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Abstract

This thesis considers the statistical modelling and analysis of proteomic

mass spectrometry data. Proteomics is a relatively new field of study and

tried and tested methods of analysis do not yet exist. Mass spectrometry

output is high-dimensional and so we firstly develop an algorithm to identify

peaks in the spectra in order to reduce the dimensionality of the datasets. We

use the results along with a variety of classification methods to examine the

classification of new spectra based on a training set. Another method to reduce

the complexity of the problem is to fit a parametric model to the data. We

model the data as a mixture of Gaussian peaks with parameters representing

the peak locations, heights and variances, and apply a Bayesian Markov chain

Monte Carlo (MCMC) algorithm to obtain their estimates. These resulting es-

timates are used to identify m/z values where differences are apparent between

groups, where the m/z value of an ion is its mass divided by its charge. A

multilevel modelling framework is also considered to incorporate the structure

in the data and locations exhibiting differences are again obtained.

We consider two mass spectrometry datasets in detail. The first consists

of mass spectra from breast cancer cells which either have or have not been

treated with the chemotherapeutic agent Taxol. The second consists of mass

spectra from melanoma cells classified as stage I or stage IV using the TNM

system. Using the MCMC and multilevel techniques described above we show

that, in both datasets, small subsets of the available m/z values can be identi-

fied which exhibit significant differences in protein expression between groups.

Also we see that good classification of new data can also be achieved using a

small number of m/z values and that the classification rate does not fall greatly

when compared with results from the complete spectra. For both datasets we

compare our results with those in the literature which use other techniques on

the same data. We conclude by discussing potential areas for further research.
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Chapter 1

Thesis Outline and Background

Information

1.1 Thesis Outline

The research presented in this thesis is concerned with the analysis of pro-

teomic mass spectrometry data. Proteomics, the study of proteins and their

functions, is a relatively new field of research and thus there exist no tried and

tested methods of analysis.

In Chapter 2 we consider the problem of how to classify new spectra. Pro-

teomic datasets are generally high-dimensional and contain a relatively small

number of spectra. Having more observations per spectra than actual spectra

could result in perfect classifiers being obtained for the current data which do

not generalise to larger datasets. To reduce this problem, a deterministic peak

finding algorithm is developed in order to obtain a computationally cheap ap-

proximation of the data. The results of the algorithm allow some test spectra

to be classified based on a set of training spectra. Small groups of m/z values

are identified which provide high rates of correct classification.

In Chapters 3 and 4 we consider the problem of creating a parametric model

1



1.1 Thesis Outline

for the mass spectra. Parametric modelling is another method by which we

can reduce the dimension of the problem. In chapter 3 Markov Chain Monte

Carlo (MCMC) methods are employed to model the datasets. A number of

related models, increasing in complexity, are considered and analysed. The

peak finding algorithm developed in chapter 2 is incorporated to provide a

suitable starting point for the MCMC algorithm. The resulting parameter

values are used to identify differences between different mass spectra which

are then compared with results obtained by other researchers. Some of this

research is published in Handley et al., (2005)

In chapter 4 we consider modelling the data using multilevel models. The

data have a natural hierarchical structure (m/z values within spectra) and

research in previous chapters has ignored this information. The peak finding

procedure from chapter 2 is again implemented to assist in the construction

of the fixed and random effects. For each group we fit a series of fixed effects

which model the average spectra for that group. Random effects are also in-

corporated in order that each spectrum can be modelled instead of simply the

average for each group. Differences between the groups will be identified by

considering the differences between fixed effects. A selection of m/z values are

obtained for each of the datasets which indicate where groups differ.

Lastly, in Chapter 5 we conclude by discussing the main results drawn from

this research. Also possible areas for further work are presented.

The results and graphics in this thesis have been obtained using the C++

programming language (Stroustrup, 2003) and the software packages R (R

Development Core Team, 2005) and MLwiN (Rasbash et al., 2000). Time

comparisons were calculated by using the high performance GRID computer.

