

geographic phenomenon is considered scale dependent. If, however, the pattern

does not change across scale, the phenomenon is regarded as scale independent. In

reality, very few geographical phenomenon are scale independent.

Of the four definitions of scale, cartographic scale has been studied most

intensively. A large volume of literature in this field has contributed to the proper

use of both paper maps and their digital equivalents. Studies of resolution are

second to those of cartographic scale, with most of this research being done in the

last two decades. Resolution is explicitly linked to areal units. Most resolution

studies have focused on regular grid data such as remotely sensed images or raster

GIS data, such as digital elevation models.
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7.3   Scaling

One of the major use of geographical information systems (GIS) is to provide an

environment that facilitates distributed modelling. Such modelling frequently

requires the integration of diverse datasets such as point ground measurements,

thematic maps, and areal remotely-sensed observations. The required input

parameters are rarely available at the desired modelling scale and their use at a

scale other than at which they were observed is not always straightforward.

Conversely, if the data are allowed to determine the scale at which the modelling

is to take place, the resulting model outputs may not be suitable for addressing the

research problem in question. In general, the modeller tends to find some middle

ground and make decisions on modelling scale based on the resolution of the

available input data, computational resources, and their perception of the required

resolution of the outputs.  However, these decisions are not without consequences,

the most important of which is that model output may vary as a function of scale.

The scale of observation and measurement is thus one of the most essential

considerations to be made in the interpretation and analysis of remote sensing

data. It is widely recognised that many environmental processes and patterns are

scale-dependent. The recognition of such scale effect has led to research into the

scaling properties of environment fields. The term “scaling” has come to have

multiple definitions, depending not only on the general discipline (e.g., in

geography, and ecology) but the application within the discipline (e.g., within

geography, remote sensing as opposed to cartography).

7.3.1  The scaling process

The scaling process involves taking information at one scale and uses it to derive

information at another scale (Figure 7.2). As we have only a limited ability to

make representative measurements,  integration and scaling techniques are used to

apply small-scale, short-term measurements to make larger-scale, longer-term

inferences. Although it is possible to make measurements at a large scale, by

using remote sensing data, applying these results to other ecosystems, locations,

time, or weather conditions has proven difficult for two reasons:
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1. Limited resources constrain measurements periods and conditions, so less-

than representative observations are available.

2. The system behaviour is the result of interactions among many factors on

small and large scales and, without accommodating the most important of

these interactions, generalisations are difficult.

Figure 7. 2. The strategy of up- and downscaling across the four spatial scales of
interest in relation to global environmental change (adapted from Jarvis, 1995).

Scaling is not simply integration or aggregation of values at one level to achieve

values at different level. Rather, scaling represents the concepts that link

processes at different levels of space and time. Scaling also involves not being

distracted by those factors that are less important in the transitions among scales.
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Upscaling consists of taking information at smaller spatial and shorter temporal

scales and using that information to derive information at larger spatial and longer

temporal scales. A widely-used example of upscaling is to take a description of

the process of photo-synthesis at the scale of biochemical processes in the

chloroplast, combine that with a description of leaf structure and carbon dioxide

diffusion, and use that information to derive a description of the fluxes of carbon

dioxide at the leaf scale. Combination of leaf scale fluxes with information about

the physical structure of the vegetation canopy, together with appropriate driving

variables, can then lead to a description of carbon dioxide fluxes at the canopy

scale.

Generally, the objective of upscaling is to preserve the rate of the processes

involved, usually flux densities, such that the rate at the larger spatial and longer

temporal scales is equal to the sum of the rates of all the individual components in

the system. This would clearly be a very easy objective to achieve if all the

process involved were linear. But non-linearity between processes and variables,

and heterogeneity in properties, makes upscaling a challenge. For example, the

measurement of area of land cover from remote sensing images is heavily

influenced by the pixel size, because of the changes in the degree of heterogeneity

of the land cover across scales. Heterogeneous landscapes also lead to more rapid

information loss as the data are aggregated and analysed at coarser scales

(Meentemeyer and Box, 1987).

Downscaling consists of decomposing information at one scale into its

constituents at smaller spatial and shorter temporal scales. The information may

be a description of a process at a larger scale. Downscaling may also be usefully

applied to both state and environmental driving variables. For example, it may be

desirable to downscale a crude estimate of canopy structure, such as leaf area

index, to a more detailed description of the spatial distribution of leaf area density

for the purpose of radiative transfer modelling.

For many purposes, it is adequate, if not desirable, to seek to understand processes

at one particular scale and it is almost impossible to perform large scale

experiments at the scale of natural ecosystems, regional landscapes etc as well as
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very small scale experiments at the scale of metres. That is why a need exists for

upscaling and downscaling of data.

A variety of tools are available for scaling, involving a combination of correlation,

extrapolation, and modelling, all of which being designed to relate patterns across

wide range of scale. For short-term or small-scale predictions, direct extrapolation

of observed trends may be the best technique, but the application of such methods

can give no hints about when the method will break down or about how patterns

will change beyond observed ranges or in response to environmental changes.

Some guidelines for scaling suggested by Caldwell et al. (1993) are:

1. Assess the scale of the phenomenon in question,

2. Identify the boundary conditions and constraints,

3. Search for consistencies at different scales,

4. Streamline the upscaling models to incorporate only  salient features,

5. Incorporate feedback, both positive and negative, that may  operate on

some scale but not necessarily on other scales, and

6. Test the results at different scales with independent estimates.

7.4   Sample size

After selecting data at a suitable scale for the study, the next task in assessing the

accuracy of the land use/land cover maps depends on the selection of  samples for

training and testing a classifier that gives reliable results applicable both to the

whole land use map and to the individual land use/land cover categories

(Fitzpatrick-Lins, 1981). Due to time and cost constraints involving the collection

of reference data, it would be virtually impossible to consider the entire

population of pixels for classification. Therefore, a sample of pixels is required for

each of the land use class to estimate classification accuracy. Too large a sample

implies a waste of resources, and too small a sample diminishes the utility of the

results. A number of studies carried out by Fitzpatrick-Lins (1981), Hay (1979),

Hord and Brooner (1976), Rosenfield (1982) and Van Genderen and Lock (1977)

have reported a number of equations and guidelines for choosing an appropriate

sample size. The majority of these equations are based on assumption that the data
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follow a binomial distribution or the normal approximation to the binomial

distribution.

The equation for the determination of the appropriate sample size, N, suggested

by Snedecor and Cochran (1967) (later used by Fitzpatrick-Lins, 1981) is based

on the binomial distribution and depends on the allowable error at a given

confidence level. This equation is:
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N =                                                            (7.1)

where a is expected percent accuracy, b = 100 - a, L is the allowable error, and K

is  the  standard  normal  deviate  for a desired confidence level (e.g. the value of

K = 2 is generalised from the standard normal deviate of 1.96 for the 95% two

sided confidence level). This formula assumes that pixels are selected by using a

simple random sampling technique. When more complex sampling methods such

as stratified sampling are employed, a useful quantity known as the design effect

of the sampling plan enable simple random sampling formulae to be used more

extensively (Snedecor and Cochran, 1967). The design effect is defined as the

ratio of the variance of the estimate given by the complex sampling plan to the

variance of the estimate given by a simple random sample of the same size.

Tortora (1978) suggested another method of estimating the sample size for

multinomial distribution based on the approximate large sample equations for the

simultaneous confidence limits. The equation has the form
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where 
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D i = 1, 2 ,. . . . , c, is the proportion of the image area in the  ith class,

parameter 
i
δ is the half width of the desired confidence interval, and the value of

α/k1,1
χ

−
can be found from the tables of percentage points for the unit normal

distribution i.e. "…, the 2χ  distribution, with one degree of freedom is the
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distribution of the square of a normal deviate: the 5% significance level of 2χ ,

3.84, is simply the square of 1.96" (Snedecor and Cochran, 1967).

These techniques are statistically sound for computing the sample size needed to

compute the overall accuracy of a classification or the overall accuracy of a single

class. As suggested by Congalton (1991), these techniques are not designed to

chose a sample size for filling in a confusion matrix. In the case of a confusion

matrix, it is not a matter of correct or incorrect but it a matter of which categories

are being confused. Due to the large number of pixels in remotely sensed datasets,

practical considerations more often dictate the sample size selection than the

traditional  methods of sampling. The sample size selected this way should be

such that a balance between what is statistically sound and what is practically

attainable must be maintained. Mather (1999) and Swain and Davis (1978)

recommended that a minimum sample of at least 30 times the number of features

(discriminating variable or wavebands) per class would be suitable, while

Congalton (1991) suggested a minimum of 50 samples for each land use class.

Lillesend and Kiefer (1994) suggested a minimum of from 10 to 100 times the

number of pixels should be used since the estimates of the mean vectors and

covariance matrices improves (if data are normally distributed) as the number of

training pixels increases. The number of pixels selected for each class can also be

adjusted based on the relative importance of the class or by the inherent variability

within each of the class. It is also useful to collect fewer number of pixels from

the classes having little or no within class variability (like water and snow) and

increase the number of sampled pixels in the classes that have more within class

variability.

7.5   Sampling plan

The nature of the sampling plan is an important part of any accuracy assessment,

due to the large volume of remotely sensed data in digital format. In remote

sensing, sampling  consists of  (i) the creation of sub-areas from large scenes and

(ii) the generation of pixel coordinate lists for use in various image processing

tasks (Franklin et al., 1991). The output of pixel sampling is usually a table which
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is a compilation of image values and in some cases these values are referenced by

their location (coordinates). These pixel values can be subjected to various

statistical, image processing, and geographic information systems-type operations.

Selection of a proper sampling plan is important for assessing the accuracy of a

classification system because a poor choice of sampling plan may introduce bias

into the confusion matrix, which then may finally over- or under-estimate the

actual accuracy of the classification (Congalton, 1991). The most commonly used

sampling plans used in remote sensing studies are simple random sampling,

cluster sampling, stratified random sampling, and systematic sampling. A number

of studies have been carried  out using different sampling plans, producing

different opinions  about each of the plans used (Hord and Brooner, 1976;

Fitzpatrick-Lins, 1981; Congalton, 1988; Franklin et al., 1991; Stehman, 1992).

Simple random sampling is a method of selecting a sample of pixels from the total

number of pixels available of a particular class such that every one of the possible

distinct pixels has an equal chance of being selected (Cochran, 1977). In practice,

a random number generator is used to identify a random coordinate pairs in the

image to select the samples. At any stage, the process used must give an equal

chance of selection to any pixel in the population not already drawn. The sample

estimates (i.e. mean, variance) derived from simple random sampling are

consistent and unbiased. An estimate is said to be consistent if the estimate equals

the population parameter when the entire population is sampled. An estimate is

said to be unbiased if the average value of the estimate at a given sample size over

all possible samples is equal to the population average.

In cluster sampling, a group of pixels is selected. Each pixel must be unique to

only one cluster of pixels. This method of sampling is much easier and cheaper

than random sampling, but the disadvantages of cluster sampling are that the

variance for a given sample is greater as compared to simple random sampling

due to the homogeneity of elements in the clusters, and the complexity of

subsequent statistical analysis is greater (Congalton, 1988).
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In stratified sampling a priori knowledge is used to subdivide the population into

non-overlapping categories. A number of samples is then selected from each

strata. This selection should be made  independently for each stratum. Stratified

sampling is used when it is necessary to make sure that small, but important, areas

are represented in the sample.

In systematic sampling, pixels are selected at some equal interval over time or

space. The first sample drawn from the population is located at random and each

successive pixel is collected at a specified interval thereafter. Due to the uniform

spread of the sampled pixels over the entire population, systematic sampling is

more accurate than stratified random sampling (Cochran, 1977). Its major

disadvantage is that each sample in the entire population does not have an equal

chance of being included in the sample and, if the population contained some

periodicity, then the regular spacing of the sampling units might result in

unrepresentative samples (Berry and Baker, 1968).

For this study two different sampling plans, - random sampling and systematic

random sampling - were selected to collect pixels for training and testing the

classifiers. A reference image generated after a field visit of the study area was

used to select the pixels from the remotely sensed image.

7.6   Study area and data

The study area for this research is located within an area known as ‘La Mancha

Alta’ that covers an area of approximately 8000 km2 to the south of Madrid, Spain

(Figures 7.3 and 7.4). This is an area of semi-arid wetlands that is typical of a

Mediterranean environment. It is important as an area for migrating birds and

rain-fed agricultural activities, such  as cultivation  of wheat and  barley  and other

crops such as vines, and olives. However, the process of land degradation is

increasing due to intensive agricultural practices. For  this  study, hyperspectral

data  acquired  by the DAIS 7915 airborne imaging spectrometer taken  on 29th

June 2000, at five meter resolution were used. The data were collected for  Prof. J.

Gumuzzio of   the Autonomous  University of  Madrid, who has  kindly made

them  available  for  this  study. This  spectrometer  was developed by the German



Figure 7. 3. La Mancha Alta region, Central Spain (adapted from Oliver and
Florin, 1995).
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Figure 7. 4.  Study area in La Mancha region.
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Space Agency and the European Union. DAIS 7915 is a 79 channel high-

resolution  optical spectrometer operating  in  the  wavelength  range from 0.4 µm

to  12.5 µm. The spatial resolution of the sensor can vary from 5 to 20 m

depending  on the  altitude  of  the aircraft. With  the exception of the 1.1 µm to

the 1.4 µm region, all atmospheric windows  from  visible  to the thermal  infrared

wavelengths are covered. The advantage of this system is that it has solely

reflective optics with a large aperture, which gives high scan efficiency. The

disadvantage is that it is highly susceptible to striping that results from intrinsic

background radiation to the detector (Muller et al., 1998).

Eight different land cover types, namely wheat, water body, salt lake, hydrophytic

vegetation, vineyards, bare soil, pasture lands and built up area were used for this

study. An area of 512 pixels by 512 pixels in 65 bands covering the area of

interest was extracted. As one aim of this study is to find out the effect of scale

(resolution) of data on land cover classification accuracy, another data set for the

same area from the ETM+ at 30 m resolution, acquired on 28th June 2000 was also

used.

To collect the ground reference information required for land cover classification,

field studies were carried out on 30th June 2001 with Prof. José Gumuzzio and

Thomas Schmid of UAM, Madrid, Spain. Due to non-availability of field data for

the year 2000 from the local farmers, a reference image was generated from the

2001 field data. While digitising the boundaries to create polygons for training

data, only those fields which were most likely to have the same crop as in the

previous year were used. Each polygon is assigned a label corresponding to the

land cover it contains (Figure 7.5).

7.7  Classification

Multispectral sensors have been used to gather data about the Earth’s surface

since the 1960’s. The number of spectral bands used by these sensors ranged from

three to seven for space-borne sensors and up to 18 for airborne sensors. In

contrast to such multispectral sensors, the new generation of remote sensing

instruments, referred to as hyperspectral sensors, have tens or hundreds of
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contiguous narrow spectral bands. Data in ten or more bands are termed

hyperspectral data, as opposed to multispectral data, in less than about 20 bands.

Hyperspectral data potentially contain more information than multispectral data

because hyperspectral data have higher spectral resolution. In statistical

classifiers, the characteristics of  a  class  are  modelled  using  a  set of parameters

Figure 7. 5.  The "ground reference" image for the test area.

 (such as the mean and covariance matrices) which are estimated based on some

prior knowledge, such as data with known class labels. These class-labelled

pixels, used to estimate class parameters and design a classifier, are called training

samples (or training pixels). The accuracy of parameter estimation depends

substantially on the ratio of the number of training samples to the dimensionality

of the spectral bands. As the dimensionality increases, the number of training

samples needed to characterise the classes increases. If the number of training

samples becomes inadequate, which may be the case for hyperspectral data,

parameter estimation becomes inaccurate (Hsiegh and Landgrebe, 1998).
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Although increasing the number of spectral bands (dimensionality) potentially

provides more information about class separability, this positive effect is diluted

by poor parameter estimation performance due to an inadequate number of

training pixels. As a result, classification accuracy first increases and then

declines as the number of spectral bands increases. This behaviour is often

referred to as the "Hughes phenomenon" (Hughes, 1968). In short, a small ratio of

training samples to dimensionality may result in unreliable parameter estimation,

leading to poor classification performance.

In general, classification performance depends on the following factors (Raudys,

and Pikelis, 1980):

1. Class separability,

2. training sample size,

3. dimensionality, and

4. classifier type.

Classification performance improves if (a) more precise class parameter values

are used (in case of a statistical classifier), (b) class separability increases, (c) the

ratio of training sample size to dimensionality increases, and/or (d) a more

appropriate classifier is chosen.

This research is designed to study the effects of change in number of training

pixels on classification accuracy with the change in dimensionality of the data.

Further, this study is extended to evaluate the effect of different sampling plans on

classification accuracy using different classifiers. Data sets having 100, 200, 250,

300, 350, 400, and 500 pixels per class, using random sampling methods, and 400

pixels per class using systematic sampling methods were selected to train different

classifiers. To generate the confusion matrix (which is used to compare the

performance of different trained classifiers) a total of 3800 and 3880 pixels

respectively were selected by random sampling and systematic sampling. Four

different classification schemes were used - maximum likelihood, neural network,

support vector machines, and decision tree classifiers. To compare the
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classification results obtained using different sampling schemes all of the above

mentioned classifiers were employed.

7.7.1 Results and discussions

Figure 7.6 summarises the classification results obtained using different data sets

with  increasing number of bands. In this figure, the classification accuracies were

obtained using Maximum Likelihood (ML), Artificial Neural Networks (ANN),

Decision Tree (DT), and Support Vector Machine (SVM) classifiers, respectively.

A total of sixty five features was used. Beginning with five bands, an additional

five bands were added at each cycle, thus generating thirteen accuracy values for

each data set. Figure 7.7 shows the variation in classification accuracy for

different classification systems with varying number of bands and training

patterns.

Results from Figure 7.6 suggests that there is no sharp fall in classification

accuracy, even with ML classifier, as the number of features increases for a fixed

number of   training   data, as   suggested   by  earlier  studies (Hughes, 1968). The

accuracy  value begins to  stabilise  after  forty  features with  different numbers of

training patterns. There is no significant change in classification accuracy as more

features are  added. Figure 7.6  suggests  that  maximum  accuracy  achieved with

a small training data set occurs at lower dimensionality (number of features), as

compared to the  higher dimensionality  when  a larger training data set is used.

One  possible  reason  for  this may  be  that  a larger  number of  training patterns

allows a better estimation of ML parameters, thus giving better classification

accuracy. Generally, maximum accuracy is achieved at higher dimensions with

more training data, supporting the view that more training data is needed as the

number of features increases.

The results from neural and decision tree classifiers show a similar trend of

variation in accuracy as the ML classifier. The performance of the NN classifier is

almost quite similar to that of  the ML classifier with all datasets and there is no

significant  difference in  accuracy, except  in a few cases. The accuracy  achieved
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Figure 7.6 (a). Classification accuracies with 100 pixels/class.