2



1.2 Background Information

1.2 Background Information

Due to the high mortality rate of patients with advanced forms of the disease,

the detection of early stage cancer is of great importance. The identification

of indicators (biomarkers) which enable the progress of a disease to be mea-

sured is the subject of much research as there is the potential to diagnose

patients before they present with symptoms. Biomarkers assist in identifying

disease progression by providing quantitative information about molecules at

any given point in time. If the relative concentration of a particular molecule is

found to be different between healthy and diseased cases there is the potential

to use this information to diagnose disease. The identification of biomarkers

suitable for the early detection and diagnosis of cancer could greatly improve

patients’ diagnoses. Early detection of cancer could result in less severe, more

treatable diseases and ultimately higher cure rates.

Shown in table 1.1 are some examples of biomarkers already being used for

disease diagnosis (Diamandis, 2004). However, none of these biomarkers are

suitable for general cancer screening as they are not sufficiently specific and

lead to many false-positive results. Some of the procedures that are currently

used for general screening are mammography for breast cancer, pap smear for

cervical cancer and colonoscopy for colorectal cancer (Tibshirani et al., 2004).

Microarray technology is a popular method of expressing an entire genome

on a single chip by analysing mRNA. mRNA is genetic material created in the

nucleus of a cell. It is a copy of a small section of DNA (a gene) and contains

information which tells the cell how to synthesise proteins. The expression lev-

els of many thousands of genes can be simultaneously studied and differences

in relative expressions can be used to infer differing disease states. However,

proteins are considered closer to actual biological functions than mRNA and,

since mRNA concentration correlates poorly with protein concentration (Ya-

sui et al., 2003), it is more useful to look for protein biomarkers for disease.

This is not possible using microarrays and so the need for large scale analy-
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biomarker cancer type

α-Fetoprotein (AFP) hepatoma; testicular
Carcinoembryonic antigen (CEA) colon; breast; lung; pancreatic
Prostate specific antigen (PSA) prostate

CA125 ovarian
CA15.3 breast
CA19.9 gastrointestinal

Immunoglobins B cell dyscrasias
Chroriogonadotrophin testicular; trophoblastic tumours

Steroid hormone receptors breast

Table 1.1: Examples of established cancer biomarkers.

sis of proteins led to the new research area of proteomics which is concerned

with characterising all the proteins in a biological sample. Nearly all useful

biomarkers identified thus far have been proteins (Robbins et al., 2005).

The traditional method for discovering disease-associated proteins was

by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), in-

vented by O’Farrell and Klose in 1975 (O’Farrell, 1975 and Klose, 1975). This

method separates proteins onto a gel by pH level and size, and gels can then

be compared between two or more disease groups. The large number of studies

carried out using this method has enabled databases to be created of disease-

associated proteins. Some studies that have used this method are, for example,

Edwards et al. (1982), Adam et al. (2001) and Srinivas et al. (2001) which

between them cover prostate and bladder cancers. Although 2D-PAGE is able

to resolve thousands of proteins and detect differences in protein expression,

it is labour intensive and requires high abundance of the proteins in question.

Also some types of proteins - hydrophobic, strongly acidic or strongly basic -

are poorly resolved (Poon et al., 2003). Nearly all common cancer biomarkers

have a concentration of 1 ng/mL or less which is below the detection limit

for 2D-PAGE and thus no new biomarkers for cancer arose from this method

(Robbins et al., 2005).
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An advance in the study of proteins was made in 1987 with the devel-

opment of matrix assisted laser desorption/ionisation time-of-flight (MALDI-

TOF) mass spectrometry. Mass spectrometry is a technique used to identify

and measure a wide variety of biological and chemical compounds. It works

on the principle that different molecules have different masses and thus by

separating a substance into its constituents according to their mass we can

identify which molecules are present. Mass to charge ratios of up to 50,000 Da

can be resolved using this method (Yanagisawa et al., 2003).

Surface enhanced laser desorption/ionisation time-of-flight (SELDI-TOF)

mass spectrometry, originally described by Hutchens and Yip (1993), is a novel

development in time-of-flight mass spectrometry. The general principle behind

SELDI-TOF is that proteins of interest from biological samples bind selectively

to a chemical surface, and the impurities are then washed away. This remaining

part of the sample is then complexed with an energy absorbing molecule, and

analysed by laser desorption/ionisation time-of-flight mass spectrometry to

determine the abundance of the different molecules present in the sample.

The results are often displayed as a graph showing the relative abundance

associated with protein mass/charge (m/z ) ratios over a particular Dalton

range (see figure 1.1). The main advantage of TOF methods over 2D-PAGE

is their ability to detect molecules with m/z ratios smaller than 20 kDa (Qu

et al., 2002).

Many different methods have been employed in recent years to analyse mass

spectrometry data. Genetic algorithms are used by Petricoin et al. (2002) to

study ovarian cancer and artificial neural networks (ANN) by Zhang et al.

(1999) and Mian et al. (2003) to study pelvic masses and breast cancer re-

spectively. T-statistics are quite popular and are used, for example, by Chen

et al. (2002), Vlahou et al. (2001) and Xiao et al. (2001) to study lung ade-

nocarcinoma, bladder cancer and prostate cancer respectively. Also random

forests are used by Izmirlian (2004) and decision trees by Adam et al. (2002)
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Figure 1.1: An example of a SELDI-TOF mass spectrum.

to study prostate cancer.

The SELDI-TOF method has also been used in some non-cancer settings.

Nomura et al. (2004) use the method to search for biomarkers for alcoholism.

Uchida et al (2002) study a dataset on rheumatoid arthritis and actually iden-

tify one of the biomarkers they find in their analysis as a protein known to

be related to the disease. This shows promise for the future of identifying

biomarkers by this method.

However, questions have been asked regarding the impressive results quoted

in the literature obtained using these proteomic methods. There appear to be

four main objections. Firstly, Baggerly et al.(2004) question the reproducibil-

ity of the results. They analyse the same data as Petricoin et al. (2002) but are

unable to replicate most of their findings as two of the datasets have been back-
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ground subtracted. This is a process by which electronic noise inherent in the

mass spectrometer is removed from the resulting mass spectrum. Background

subtraction is an irreversible, non-linear operation and thus the original values

cannot be reconstructed. Note that in figure 1.1 there are some negative inten-

sities near the beginning of the spectrum. This is due to the data having been

background subtracted. It is also suggested that changes in the laboratory, the

mass spectrometer or the ProteinChip array could alter the results obtained.

A recent study by Munro et al. (2006) is the first to have demonstrated the

reproducibility of their results. A random forest classifier was used to predict

the presence of transitional cell carcinoma (TCC) and initial results indicated

71.7% sensitivity and 62.5% specificity. When an independent validation set

was studied 6 months later the respective results were 78.3% and 65.0% which

are comparable with tests currently being used to diagnose TCC.

Secondly, both Baggerly et al. (2004) and Sorace and Zhan (2003) ques-

tion the use of m/z values below 2,000 Daltons. Such m/z values are generally

considered to be noise and should be excluded from any analysis. In the paper

by Petricoin et al. (2002) classifiers solely in the noise region are obtained that

classify the data perfectly. One particular example is found with an m/z value

of 2.79 Daltons suggesting an experimental bias not related to disease state.

Thirdly, Banks et al. (2005) conclude that sample handling can have a

marked effect on the spectra obtained from time-of-flight mass spectrometry.

The time elapsed between obtaining the sample and processing it was a main

cause of differences although others included temperature, storage and cen-

trifugation (time and speed).

Lastly, Somorjai et al. (2003) believe that the near-perfect classification

rates quoted in the literature are misleading and believe this is due to two

reasons - too many m/z values and not enough spectra. With such a large

7
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number of m/z values corrections must be made for multiple measurements

using, for example, Benjamini and Hochberg’s (1995, 2000) false discovery rate

approach. Also seemingly robust classifiers can be obtained relatively easily if

there are only a few examples per group available. Future experiments should

obtain as many examples in each group as is practical to reduce this problem.

1.3 The Datasets

The two datasets analysed in this thesis result from mass spectrometric anal-

ysis of breast cancer and melanoma cell lines respectively.