Figure 7.6 (b). Classification accuracies with 200 pixels/class.
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Figure 7.6(c) Classification accuracies with 250 pixels/class

Figure 7.6(d) Classification accuracies with 300 pixels/class
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Figure 7.6(e) Classification accuracies with 350 pixels/class

Figure 7.6(f) Classification accuracies with 400 pixels/class
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Figure 7.6(g) Classification accuracies with 500 pixels/class

Figure 7. 6.  Variation in classification accuracy with change in number of bands
with different training sets.

Figure 7.7(a) Classification accuracies with maximum likelihood classifier
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Figure 7.7(b) Classification accuracies with neural network classifier

Figure 7.7(c) Classification accuracies with decision tree classifier
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Figure 7.7(d) Classification accuracies with support vector machines

Figure 7. 7.  Variation in classification accuracy with different classifiers using
different number of bands and training datasets.

using the NN classifier with a small number of training data is higher than the ML

classifier, suggesting  that  the NN classifier  performs better with a small number

of training data. Further, this study suggests that the performance of the DT

classifier declines as the number of features increases using different data sets.

The possible reasons may be (1) the performance of the DT classifier is always

affected by the number of training patterns used (section 4.3.1) and (2) a

univariate DT classifier performs better with a small number of features. As the

number of training data increases, the performance of the DT classifier becomes

better and comparable to the ML and NN classifiers up to a certain number of

features. For this data set, as the number of features (dimensionality) increases,

class structure becomes more dependent on a combinations of features, thus

making it difficult for a univariate DT classifier to perform well.
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One remarkable property of SVM is that their ability to learn is independent of the

dimensionality of the feature space. SVMs measure the complexity of hypotheses

based on the margin with which they separate the data, not on the number of

features. This means that it is possible to generalise even in the presence of very

many features, if our data are separable with a wider margin using functions from

the feature space. Figure 7.6 suggests that the performance of an SVM is good

even with a small number of training data in comparison with other classifiers.

Further, results form Figure 7.7 suggests that classification accuracy increases

continuously with few exceptions in all datasets, with a fixed number of training

data and the increasing number of features, thus suggesting that this classification

system is unaffected by the Hughes (1968) phenomenon.

Figure 7.7 suggests that classification accuracy always increases as the number of

training data increases, irrespective of number of features and classifier used,

suggesting that the performances of all four classification algorithms used in this

study are affected by the number of training patterns, even with a fixed number of

features. Further, Figure 7.7 suggests that peak in classification accuracy occurs at

a much higher dimensionality as suggested by Hughes (1968). The results

reported here concur with the suggestion of Abend and Harley (1969) that highest

classification accuracy occurs when the number of  features is higher than the

number suggested by Hughes (1968).

Further studies were carried out to compare the results of random and systematic

sampling  plans  used  to  collect   pixels  for  training  and   for   testing  classifier

performances. For this study, Maximum Likelihood (ML), Neural Network (NN),

Decision Tree (DT), and Support Vector Machine (SVM) classifiers and 400

training pixels/class collected using both sampling methods were used. A total of

3800 pixels were selected by random sampling, and 3880 by systematic random

sampling for testing the classifiers. A pairwise statistic for testing the significance

of the classifiers is used (equation 2.8, where 
1

K  and 
2

K  correspond to kappa

values calculated from the random and the systematic random sampling plans

respectively). The results are summarised in Table 7.1.
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This table shows that, there are “positive” improvements (grey coloured values) in

maximum likelihood classifier performances using the random sampling plan

(e.g., for the ML and 20 features, Z = 2.201 > 1.96 while Z = 2.186 > 1.96 using

45 features). Overall, the majority of experiments suggest that the use of a random

sampling strategy produces a higher classification accuracy than does the

systematic sampling plan, for the maximum likelihood classifier. Results obtained

with the neural network classifier are not consistent and suggest that the results

from both the systematic and the random sampling depend on the number of

features used (e.g., Z = 3.25 > 1.96 for 30 features, suggesting better results with

systematic random sampling).

Table 7. 1.  Calculated Z values for comparison among the different sampling
plans using Kappa analysis. Shaded values indicate significant improvements in
the performance of the classifiers at the 95% confidence level (Z critical value =
1.96). Negative value indicates better performance of the systematic random
sampling plan over the random sampling plan.

Number of

features

ML classifier NN classifier DT classifier SVM

5 0.569 5.190 -1.004 0.33

10 0.548 1.114 1.620 -0.64

15 1.015 0.755 0.920 -1.21

20 2.201 -0.434 0.310 -1.77

25 2.080 -0.970 0.530 -1.71

30 2.100 -3.250 -0.110 -1.23

35 1.470 0.463 -1.690 -0.39

40 0.000 -1.622 0.360 -1.60

45 2.186 2.590 0.120 1.00

50 2.263 -.801 0.710 -0.82

55 2.155 3.087 0.810 -0.22

60 2.008 -0.857 1.180 -0.46

65 1.732 1.740 0.590 -1.28

Results obtained using DT and SVM suggests that these classifier perform equally

well with random and systematic random sampling plans. Thus, this study gives
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an idea that NN, DT, and SVM classifiers perform comparably well with both

sampling plans as compared to maximum likelihood classifier, which works well

with a random sampling scheme only.

7.8   Dimensionality reduction

The recent development of more sophisticated sensors for remote sensing systems

enables the measurement of radiation in many more spectral intervals than was

previous possible. An example of this technology is the AVIRIS system, which

collects image data in 220 bands. The increased dimensionality of such

hyperspectral data provides a challenge to current techniques for analysing such

data. As the number of dimensions of high spectral resolution data increases, the

capability to detect more detailed classes should also increase, although, with the

increase of the number of features, with corresponding increase in the cost and

complexity of the feature extraction and classifier, it is expected that the

classification accuracy will also increase.

Usually the number of training samples is limited. It has been observed frequently

in practice that beyond a certain point, if the number of training samples per

feature is small, the addition of more dimensions leads to a worse performance in

terms of a penalty in the test samples classification accuracy. Hughes (1968)

suggested that the basic source of the problem is the limited number of training

samples. The problem becomes more serious in high dimensional cases. In order

to avoid what has been named the Hughes phenomenon, there have been some

empirical and analytical studies to find a relationship in the number of training

samples and the number of features. Fukunaga and Hays (1989) demonstrated that

the required number of training samples is linearly related to the dimensionality

for a linear classifier and to the square of the dimensionality for a quadratic

classifier.

The negative impact of high dimensionality on classifier performance means that

it is generally agreed that some form of dimensionality reduction, or feature

selection, is considered appropriate. A number of techniques for feature extraction

including Principal Components (Watanabe, 1965), maximum noise fraction
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transformation (Green at al., 1988) and non-orthogonal techniques such as

projection pursuit (Jiminez and Landgrebe, 1999) have been developed to reduce

the dimensionality of the data. In this study the maximum noise fraction (MNF)

transformation is used to reduce the dimensionality of the hyperspectral data set,

but a brief description of principal component analysis  (PCA) is also given, as the

MNF transform is a variant or development of PCA.

7.8.1   Principal Components Analysis

The principal component transformation is also known as the eigenvector

transformation, the Hotelling transformation, or the Karhunen-Loēve (K-L)

transformation in the remote sensing and pattern recognition literature. It is a

multivariate statistical technique that essentially consists of choosing uncorrelated

linear combinations of the variables in such a way that each successively extracted

linear combination, called a principal component, has a smaller variance than its

predecessor. If the variables have significant linear intercorrelations, the first few

components will accounts for a large part of the total variance. Principal

components transformation is based on pixel wise operation that does not take the

spatial nature of image data into account. Also, PCA does not always produce

components that show decreasing image quality with increasing component

number.

The application of this transformation requires an estimate of the variance-

covariance matrix of the features. The principal components maximise the

variance represented by each component. PC-1 is the linear combination of the

original bands that explains the maximum variance in the original data. A higher

order PC is the combination of the original bands that explains maximum variance

subject to the constraint that it is uncorrelated with lower order PCs.

Let A and D denotes the multiband image mean and pixel value vectors,

respectively. The covariance matrix σ can be calculated by the expression:
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where n is the number of pixels. If the correlation matrix is used, each entry in

variance-covariance matrix is divided by the product of the standard deviations of

the features represented by the corresponding row and column.

The second step is the calculation of the eigenvectors of σ, which can be achieved

by solving the following equation:

                                             ( ) 0KI jj =×λ−σ                                                   (7.4)

where jK is   the eigenvector  corresponding  to  the  eigenvalue jλ , and  I  is  the

identity matrix. The new coordinate system is formed by the normalised

eigenvectors of the variance-covariance matrix and each pixel value is then

projected on this new coordinate system to get a new pixel value.

A drawback of principal components analysis is that its results depend on the unit

of measurement of the original variables. This problem can be circumvented by

performing the PC transformation on a correlation matrix instead of on the

covariance matrix. For details of principal components transformation, readers are

referred to Mather (1999).

7.8.2   Maximum Noise Fraction (MNF) transform

Principal components do not always produce components of decreasing image

quality with increasing component number (Townshend, 1984). While working

with spatial data, the maximisation of variance across bands is not an optimal

approach if the issue is ordering in term of image quality rather than variance.

One of the most common measures of image quality is the signal-to-noise ratio.

Thus, instead of choosing new components to maximise variance, as the principal
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components transform does, the MNF transform choose components to maximise

the signal-to-noise ratio.

This transformation can be defined in several ways. It can be shown that the same

set of eigenvectors is obtained by procedures that maximise the signal-to-noise

ratio and the noise fraction. The procedure was first introduced by Green et al.

(1988) in continuation of the work on Minimum/maximum autocorrelation factors

by Switzer and Green (1984). Hence the name maximum noise fraction (MNF).

The application of the MNF transformation requires estimates of the signal and

noise covariance matrices. MNF number one is the linear combination of the

original bands that contains the minimum signal-to-noise ratio. A higher order

MNF is the linear combination of the original bands that contains minimum

signal-to-noise ratio subject to the constraint that it is orthogonal to the lower

order MNFs. The MNF transform is equivalent to a transformation of the data to a

coordinate system in which the noise covariance matrix is the identity matrix

followed  by a principal component transformation. To deduce the maximum

noise transformation, consider a multivariate data set of p-bands with grey levels

                                      ( ),xZi               i = 1, . . . ., p

where x gives the coordinates of the sample. If it is assumed that

                                      Z(x)  =  S(x)  +  N(x)                                                    (7.5)

where ( ) )}x(Z),......,x(Z{xZ p1
T = , and S(x) and N(x) are the uncorrelated

signal and noise component of Z(x). Thus

                               ∑ ∑∑ +== NS)}x(Z{Cov                                          (7.6)

where ∑ S and ∑ N are the covariance matrices of S(x) and N(x), respectively. This

noise is assumed to be additive but this technique can be applied to multiplicative

noise by first taking logarithms of the observations.
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The noise fraction of the thi band can be defined as:

                            )}x(Z{Var/)}x(N{Var
ii

                                                    (7.7)

the ratio of the noise variance to the total variance for that band. The maximum

noise fraction can be defined as the linear transformations:

                              ( ) ( )xZaxY T
ii = ,  i = 1, . . . . ., p                                            (7.8)

such that the signal-to-noise ratio for ( )xYi is maximum among all linear

transformations orthogonal to ( ) ijxYj ,......,1, = . Furthermore it is assumed that

eigenvectors ia are normalised so that

                             ∑ = ,1i
T

i aa    i = 1, . . . . ., p                                                (7.9)

Using arguments similar to those used in the derivation of principal components,

it can be shown that the vectors ia are the left-hand eigenvectors of ∑ ∑ −1
N

,

and that iµ , the eigenvalue corresponding to ia , equals the noise fraction in ( )xYi .

Hence, from the definition of the MNF transform, MNF components will show

steadily increasing image quality, with increasing component number.

An important property of the MNF transform, which is not shared by principal

components, is that - because it depends on signal-to-noise ratios - it is invariant

under scale changes to any feature. Another useful property is that it

orthogonalises S(x) and N(x), as well as Z(x). The central problem in the

calculation of the MNF transformation is the estimation of the noise component

with the purpose of generation a covariance matrix that approximates ∑ N
.

A number of methods to calculate the noise covariance matrix are suggested in the

literature (Olsen, 1993). These are as follows:
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1. Simple differencing. The noise is estimated as the difference between the

current and neighbouring pixel.

2. Differencing with the local mean. More pixels could be entered to the

estimation by differencing between the current pixel and the local mean of

a window.

3. The noise is estimated as the residual in simultaneous autoregressive

(SAR) model involving the neighbouring pixel to the W, NW, N and NE

of the current pixel.

4. Differencing with local median. To avoid the blurring of edges and other

details, the local median could be used instead of the local mean as in (2).

5. Quadratic surface. The noise is estimated as the residual from a fitted

quadratic surface in a neighbourhood.

For this study, a simple differencing method as suggested by Green et al. (1988)

was used to estimate the noise covariance matrix. The noise is estimated as the

difference between the current and a neighbouring pixel (horizontal neighbour). In

this case  ∑ N
is referred as ∑ ∆

.

The hyperspectral data set contained 65 features (bands). A total of thirteen

maximum noise fraction components was extracted using the criterion of image

quality. A total of 4000 pixels for training and 3200 pixels for testing was selected

using a random sampling plan. The results obtained with four different

classification schemes used are shown in Table 7.2 (the corresponding confusion

matrices are provided in appendix D).

The results shown in Table 7.2 suggest that the maximum likelihood classifier

performs the  worst of all four classifiers used with MNF transformed data. The

possible reason for  this  poor  performance  may  be due  to zero  noise

covariance of two classes (water and salt) while calculating the MNF components

which finally affects the calculation of ML parameters for these two classes. The

decision tree classifier performs well, compared to the support vector machine,
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maximum likelihood, and neural classifiers. Nevertheless the accuracy achieved is

lower than the highest accuracy achieved using the original hyperspectral data.

Table 7. 2.  Results with MNF transformed image.

Classifier Accuracy (%) Kappa value

Maximum likelihood 61.10 0.556

Neural network 87.10 0.854

Decision tree 88.56 0.869

Support vector machine 88.20 0.865

 Decision tree classifiers can be used to uncover structures in data (Breiman et al.

1984, Safavian and Landgrebe 1991) and the hierarchical relationships revealed

by partitioning feature space, thus, decision tree classifier can be used to eliminate

redundant or noisy features in input data. Feature selection was therefore

attempted, using  the tree-based approach (using See 5.0 software) to reduce the

dimensionality of hyperspectral data. Initially, decision trees of maximum size

were generated using all sixty-five input features. By inspection of the full tree,

those features that contributed most of the variance in the training data were

retained for the subsequent classification phase. A total of 25 features was

selected this way and used to compare the capabilities of four different

classification systems (maximum likelihood, neural, support vector machines, and

decision tree classifiers). For this study a total of 3200 pixels (for 8 classes, with

400 pixels/class) and 3800 pixels, all randomly selected, were used for training

and testing, respectively. Table 7.3  gives the classification accuracy and Kappa

value achieved with this data set. The corresponding confusion matrix is listed in

appendix E.

The results listed in Table 7.3 suggest that feature selection using decision trees is

effective in reducing the dimensionality of input feature space. Although the

decision  tree   method   reduced   the   number  of  input  features  by  about

60%, classification accuracies were not significantly degraded. No classifier

performed as well or better with the feature subsets than with the total number of
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features, yet the accuracies achieved are quite high and comparable to the

accuracies obtained with a full complement of features.

 Table 7. 3.  Results obtained by applying decision tree based feature selection.

Classifier Accuracy (%) Kappa value

Maximum likelihood 94.10 0.935

Neural network 92.10 0.911

Decision tree 87.60 0.858

Support vector machine 95.30 0.946

Further studies were carried out to find out the effect of scale (resolution) on

classification accuracy. For this study, ETM+ data (30 m resolution) of the same

area in Spain, acquired on 28th June  2000, were  used. Figure 7.8 gives an idea of

the quality of the images at two different resolutions  for  same study  area and

indicating  how  difficult  is  to  locate  field boundaries in the ETM+ data to

prepare a ground reference image. Thus, for this study, a ground reference  image

generated  using  hyperspectral data  was used to collect the pixels for training and

testing the different classifiers. The image shown in Figure 7.5 was resampled at

30m resolution so as to make it compatible with ETM+ data. Six classes (water,

salt, wheat, vineyards, bare soil, and built-up area) were used in place of the eight

classes used with DAIS data due to the lack of   a  sufficient   number   of   pixels

for two  classes  - pasture   land   and hydrophytic vegetation. A total of 1395

pixels were collected using a random sampling plan, out of which  600 pixels

were used for training and remaining 795 pixels for testing the classifiers.

The results shown in Table 7.4 (and in the corresponding confusion matrices,

listed in appendix F) suggest that, even at this scale, high accuracy can be

obtained. The highest accuracy of 91.1% is achieved with support vector machine.

However, comparison of the classified images (Figures 7.9 (a) 7.9 (b)) suggests

that, except for the water and salt classes, no other class boundary is properly

located and   it  is very  difficult to  locate  the area covered by other classes in the
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Table 7. 4.  Classification results obtained  with ETM+ data for the La Mancha
test area of Spain.

Classifier Accuracy (%) Kappa value

Maximum likelihood 83.9 0.797

Neural network 89.4 0.869

Decision tree 84.7 0.810

Support vector machine 91.1 0.880

classified image (Figure 7.9 (b)). Thus, one possible reason of achieving very high

classification accuracy may  be  due the  small  number  and  nature of  data used

for  testing  the different Classifiers, as suggested  by Congalton (1988), the nature

of the testing set can have a significant affect on the resulting classification

accuracy. As with the training data, the testing set must also be representative of

the classes and the test samples should be drawn from across the test area and the

sample large enough for a rigorous evaluation of the classification accuracy.
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Figure 7. 8.  Images of the study area (a) DAIS hyperspectral image (5m
resolution) and  (b) ETM+ image (30m resolution).

Figure 7.8 (a)

Figure 7.8 (b)
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Figure 7. 9.  Classified images using neural network classifier (a) DAIS
hyperspectral image (5m resolution) and (b) ETM+ image (30m resolution).

Figure 7.9 (a)

Figure 7.9 (b)
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7.9  Conclusions

This work was carried out to study the effect of the factors of sample size,

sampling plan, number of features in relation with sample size, dimensionality

reduction, and  scale (resolution)  of the  data  on  land cover  classification

accuracy using different classification algorithms. First, this study suggests no

sudden change in classification accuracy after a peak value, even with a small

number of training data, with increasing numbers of features as suggested by

Hughes (1968) while using maximum likelihood, neural and decision tree

classifiers. Otherwise, the results suggest that accuracy starts to stabilise once a

maximum value  is  reached. This  study also  suggests  that  highest  accuracy is

achieved at higher dimensionality with different data sets, contrary to the study

carried out by Hughes (1968), thus justifying the suggestions made by Abend and

Harley  (1969). The results with support vector machines suggests its insensitivity

to the Hughes phenomenon. Further, this study suggests, that for the maximum

likelihood classifier, training and test data collected using a random sampling plan

produce higher classification accuracies than those achieved using a systematic

sampling plan. Both sampling plans perform well with support vector machine,

decision tree, and neural network classifiers for this type of data.