A cell-line consists of cells of a single type taken from an animal or human

and grown in the laboratory. These cells can grow and replicate continuously

outside the living organism and, with the proper conditions, may be kept alive

indefinitely in a Petri dish. All the cells are genetically identical to a single

common ancestor cell which makes them valuable for research.

Breast cancer is cancer of breast tissue and is the most common form of

cancer in females. In the Western world it will affect approximately one in

nine women at some stage of their life (Markham, 2005).

The breast cancer dataset consists of 144 cell-lines divided equally into one

of three groups. The first group consists of 48 cell-lines of the type MCF-

7/ADR which are chemoresistant and the second and third groups each con-

sist of 48 chemosensitive cell-lines of the types T47D and MCF-7 respectively.

Half of the cell-lines in each group have received a 24 hour exposure to the

chemotherapeutic agent Taxol.

Taxol (Paclitaxel) is a drug used in the treatment of cancer. It was isolated

by Drs. M.E. Wall and M.C. Wani in 1967 (from yew tree bark), who originally
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studied its therapeutic activity in rodent tumours (Wani et al., 1971). One of

the most common characteristics of cancer cells is that they divide rapidly and

Paclitaxel acts by inhibiting this cell replication. Paclitaxel can now be made

in the laboratory and is sold under the tradename Taxol.

Each half of each group in the breast cancer dataset contains three repli-

cates at each of 4 time intervals for two experiments. Note that as the MCF-

7/ADR cell-lines are chemoresistant they should not be affected by the Taxol

treatment.

The breast cancer data are shown in figure 1.2 as images. Results for m/z

values below 2,000 Daltons have been removed as background interference from

sinapinic acid matrix peaks tend to produce low signal:noise ratios (Ball et al,

2002).

In summary there are six groups: ADC (MCF-7/ADR control), ADT

(MCF-7/ADR Taxol treated), TDC (T47D control), TDT (T47D Taxol

treated), MCC (MCF-7 control) and MCT (MCF-7 Taxol treated). SELDI-

TOF scans were taken at periods of 24, 48, 72 and 96 hours and these are

labelled as day 1, day 2, day 3 and day 4 respectively. For each group on

each day there are 6 observations: replicates A,B and C for experiment 1 and

replicates A,B and C for experiment 2.

The protocol for the experiment is described in detail by Mian et al. (2003),

and the data were collected at Nottingham Trent University in the laboratory

of Professor Robert Rees.
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Figure 1.2: The breast cancer data. The x-axis shows m/z value starting at
2,001 Daltons and finishing at 30,000 Daltons. For each group at each m/z
value there are 6 observations presented in the order (bottom to top) replicates
A,B,C for experiment 1 followed by replicates A,B,C for experiment 2. Green
indicates a low level of protein intensity increasing through blue and red to
the highest intensity of yellow.
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Melanoma is a malignant tumour of the skin and is made up of cells contain-

ing the pigment melanin. It is not very common - accounting for only about

4% of all cancer cases, however, it is one of the most serious, life-threatening

forms of skin cancer accounting for 79% of skin cancer deaths (Kirkwood et

al., 2003). It begins in the cells that produce the skin colouring and often

appears on the skin as a new or changing mole. Melanomas are induced by

exposure to high levels of UV radiation and are more common in people who

have had significant sun exposure. Early stage melanoma is almost always

curable, however, it is likely to spread, and once it has spread to other parts

of the body the chances of a cure are much less.

The melanoma dataset consists of 205 sera - 101 of these are classed as

stage I of the disease and 104 are classed as stage IV using the Tumour-lymph

Node-Metastasis (TNM) system (e.g. Sobin and Wittekind, 2002). Each of

these categories is given a number as per table 1.2. A lower number generally

means a less serious melanoma. The value of each category is used to stage

the melanoma by comparing with table 1.3.

The melanoma data are shown in figure 1.3 as images. As previously the

m/z values below 2,000 Daltons have been removed.

The mass spectrum for a cell-line in either of the datasets consists of around

14,000 datapoints. Each datapoint comprises a relative intensity of proteins

at a particular mass over charge (m/z value). The m/z value is calculated by

dividing the protein mass by the number of charges induced by ionisation. We

consider m/z values between 2kDa and 30kDa.

The experimental protocol is described in detail in Mian et al. (2005). The

data were collected at the German Cancer Research Centre, Heidelberg in the

laboratory of Dr. Dirk Schadendorf.
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TNM What it means

T0 There is no evidence of a tumour.
Tis Melanoma has some of the changes that make it

cancer, but it is not yet the kind that spreads into
T other tissues. This is also called melanoma in situ.

(tumour) T1 Melanoma is 1 millimetre or less in thickness.
T2 Melanoma is between 1 and 2 millimetres thick.
T3 Melanoma is between 2 and 4 millimetres thick.
T4 Melanoma is more than 4 millimetres thick.
N0 Melanoma has not spread to any lymph nodes.

N N1 Melanoma has spread to one lymph node nearby.
(lymph N2 Melanoma has spread to two or three lymph nodes
nodes) nearby.

N3 Melanoma has spread to four or more lymph nodes
nearby.

M M0 Melanoma has not spread to another part of the body.
(metastasis) M1 Melanoma has spread to another part of the body.

Table 1.2: TNM classes for melanoma.

TNM Cancer Stage

Tis, N0, M0 0
T1, N0, M0

I
T2, N0, M0
T2, N0, M0
T3, N0, M0 II
T4, N0, M0

Any T, N1, M0
Any T, N2, M0 III
Any T, N3, M0

Any T, Any N, M1 IV

Table 1.3: Stages of melanoma. Note that T2,N0,M0 can be classed as either
stage I or stage II depending on its appearance under a microscope.
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stage I

stage IV

Figure 1.3: The melanoma data. The x-axis shows m/z value starting at 2,001
Daltons and finishing at 30,000 Daltons. For stage I there are 101 observations
and for stage IV there are 104 observations. Green indicates a low level of
protein intensity increasing through blue and red to the highest intensity of
yellow.
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1.4 Data Reduction and Classification

1.4 Data Reduction and Classification

Presented in this section are the methods used in this thesis to classify obser-

vations and the two main techniques used to reduce the dimensionality of a

dataset.

It is important to consider data reduction in proteomic studies. The

datasets produced by time-of-flight mass spectrometry are generally high-

dimensional and there are generally many more m/z values per spectrum than

there are spectra.

1.4.1 Dimension Reduction Methods

Principal Components Analysis

The main goal of principal components analysis (PCA) is to explain the impor-

tant variability in the data in a reduced number of dimensions. This is done

by projecting the data linearly onto lower dimensional subspaces in which they

show maximal variation. We describe sample principal components analysis

where a sample of vectors x1 . . . ,xn is available.

Let u be a unit vector i.e. uTu = 1. Define ci = uT (xi − x̄) for i = 1 . . . n

where the x′
is are column vectors of observations, x̄ = 1

n

∑n
i=1 xi is their sample

mean and n is the number of observations. Now

n∑

i=1

ci =

n∑

i=1

uT (xi − x̄) = uT

n∑

i=1

(xi − x̄) = 0

by definition of x̄, and

1

n

n∑

i=1

c2
i =

1

n

n∑

i=1

uT (xi − x̄)(xi − x̄)Tu

= uT

[

1

n

n∑

i=1

(xi − x̄)(xi − x̄)T

]

u
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= uT S̄u. (1.1)

So uT S̄u is the sample variance of the ci’s along u. We would like to find

the u∗ which maximises the sample variance uT S̄u over unit vectors u.

Since S̄, the sample covariance matrix of the observations, is symmetric,

applying spectral decomposition (e.g. Mardia, Kent and Bibby, 1979) gives:

S̄ = QΛQT =

p
∑

j=1

λjqjq
T
j

where Q = [q1,q2, . . . ,qp], QQT = QTQ = Ip and Λ = diag{λ1, λ2, . . . , λp}.

The vectors qj are the eigenvectors corresponding to the eigenvalues λj,

where j = 1 . . . p. Without loss of generality assume that λ1 ≥ λ2 ≥ . . . ≥ λp.