By applying an MNF transformation, the dimensionality of the hyperspectral

dataset reduces to thirteen features,  but the level of classification accuracy

achieved is not comparable  with that obtained from the use of all of the features

of DAIS data. This result suggests that the MNF technique may not be used

effectively for dimensionality reduction for this type of data. On the other hand,

decision tree (DT)-based dimensionality reduction techniques perform well, and

the accuracy achieved is higher than that achieved by using MNF transformation.

The accuracy achieved with features obtained using the DT-based dimensionality

reduction technique is comparable to the accuracy achieved by using the full set of

features, suggesting that the DT approach can be effectively used for feature

selection with hyperspectral data.

Further studies suggest that classification accuracy is always affected by the scale

(resolution) of the data used for a particular type of area because scale has an



influence on observed variability both within and between classes (Markham and

Townshend, 1981). Changes in classification accuracies using data at different

scales show the dependence of classification accuracy on scale or resolution of the

data used, suggesting a need to consider the spatial resolution of remotely sensed

data relative to the inherent characteristics of the study area.

1. 
2. 
3. 
4. 

5. 
6. 

7. 
SVM classifier is not affected by Hughes (1968) phenomenon.

Training dataset size affects all classification algorithms.

MNF did not work well with this dataset.

DT, ANN, and SVM works well with both random and systematic

sampling plans.

ML works well with random sampling plans.

Decision tree provides an effective way for dimensionality

reduction.

Scale of remote sensing data affects the classification accuracy as

suggested by several other studies.
203
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Chapter 8

Overview of results and future research directions

8.1  Introduction

Identifying  land cover type and change in land cover is an important task for land

and resource management at local and regional scales. However, detecting and

monitoring these changes using ground measurements is limited by logistics and

cost. Remote sensing provides an alternate and useful perspective for collecting

the information for studying these changes, and producing land cover maps using

various classification methods.  A number of statistical and neural classification

methods have been developed and used for classification of remotely sensed data.

However, each method has its limitations; for example, statistical classifiers,

being parametric in nature, assume that the data follow a particular frequency

distribution. Artificial neural networks, a nonparametric technique, have been

used extensively in a variety of problems in the remote sensing field, and perform

well when compared to statistical classifiers. However, a range of factors limit

their use in land use classification studies. Decision tree (DT) and support vector

machine (SVM) classifiers,  new nonparametric techniques for analysing remote

sensing images, have the potential to improve the land cover classification

accuracy. It is worth mentioning that choice of scale (resolution), number of

features, type of data (optical or radar), training data as well as sampling plan

have as much as influence as the classifier on classification results.

The main aim of this chapter is to summarise the results presented in previous

chapters. The first part of this research demonstrates the utility of decision tree

classification methods for land cover classification derived from remotely sensed

images. This stage also involved a comparison of results obtained with decision

tree classifiers with the most widely-used methods (statistical and neural

classifiers)  for classifying agricultural crops. The second stage of this study

involves  assessing the behaviour of  support vector machines for land cover

classification studies. The third part of this work involves the assessment of the
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utility of interferometric SAR coherence measurements for land cover

classification. This stage also discusses some methods of feature extraction and

selection. Finally, a detailed study is carried out to analyse the performance of

various classifiers using different sampling plans, different numbers of training

data with changes in number of features, and data at different scales as well as the

effect of orthogonal transformation on classification accuracy using hyperspectral

data. Conclusions drawn from this research are summarised and presented in the

following subsections.

8.1.1 The usefulness of decision tree classifiers and support vector machines

Chapter 3 describes the decision tree classifier, which is a multi-stage

classification technique that decomposes a complex classification problem into

several stages, finally simplifying the decision-making process by taking partial

decisions at each stage of classification. This chapter also introduces support

vector machines,  a classification technique which maximises the margin between

the class boundaries and based on structural risk minimisation techniques.

Classification results using decision tree classifiers are discussed in chapters 5

(section 5.1), 6 and 7. Chapters 5 (section 5.2) and 7 discuss the results obtained

using support vector machines. A critical assessment of the problems encountered

in the use and design of decision tree classifiers and support vector machines is

also presented in chapter 3.

The decision-tree and support vector machines-based classification approach, used

for classifying agricultural crops using various type of remotely sensed data, have

been found to be effective in identifying general agricultural crop classes, with

acceptable levels of overall classification accuracy in comparison with neural and

statistical classifiers.

The conclusions reached from this study using the three datasets described in

chapters 5 (sections 5.1, 5.2), 6 and 7 are presented in the conclusion section of

each chapter. The most important conclusions of this study are:

• The performance of DT classifiers (both univariate and multivariate) is

affected by the number of training patterns used to train the classifier.
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•  In spite of being nonparametric in nature, DT  classifiers perform poorly

in comparison with neural and statistical classifier when using small

training datasets. This observation suggests that a sufficient number of

training data is required for DT classifiers.

• When a  sufficient number of training data and small number of features

are used (e. g., data from ETM+), classification results achieved by a

univariate DT classifier are invariably better than those from a ML

classifier.

• SVM perform well - in fact, better than DT, ANN and ML classifiers -

with small training datasets, but classification accuracy improves as the

number of training pixels increases.

• As the number of features increases, with training dataset size held

constant, the performance of a univariate DT classifier starts to degrade,

and classification accuracy falls below that produced by the maximum

likelihood classifier, indicating that the univariate DT classifier performs

less well in high dimension feature space, where class information is

dependent on a combination of features. In contrast, support vector

machines perform well and better than DT, ANN, and ML classifiers with

a fixed training dataset size and increasing number of features.

• Results obtained employing various attribute selection measures with the

error based pruning method, and employing various pruning methods with

the  information gain ratio as the attribute selection measure, suggest that

the performance of a DT classifier is affected by the pruning method used,

and not by the attribute selection methods.

• Assessment of the effect of  boosting on the level of classification

accuracy achieved by the DT classifier indicates that classification

accuracy is increased by about 3-4%. The study also concludes that about

10 to 15 boosting iteration are enough to attain this increase in

classification accuracy.
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• The DT classifier performance is slightly inferior to that of the ANN

classifier using ETM+ data. However, it performs better with InSAR data

even without boosting. After boosting, the DT classifier always perform

better than the ANN classifier. Performance of the SVM classifier is

always better than either the DT or the ANN with ETM+ data.

• Assessment of the effect of the number of factors affecting classification

accuracy using ANN and DT classifiers shows that the number of factors

affecting the performance of  the  ANN classifier is high in comparison to

the DT classifier, which is affected by only two factors. Classification

accuracy obtained using SVM  is affected by a number of factors, such as:

choice of kernel, user-defined parameters for various kernels, number of

training data, and multi-class method used. This suggests that a skilled and

experienced person is needed to work with ANN and SVM, requiring extra

financial resources for training.

• This study suggests that when the SVM classifier is used, the "one against

one" multi-class method performs better than the " one against rest" multi-

class strategy.

• The time taken to train and test a DT classifier is very short compared to

an ANN classifier. For an ETM+ data set of the Littleport area, the training

time for a DT classifier is 0.7 seconds compared to 58 minutes for an

ANN.  Even the use of  boosting (14 iterations) increases the training time

for the DT by only a small amount (to 7.1 seconds).

• The time taken for training a SVM depends on the multi-class method

used. The one against the rest multi-class method requires several hours of

training time, while the one against one multi-class method needs a

significantly smaller training time, which is almost same as the time taken

by a ML.

• Further studies carried out include the use of the internal texture of

panchromatic ETM+ band with multispectral data using DT, ANN, and

ML classifiers suggest no significant improvement in classification

accuracy.
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• A DT can be used effectively for feature selection.

8.1.2 Use of coherence for land use classification

Another important issue reviewed in this thesis is the use of InSAR data for land

cover classification studies. SAR data are now available with phase and intensity

information. It is possible to utilise the phase information to generate a coherence

image for use in land cover classification studies in combination with the intensity

images obtained during InSAR processing. Relatively few studies have used

coherence information in land cover studies; one reason may be that obtaining a

good quality coherence image depends on several factors. The value of texture

measures (e.g. GLCM, the MAR model, and fractals) and feature selection using

Hotelling's 2T  test were assessed. The results obtained from this study using DT,

ANN and ML classifiers are discussed in chapter 6. The main conclusions are

summarised below:

• The combination of coherence and intensity images results in an improved

classification accuracy of the order of  8-9%, as compared to using

intensity images alone.

• The quality of coherence information depends on several factors (that is

why only one acceptably good coherence image was obtained from the

five Single Look Complex (SLC) used in this study). This, suggests that

tandem interferometric pairs are more suitable for good quality coherence

images.

• Inclusion of texture information with coherence and intensity images was

found to be effective in improving classification accuracy. By using three

texture features per coherence and intensity image, obtained after feature

selection, an increase in classification accuracy by an amount of 10% to

12% (depending on the classifier used) was observed.

• The highest accuracy obtained was from a data set with a total of 24

features is  82.9%, which justifies the value of texture information but at
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the cost of increase in computation time as well as the requirement for a

large number of training data.

8.1.3  Issues in remote sensing image classification

Advancement in sensor technology provides data with a much higher

dimensionality than before. Although such high-dimensional data have the

potential to provide increased amounts of information, new problems arises that

have not been encountered in the analysis of relatively low dimensional data. The

more important of these problems in analysing high dimensional data are

investigated in chapter 7. Conclusions drawn from this study are as follows:

• Classification accuracy stabilises after reaching a peak as the number of

features increases, when the number of training data is fixed. Accuracy

increases with the increase in number of training patterns for a fixed

number of features with all four classifiers used in this study, suggesting

that performance of  all of these classifiers depends on the number of

training data.

• A random sampling plan for training data selection was found to perform

well as compared to a systematic sampling plan when using a ML

classifier.

• The ANN classifier performs well with both random and systematic

sampling plans, depending on the number of features used, while SVM

and DT work well with both random and systematic random sampling

plans irrespective of the number of features used.

• The MNF transformation reduces the dimensionality of 65-band DAIS

hyperspectral data to thirteen features, but classification results suggests

that this method is not very suitable for this type of study.

• DT-based feature extraction methods, using twenty five features, perform

well with this data set. The level of accuracy obtained with this data set is

comparable with the highest accuracy achieved by using all features of
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hyperspectral data, and results are better that those using the MNF

transformation.

• Classification accuracy is always affected by the scale of the data used as

well as the classifier used for a particular type of data, thus confirming that

the type of data and classifier used for classification studies are dependent

on the characteristics of the study area.

• Performance of the SVM classifier for hyperspectral data is very

encouraging, and is far better than ML, ANN and DT classifiers, with a

small training dataset sizes and with increasing number of features.

Further, this study suggests that the SVM classifier is not affected by the

Hughes phenomenon.

Work reported in this thesis provides evidence that the expected classification

accuracy for remotely sensed data is directly affected by a number of factors.

Tables 8.1 and 8.2 provide a comparison of classifier performance and various

factors affecting the classification accuracy with different classification

algorithms used in this study.

8.2  Suggestions for future research

Results obtained from this study suggests a considerable potential for extending

the investigating into developing new strategies for the design of DT and ANN

classifiers. In the design of multilayer feedforward neural networks, the structure

of the network (the number of hidden layer and number of neurons in each hidden

layer) is not known in advance, and is often chosen heuristically and by trial and

error. Studies carried out by Sethi (1990) offer a way to uncover the structure of

the network. This study suggests the use of a neural network design methodology

(called an entropy net)  by exploiting the similarities between the hierarchical

classifiers and the multiple-layer neural network. The main advantage of this

approach is to eliminate the guess-work involved in the design of ANN classifiers.
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Table 8. 1.  Classification accuracies obtained using various algorithms and the
factor affecting the classifier.

Number
of
training
pixels

Classifier
used

Assumption User-defined
parameters

Classification
accuracy (%)
and Kappa
value

Training
time (CPU
time)

Neural
Network
(back
propagation
algorithm)

Nonparametric 1. Number of
Hidden units
and layers

2. Number of
iterations
3. Learning
parameters,
such as
momentum and
learning rate
4. Initial weight
setting

85.1( 0.829) 58 minutes
(SUN
machine)

Decision Tree Nonparametric 1. Attribute
selection
measure and

2. Pruning
method

84.24 ( 0.816)
without
boosting

88.46 ( 0.865)
with boosting

0.7
seconds
(PC
Pentium II)

7.1
seconds
(PC
Pentium II)

Support Vector
Machines

Nonparametric
1. Kernel type

2. Parameter for
kernel used

3. Multi-class
method used

4. Parameter C

79.13 ( 0.77)
with "one
against rest"
multi-class
method

87.37 ( 0.86)
"one against
one" multi-
class method
using Royal
Holloway and
AT&T software

87.92 ( 0.87)
"one against
one" multi-
class method
using LIBSVM
software

505.27
minutes
(SUN
machine)

21.54
minutes
(SUN
machine)

0.30
minutes
(SUN
machine)

2700
randomly
selected
using
ETM+
data

Maximum
Likelihood

Parametric None 82.9 (0.801) 0.20
minutes
(SUN
machine)
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Table 8. 2.  Calculated Z values for comparison between different classification
systems. Shaded values indicate significant improvements in the performance of
first classifier at the 95% confidence level (Z critical value = 1.96). While
unshaded value indicates that both classifiers perform equally well. WB means
"without boosting" and B means "boosting" a decision tree classifier.

Classifiers Z value

Decision tree(WB) vs. Maximum likelihood 2.13

Decision tree (WB) vs. Neural network 1.01

Decision tree (B) vs. Neural network 2.54

SVM vs. Neural network 2.46

SVM vs. Decision tree (WB) 3.40

SVM vs. Decision tree (B) -0.08

Studies carried out by Gelfand and Guo (1991) suggest that ANNs can be used as

internal  nodes  of  a  decision  tree  to  perform  the task of  feature selection. It  is

therefore suggested  that  further  work  is needed to evaluate a classification

system obtained by combining both neural and decision tree classifiers. In order to

improve and extend the use of decision tree classifiers for land cover classification

studies of complex data sets, fuzzy representation of inexact and uncertain

information about the area should be examined (Jenikow, 1998).

Studies carried out in chapters 5.1 and 7 concludes that DT classifiers require a

large training dataset size in order to achieve good classification results,

irrespective of the data used. With hyperspectral data, such as the DAIS data set

used in this study, the training set requirement for correct application of these

classification is very high. Requirement of a large training set for mapping runs

contrary to a major goal of remote sensing, which involves extrapolation over

large areas from limited ground data. SVM offer a possibility to train a

generalisable, nonlinear, classifier in high-dimension space using a small training

data set, which can be very useful for mapping from regional to global scale,
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where availability of ground truth information is limited. Further, the use of

boosting, a new methodology being used to generate ensembles of classifiers, is

also suggested with SVM.

8.3  Algorithm choice - some guidelines

The conclusions drawn and the experiments carried out during this study can be

used to form a number of guidelines that can greatly facilitate the use of various

classification algorithms with different datasets. It should be noted that these

guidelines are valid for similar datasets and classification problems used in this

study. The list of the guidelines is given as follows:

A. Ease of use:

1. Maximum likelihood and decision tree classifier   - easiest

2. Support vector machines

3. Neural Network. - required skilled analyst

B. Accuracy (multispectral / InSAR data):

1. Support vector machines  - highest

2. Neural network

3. Decision tree

4. Maximum likelihood  - lowest

C. Accuracy (hyperspectral data):

1. Support vector machines  - highest

2. Maximum likelihood

3.  Neural network

4. Decision tree  - lowest
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D. Computational demand:

1. Neural network  -   high

2. Support vector machines / Maximum likelihood   - medium

3. Decision tree - low

E. sensitivity to sample size and sampling plan:

1. Maximum likelihood - very sensitive to both sample size and sampling

plan.

2. Decision tree - very sensitive to sample size, not to sampling plan.

3. Neural network - sensitive to sample size, not to sampling plan.

4. Support vector machines - sensitive to sample size but performs very

well with small dataset; not sensitive to sampling plan.

F. Availability

1. Maximum likelihood - provided with almost all commercial image

processing software.

2. Decision tree - provided with statistical software packages. Some freely

downloadable from the internet. Some commercial (stand alone)

software packages.

3. Neural network - SNNS software free from internet; ENVI, and some

commercial (standalone) softwares.

4. Support vector machines - some freely downloadable software from

internet.

Figure 8.1 gives a graphical representation of the effects of the factors listed

above on the choice of a classification algorithm. A scale of 1-5 is chosen to grade

different factors. Two different choice of algorithms is represented in the Figure

8.1, one for multispectral/radar and other for hyperspectral data. The result

suggests that support vector machine classifier are the best choice for all datasets.
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Figure 8. 1.  Algorithm choice for different type of data depending on different
factors. Higher grading is given to the classifier, which provides high accuracy
and easy in use. A classifier that requires small computational time and less
sensitive to both sampling plan and sample size is given high grading.

A.  Ease of use

B.  Accuracy with
optical and InSAR
data

C.  Computational
demand

D.  Sensitivity to sample
size and sampling
plan

E.  Availability

Algorithm choice with
multispectral and radar
data
(A+3B+C+D+E)/10

F. Accuracy with
hyperspectral data

Algorithm choice with
hyperspectral data
A+C+D+E+3F/10

               Maximum likelihood                                       Support vector machine

               Decision tree                                                     Neural network

1 2 3 4 5



216

Bibliography

Abend, K., and Harley, T. J. (1969) Comments "On the mean accuracy of statistical
pattern recognisers". IEEE Transactions of Information Theory, May, 420-421.

Aleksander, I., and Morton, H. (1991) An Introduction to Neural Computing.
London: Chapman and Hall.

Antikidis, E., Arino, O., Laur, H., and Arnaud, A. (1998) ERS SAR coherence and
ATS R Hot Spots: a synergy for mapping deforested areas. The special case of the
1997 fire event in Indonesia. Retrieval of Bio- and Physical Parameters from SAR
Data for Land Application Workshop. ESTEC, The Netherlands, 21- 23 October
1998, http://www.estec.esa.nl/CONFANNOUN/98c07/.

Askne, J., and Hagberg, J. O. (1993) Potential of interferometric SAR for
classification of land surfaces. Proceedings of the International Geoscience and
Remote Sensing Symposium (IGARSS`93), Tokyo, Japan, 18-21 August, 985-987.

Askne, J., Dammert, P., and Smith, G. (1996) Interferometric SAR observations of
forested areas. FRINGE-ESA Workshop on Application of ERS SAR Interferometry,
University of Zurich, 30 September to 2 October,
http://www.geo.unizh.ch/rsl/fringe96/.

Atlas, L., Cole, R., Muthusamy, Y., Lippman, A., Connor, J., Park, D., El-
Sharkawi, M., and Mark Ii, R. J. (1990) A performance comparison of trained
multilayer perceptrons and trained classification trees. Proceedings of the IEEE, 78,
1614-1619.

Ball, G. H., and Hall, D. J. (1965) A Novel Method of Data Analysis and Pattern
Classification. Menlo Park, CA: Stanford Research Institute.

Bao, M. (1999) Classification of multi-temporal SAR images and InSAR coherence
images using adaptive neighbourhood model and simulated annealing approach.
Proceedings of 20th Asian Conference on Remote Sensing. 22-25 November 1999,
Hongkong, China.