Then

uT S̄u = uT

[
p
∑

j=1

λjqjq
T
j

]

u

=

p
∑

j=1

λju
Tqjq

T
j u

=

p∑

j=1

λj(u
Tqj)

2 since uTqj is a scalar

≤ λ1

p
∑

j=1

(uTqj)
2 since λ1 is the largest eigenvalue

= λ1u
T QIpQ

Tu

= λ1u
T u

= λ1 since ‖u‖ = 1 (1.2)
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but

qT
1 S̄q1 = qT

1

[
p
∑

j=1

λjqjq
T
j

]

q1

=

p
∑

j=1

λj(q
T
1 qj)

2

= λ1. since qT
1 qj =

{

0 j 6= 1;

1 j = 1.
(1.3)

So uT S̄u is maximised over unit vectors u when u = q1 i.e. the unit eigen-

vector corresponding to the largest eigenvalue λ1. The largest eigenvector is

unique up to sign when λ1 > λ2.

This procedure can be repeated to look for the largest sample variance of

the ci’s when u is chosen to be orthogonal to q1 (i.e. when uTq1 = 0). Similar

reasoning shows that this occurs when u = q2, the eigenvector corresponding

to the second largest eigenvalue λ2 (e.g. Mardia, Kent and Bibby, 1979).

The values q1,q2, . . . ,qp determine the p principal components (p ≤ n−1).

The sji are the PC scores where

sji = qT
j (xi − x̄) i = 1 . . . n, j = 1 . . . p.

Independent Components Analysis

Independent Components Analysis (ICA) was introduced in the early 1980s in

the context of neural network modelling and was developed in the 1990s with

the introduction of new algorithms. ICA has been used in such applications

as telecommunications, time series analysis and data mining.

ICA is a statistical technique in which observed random data are expressed

as a linear combination of components that are statistically independent from
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each other. Such a decomposition is well defined if the independent compo-

nents are non-Gaussian (Hyvärinen et al, 2001).

Assume we observe n random variables (spectra) x1, . . . , xn which we wish

to model as linear combinations of the n random variables s1, . . . , sn. Then

xi = ai1s1 + ai2s2 + . . . ainsn, for all i = 1, . . . , n

where the aij (i, j = 1, . . . n) are some real coefficients. The random variables

sj are called the independent components (ICs). By definition the sj are statis-

tically mutually independent. The values of the sj’s and the aij’s are unknown

and must be estimated from the observed data xi.

This model is written in matrix notation as follows. Let x be the random

vector consisting of the xi and s be the vector consisting of the sj. Let A be

the matrix with elements aij. Then the model becomes

x = As =

n∑

i=1

aisi (1.4)

where ai is the ith column of the matrix A.

When using ICA we assume that the ICs are statistically independent, that

the ICs have non-Gaussian distributions and that the matrix A must be square

(same number of ICs as xi’s) and invertible. This last restriction can some-

times be relaxed (see Hyvärinen, 2001) but if it holds then we can calculate

the inverse A−1 = B and obtain the ICs simply by s = Bx

There are two problems encountered with this ICA model. Firstly we

cannot determine the variances of the ICs. Since A and s are both unknown,
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a scalar multiplier in one can be cancelled out in the other:

x =

n∑

i=1

aisi =

n∑

i=1

1

αi
ai(siαi)

Secondly we cannot determine the order of the ICs. Again, since A and s are

both unknown, the order of the terms in equation (1.4) can be rearranged and

any one of them can be called the first. In practice the matrix B = A−1 is

estimated by calculating the vectors bj which maximise the non-Gaussianity

of the calculated sj. Many algorithms exist which carry out ICA and in this

thesis the FastICA algorithm is used in R.

1.4.2 Classification Methods

After dimension reduction has been carried out we can use the new variables to

classify new observations into different disease states. This could be important

to physicians when determining which treatment to give different patients.

Three of the main methods for classifying data are now described.