Barber, D. G., and LeDrew, E. F. (1991) SAR sea ice discrimination using texture
statistics: A multivariate approach. Photogrammetric Engineering and Remote
Sensing, 57, 385-395.

Baraldi, A., and Parmiggiani, F. (1995) A neural network for unsupervised
categorisation of  multivalued input patterns: an application to satellite image
clustering. I.E.E.E. Transactions on Geoscience and Remote Sensing, 33, 305-316.

Belward, A. S., and Hoyos, A. D. (1987) A comparison of supervised maximum
likelihood and decision tree classification for crop cover estimation from
multitemporal LANDSAT MSS data. International Journal of Remote Sensing,  8,
229-235.

http://www.estec.esa.nl/CONFANNOUN/98c07/
http://www.estec.esa.nl/CONFANNOUN/98c07/
http://www.geo.unizh.ch/rsl/fringe96/


217

Benediktsson, J. A., Swain, P. H., and Erase, O. K. (1990) Neural network
approaches versus statistical methods in classification of multisource remote sensing
data. IEEE Transactions on Geoscience and Remote Sensing, 28,540-551.

Berry, B. J. L., and Baker, A. M. (1968) Geographical sampling. Spatial Analysis:
A Reader in Statistical Geography, (Berry, B. J. L., and Marble, D. F. eds.),
Englewood Cliffs, N. J.: Prentice-Hall.

Bezdek, J. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms.
New York:  Plenum Press.

Bishop, Y., Fienberg, S., and Holland, P. (1975) Discrete Multivariate Analysis-
Theory and Practice. Cambridge, MA: MIT Press.

Bishop, C. M. (1995) Neural Networks for Pattern Recognition. Oxford: Clarendon
Press.

Booth, D. J., and Oldfield, R. B. (1989) A comparision of classification algorithms
in term of speed and accuracy after the application of a post-classification model
filter. International Journal of Remote Sensing, 10, 1271-1276.

Borak, J. S., and Strahler, A. H. (1999) Feature selection and land cover
classification of a MODIS-like data set for semi-arid environment. International
Journal of Remote Sensing, 20, 919-938.

Born, M., and Wolf, E. (1980) Principles of Optics. Oxford: Pergamon Press.

Boser, B., Guyon, I., and Vapnik, V. N. (1992) A training algorithm for optimal
margin classifiers. Proceedings of 5th Annual Workshop on Computer Learning
Theory, Pittsburgh, PA: ACM, 144-152.

Borgelt, C., Gebhardt, J., and Kruse, R. (1996) Concepts for Probabilistic and
Possibilistic Induction of Decision Trees on Real World Data. Proceedings of 4th
European Congress on Intelligent Techniques and Soft Computing, Aachen,
Germany,  3, 1556-1560.

Breiman, L. (1996) Bagging predictors. Machine Learning, 24, 123-140.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984)
Classification and Regression Trees. Monterey, CA: Wadsworth.

Brodley, C. E., and Utgoff, P. E. (1992) Multivariate versus univariate decision
trees. Technical Report 92-8. Department of Computer Science, University of
Massachusetts, Amherst, Massachusetts, USA.

Bryan, M. L. (1974) Extraction of urban land cover data from multiplexed synthetic
aperture radar imagery. Proceedings of the Ninth International Symposium on Remote
Sensing of the Environment, ERIM, Ann Arbor, Michgan, 271-288.



218

Buck, C. H., and Monni, S. (1999) Application of SAR Interferometer to Flood
Damage Assessment. CEOS SAR Workshop, ESA-CNES Toulouse, 26-29 October,
http://www.estec.esa.nl/ceos99/.

Burges, C. J. C. (1998) A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2, 121-167.

Caldwell, M. M., Matson, P. A., Wessman, C., and Gamon, J. (1993) Prospects
for scaling. Scaling Physiological Processes: Leaf to Globe, Academic Press, San
Diego, 1993, 223-230.

Campbell, J. B. (1981) Spatial correlation effects upon accuracy of supervised
classification of land cover. Photogrammetric Engineering and Remote Sensing, 47,
355-363.

Canada Centre for Remote Sensing (CCRS), CCRS Remote Sensing Tutorials:
Radar and Stereoscopy, http:/www.ccrs.nrcan.gc.ca/ccrs/eduref/sradar/.

Cannon., M., Lehar, A., and Preston, F. (1983) Background pattern removal by
power spectral filtering. Applied Optics, 22(6), 777-779.

Cao, C., and Lam, N. S. (1997) Understanding the scale and resolution effects in
remote sensing and GIS. Scale in Remote Sensing and GIS, Quattrochi, D. A., and
Goodchild, M. A. ed., Boca Raton: CRC Press, 57-72.

Casey, R. G., and Nagy, G. (1984) Decision tree design using a probabilistic model.
IEEE Transactions on Information Theory. IT-30, 93-99.

Chapelle, O., Haffner, P., and Vapnik, V. N. (1999) Support vector machines for
histogram-based image classification. IEEE Transactions on Neural Networks, 10,
1055-1064.

Civco, D. L. (1993) Artificial neural networks for land-cover classification and
mapping. International Journal of Geographical Information Systems, 7, 173-186.

Chang, C., and Lin, C. (2001) LIBSVM: A Library for Support Vector Machines.
Computer Science and Information Engineering, National Taiwan University,
Taiwan.

Chorley, R. J., and Haggett, P. (1967) Models in Geography. London: Methuen and
Company Ltd..

Civco, D. (1989) Knowledge-based land use and land cover mapping. Proceeding of
Annual Convention of American Society for Photogrammetry and Remote Sensing, 3,
276-291.

Cochran, W. G. (1977) Sampling techniques. New York, John Wiley and Sons.

Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and
Psychlogical Measurement, 20, 37-40.

http://www.estec.esa.nl/ceos99/


219

Congalton, R. G. (1991) A review of assessing the accuracy of classifications of
remotely sensed data. Remote Sensing of Environment, 37, 35-46.

Congalton, R. G. (1988) A comparison of sampling schemes used in generating error
matrices for assessing the accuracy of maps generated from remotely sensed data.
Photogrammetric Engineering and Remote Sensing, 54, 593-600.

Cortes, C., and Vapnik, V. N. (1995) Support vector networks. Machine Learning,
20, 273-297.

Curlander, J. C., and Mcdonough, R. N. (1991) Synthetic Aperture Radar: System
and Signal Processing. New York: John Wiley and Sons.

Cushnie, J. L. (1987) The interactive effect of spatial resolution and degree of
internal variability with land-cover types on classification accuracies. International
Journal of Remote Sensing, 8, 15-29.

Dammert, P. B. G., Lepparanta, M., and Askne, J. (1998) SAR interferometery
over Baltic Sea ice. International Journal of Remote Sensing, 19, 3019-3037.

Defries, R. S., Hansen, M., Townshend, J. R. G., and Sohlberg, R. (1998) Global
land cover classification at 8 km spatial resolution: the use of training data derived
from Landsat imagery in decision tree classifiers. International Journal of Remote
Sensing,  19, 3141-3168.

Dobson, M. C., Ulaby F. T., and Pierce L. E. (1995) Land-cover classification and
estimation of terrain attributes using synthetic aperture radar, Remote Sensing of
Environment, 51, 199-214.

Durand, J.M., Gimonet, B.J., and Perbos, J.R. (1987) SAR data filtering for
classification. IEEE Transactions of Geoscience and. Remote Sensing, 25, 629-637.

Dutra, L. V., and Huber, R. (1999) Feature extraction and selection for ERS-1/2
InSAR classification. International Journal of Remote Sensing, 20, 993-1016.

Elachi, C. (1987) Spaceborne Radar Remote Sensing: Applications and  Techniques.
New York, IEEE Press.

Engdahl, M., and Borgeaud, M. (1998) ERS-1/2 tandem interferometric coherence
and agricultural crop height. Retrieval of Bio- and Physical Parameters from SAR
Data for Land Application Workshop. ESTEC, The Netherlands, 21-23 October 1998,
http://www.estec.esa.nl/CONFANNOUN/98c07/.

Estes, J., Sailor, C., and Tinney, L. (1986) Applications of artificial intelligence
techniques to remote sensing. Professional Geographer, 38, 133-141.

Esposito, F., Malerba, D., and Semeraro, G. (1997) A comparative analysis of
methods for pruning decision trees. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19, 476-491.

http://www.estec.esa.nl/CONFANNOUN/98c07/


220

Evans, F. (1998) An Investigation into the Use of Maximum Likelihood Classifiers,
Decision Trees, Neural Networks and Conditional Probabilistic Network for Mapping
and Predicting Salinity. M. Sc. Thesis, Department of Computer Science, Curtin
University of Technology, Australia.

Fischer, M. M. (1996) Computational neural networks: a new paradigm for spatial
analysis. Proceedings of First International Conference on Geocomputation,
University of Leeds, UK,  1, 297-314.

Fitzgerald, R. W., and Lees, B. G. (1994) Assessing the classification accuracy of
multisource remote sensing data. Remote Sensing of the Environment, 47, 362-368.

Fitzpatrick-Lins, K. (1981) Comaparision of sampling procedures and data analysis
for a land use and land cover map. Photogrammetric Engineering and Remote
Sensing, 47, 343-351.

Fletcher, R. (1987) Practical Methods of Optimisation. John Wiley and Sons, 2nd

edition.

Floury, N., Toan, T. L., Souyris, J. C., Singh, K., Stussi, N., Hsu, C. C., and
Kong, J. A. (1996) Interferometry for forest studies. FRINGE-ESA Workshop on
Application of ERS SAR Interferometry, University of Zurich, 30 September to 2
October, http://www.geo.unizh.ch/rsl/fringe96/.

Foody, G. M. (1995 a) Land cover classification by an artificial neural network with
ancillary information. International Journal of Geographical Information Systems, 9,
527-542.

Foody , G. M., Mcculloch, M. B., and Yates, W. B. (1995 b) The effects of training
set size and composition on artificial neural network. Photogrammetric Engineering
and Remote Sensing, 58, 1459-1460.

Foody, G. M., and Arora, M. K. (1997) An evaluation of some factors affecting the
accuracy of classification by an artificial neural network. International Journal of
Remote Sensing, 18, 799-810.

Foster, M. R., and Guinzy, N. J. (1967) The coefficient of coherence: Its estimation
and use in geophysical data processing. Geophysics, XXXII,  602-616.

Franklin, S. E., Peddle, D. R., Wilson, B. A., and Blodgett, C. F. (1991)  Pixel
sampling of remotely sensed digital imagery. Computers and Geosciences, 17, 759-
775.

Friedl, M., Estes, J., and Star, J. (1988) Advanced information-extraction tools in
remote sensing, for earth science applications: AI and GIS. AI Applications, 2, 17-31.

Friedl, M. A., Brodley, C. E., and Strahler, A. H. (1999) Maximizing land cover
classification accuracies produced by decision tree at continental to global scales.
IEEE Transactions on Geoscience and  Remote Sensing. 37, 969-977.

http://www.geo.unizh.ch/rsl/fringe96/


221

Friedl, M. A., and Brodley, C. E. (1997) Decision tree classification of land cover
from remotely sensed data. Remote Sensing of Environment. 61,  399-409.

Frankot, R. T., and Chellappa, R. (1987) Log Normal random field models and
their applications to radar image synthesis. IEEE Transactions on Geoscience and
Remote Sensing, 25, 195-207.

Freund, Y., and Schapire, R. E. (1996) Experiments with new boosting algorithm.
Machine Learning: Proceedings of the Thirteenth International Conference. Bari,
Italy, July 3-6.

Friedman, J. H. (1977) A recursive partitioning decision rule for non-parametric
classification. IEEE Transactions on Computers, C-26, 163-168.

Frost, V. S., Stiles, J. A., Shanmugan, K. S., and Hotzman, J. C. (1982) A model
for radar images and its application to adaptive digital filtering of multiplicative
noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4, 157-165.

Fu, K. S. (1968) Sequential Methods in Pattern Recognition and Machine Learning.
New York: Academic Press.

Fukuda, S., and Hirosawa, H. (1999) A wavelet-based texture feature set applied to
classification of multifrequency polarimetric SAR images. IEEE Transactions on
Geoscience and Remote Sensing, 37, 2282-2286.

Fukunaga, K., and Hayes, R. R. (1989) Effects of Sample Size in Classifier Design.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 873-885.

Gabriel, A. K, and Goldstein, R. M. (1988) Crossed Orbit Interferometry: Theory
and Experimental Results from SIR-B, International Journal of Remote Sensing, 9,
857-872.

Gahegan, M., and West, G. (1998) The classification of complex data sets: an
operational comparison of artificial neural networks and decision tree classifiers.
Proceedings of the 3rd International Conference on Geocomputation, University of
Bristol, UK, 17-19 September 1998, http://divcom.otago.ac.nz/sirc/webpages/confere
nces/GeoComp/GeoComp98/geocomp98.htm.

Gangepain, J., and Roques-Carmes, C. (1986) Fractal approach to two dimensional
and three dimensional surface roughness. Wear, 109, 119-126.

Gatelli F., Guarnieri A. M., Parizzi F., Pasquali P., Prati C., and Rocca F. (1994)
The wavenumber shift in SAR interferometry , IEEE Transactions on Geoscience and
Remote Sensing, 32,  855-865.

Gelfand, S., and Guo, H. (1991) Tree Classifiers with Multilayer Perceptron
Feature Extraction. Ph. D. dissertation, School of Electrical Engineering, Purdue
University, West Lafayette, Indiana.



222

Gelfand, S. B., Ravishankar, C. S., and Delp, E. J. (1991) An iterative growing and
pruning algorithms for classification tree design. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13, 163-174.

Gens, R., and Van Genderen, J. L. (1996) SAR interferometry - issue, techniques,
applications. International Journal of Remote Sensing, 17, 1803-1835.

Giacinto, G., and Roli, F. (1997) Ensembles of neural networks for soft
classification of remote sensing images, Proceedings of the European Symposium on
Intelligent Techniques, European Network for Fuzzy Logic and Uncertainty
Modelling  in Information Technology, Bari, Italy, 166-170.

Goldberg, M., Karam, G., and Alvo, M. (1983) A production rule-based expert
system for interpreting multi-temporal Landsat imagery. Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern recognition. 77-82.

Graham, L. C. (1974) Synthetic Interferometer Radar for topographic mapping.
Proceedings of the IEEE, 62, 763-768.

Green, A. A., Berman, M., Switzer, P., and Craig, M. D. (1988) A transformation
for ordering multispectral data in term of image quality with implications for noise
removal. IEEE Transactions on Geoscience and Remote Sensing, 26, 65-74.

Guarnieri, A. M., and Prati, C. (1997) SAR Interferometry: A ”quick and dirty”
coherence estimator for data browsing. IEEE Transactions on Geoscience and
Remote Sensing. 35, 660-669.

Gualtieri, J. A., and Cromp, R. F. (1998) Support vector machines for
hyperspectral remote sensing classification. Proceedings of the of the SPIE, 27th AIPR
Workshop: Advances in Computer Assisted Recognition, Washington, DC, October
14-16, 221-232.

Hagberg, J. O.,  and Ulander, L. M. H. (1993) On the optimisation of
interferometric SAR for topographic mapping. IEEE Transactions of Geoscience and
Remote Sensing, 31, 303-306.

Hansen, M., Dubayah, R., and Defries, R. (1996) Classification trees: an alternative
to traditional land cover classifiers. International Journal of Remote Sensing, 17,
1075-1081.

Hansen, M., Defries, R., Townshend, J. R. G., and Sohlberg, R. (2000) Global
land cover classification at 1 km spatial resolution using a classification tree
approach. International Journal of Remote Sensing, 21, 1331-1364.

Harlick, R.M., Shanmugam, K., and Dinstein, I. (1973) Texture features for image
classification. IEEE Transactions on System, Man, and Cybernetics, 3(6), 610-621.

Hausdorff, F. (1919) Dimension und ausseres mass. Mathematische Annalen, 79,
157.



223

Hay, A. M. (1979) Sampling design to test land use map accuracy. Photogrammetric
Engineering and Remote Sensing, 45, 529-533.

Heerman, P. D., and Khazenie, N. (1992) Classification of multispectral remote
sensing data using a back propagation neural network. IEEE Transactions on
Geoscience and Remote Sensing, 30, 81-88.

Henderson, F. M. (1975) Radar for small-scale land-use mapping. Photogrammetric
Engineering and Remote Sensing, 41, 307.

Henebry, G. M., and Kux, H. J. H. (1995) Lacunarity as texture measure for SAR
imagery.  International Journal of Remote Sensing, 16, 565-571.

Hepner, G. F., Logan, T., Ritter, N., and Bryant, N. (1990) Artificial neural
network classification using a minimal training set: comparison to conventional
supervised classification. Photogrammetric Engineering and Remote Sensing, 56,
469-473.

Herland, E. A. (1996) Operational use of SAR interferometer for DEM generation
and land use mapping. FRINGE-ESA Workshop on Application of ERS SAR
Interferometry, University of Zurich, 30 September to 2 October,
http://www.geo.unizh.ch/rsl/fringe96/.

Hord, R. M., and Brooner, W. (1976) Land use map accuracy criteria.
Photogrammetric Engineering and Remote Sensing, 42, 671-677.

Hochschild, V., Klenke, M., Bartsch, A., and Flügel, W. A. (1999) Land cover
classification in hilly watersheds using SAR backscatter intensity and interferometric
coherence information. Second international symposium on operationalization of
remote sensing, ITC, The Netherlands, 16-20 August 1999,
http://www.itc.nl/ags/research/ors99/abstracts.

Hotelling, H. (1931) The generalisation of students's ratio. Annals of Mathematical
Statistics, 2, 360-378.

Hsieh, P., and Landgrebe, D. (1998) Classification of high dimensional data.
Technical Report - ECE 98-4, School of Electrical and Computer Engineering Purdue
University West Lafayette, Indiana.

Huang, C., Davis, L. S., and Townshend, J. R. G. (2002) An assessment of support
vector machines for land cover classification. International Journal of Remote
Sensing, 23, 725-749.

Hughes, G. F. (1968) On the mean accuracy of statistical pattern recognizers. IEEE
Transactions on Information Theory, IT-14, 55-63.

Hunt, E. B., Marian, J., and Stone, P. J. (1966) Experiments in Induction. New
York: Academic Press.

http://www.geo.unizh.ch/rsl/fringe96/
http://www.itc.nl/ags/research/ors99/abstracts


224

Hwang, J., Lay, S., and Lippman, A. (1994) Nonparametric Multivariate Density
Estimation: A Comparative Study.  IEEE Transactions on Signal Processing, 42,
2795-2810.

Ichoku, C., Karnieli, A., Arkin, Y., Chorowicz, J., Fleury, T., and Rudent, J. P.
(1998) Exploring the utility potential of SAR interferometric coherence images.
International Journal of Remote Sensing, 19, 1147-1160.

Ince, F. (1987) Maximum likelihood classification, optimal or problematic: A
comparision with nearest neighbour classification. International Journal of Remote
Sensing, 8, 1829-1838.