Discriminant Analysis

In discriminant analysis there exist G ≥ 2 populations. It is assumed that

each population has a particular distribution fi(x) ∈ R
p (i = 1, . . . G). A set

of data x1, . . . ,xn is available for which the group membership of each obser-

vation is known. These are called the training data. Based on the assumptions

and the training data, rules are constructed for assigning a new observation

z ∈ R
p to one of the G populations whilst minimising the probability of mis-

classification. The aim is to find an effective rule for discrimination based on

inexpensive measurements instead of near-perfect classification using expen-

sive measurements. An approach due to Fisher (1936) is to look for a linear

discriminant function without assuming that the G populations Π1, Π2, . . . , ΠG

are normally distributed.
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Suppose we have training samples xi1,xi2, . . . ,xini
from population Πi, i =

1 . . .G. Then the ‘within’ sum of squares covariance matrix is

W =
G∑

i=1

ni∑

j=1

(xij − x̄i)(xij − x̄i)
T where x̄i =

1

ni

ni∑

j=1

xij

and the ‘between’ sum of squares covariance matrix is

B =

G∑

i=1

ni(xi − x̄)(xi − x̄)T where x̄ =
1

N

G∑

i=1

ni∑

j=1

xij and N =

G∑

i=1

ni

Fisher’s criterion is to choose a unit vector λ to maximise

λTBλ

λTWλ
. (1.5)

Then the function L(z) = λTz is called Fisher’s linear discriminant function.

To find λ to maximise equation (1.5) assume that W is positive definite and

note that W is symmetric. So using spectral decomposition (e.g. Mardia,

Kent and Bibby, 1979) gives W = QΛQT and W1/2 = QΛ1/2QT where
n×n

Λ = diag{µ1, µ2, . . . , µn} are the eigenvalues of W and
n×n

Q is an orthogonal

matrix whose columns are the eigenvectors of W.

Define γ = W1/2λ, then λ = W−1/2γ where W−1/2 = QΛ−1/2QT . Now

max
λ:λλT =1

{
λTBλ

λTWλ

}

= max
γ:γ 6=0







γTW−1/2BW−1/2γ

γT W−1/2WW−1/2
︸ ︷︷ ︸

Ip

γ







= max
γ:γT γ=1

{
γTW−1/2BW−1/2γ

}
(1.6)

To solve this maximisation choose γ to be the eigenvector corresponding to

the largest eigenvalue of W−1/2BW−1/2. This is true since if γ is an eigenvector
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of W−1/2BW−1/2 then by definition

W−1/2BW−1/2γ = ργ

for some constant ρ. If we premultiply by W−1/2 we get the following:

W−1/2W−1/2BW−1/2γ = ρW−1/2γ

W−1B
[
W−1/2γ

]
= ρW−1/2γ

⇒ W−1Bλ = ρλ (1.7)

So the λ required is the unit eigenvector corresponding to the largest eigen-

value of W−1B. Fisher’s linear discriminant function L(z) can now be calcu-

lated and an observation z will be allocated to the Πi whose discriminant score

L(x̄i) is closest to L(z) i.e.

allocate z to Πi iff |λTz − λT x̄i| = min
1≤j≤G

|λTz − λT x̄j|

In linear discriminant analysis, the covariance matrix of each group is as-

sumed to be equal. In this case the decision boundaries calculated from the

above equations are linear. If this assumption is not true then quadratic

discriminant analysis (QDA) can be used and the decision boundaries are

quadratic curves. QDA provides superior results if the group covariances are

considerably different and the group sizes are large. However, QDA is more

sensitive to deviations from normality and classification errors in the training

set (Lachenbruch, 1982).

Support Vector Machines

Support vector machines (SVMs) were introduced by Boser, Guyon and Vap-

nik (1992) as a means of classifying data. They have been used in many fields

including bioinformatics and image recognition. The simplest SVM is called

the maximal margin classifier and only works for data that can be linearly
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separated and is therefore not valid in many real life situations. However, in

1995 a modified maximum margin idea was suggested for when the datapoints

cannot be separated without error (Cortes and Vapnik, 1995). If no linear

classifier exists that can correctly split the datapoints, the soft margin method

will choose a classifier that splits the datapoints as cleanly as possible, while

still maximising the distance to the nearest cleanly split datapoints.