Irons, J. R., Markham, B. L., Nelson, R. F., Toll, D. L., Williams, D. L., Latty, R.
S., and Stauffer, M. L. (1985) The effects of spatial resolution on the classification
of Thematic mapper data.  International Journal of Remote Sensing, 6, 1385-1403.

Jain, A. K., and Dubes, R. C. (1988) Algorithms for Clustering Data. Englewood
Cliff, Prentice-Hall.

Jain, A. K., and Chandrasekaran, B. (1982) Dimensionality and sample size
considerations in pattern recognition practice. Handbook of Statistics, Amsterdam:
North-Holland.

Jain, A., and Zongker, D. (1997) Feature selection: evaluation, application, and
small sample performance. IEEE Transactions on pattern Analysis and Machine
Intelligence, 19, 153-158.

Jarvis, P. G. (1995) Scaling processes and problems. Plant, Cell and Environment,
18, 1079-1089.

Jenikow, C. Z. (1998) Fuzzy decision trees: issue and methods. IEEE Transactions
on Systems, Man, and Cybernetics. Part-B, 28, 1-14.

Jensen, J. R. (1 996) Introductory Digital Image Processing - A Remote Sensing
Perspective. London: Prentice Hall.

Jiminez, L., and Landgrebe, D. A. (1998) Supervised classification in high
dimensional space: Geometrical, statistical and asymptotical properties of
multivariate data. IEEE Transactions on System, Man, and Cybernetics, 28, Part C,
39-54.

Johnston, R. J., Gregory, D., and Smith, D. M. (1981) The Dictionary of Human
Geography. Oxford: Blackwell.

Johnston, R. J. (1968) Choice in classification: the subjectivity of objective methods.
Annals of the Association of American geographers, 58, 575-589.

Kashyap, R. L., and Chellappa, R. (1983) Estimation and choice of neighbours in
spatial-interaction models of images. IEEE Transactions on Information Theory, IT-
29, 60-72.



225

Kavzoglu, T. (2001) An Investigation of the Design and Use of Feed-forward
Artificial Neural Networks in the Classification of Remotely Sensed Images. PhD
thesis. School of Geography, The University of Nottingham, Nottingham, UK.

Keller, J., and Chen, S. (1989) Texture description and segmentation through fractal
geometry. Computer Vision, Graphics, and Image Processing, 45, 150-166.

Kim, B., and Landgrebe, D. A. (1991) Hierarchical classifier design in high-
dimensional, numerous class cases. IEEE Transactions on Geoscience and  Remote
Sensing. 29, 518-528.

Kira, K., and Rendell, L.A. (1992) The feature selection problem: Traditional
methods and a new algorithm. Proceedings of Ninth National Conference on
Artificial Intelligence, American Association for Artificial Intelligence, San Jose,

California, 129-134.

Koller, D., and Sahami, M. (1996) Toward optimal feature selection. Machine
Learning: Proceedings of the Thirteenth International Conference. Department of
Informatics, University of Bari, Italy, 284-292.

Knerr, S., Personnaz, L., and Dreyfus, G. (1990) Single-layer learning revisited: A
stepwise procedure for building and training neural network. Neurocomputing:
Algorithms, Architectures and Applications, NATO ASI, Berlin: Springer-Verlag.

Knuth, D. E. (1971) Optimum binary search tree. Acta Informatica, 1, 14-25.

Kononenko, I., and Hong, J. S. (1997) Attribute selection for modelling. Future
Generation Computer Systems, 13,  181-195.

Kohonen, T. (1989) Self-organisation and Associative Memory. New York:
Springer-Verlag.

Koskinen, J., Pullianen, J., and Hallikainen, M. (1995) Land-use classification
employing ERS-1 SAR data. Photogrammetric Journal of Finland, 14, 23-34.

Kuan, D. T., Sawchuk, A. A., Strand, T. C., and Chavel, P. (1985) Adaptive noise
smoothing filter for image with signal-dependent noise. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 7, 165-177.

Kurzynski, M. W. (1983) The optimal strategy of a tree classifier. Pattern
Recognition, 16, 81-87.

Labivitz, M. L. (1986) Issue arising from sampling designs and the band selection in
discriminating ground reference attributes using remotely sensed data.
Photogrammetric Engineering and Remote Sensing, 52, 201-211.

Landeweerd, G. H., Timmers, T., and Gelsema, E. S. (1983) Binary tree verses
single level tree classification of white blood cells. Pattern Recognition, 16, 571-577.



226

Lee, J. S., Hoppel, K. W., Mango, S. A., and Miller, A. R. (1994 a) Intensity and
phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE
Transaction of Geoscience and Remote Sensing, 32, 1017-1028.

Lee, J. S., Jurkewich, I., Dewaele, P., Wambacq, P., and Oosterlinck, A. (1994 b)
Specle filtering of synthetic aperture radar images: A review. Remote Sensing
Reviews, 8, 313-340.

Lee, J. S. (1986) Speckle suppression and analysis for Synthetic Aperture Radar.
Optical Engineering, 25, 636-643.

Levin, S. A. (1992) The problem of pattern and scale in ecology. Ecology, 73, 1943-
1967.

Li, S., Benson, C., Shapiro, L., and Dean, K. (1997) Aufeis in the Ivishak river,
Alaska, mapped from satellite radar interferometer. Remote Sensing of Environment,
60, 131-139.

Liew, S. C., Kwoh, L. K., Padmanabhan, K., Lim, O. K., and Lim, H. (1999)
Delineating land/forest fire burnt scars with ERS interferometric SAR. Geophysical
Research Letters, 26, 2409-2412.

Lillesand, T. M., and Kiefer, R. W. (1994) Remote Sensing and Image
Interpretation. New York: John Wiley and Sons.

Lim, H. H., Swartz, A. A., Yueh, H. A., Kong, J. A., and Shin, R. T. (1989)
Classification of earth terrain using polarimetric synthetic aperture radar images.
Journal of Geophysical Research, 94, 7049-7057.

Lin, Y. K., and Fu, K. S. (1983) Automatic classification of cervical cells using a
binary tree classifier. Pattern Recognition, 16, 69-80.

Loh, W.-Y., and Shih, Y.-S. (1997) Split selection methods for classification trees.
Statistica Sinica, 7, 815-840.

Mandelbrot, B. B. (1977) Fractals: Form, Chance and Dimension. San Francisco,
CA: Freeman.

Mandelbrot, B. B. (1983) The Fractal Geometry of Nature. San Francisco, CA:
Freeman.

Mandelbrot, B. B. (1986) Self-affine fractal sets I: the basic fractal dimensions.
Fractals in Physics (ed.), Amsterdam:  North-Holland Physics Publishing.

Markham, B. L., and Towenshend, J. R. G. (1981) land cover classification
accuracy as function of sensor spatial resolution. Proceedings of the Fifteenth
International Symposium on Remote Sensing of Environment, ERIM, Ann Arbor,
Michigan, 1075-1090.



227

Marceau, D. J. (1999) The scale issue in the social and natural sciences. Canadian
Journal of Remote Sensing, 25, 347-356.

Marinelli, L., Michel, R., Beaudoin, A., and Astier, J. (1997) Flood mapping using
ERS tandem coherence images: A case study in south France. Proceedings of Third
ERS Symposium, Florence, Italy, http://earth1.esa.it/florence/papers/ .

Mather, P. M. (1999) Computer Processing of Remotely-Sensed Images: An
Introduction. Second Edition, Chichester: John Wiley and Sons.

Mather, P. M., Tso, B., and Koch, M. (1998) An evaluation of Landsat TM spectral
data and SAR-derived textural information for lithological discrimination in the Red
Sea Hills, Sudan. International Journal of Remote Sensing, 19, 587-604.

Meentemeyer, V., and Box, E. O. (1987) Scale effects in landscape studies.
Ecological Studies, 64, 15-20.

Meisel, W. S., and Michalopoulos, D. S. (1973) A partitioning algorithm with
application in pattern classification and the optimisation of decision trees. IEEE
transaction on computers, C-22, 93-103.

Mingers, J. (1989 a) An empirical comparison of pruning methods for decision tree
induction. Machine Learning, 4, 227-243.

Mingers, J. (1989 b) An empirical comparison of selection measures for decision
tree induction. Machine Learning, 3, 319-342.

Morgan, J., and Sonquist, J. A. (1963) Problem in the analysis of survey data, and a
proposal. Journal of American Statistical Association, 58, 415-435.

Morley, J., Muller, J. P., and Madden, S. (1996) Wetland monitoring in Mali using
SAR interferometry. FRINGE-ESA Workshop on Application of ERS SAR
Interferometry, University of Zurich, 30 September to 2 October,
http://www.geo.unizh.ch/rsl/fringe96/.

Muchoney, D., Borak, J., Chi, H., Friedl, M., Gopal, S., Hodges, J., Morrow, N.,
and Strahler, A. (2000) Application of MODIS global supervised classification
model to vegetation and land cover mapping of Central America. International
Journal of Remote Sensing, 21, 1115-1138.

Mui, J. K., and Fu, K. S. (1980) Automated classification of nucleated blood cells
using a binary tree classifier. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-2, 429-443.

Muller, A., Oertel, D., Richter, R., Strobl, P., Beran, D., Fries, J., Boehl, R.,
Obermeier, P., Housold, A., and Reinhaeckel, G. (1998) The DIAS 7915 - Three
years operating airborne imaging spectrometer. First EARSeL Workshop on Imaging
Spectroscopy, University of Zurich, Zurich, 21-28.

http://earth1.esa.it/florence/papers/
http://www.geo.unizh.ch/rsl/fringe96/


228

Mumford, B., Muller, J, P., and Mandanayke, A. (1996) Assessment of land cover
mapping potential in Africa using tandem ERS interferometry.  FRINGE-ESA
Workshop on Application of ERS SAR Interferometry, University of Zurich, 30
September to 2 October, http://www.geo.unizh.ch/rsl/fringe96/

Murthy, S. K., Kasif, S., and Salzberg, S. (1994) A system for induction of oblique
decision trees. Journal of Artificial Intelligence Research, 2, 1-32.

Nagao, M., and Matsuyama, T. (1980) A Structural Analysis of Complex Aerial
Photographs. New York: Plenum Press.

Narendra, P. M., and Fukunaga, K. (1977)  A branch and bound algorithm for
feature selection. IEEE Transactions on Computers, 26, 917-922.

Nezry, E., Lopes, A., Ducrot-Gambart, D., Nezry, G., and Lee, J. S. (1996)
Supervised classification of K-distributed SAR images of natural targets and
probability of error estimation. IEEE Transactions of Geoscience and Remote
Sensing, 84, 1233-1242.

Nilsson, N. J. (1965) Learning Machines. New York:  McGraw-Hill.

Oates, T., and Jenson, D. (1997) The effects of training set size on decision tree
complexity. Machine Learning, Proceedings of 14th International Conference on
Machine Learning. San Francisco, CA: Morgan Kaufmann, 254 - 262.

Oliver, G., and  Florín, M. (1995) The wetlands of La Mancha, Central Spain:
Opportunities and problems concerning restoration. In Bases Ecologicas para la
Restauracion de Humedales en la Cuneca Mediterranea, edited by G. Oliver, F.
Moline and J. Cobos (Junta de Andalucia: Consejeria de Medioambiente), 197-216.

Olsen, S. I. (1993) Estimation of noise in images: an evaluation. Graphical Models
and Image Processing, 55, 319-323.

Osuna, E. E., Freund, R., and Girosi, F. (1997) Support vector machines: training
and applications. A. I. Memo No. 1602, CBCL paper No. 144, Artificial Intelligence
laboratory, Massachusetts Institute of Technology, ftp://publications.ai.mit.edu/ai-
publications/pdf/AIM-1602.pdf

Papathanassiou, K. P., Reigber, A., and Coltelli. M. (1996) On the interferometric
coherence: A multifrequency and multitemporal analysis. RINGE-ESA Workshop on
Application of ERS SAR Interferometry, University of Zurich, 30 September to 2
October http://www.geo.unizh.ch/rsl/fringe96/ .

Peddle, D. R., and Franklin, S. E. (1991) Image texture processing and data
integration for surface pattern discrimination. Photogrammetric Engineering and
Remote Sensing, 57, 413-420.

http://www.geo.unizh.ch/rsl/fringe96/
http://www.geo.unizh.ch/rsl/fringe96/


229

Peleg, S., Naor, J., Hartley, R., and Avnir, D. (1984) Multiple resolution texture
analysis and classification, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6, 518-523.

Pentland, A. P. (1984) Fractal based description of natural scenes. IEEE
Transactions of Pattern Analysis and Machine Intelligence, 6, 661-674.

Pentland, A. P. (1986) Shading into texture. Journal of Artificial Intelligence,29,
147-170.

Pierce, L. E., Ulaby, F. T., Sarabandi, K., and Dobson, M. C. (1994) Knowledge-
based classification of polarimetric SAR images, IEEE Transactions of Geoscience
and. Remote Sensing, 32, 1081-1086.

Piper, J. (1992) Variability and bias in experimentally measured classifier error rates.
Pattern Recognition Letters, 13, 685-692.

Prati, C., Rocca, F., and Mouti Guaruieri, A. (1992) SAR Interferometry
Experiments with ERS-1. First ERS-1 Symposium--Space at the Service of our
Environment, Cannes, France, 4-6 November,  211-217.

Prati, C., Rocca, F., Guarnieri, A. M., and Pasquali, P (1994) Report on ERS-1
SAR interferometric techniques and applications. ESA Study Contract Report, ESA
Contract No.:3-7439/92/HE-1.

Quinlan, J. R. (1987) Simplifying  decision trees. International Journal of Man-
Machine Studies. 27, 221-234.

Quinlan, J. R., and Rivest, R. L. (1989)  Inferring decision trees using minimum
description length principle. Information and Computation. 80, 227-248.

Quinlan, J. R. ((1990) Decision tree and decision making. IEEE Transactions on
Systems, Man, and Cybernetics. 20, 339-346.

Quinlan, J. R. (1993) C4.5: Programs for Machine Learning. San Mateo: Morgan
Kaufmann.

Quinlan, J. R. (1996) Bagging, boosting and C4.5. Thirteenth National Conference
of Artificial Intelligence. American Association for Artificial
Intelligence Portland, August 4 - 8, Oregon, USA.

Quinlan, J. R. (1996) Improved use of continuous attributes in C4.5. Journal of
Artificial Intelligence Research, 4, 77-90.

Raffy, M. (1992) Change of scale in models of remote sensing: a general method for
spatialization of models. Remote Sensing of Environment, 40, 101-112.

Raudys, S., and Pikelis, V. (1980) On dimensionality, sample size, classification
error, and complexity of classification algorithms in pattern recognition. IEEE
Transactions of Pattern Analysis and Machine Intelligence, 3, 242-252.



230

Raudys, S. J., and Jain, A. K. (1991) Small sample size effects in statistical pattern
recognition: Recommendations for practitioners. IEEE Transactions of Pattern
Analysis and Machine Intelligence, 13, 252-264.

Ribbes, F., Toan, T. L., Bruniquel, J., Floury, N., Stussi, N., Liew, S. C., and
Wasrin, U. R. (1997) Forest mapping in tropical region using multitemporal and
Interferometric ERS-1/2 data. Proceedings of Third ERS Symposium, Florence, Italy,
http://earth1.esa.it/florence/papers/.

Richards, J. A. (1993) Remote Sensing Digital Image Analysis- An Introduction.
Berlin : Springer-Verlag.

Rissanen, J. (1983) A universal prior for integers and estimation by minimum
description length. Annals of Statistics, 11, 416-431.

Rodriquez, E., Martin, J. M. (1992) Theory and design of interferometric synthetic
aperture radars. IEE Proceedings-F, 139, 147-159.

Roli, F., Giacinto, G., and Vernazza, G. (1997) Comparison and combination of
statistical and neural networks algorithms for remote-sensing image classification.
Neurocomputation in Remote Sensing Data Analysis, Austin, J., Kanellopoulos, I.,
Roli, F. and Wilkinson G. (Eds.), Berlin: Springer-Verlag, 117-124.

Rosenfield, G. H. (1982) Sample design for estimating changes in land use and land
cover. Photogrammetric Engineering and Remote Sensing, 48, 793-801.

Rott, H., and Seigal, A. ( 1996) Glaciological studies in the Alps and in Antarctica
using ERS interferometric SAR. FRINGE-ESA Workshop on Application of ERS SAR
Interferometry, University of Zurich, 30 September to 2 October,
http://www.geo.unizh.ch/rsl/fringe96/.

Rounds, E. M. (1980) A combined nonparametric approach to feature selection and
binary decision tree design. Pattern Recognition, 12, 313-317.

Roven, E., and  Alvarez, L. (1998) Multitemporal coherence mapping for
classification of land surfaces around the Gulf of California. Proceedings of the 24th

Annual Conference and Exhibition of Remote Sensing Society, The University of
Greenwich, 9-11 September.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1996) Learning internal
representation by error propagation. Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Volume 1: Foundations (ed.), Cambridge, MA: The
MIT Press,  318-362.

Sadowski, F. G., Malila, D. A., Sarno, J. E., and Nalepka, R. F. (1977) The
influence of multispectral scanner spatial resolution on forest feature classification.
Proceedings of the Eleventh International Symposium on Remote Sensing of
Environment, ERIM, Ann Arbor, Michigan, 1279-1288.

http://earth1.esa.it/florence/papers/
http://www.geo.unizh.ch/rsl/fringe96/


231

Safavian, S. R., and Landgrebe, D. (1991) A survey of decision tree classifier
methodology. IEEE Transactions of Systems, Man, and Cybernetics, 21, 660-675.

Saint-Jean, R., Singhroy, V., and Khalifa, S. M. (1995) Geological interpretation of
integrated SAR images in Azraq area of Jordan. Canadian Journal of Remote
Sensing, 21, 511-517.

Sarkar, N., and Chaudhuri, B. B. (1994) An efficient differential box-counting
approach to compute the fractal dimension of images. IEEE Transactions on System,
Man, and Cybernetics, 24, 115-120.

Saunders, C., Stitson, M. O., Weston, J., Bottou, L., Schölkopf, B., and Smola, A.
(1998) Support Vector Machine - Reference Manual. Technical Report, CSD-TR-98-
03, Royal Holloway and AT&T, University of London.

Schowengerdt, R. A. (1997) Remote Sensing Models and Methods for Image
Processing. New York: Academic Press.

Schalkoff, R. J. (1992) Pattern Recognition: Statistical, Structural and Neural
Approaches. New York: Wiley.

Schaale, M., and Furrer, R. (1995) Land surface classification by neural networks.
International Journal of Remote Sensing, 16, 3003-3031.

Schistad, S. A. H., Jain, A. K., and Taxt, T. (1994) Multisource classification of
remotely sensed data: Fusion of Landsat-TM and SAR images. IEEE Transactions of
Geoscience and Remote Sensing, 32, 768-778.

Scholkopf, B. (1997) Support Vector Learning. Ph. D. thesis, Technische Universitat,
Berlin.

Schwabisch, M., Lehner, S., and Winkel, N. (1997) Coastline extraction using ERS
SAR interferometry. Proceedings of Third ERS Symposium, Florence, Italy,
http://earth1.esa.it/florence/papers/.

Sethi, I. K. (1990) Entropy nets: from decision tree to neural networks. Proceedings
of the IEEE, 78, 1605-1613.

Sethi, I. K., and Chatterjee, B. (1977) Efficient decision tree design for discrete
variable pattern recognition problems. Pattern Recognition, 9, 197-206.

Seynat, C., and Hobbs, S. (1998) Crop parameter retrieval with multi-temporal SAR
coherence images. Retrieval of Bio- and Physical Parameters from SAR Data for
Land Application Workshop. ESTEC, The Netherlands, 21- 23 October 1998,
http://www.estec.esa.nl/CONFANNOUN/98c07/.

Sharkawi, M., and Mark II, R. J. (1990) A performance comparison of trained
multilayer perceptrons and trained classification trees. Proceeding of the IEEE, 78,
1614-1619.

http://earth1.esa.it/florence/papers/
http://www.estec.esa.nl/CONFANNOUN/98c07/
http://www.estec.esa.nl/CONFANNOUN/98c07/


232

Snedecor, G. W., and Cochran, W. G. (1967) Statistical Methods. Ames, Iowa: The
Iowa State University Press.

Solberg, A. H. S., and Jain, A. K. (1997) Texture fusion and feature selection
applied to SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 35,
475-479.

Srinivasan, R., Cannon, M., and White, J. (1988) Landsat data destriping using
power spectral filtering. Optical Engineering, 27, 939-943.

Stehman, S. V. (1192) Comparison of systematic and random sampling for
estimating the accuracy of maps generated from remotely sensed data.
Photogrammetric Engineering and Remote Sensing, 58, 1343-1350.

Stockham, T. G. (1972) Image processing in the context of a visual model.
Proceeding of the IEEE, 60, 828-842.

Stoffel, J. C. (1974) A classifier design technique for discrete variable pattern
recognition problems. IEEE Transactions on Computers, C-23, 428-441.

Story, M., and Congalton, R. G. (1986) Accuracy assessment: a user's perspective.
Photogrammetric Engineering and Remote Sensing, 52, 397-399.

Stozzi, T., Dammert, P., Wegmuller, Martinez, J. M., Beaudoin, A., Askne, J.,
and Hallikainen, M. (1998) European forest mapping with SAR interferometry.
Retrieval of Bio- and Physical Parameters from SAR Data for Land Application
Workshop. ESTEC, The Netherlands, 21- 23 October 1998,
http://www.estec.esa.nl/CONFANNOUN/98c07/.

Stussi, N., Liew, S. C., Kwoh, L. K., Lim, H., Nicol, J., and Goh, K. C. (1997)
Landcover classification using ERS SAR/INSAR data on coastal region of central
Sumatra. Proceedings of Third ERS Symposium, Florence, Italy,
http://earth1.esa.it/florence/papers/.

Strahler, A. H., Woodcock, C. E., and Smith, J. A. (1986) On the nature of models
in remote sensing. Remote Sensing of Environment, 20, 121-139.

Strobl, P., and Zhukov, B. (1998) Recent developments in 3-12 µm radiometric
calibration of the DAIS 7915. Ist EARSeL Workshop on Imaging Spectroscopy,
Remote Sensing Laboratories, University of Zurich, 6-8 October.

Strobl, P., Muller, A., Schlaepfer, D., and Schaepman, M. (1997) Laboratory
calibration and in-flight validation of DAIS 7915 data. Proceedings of SPIE:
Algorithms for Multispectral and Hyperspectral Imagery III, 3071, 225-236.

Swain, P., and Davis, S. (1978) Remote Sensing: The Quantitative Approach. New
York: McGraw-Hill.

Swain, P. H., and Hauska, H. (1977) The decision tree classifier: design and
potential. IEEE Transactions on Geoscience Electronics, 3, 142-147.

http://www.estec.esa.nl/CONFANNOUN/98c07/
http://www.estec.esa.nl/CONFANNOUN/98c07/
http://earth1.esa.it/florence/papers/


233

Switzer, P., and Green, A. (1984) Min/max autocorrelation factors for multivariate
spatial imagery. Technical Report 6, Department of Statistics, Stanford University.

Tell, B. R., and Walker, N. P. (1998) Examining the effect of satellite repeat pass
times on interferometric coherence for land classification applications. Retrieval of
Bio- and Physical Parameters from SAR Data for Land Application Workshop.
ESTEC, The Netherlands, 21- 23 October 1998,
http://www.estec.esa.nl/CONFANNOUN/98c07/.

Tortora, R. D. (1978) A note on sample size estimation for multinomial populations.
The American Statistician, 32, 100-102.

Tou, J., and Gonzalez, R. (1974) Pattern Recognition Principles. Reading,
Massachusetts: Addison-Wesley.

Touzi, R., Lopes, A., Bruniquel, J., and Vachon, P. W. (1999) Coherence
estimation of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing,
37, 135-149.

Townshend, J. R. G. (1984) Agriculture land-cover discrimination using thematic
mapper spectral bands. International Journal of Remote Sensing, 5, 681-698.

Townshend, F. E. (1986) The enhancement of computer classifications by logical
smoothing. Photogrammetric Engineering and Remote Sensing, 52, 213-221.

Townshend, J. R. G., and Justice, C. (1981) Information extraction from remotely
sensed data: a user view. International Journal of Remote Sensing, 2, 313-329.

Townshend, J. R. G. (1992) Land cover. International Journal of Remote Sensing,
13, 1319-1328.

Tso, B. C. K. (1997) An Investigation of Alternate Strategies for Incorporating
Spectral, Textural, and Contextual Information in Remote Sensing Image
Classification. PhD Thesis. School of Geography, The University of Nottingham,
Nottingham, UK.

Tso, B. C. K., and Mather, P. M., (2001) Classification Methods for Remotely
sensed Data. London: Taylor and Francis.

Ulaby, F. T. (1980) Vegetation clutter model. IEEE Transactions of Antennas and
Propagation, 28, 538-545.

Ulaby, F. T., Kouyate, F., brisco, B., and Williams, L. (1986) Textural information
in SAR images. IEEE Transactions of Geoscience and. Remote Sensing, 24, 235-245.

Ulbricht, A. (1998) Evaluation of the potential of full-polarimetic airborne repeat-
pass- SAR- interferometery for classification of changes detected by the coherence.
Retrieval of Bio- and Physical Parameters from SAR Data for Land Application
Workshop.  ESTEC, The Netherlands, 21-23 October 1998,
http://www.estec.esa.nl/CONFANNOUN/98c07/.

http://www.estec.esa.nl/CONFANNOUN/98c07/
http://www.estec.esa.nl/CONFANNOUN/98c07/
http://www.estec.esa.nl/CONFANNOUN/98c07/
http://www.estec.esa.nl/CONFANNOUN/98c07/
http://www.estec.esa.nl/CONFANNOUN/98c07/


234

Usai, S., and Hanssen, R. (1997) Long time scale INSAR by means of high
coherence features. Proceedings of Third ERS Symposium, Florence, Italy,
http://earth1.esa.it/florence/papers/.

Utgoff, P. E., and Brodley, C. E., (1990) An incremental method of finding
multivariate splits for decision trees. Machine Learning, Proceedings of the Seventh
International conference on Machine Learning. Austin, Texas: Morgan Kaufmann.

Van Genderen, J. L.,  and Lock, B. F. (1977) Testing land use map accuracy.
Photogrammetric Engineering and Remote Sensing, 43, 1135-1137.

Vapnik, W. N., and Chervonenkis, A. Y. (1971)  On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability and its
Applications. 17, 264-280.

Vapnik, W. N., and Chervonenkis, A. Y. (1979) Theory of Pattern Recognition.
Berlin: Akademia-Verlag.

Vapnik, W. N. (1982) Estimation of dependencies based on empirical data. Berlin:
Springer-Verlag.

Vapnik, W. N., and Chervonenkis, A. Y. (1991)  The necessary and sufficient
conditions for consistency in the empirical risk minimisation method. Pattern
Recognition and Image Analysis. 1, 283-305.

Vapnik, V. N. (1995)  The Nature of Statistical Learning Theory. New York:
Springer-Verlag.

Vapnik, V. N. (1999) An overview of statistical learning theory. IEEE Transactions
of Neural Networks, 10, 988-999.

Watanabe, S. (1965) Karhunen-Loeve expansion and factor analysis, theoretical
remarks and applications. Transactions of the Fourth Prague Conference on
Information Theory, Prague, Czechoslovakia.

Wegmuller, U., and Werner, C. (1994) Analysis of interferometric land surface
signatures. Proceedings of Progress in Electromagnetic Research Symposium,
Noordwijk, July 11-15, Noordwijk, The Netherlands.

Wegmuller, U., Werner, C., Neusch, D., and Borgeoud, M. (1995) Land – surface
analysis using ERS-1 SAR interferometry, ESA Bulletin, 81, 30-37.

Wegmuller, U., and Werner, C. (1995) SAR interferometric signature of forests.
IEEE Transactions on Geoscience and Remote Sensing, 33, 1153-1161.

Wegmuller, U., and Werner, C. (1996) Land application using ERS –1/2 tandem
data. FRINGE-ESA Workshop on Application of ERS SAR Interferometry, University
of Zurich, 30 September to 2 October, http://www.geo.unizh.ch/rsl/fringe96/.

http://earth1.esa.it/florence/papers/
http://www.geo.unizh.ch/rsl/fringe96/


235

Wegmuller, U., and Werner, C. (1997) Retrieval of vegetation parameters with
SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 35, 18-
24.

Westin, J., and Watkins, C. (1998) Multi-class Support Vector Machines. Royal
Holloway, University of London, U. K., Technical Report CSD-TR-98-04.

Weszka, J. S., Dyer, C. R., and Rosenfeld, A. (1976) A comparitive study of texture
measures for terrain classification. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-6, 269-285.

Wharton, S (1987) A spectral-knowledge-based approach for urban and land-cover
discrimination. IEEE Transactions of Geoscience and Remote Sensing, 25, 272-282.

Wilkinson, G. G. (1997) Open questions in neurocomputing for earth observation. In
Neuro-Computation in Remote Sensing Data Analysis, edited by I.

Kanellopoulos, G. G. Wilkinson, F. Roli and J. Austin.
London: Springer, 3-13.

Wilkinson, G. G. (2000) Processing and classification of satellite images.
Encyclopaedia of Analytical Chemistry, Edited by R. A. Meyers. John Wiley and
sons, 8679-8693.

Woodcock, C. E., and Strahler, A. H. (1987) The factor of scale in remote sensing.
Remote Sensing of Environment, 21, 311-332.

Xia, Z. G., Clarke, K., C. (1997) Approaches to scaling of geo-spatial data. Scale in
Remote Sensing and GIS, Quattrochi, D. A., and Goodchild, M. A. (ed.), Boca Raton:
CRC Press, 309-360.

You, K. C., and Fu, K. S. (1976) An approach to the design of a linear binary tree
classifier. Proceedings of the Symposium on Machine Processing of Remotely Sensed
Data. 3A-1-3A-10.

Zebker, H. A., and Goldstein, R. M. (1986) Topographic mapping from
interferometric synthetic aperture radar observations. Journal of Geophysical
Research, 91,  4993-4999.

Zebker, H. A.,  and Villasenor, I. (1992) Decorrelation in interferometric radar
echoes. IEEE Transaction of Geoscience and Remote Sensing, 30, 950-959.

Zhang, M., and Scofield, R. A. (1994) Artificial neural network techniques for
estimating heavy convective rainfall and recognising cloud mergers. International
Journal of Remote Sensing, 15, 3241-3261.

Zhu, G., and Blumberg, D. G., (2002) Classification using ASTER data and SVM
algorithms; The case study of Beer Sheva, Israel. Remote Sensing of Environment, 80,
233-240.



236

Zmuda, A., Slater, J., Batts, A., and Seaman, E. (1988) Mapping land cover, soil
cultivation and crop establishment for nitrate sensitivity analysis using ERS InSAR
data. Retrieval of Bio- and Physical Parameters from SAR Data for Land Application
Workshop. ESTEC, The Netherlands, 21-23 October 1998,
http://www.estec.esa.nl/CONFANNOUN/98c07/.

http://www.estec.esa.nl/CONFANNOUN/98c07/
http://www.estec.esa.nl/CONFANNOUN/98c07/
http://www.estec.esa.nl/CONFANNOUN/98c07/


237

APPENDIX A

CONFUSION MATRICES FOR CHAPTER  5 (Section 5.1)

Univariate decision tree classifier with different training data

700 training pixels

Class 1 2 3 4 5 6 7 Total User's
1 281 7 15 2 0 0 0 305 92.13
2 10 191 37 14 23 10 0 285 67.02
3 7 32 179 8 3 10 1 240 74.58
4 2 28 61 249 7 19 7 373 66.76
5 0 22 1 3 266 0 0 292 91.1
6 0 17 4 17 1 209 10 258 81.01
7 0 3 3 7 0 52 219 284 77.11

Total 300 300 300 300 300 300 237 2037
produc. 93.67 63.67 59.67 83 88.67 69.67 92.41

Overall Accuracy = 78.25 Kappa value = 0.75

1050 training pixels

Class 1 2 3 4 5 6 7 Total User's
1 273 8 10 4 0 0 0 295 92.54
2 21 225 11 15 30 7 1 310 72.58
3 5 24 221 32 7 13 4 306 72.22
4 1 22 47 233 10 15 3 331 70.39
5 0 4 4 0 252 5 1 266 94.74
6 0 13 3 10 1 228 21 276 82.61
7 0 4 4 6 0 32 207 253 81.82

Total 300 300 300 300 300 300 237 2037
produc. 91 75 73.67 77.67 84 76 87.34

Overall accuracy =80.46 Kappa value = 0.772

1400 training pixels

Class 1 2 3 4 5 6 7 Total User's
1 282 8 4 2 0 0 0 296 95.27
2 12 236 22 24 34 6 0 334 70.66
3 4 15 233 21 8 10 2 293 79.52
4 2 17 29 233 3 10 4 298 78.19
5 0 5 1 2 254 0 0 262 96.95
6 0 19 9 11 1 237 27 304 77.96
7 0 0 2 7 0 37 204 250 81.6

Total 300 300 300 300 300 300 237 2037
produc. 94 78.67 77.67 77.67 84.67 79 86.08

Overall accuracy = 82.43 kappa value = 0.795



1750 training pixels

Class 1 2 3 4 5 6 7 Total User's
1 277 5 5 2 0 0 0 289 95.85
2 13 217 11 11 28 12 1 293 74.06
3 6 26 240 26 5 15 2 320 75
4 4 18 31 242 3 7 5 310 78.06
5 0 15 0 2 263 0 0 280 93.93
6 0 18 10 7 1 251 21 308 81.49
7 0 1 3 10 0 15 208 237 87.76

Total 300 300 300 300 300 300 237 2037
produc. 92.33 72.33 80 80.67 87.67 83.67 87.76

Overall accuracy = 83.36 Kappa value = 0.806

2100 training pixels

Class 1 2 3 4 5 6 7 Total User's
1 287 6 13 7 1 0 0 314 91.4
2 8 224 14 7 32 5 1 291 76.98
3 3 21 234 18 2 12 3 293 79.86
4 2 20 26 239 2 7 3 299 79.93
5 0 16 1 2 262 0 0 281 93.24
6 0 11 9 16 1 262 24 323 81.11
7 0 2 3 11 0 14 206 236 87.29

Total 300 300 300 300 300 300 237 2037
produc. 95.67 74.67 78 79.67 87.33 87.33 86.92

Overall accuracy = 84.14 Kappa value = 0.815

2400 training pixels

Class 1 2 3 4 5 6 7 Total User's
1 272 6 7 2 0 0 0 287 94.77
2 20 221 19 14 20 16 0 310 71.29
3 3 17 228 17 3 12 3 283 80.57
4 5 18 31 245 4 5 1 309 79.29
5 0 20 1 3 270 0 0 294 100
6 0 17 10 13 3 257 30 330 77.88
7 0 1 4 6 0 10 203 224 90.63

Total 300 300 300 300 300 300 237 1696
produc. 90.67 73.67 76 81.67 90 85.67 67.67

Overall accuracy = 83.26 Kappa value = 0.805
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2700 training pixels (without boosting)

Class 1 2 3 4 5 6 7 Total User's
1 277 10 2 2 2 0 0 293 94.54
2 14 219 13 10 20 12 2 290 75.52
3 6 23 242 16 1 11 5 304 79.61
4 3 12 33 253 5 7 3 316 80.06
5 0 20 0 2 269 1 0 292 92.12
6 0 15 8 13 3 255 26 320 79.69
7 0 1 2 4 0 14 201 222 90.54

Total 300 300 300 300 300 300 237 2037
produc. 92.33 73 80.67 84.33 89.67 85 84.81

Overall accuracy = 84.24 Kappa value = 0.816

2700 training pixels (with boosting)

Class 1 2 3 4 5 6 7 Total User's
1 289 4 2 3 0 0 0 298 96.98
2 6 243 13 6 17 14 1 300 81
3 4 15 248 7 2 7 4 287 86.41
4 1 10 27 267 4 3 3 315 84.76
5 0 14 1 2 274 1 0 292 93.84
6 0 12 7 11 3 264 21 318 83.02
7 0 2 2 4 0 11 208 227 91.63

Total 300 300 300 300 300 300 237 2037
Produc 96.33 81 82.67 89 91.33 88 87.76

Overall accuracy = 88.46        kappa value = 0.865

ETM+ and internal texture derived from PAN
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Class 1 2 3 4 5 6 7 Total User's
1 282 7 8 0 0 0 0 297 94.95
2 6 221 14 16 25 14 1 297 74.41
3 8 19 245 17 1 9 3 302 81.13
4 3 25 20 248 2 5 9 312 79.49
5 1 11 2 6 272 2 0 294 92.52
6 0 17 9 13 0 250 25 314 79.62
7 0 0 2 0 0 20 197 219 89.95

Total 300 300 300 300 300 300 235 2035
produc. 94 73.67 81.67 82.67 90.67 83.33 83.83

Overall accuracy = 84.3 Kappa value = 0.816
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ETM+ with PAN and internal texture of PAN

Class 1 2 3 4 5 6 7 Total User's
1 277 9 2 2 0 0 0 290 95.52
2 8 236 11 16 23 2 1 297 79.46
3 9 9 248 21 2 12 5 306 81.05
4 4 12 27 247 5 7 3 305 80.98
5 2 27 1 2 268 2 0 302 88.74
6 0 7 9 9 1 258 28 312 82.69
7 0 0 2 3 1 19 197 222 88.74

Total 300 300 300 300 300 300 234 2034
Produc 92.33 78.67 82.67 82.33 89.33 86 84.19

Overall accuracy = 85.10 Kappa value = 0.826

ETM+ with PAN and internal texture+three GLCM features of PAN

class 1 2 3 4 5 6 7 Total User's
1 291 10 2 0 0 0 0 303 96.04
2 5 235 15 16 16 4 0 291 80.76
3 3 21 246 26 4 4 6 310 79.35
4 1 19 28 243 8 5 5 309 78.64
5 0 9 0 2 269 0 0 280 96.07
6 0 6 8 12 3 261 18 308 84.74
7 0 0 1 1 0 26 214 242 88.43

Total 300 300 300 300 300 300 243 2043
Produc 97 78.33 82 81 89.67 87 88.07

Overall accuracy = 86.1 Kappa value = 0.838

ETM+,PAN and internal texture+3GLCM features of PAN (boosted)

Class 1 2 3 4 5 6 7 Total User's
1 292 7 1 2 0 0 0 302 96.69
2 5 252 8 12 14 1 3 295 85.42
3 3 21 269 15 6 6 4 324 83.02
4 0 8 16 254 4 4 6 292 86.99
5 0 8 0 2 273 1 0 284 96.13
6 0 4 5 14 3 272 11 309 88.03
7 0 0 1 1 0 16 219 237 92.41

Total 300 300 300 300 300 300 243 2043
produc. 97.33 84 89.67 84.67 91 90.67 90.12

Overall accuracy = 89.6 Kappa value = 0.879
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Maximum likelihood classifier results

ETM+ data

class 1 2 3 4 5 6 7 Total User's
1 288 5 1 0 0 0 0 294 98
2 2 235 10 8 16 2 0 273 86.1
3 7 19 246 34 3 9 3 321 76.6
4 3 6 31 212 4 3 5 264 80.3
5 0 13 0 1 277 0 0 291 95.2
6 0 21 8 15 0 209 7 260 80.4
7 0 1 4 30 0 77 222 334 66.5

Total 300 300 300 300 300 300 237 2037
Produ .  96.0 78.3 82 70.7 92.3 69.7 93.7

Overall accuracy = 82.9              Kappa Value = 0.801

ETM+ with internal texture of PAN

Class 1 2 3 4 5 6 7 Total Users
1 283 8 0 1 0 0 0 292 96.9
2 6 234 4 12 24 4 0 284 82.4
3 8 10 249 30 2 12 2 313 79.6
4 1 13 27 226 1 8 3 279 81
5 0 10 2 2 273 0 0 287 95.1
6 2 25 14 18 0 204 7 270 75.6
7 0 0 4 11 0 72 223 310 71.9

Total 300 300 300 300 300 300 235 2035
Produ. 94.3 78 83 75.3 91 68 94.9

 Overall accuracy = 83.1             Kappa value = 0.803

ETM+ with PAN and internal texture of PAN

Class 1 2 3 4 5 6 7 Total Users
1 279 7 0 1 0 0 0 287 97.2
2 9 241 12 18 19 3 0 302 79.8
3 6 10 232 25 1 8 1 283 82
4 6 5 41 232 1 4 13 302 76.8
5 0 22 1 1 276 0 0 300 92
6 0 15 14 15 3 215 14 276 77.9
7 0 0 0 8 0 70 206 284 72.5

Total 300 300 300 300 300 300 234 2034
Produ. 93 80.3 77.3 77.3 92 71.7 88

Overall accuracy = 82.6              Kappa value = 0.798
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ETM+ with PAN and internal texture+3 GLCM features of PAN

Class 1 2 3 4 5 6 7 Total Users
1 292 6 1 0 0 0 0 299 97.7
2 5 256 8 24 21 8 0 322 79.5
3 1 11 237 10 7 8 0 274 86.5
4 0 5 43 250 1 2 1 302 82.8
5 0 12 0 0 269 0 0 281 95.7
6 2 10 4 8 2 197 11 234 84.2
7 0 0 7 8 0 85 231 331 69.8

Total 300 300 300 300 300 300 243 2043
Produ. 97.3 85.3 79 83.3 89.7 65.7 95.1

Overall accuracy = 84.8               Kappa value = 0.823

Neural network classifier results

ETM+ data

Class 1 2 3 4 5 6 7 Total Users
1 288 3 3 1 0 0 0 295 97.6
2 2 242 8 0 12 5 1 270 89.6
3 2 16 258 22 2 10 5 315 81.9
4 3 4 12 229 5 2 1 256 89.5
5 0 7 0 1 272 0 0 280 97.1
6 0 10 1 5 1 256 26 299 85.6
7 0 0 0 0 0 1 188 189 99.5

Uncla. 5 18 18 42 8 26 16 133 7
Total 300 300 300 300 300 300 237 2037
Produ. 96 80.7 86 76.3 90.7 85.3 79.3

Overall accuracy = 85.1             Kappa value = 0.829

ETM+ and internal texture of PAN

Class 1 2 3 4 5 6 7 Total Users
1 277 3 1 1 0 0 0 282 98.2
2 8 251 7 4 27 0 1 298 84.2
3 4 16 262 14 1 12 1 310 84.5
4 1 8 14 250 1 4 5 283 88.3
5 0 2 0 2 266 0 0 270 98.5
6 0 4 2 5 0 245 25 281 87.2
7 0 0 0 0 0 6 186 192 96.9

Uncla. 10 16 14 24 5 33 17 119 6.2
Total 300 300 300 300 300 300 235 2035
Produ. 92.3 83.7 87.3 83.3 88.7 81.7 79.1

Overall accuracy = 85.4              Kappa value = 0.832
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ETM+with PAN and internal texture of PAN

Class 1 2 3 4 5 6 7 Total Users
1 285 9 1 4 0 0 0 299 95.3
2 0 238 3 2 16 0 0 259 91.9
3 5 5 231 10 1 5 0 257 89.9
4 2 4 31 259 0 7 4 307 84.4
5 0 10 0 0 269 0 0 279 96.4
6 0 6 3 1 3 261 24 298 87.6
7 0 0 1 0 0 6 199 206 96.6

Uncla. 8 28 30 24 11 21 7 129 6.8
Total 300 300 300 300 300 300 234 2034
produc. 95 79.3 77 86.3 89.7 87 85

Overall accuracy = 85.6              Kappa value = 0.836

ETM+ with PAN and internal texture+3 GLCM features of PAN

Class 1 2 3 4 5 6 7 Total Users
1 287 5 1 0 0 0 0 293 98
2 7 271 8 9 20 0 1 316 85.8
3 2 3 257 13 3 7 1 286 89.9
4 1 6 8 247 0 3 4 269 91.8
5 0 3 0 0 270 1 0 274 98.5
6 0 3 4 2 2 251 14 276 90.9
7 0 0 0 0 0 14 208 222 93.7

Uncla. 3 9 22 29 5 24 15 107 5.5
Total 300 300 300 300 300 300 243 2043
Produ. 95.7 90.3 85.7 82.3 90 83.7 85.6

Overall accuracy = 87.7               Kappa value = 0.858
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Multivariate decision tree (QUEST) classifier with different
training data

700 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 270 6 16 0 0 0 0 292 92.47
2 11 216 28 28 32 13 4 332 65.06
3 3 23 223 44 3 12 7 315 70.79
4 15 18 17 196 5 6 3 260 75.38
5 0 6 0 0 251 1 0 258 97.29
6 1 29 13 11 9 238 25 326 73.01
7 0 2 3 21 0 30 198 254 77.95

Total 300 300 300 300 300 300 237 2037
Produ. 90 72 74.33 65.33 83.67 79.33 66

Overall accuracy = 78.15

1050 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 273 8 11 2 1 0 0 295 92.54
2 17 238 26 19 31 22 3 356 66.85
3 3 20 222 31 4 8 2 290 76.55
4 7 10 33 210 2 18 9 289 72.66
5 0 7 0 9 255 0 0 271 94.1
6 0 17 6 8 7 238 27 303 78.55
7 0 0 2 21 0 14 196 233 84.12

Total 300 300 300 300 300 300 237 2037
Produ. 91 79.33 74 70 85 79.33 82.7

Overall accuracy = 80.12

1400 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 278 6 8 2 1 0 0 295 94.24
2 13 214 16 11 22 8 1 285 75.09
3 4 22 214 25 4 8 0 277 77.26
4 5 24 42 230 8 9 2 320 71.88
5 0 5 0 0 263 0 0 268 98.13
6 0 29 20 25 2 254 23 353 71.95
7 0 0 0 7 0 21 211 239 88.28

Total 300 300 300 300 300 300 237 2037
Produ. 92.67 71.33 71.33 76.67 87.67 84.67 89.03

Overall accuracy = 81.69
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1750 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 287 6 7 2 2 0 0 304 94.41
2 3 232 21 13 20 9 2 300 77.33
3 4 16 219 30 4 11 1 285 76.84
4 6 24 34 225 11 6 3 309 72.82
5 0 5 0 2 260 0 0 267 97.38
6 0 17 17 11 3 251 20 319 78.68
7 0 0 2 17 0 23 211 253 83.4

Total 300 300 300 300 300 300 237 2037
Produ. 95.67 77.33 73 75 86.67 83.67 89.03

Overall accuracy =82.72

2100 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 281 6 7 0 2 0 0 296 94.93
2 10 223 21 16 20 6 1 297 75.08
3 2 14 209 16 4 13 0 258 81.01
4 7 24 52 246 7 14 11 361 68.14
5 0 12 0 1 263 6 0 282 93.26
6 0 21 10 12 4 245 29 321 76.32
7 0 0 1 9 0 16 196 222 88.29

Total 300 300 300 300 300 300 237 2037
Produ. 93.67 74.33 69.67 82 87.67 81.67 82.7

Overall accuracy = 81.64

2400 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 285 9 9 1 4 0 0 308 92.53
2 7 232 21 7 17 9 1 294 78.91
3 2 7 210 16 2 4 0 241 87.14
4 6 21 42 239 10 8 4 330 72.42
5 0 5 0 0 256 0 0 261 98.08
6 0 24 7 9 11 252 23 326 77.3
7 0 2 11 28 0 27 209 277 75.45

Total 300 300 300 300 300 300 237 2037
Produ. 95 77.33 70 79.67 85.33 84 88.19

Overall accuracy = 82.62
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2700 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 286 5 3 2 1 0 0 297 96.3
2 5 245 19 8 28 7 2 314 78.03
3 4 16 234 36 6 4 3 303 77.23
4 5 10 32 232 9 12 2 302 76.82
5 0 4 0 0 245 0 0 249 98.39
6 0 20 10 15 11 254 17 327 77.68
7 0 0 2 7 0 23 213 245 86.94

Total 300 300 300 300 300 300 237 2037
Produ. 95.33 81.67 78 77.33 81.67 84.67 89.87

Overall accuracy = 83.9



CONFUSION MATR

"one against one" mult
A

700 training pixels

Class 1 2
1 285 10
2 10 246 1
3 2 24 21
4 2 7 5
5 1 6
6 0 7 1
7 0 0

Total 300 300 30
Produ. 95 82 70.6

Overall accu

1050 training pixels 

Class 1 2
1 290 5
2 3 250 1
3 4 21 21
4 3 7 5
5 0 7
6 0 10
7 0 0

Total 300 300 30
Produ. 96.67 83.33 7

Overall accu

1400 training pixels

Class 1 2
1 290 5
2 1 251 1
3 7 23 21
4 1 6 5
5 1 6
6 0 9
7 0 0

Total 300 300 30
Produ. 96.67 83.67 7

Overall accu
APPENDIX B

ICES FOR CHAPTER  5 (Section 5.2)

i-class method using Royal Holloway and
T&T SVM software

3 4 5 6 7 Total Users
3 3 0 0 0 301 94.68
7 7 25 11 0 316 77.85
2 3 2 9 2 254 83.46
7 269 2 14 7 358 75.14
0 1 270 0 0 278 97.12
0 7 1 221 16 262 84.35
1 10 0 45 212 268 79.1
0 300 300 300 237 2037
7 89.67 90 73.67 89.45

racy =84.19 Kappa value = 0.82

3 4 5 6 7 Total Users
3 3 0 0 0 301 96.35
0 8 23 9 1 304 82.24
6 4 4 9 3 261 82.76
9 263 2 8 3 345 76.23
2 0 268 1 0 278 96.4
9 10 3 232 18 282 82.27
1 12 0 41 212 266 79.7
0 300 300 300 237 2037
2 87.67 89.33 77.33 89.45

racy = 84.98 Kappa value = 0.825

3 4 5 6 7 Total Users
4 3 0 0 0 302 96.03
0 7 21 9 0 299 83.95
9 3 4 9 2 267 82.02
6 260 2 7 5 337 77.15
2 1 270 0 0 280 96.43
8 8 3 244 22 294 82.99
1 18 0 31 208 258 80.62
0 300 300 300 237 2037
3 86.67 90 81.33 87.76

racy = 85.52 Kappa value = 0.831
247
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1750 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 287 4 1 3 0 0 0 295 97.29
2 2 248 8 5 20 6 0 289 85.81
3 8 21 218 4 5 8 2 266 81.95
4 2 8 59 267 4 8 4 352 75.85
5 1 7 2 0 268 0 0 278 96.4
6 0 12 10 7 3 245 22 299 81.94
7 0 0 2 14 0 33 209 258 81.01

Total 300 300 300 300 300 300 237 2037
Produ. 95.67 82.67 72.67 89 89.33 81.67 88.19

Overall accuracy = 85.52 Kappa value = 0.831

2100 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 289 4 1 3 0 0 0 297 97.31
2 1 252 8 7 19 7 0 294 85.71
3 7 21 225 3 5 8 2 271 83.03
4 3 6 57 269 2 9 5 351 76.64
5 0 7 0 0 271 0 0 278 97.48
6 0 10 7 11 3 251 25 307 81.76
7 0 0 2 7 0 25 205 239 85.77

Total 300 300 300 300 300 300 237 2037
Produ. 96.33 84 75 89.67 90.33 83.67 86.5

Overall accuracy = 86.5 Kappa value = 0.842

2400 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 290 5 2 3 0 0 0 300 96.67
2 1 254 9 7 19 8 0 298 85.23
3 7 21 229 7 4 9 2 279 82.08
4 2 6 52 264 2 6 3 335 78.81
5 0 7 0 0 272 0 0 279 97.49
6 0 7 7 14 3 261 26 318 82.08
7 0 0 1 5 0 16 206 228 90.35

Total 300 300 300 300 300 300 237 2037
Produ. 96.67 84.67 76.33 88 90.67 87 86.92

Overall accuracy = 87.19 Kappa value = 0.85
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2700 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 289 5 3 3 0 0 0 300 96.33
2 2 248 8 6 18 6 0 288 86.11
3 7 20 242 9 4 7 2 291 83.16
4 2 6 39 263 1 6 4 321 81.93
5 0 9 1 1 276 0 0 287 96.17
6 0 12 7 18 1 267 27 332 2.781
7 0 0 0 0 0 14 204 218 93.58

Total 300 300 300 300 300 300 237 2037
Produ. 96.33 82.67 80.67 87.67 92 89 86.08

Overall accuracy = 87.37 Kappa value = 0.86

"one against one" multi-class method using LIBSVM software

With 2700 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 290 5 3 3 0 0 0 301 96.35
2 2 249 9 7 21 6 1 295 84.41
3 6 20 244 10 2 7 1 290 84.14
4 2 7 37 263 1 6 5 321 81.93
5 0 8 0 1 275 0 0 284 96.83
6 0 11 7 16 1 267 27 329 81.16
7 0 0 0 0 0 14 203 217 93.55

Total 300 300 300 300 300 300 237 2037
Produ. 96.67 83 81.33 87.67 91.67 89 85.65

Overall accuracy = 87.92 Kappa value = 0.87
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"one against rest" multi-class method

700 training pixels 

Class 1 2 3 4 5 6 7 Total Users
1 283 6 2 2 0 0 0 293 96.59
2 3 226 10 1 15 4 1 260 86.92
3 4 8 188 1 2 6 0 209 89.95
4 1 1 26 207 0 0 1 236 87.71
5 0 5 0 0 263 0 0 268 98.13
6 0 2 6 1 0 193 3 205 94.15
7 0 0 0 0 0 31 192 223 86.1

Uncla. 9 52 68 88 20 66 40 343
Total 300 300 300 300 300 300 237 2037
Produ. 94.33 75.33 62.67 69 87.67 64.33 81.01

Overall accuracy = 76.19 Kappa value = 0.73

2700 training pixels

Class 1 2 3 4 5 6 7 Total Users
1 285 3 1 2 0 0 0 291 97.94
2 2 229 10 0 14 0 0 255 89.8
3 3 11 209 3 1 7 0 234 89.32
4 2 3 19 213 0 1 4 242 88.02
5 0 7 0 0 266 0 0 273 97.44
6 0 6 4 4 0 236 21 271 87.08
7 0 0 0 0 0 10 186 196 94.9

Uncla. 8 41 57 78 19 46 26 275
Total 300 300 300 300 300 300 237 2037
Produ. 95 76.33 69.67 71 88.67 78.67 78.48

Overall accuracy = 79.73 Kappa value = 0.77
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APPENDIX C

CONFUSION MATRICES FOR CHAPTER 6

Confusion matrices with maximum likelihood classifier

Data set1

Class 1 2 3 4 5 6 7 Total Users
1 265 48 10 15 147 14 17 516 51.4
2 7 155 35 34 8 2 69 310 50
3 5 25 190 66 20 0 21 327 58.1
4 1 24 45 160 10 1 9 250 64
5 17 13 6 10 80 11 3 140 57.1
6 2 24 10 13 11 272 60 392 69.4
7 3 11 4 2 24 0 121 165 73.3

Total 300 300 300 300 300 300 300 2100
Produ. 88.3 51.7 63.3 53.3 26.7 90.7 40.3

Overall acuuracy = 59.2 Kappa value = 0.526

Data set 2

Class 1 2 3 4 5 6 7 Total Users
1 277 33 4 7 47 0 13 381 72.7
2 12 189 7 27 26 0 83 344 54.9
3 2 23 192 43 15 1 26 302 63.6
4 0 27 61 199 15 0 13 315 63.2
5 6 7 12 13 154 10 3 205 75.1
6 0 6 18 8 33 287 17 369 77.8
7 3 15 6 3 10 2 145 184 78.8

Total 300 300 300 300 300 300 300 2100
Produ. 92.3 63 64 66.3 51.3 95.7 48.3

Overall accuracy = 68.7 Kappa value = 0.635

Data set 3

Class 1 2 3 4 5 6 7 Total Users
1 240 49 11 20 33 0 30 383 62.7
2 27 154 22 49 13 1 81 347 44.4
3 5 9 33 6 7 0 19 79 41.8
4 2 24 6 90 40 9 6 177 50.8
5 23 29 31 58 131 14 6 292 44.9
6 0 24 170 69 70 274 36 643 42.6
7 3 11 27 8 6 2 122 179 68.2

Total 300 300 300 300 300 300 300 2100
Produ. 80 51.3 11 30 43.7 91.3 40.7

Overall accuracy = 49.7 Kappa value = 0.413
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Class 1 2 3 4 5 6 7 Total Users
1 272 54 6 4 32 0 17 385 70.6
2 9 148 12 36 6 3 31 245 60.4
3 4 21 193 39 20 1 16 294 65.6
4 2 26 50 194 10 1 6 289 67.1
5 9 18 15 15 186 20 8 271 68.6
6 0 5 3 7 12 271 4 302 89.7
7 4 28 21 5 34 4 218 314 69.4

Total 300 300 300 300 300 300 300 2100
Produ. 90.7 49.3 64.3 64.7 62 90.3 72.7

Overall accuracy = 70.6    Kappa value = 0.657

Data set 5

Class 1 2 3 4 5 6 7 Total Users
1 273 36 2 7 13 0 6 337 81
2 10 200 13 35 25 8 10 301 66.4
3 1 15 239 46 13 3 13 330 72.4
4 0 19 22 191 14 2 9 257 74.3
5 4 11 7 6 201 8 2 239 84.1
6 0 1 3 5 2 276 1 288 95.8
7 12 18 14 10 32 3 259 348 74.4

Total 300 300 300 300 300 300 300 2100
Produ. 91 66.7 79.7 63.7 67 92 86.3

Overall accuracy = 78.0      Kappa value = 0.744

Data set 6

Class 1 2 3 4 5 6 7 Total Users
1 262 39 2 1 79 0 7 390 67.2
2 7 169 32 28 44 7 46 333 50.8
3 4 28 207 35 18 0 10 302 68.5
4 1 30 39 222 14 9 28 343 64.7
5 15 5 5 2 119 4 1 151 78.8
6 0 22 5 6 4 280 25 342 81.9
7 11 7 10 6 22 0 183 239 76.6

Total 300 300 300 300 300 300 300 2100
Produ. 87.3 56.3 69 74 39.7 93.3 61

Overall accuracy = 68.7 Kappa value = 0.634

Data set 7

Class 1 2 3 4 5 6 7 Total Users
1 277 37 1 2 12 0 2 331 83.7
2 4 182 18 22 31 10 57 324 56.2
3 3 19 228 28 16 1 11 306 74.5
4 1 40 34 236 17 7 16 351 67.2
5 11 9 8 2 213 10 2 255 83.5
6 0 7 3 0 1 272 0 283 96.1
7 4 6 8 10 10 0 212 250 84.8

Total 300 300 300 300 300 300 300 2100
Produ. 92.3 60.7 76 78.7 71 90.7 70.7

Overall accuracy = 77.1 Kappa value = 0.733
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Confusion matrix using neural network classifier

Data set 1

Class 1 2 3 4 5 6 7 Total Users
1 217 21 3 6 56 3 10 316 68.7
2 0 147 1 6 1 0 25 180 81.7
3 0 8 165 15 1 1 14 204 80.9
4 1 14 38 190 7 3 3 256 74.2
5 13 11 5 9 120 2 1 161 74.5
6 0 5 3 3 3 262 0 276 94.9
7 0 11 4 4 4 0 175 198 88.4

U 69 83 81 67 108 29 72 509 32
Total 300 300 300 300 300 300 300 2100
Produc 72.3 49 55 63.3 40 87.3 58.3

Overall accuracy = 60.8 Kappa value = 0.572

Data set 2

Class 1 2 3 4 5 6 7 Total Users
1 243 20 1 0 2 0 2 268 90.7
2 7 171 5 13 5 0 16 217 78.8
3 0 0 188 24 2 1 11 226 83.2
4 0 13 28 188 3 2 3 237 79.3
5 4 14 9 20 240 3 7 297 80.8
6 0 9 3 2 2 288 4 308 93.5
7 0 9 1 2 0 1 145 158 91.8

U 46 64 65 51 46 5 112 389 22.7
Total 300 300 300 300 300 300 300 2100
Produ. 81 57 62.7 62.7 80 96 48.3

Overall accuracy = 69.7 Kappa value = 0.664

Data set 3

Class 1 2 3 4 5 6 7 Total Users
1 160 14 5 8 14 0 18 219 73.1
2 9 123 2 31 0 0 31 196 62.8
3 0 3 79 1 0 3 10 96 82.3
4 0 3 2 45 8 2 0 60 75
5 19 29 27 50 130 28 3 286 45.5
6 0 0 1 0 0 0 0 1 0
7 0 3 21 2 0 0 104 130 80

U 112 125 163 163 148 267 134 1112 112.6
Total 300 300 300 300 300 300 300 2100
Produ. 53.3 41 26.3 15 43.3 0 34.7

Overall accuracy = 30.5 Kappa value = 0.279
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Data set 4

Class 1 2 3 4 5 6 7 Total Users
1 253 20 2 5 1 0 3 284 89.1
2 10 166 5 12 2 0 11 206 80.6
3 0 10 192 14 3 0 15 234 82.1
4 1 18 30 189 3 1 10 252 75
5 9 19 16 11 256 0 12 323 79.3
6 0 1 2 4 0 292 4 303 96.4
7 0 4 5 3 7 0 199 218 91.3

U 27 62 48 62 28 7 46 280 15.4
Total 300 300 300 300 300 300 300 2100
Produ. 84.3 55.3 64 63 85.3 97.3 66.3

Overall accuracy = 73.7 kappa value = 0.705

Data set 5

Class 1 2 3 4 5 6 7 Total Users
1 266 19 3 7 1 0 2 298 89.3
2 10 201 7 13 5 0 2 238 84.5
3 0 6 207 14 3 1 8 239 86.6
4 1 5 21 197 5 1 2 232 84.9
5 1 10 5 6 244 1 3 270 90.4
6 0 8 1 0 1 292 2 304 96.1
7 0 7 6 6 1 0 255 275 92.7

U 22 44 50 57 40 5 26 244 13.1
Total 300 300 300 300 300 300 300 2100
Produ. 88.7 67 69 65.7 81.3 97.3 85

Overall accuracy = 79.1     Kappa value = 0.765

Data set 6

Class 1 2 3 4 5 6 7 Total Users
1 193 3 0 0 9 0 0 205 94.1
2 11 190 2 5 9 4 4 225 84.4
3 2 7 235 14 4 11 20 293 80.2
4 0 20 16 224 3 2 12 277 80.9
5 37 7 0 0 222 5 3 274 81
6 0 4 0 4 0 249 0 257 96.9
7 0 3 1 6 1 0 222 233 95.3

U 57 66 46 47 52 29 39 336 19
Total 300 300 300 300 300 300 300 2100
Produ. 64.3 63.3 78.3 74.7 74 83 74

Overall accuracy = 73.1 Kappa value = 0.701

Data set 7

Class 1 2 3 4 5 6 7 Total Users
1 255 7 0 1 0 0 1 264 96.6
2 13 208 5 12 1 1 2 242 86
3 1 14 254 27 1 2 17 316 80.4
4 0 23 12 216 3 1 3 258 83.7
5 3 4 3 7 285 9 1 312 91.3
6 0 3 0 1 0 272 0 276 98.6
7 0 3 6 9 0 0 250 268 93.3

U 28 38 20 27 10 15 26 164 8.5
Total 300 300 300 300 300 300 300 2100
Produ. 85 69.3 84.7 72 95 90.7 83.3

Overall accuracy = 82.9 Kappa value = 0.805
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Confusion matrices using Decision tree classifier

Data set 1

class 1 2 3 4 5 6 7 Total Users
1 225 23 7 7 43 3 11 319 71
2 24 178 11 17 14 1 27 272 65.4
3 6 22 191 45 9 6 19 298 64.1
4 3 18 55 191 19 2 12 300 63.7
5 35 18 12 24 197 7 12 305 64.6
6 2 12 5 4 3 275 8 309 89
7 5 29 19 12 15 6 211 297 71

Total 300 300 300 300 300 300 300 2100
Produc 75 59.3 63.67 63.67 65.67 91.67 70.33

Overall accuracy = 69.9 Kappa value = 0.649

Data set 2

class 1 2 3 4 5 6 7 Total Users
1 253 19 2 4 1 0 5 284 89.1
2 29 204 11 31 19 2 20 316 64.6
3 5 20 216 45 5 8 21 320 67.5
4 3 20 50 187 17 3 7 287 65.2
5 8 17 6 23 252 1 4 311 81
6 1 1 5 2 1 284 5 299 95
7 1 19 10 8 5 2 238 283 84.1

Total 300 300 300 300 300 300 300 2100
Produc 84.3 68 72 62.3 84 94.7 0.793

Overall accuracy = 77.8 Kappa value = 0.741

Data set 3

Class 1 2 3 4 5 6 7 Total users
1 182 30 6 16 17 0 17 268 67.91
2 51 165 16 48 38 9 61 388 42.53
3 7 21 175 43 37 124 49 456 38.38
4 20 28 30 113 48 51 17 307 36.81
5 30 41 29 56 141 25 12 334 42.22
6 1 2 23 18 15 80 4 143 55.94
7 9 13 21 6 4 11 140 204 68.63

Total 300 300 300 300 300 300 300 2100
Produc 60.67 55 58.33 37.67 47 26.67 46.67

Overall accuracy = 47.43 Kappa value = 0.388
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Class 1 2 3 4 5 6 7 Total User's
1 265 18 4 7 2 0 9 305 86.89
2 24 201 16 32 11 3 13 300 67
3 2 10 202 43 8 8 23 296 68.24
4 0 28 38 198 10 2 5 281 70.46
5 9 18 16 8 254 5 9 319 79.62
6 0 3 4 1 3 280 5 296 94.59
7 0 22 20 11 12 2 236 303 77.89

Total 300 300 300 300 300 300 300 2100
Produc 88.33 67 67.33 66 84.67 93.33 78.67

Overall accuracy = 77.9 Kappa value = 0.742

Data set 5

class 1 2 3 4 5 6 7 Total User's
1 269 21 5 5 5 0 2 307 87.62
2 18 196 21 38 16 4 14 307 63.84
3 1 20 209 29 5 3 10 277 75.45
4 4 31 37 207 11 1 7 298 69.46
5 6 23 10 10 255 6 3 313 81.47
6 1 3 5 3 3 285 1 301 94.68
7 1 6 13 8 5 1 263 297 88.55

Total 300 300 300 300 300 300 300 2100
Produc 89.67 65.33 69.67 69 85 95 87.67

Overall accuracy = 80.20 Kappa value = 0.769

Data set 6

class 1 2 3 4 5 6 7 total Users
1 244 16 6 5 17 1 3 292 83.56
2 17 206 21 26 14 6 18 308 66.88
3 5 20 214 42 6 5 12 304 70.39
4 5 24 38 213 5 2 12 299 71.24
5 21 13 4 7 249 5 10 309 80.58
6 1 7 3 4 4 281 2 302 93.05
7 7 14 14 3 5 0 243 286 84.97

Total 300 300 300 300 300 300 300 2100
Produc 81.33 68.67 71.33 71 83 93.67 81

Overall acuuracy=78.57 Kappa value = 0.75

Data set 7

Class 1 2 3 4 5 6 7 Total Users
1 255 13 2 3 4 0 4 281 90.75
2 33 220 22 22 7 5 22 331 66.47
3 5 19 234 27 11 5 21 322 72.67
4 2 21 20 233 2 4 2 284 82.04
5 4 14 8 10 272 8 2 318 85.53
6 0 6 2 2 2 277 4 293 94.54
7 1 7 12 3 2 1 245 271 90.41

Total 300 300 300 300 300 300 300 2100
Produc 85 73.33 78 77.67 90.67 92.33 81.67

Overall accuracy = 82.7 Kappa value = 0.797
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APPENDIX D

CONFUSION MATRICES FOR "MNF" BASED FEATURE
EXTRACTION (CHAPTER 7)

With maximum likelihood classifier

Class 1 2 3 4 5 6 7 8 Total Users
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 15 369 9 4 2 5 57 461 80
4 0 0 1 372 36 12 51 19 491 75.8
5 16 41 8 5 319 20 20 5 434 73.5
6 0 32 1 1 15 356 31 3 439 81.1
7 0 0 3 6 16 10 240 16 291 82.5
8 384 312 18 7 10 0 53 300 1084 27.7

Total 400 400 400 400 400 400 400 400 3200
Produ. 0 0 92.2 93 79.8 89 60 75

Overall accuracy = 61.1 Kappa value = 0.556

With neural network classifier

Class 1 2 3 4 5 6 7 8 Total Users
1 399 1 0 0 0 0 0 2 402 99.3
2 0 386 0 0 2 2 0 6 396 97.5
3 0 0 370 10 3 1 4 34 422 87.7
4 0 0 1 355 23 6 15 2 402 88.3
5 0 1 1 14 331 18 4 7 376 88
6 0 0 1 0 15 355 19 1 391 90.8
7 0 0 3 7 11 10 319 39 389 82
8 0 0 15 4 3 2 20 272 316 86.1

U 1 12 9 10 12 6 19 37 106 3.4
Total 400 400 400 400 400 400 400 400 3200
Produ. 99.8 96.5 92.5 88.8 82.8 88.8 79.8 68

Overall accuracy = 87.10 Kappa value = 0.854

With decision tree classifier

Class 1 2 3 4 5 6 7 8 Total Users
1 399 0 0 0 0 0 0 2 401 99.5
2 0 390 0 1 1 2 0 8 402 97.01
3 0 0 381 5 7 1 6 42 442 86.2
4 0 0 1 376 31 6 21 2 437 86.04
5 0 4 2 7 314 22 2 11 362 86.74
6 0 3 1 1 14 352 17 2 390 90.26
7 0 0 3 6 23 14 332 43 421 78.86
8 1 3 12 4 10 3 22 290 345 84.06

Total 400 400 400 400 400 400 400 400 3200
Produc 99.75 97.5 95.25 94 78.5 88 83 72.5

Overall accuracy = 88.56 Kappa value = 0.869
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with SVMs

Class 1 2 3 4 5 6 7 8 Total Users
1 498 0 0 1 0 0 0 6 505 96.8
2 0 495 0 1 1 5 0 4 506 97.8
3 0 1 447 1 7 1 5 46 508 88
4 1 0 20 448 25 2 16 10 522 85.8
5 0 0 1 16 411 16 10 22 476 86.3
6 0 1 3 12 31 447 16 5 515 86.8
7 0 0 4 18 18 28 393 19 480 81.9
8 1 3 25 3 7 1 60 388 488 79.5

Total 500 500 500 500 500 500 500 500
Produc 99.6 99 89.4 89.6 82.2 89.4 78.6 77.6

Overall accuracy = 88.2 Kappa vlaue = 0.865
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APPENDIX E

CONFUSION MATRICES FOR DECISION TREE BASED
FEATURE EXTRACTION (CHAPTER 7)

With maximum likelihood classifier

Class 1 2 3 4 5 6 7 8 Total Users
1 499 0 0 0 0 0 0 0 499 100
2 0 500 0 0 0 0 0 0 500 100
3 0 0 483 12 1 0 5 34 535 90.3
4 0 0 4 462 7 3 5 3 484 95.5
5 0 0 1 13 463 10 6 19 512 90.4
6 0 0 0 10 27 480 22 2 541 88.7
7 0 0 3 0 2 6 257 3 271 94.8
8 1 0 9 3 0 1 5 439 458 95.9

Total 500 500 500 500 500 500 300 500 3800
Produ. 99.8 100 96.6 92.4 92.6 96 85.7 87.8

Overall accuracy = 94.3 Kappa value = 0.935

With neural network classifier

Class 1 2 3 4 5 6 7 8 Total Users
1 500 0 0 0 0 0 0 0 500 100
2 0 500 1 0 0 0 0 0 501 99.8
3 0 0 475 7 0 0 3 39 524 90.6
4 0 0 2 474 2 2 1 4 485 97.7
5 0 0 0 3 463 4 0 12 482 96.1
6 0 0 0 7 9 459 9 7 491 93.5
7 0 0 1 4 0 20 258 6 289 89.3
8 0 0 16 4 3 0 4 372 399 93.2

U 0 0 5 1 23 15 25 60 129 3.5
Total 500 500 500 500 500 500 300 500 3800
Produ. 100 100 95 94.8 92.6 91.8 86 74.4

Overall accuracy = 92.1 Kappa value = 0.911

with decision tree classifier

Class 1 2 3 4 5 6 7 8 Total Users
1 500 0 0 0 0 0 0 0 500 100
2 0 500 2 0 0 0 0 0 502 99.6
3 0 0 430 4 11 2 5 71 523 82.22
4 0 0 10 455 10 3 3 14 495 91.92
5 0 0 2 6 409 7 12 27 463 88.34
6 0 0 4 12 26 449 21 16 528 85.04
7 0 0 3 10 18 33 243 30 337 72.11
8 0 0 49 13 26 6 16 342 452 75.66

Total 500 500 500 500 500 500 300 500 3800
Produc 100 100 86 91 81.8 89.8 81 68.4

Overall accuracy = 87.6 Kappa value =0.858
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with SVMs

Class 1 2 3 4 5 6 7 8 Total Users
1 500 0 0 0 0 0 0 0 500 100
2 0 500 2 0 0 0 0 0 502 99.6
3 0 0 458 4 1 0 3 34 500 91.6
4 0 0 4 481 5 1 3 3 497 96.8
5 0 0 0 3 481 9 0 3 496 97
6 0 0 0 6 8 471 6 6 497 94.8
7 0 0 6 4 2 19 287 11 329 87.2
8 0 0 30 2 3 0 1 443 479 92.5

Total 500 500 500 500 500 500 300 500
Produc 100 100 91.6 96.2 96.2 94.2 95.7 88.6

Overall accuracy = 95.3 Kappa value = 0.946
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APPENDIX F

CONFUSION MATRICES FOR ETM+ SPAIN DATA
(CHAPTER 7)

With maximum likelihood classifier

Class 1 2 3 4 5 6 Total Users
1 147 0 0 0 0 0 147 100
2 0 0 0 0 0 0 0 0
3 0 0 163 5 1 2 171 95.3
4 0 0 13 207 12 6 238 87
5 0 6 4 12 108 0 130 83.1
6 3 40 9 7 8 42 109 38.5

Total 150 46 189 231 129 50 795
Produ. 98 0 86.2 89.6 83.7 84

Overall accuracy = 83.9 Kappa value = 0.797

With neural network classifier

Class 1 2 3 4 5 6 Total Users
1 148 0 0 0 0 0 148 100
2 0 46 0 0 0 0 46 100
3 1 0 174 10 2 6 193 90.2
4 0 0 3 196 8 1 208 94.2
5 0 0 4 10 107 1 122 87.7
6 0 0 4 7 6 40 57 70.2

U 1 0 4 8 6 2 21 2.7
Total 150 46 189 231 129 50 795
Produ. 98.7 100 92.1 84.8 82.9 80

Overall accuracy = 89.4 Kappa value = 0.869

With decision tree classifier

Class 1 2 3 4 5 6 Total Users
1 147 0 0 0 0 0 147 100
2 0 46 0 0 0 0 46 100
3 0 0 161 23 1 4 189 85.19
4 0 0 11 168 11 2 192 87.5
5 0 0 4 23 109 2 138 78.99
6 3 0 13 17 8 42 83 50.6

Total 150 46 189 231 129 50 795
Produc 98 100 85.19 72.73 84.5 84

Overall accuracy = 84.65 Kappa value = 0.808
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with SVMs

Class 1 2 3 4 5 6 Total Users
1 148 0 0 0 0 0 148 100
2 0 46 0 0 0 0 46 100
3 0 0 170 12 3 2 187 90.9
4 0 0 9 205 10 2 226 90.7
5 0 0 6 7 109 0 122 89.3
6 2 0 4 7 7 46 66 69.7

Total 150 46 189 231 129 50 795
Produ. 98.7 100 89.9 88.7 84.5 92

Overall accuracy = 91.1 Kappa value = 0.887
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