The margin of a linear classifier is defined to be the width that the bound-

ary could be increased before hitting any datapoints. In figure 1.4, for example,

the classifier on the left has a smaller margin than the classifier on the right

as extending the line will reach the point at (6, 9.5) more quickly.
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Figure 1.4: Two linear classifiers with different margins.

The classifier with the largest margin is called the maximum margin linear

classifier and the support vectors are the datapoints that the maximum mar-

gin pushes up against. The use of maximum margin classifiers gives the least

chance of causing a misclassification if there is a small error in the location of

the boundary.
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The equation of the maximum margin linear classifier in N dimensions is

of the form

βTx + β0 = 0

and the distance from the classifying boundary to the nearest points is C. We

wish to maximise the distance C whilst allowing for some datapoints to be on

the wrong side of the boundary. We define the slack variables ξ1, . . . , ξN as

the amounts that the datapoints xi, i = 1, . . . , N are on the wrong side of the

margin. We also wish to minimise the sum of these errors. The maximisation

to be calculated is:

max
β0,β,‖β‖=1

C (1.8)

subject to the conditions yi(x
T
i β + β0) ≥ C(1 − ξi), i = 1, . . . , N, ξi ≥

0,
∑N

i=1 ξi ≤ constant , where the xi are the datapoints and the yi denote to

which class the xi belong. Note misclassifications occur when ξi > 1. We can

remove the ‖β ‖ = 1 constraint by replacing the first condition with

yi(x
T
i β + β0) ≥ C‖β‖, i = 1, . . . , N

Since any scalar multiples of β and β0 also satisfy the inequalities, we can

choose to set ‖β ‖ = 1/C. So equation (1.8) is equivalent to

min
β0,β

1

2
‖β‖2 + γ

N∑

i=1

ξi (1.9)

subject to yi(x
T
i β+β0) ≥ C(1−ξi), i = 1, . . . , N, ξi ≥ 0. To solve this con-

strained minimisation we use the Lagrange multiplier technique (e.g. Winston,

1995). The Lagrangian is

1

2
‖β‖2 + γ

N∑

i=1

ξi −
N∑

i=1

λi

[
yi

(
xT

i β + β0

)
− (1 − ξi)

]
−

N∑

i=1

µiξi (1.10)

Differentiating equation (1.10) with respect to β0 and setting equal to zero

gives
∑N

i=1 λiyi = 0, differentiating with respect to β gives
∑N

i=1 λiyixi = β and
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1.4 Data Reduction and Classification

differentiating with respect to ξi gives λi = γ−µi, ∀i. (Note that λi, µi, ξi ≥ 0).

Substituting these results into 1.10 gives

1

2
‖β‖2 + γ

N∑

i=1

ξi −
N∑

i=1

λiyix
T
i β −

N∑

i=1

λiyiβ0 +
N∑

i=1

λi −
N∑

i=1

λiξi −
N∑

i=1

µiξi

=
1

2

N∑

i=1

N∑

k=1

λiλkyiykx
T
i xk + γ

N∑

i=1

ξi −
N∑

i=1

N∑

k=1

λiλkyiykx
T
i xk −

N∑

i=1

λiyiβ0

+
N∑

i=1

λi −
N∑

i=1

γξi +
N∑

i=1

µiξi −
N∑

i=1

µiξi

=
1

2

N∑

i=1

N∑

k=1

λiλkyiykx
T
i xk −

N∑

i=1

N∑

k=1

λiλkyiykx
T
i xk +

N∑

i=1

λi

=

N∑

i=1

λi −
1

2

N∑

i=1

N∑

k=1

λiλkyiykx
T
i xk (1.11)

Although this leaves us with another optimisation, equation (1.11) can be

minimised more easily than the original problem. Firstly we differentiate and

solve equation (1.11) for each λi. Then β can be determined from the equation
∑N

i=1 λiyixi = β.

To determine β0 we must use the Karush-Kuhn-Tucker condition (e.g. Win-

ston, 1995)

λi[yi(x
T
i β + β0) − (1 − ξi)] = 0 ∀i. (1.12)

There must exist at least one support vector xi. For all support vectors ξi = 0

as they lie on the margin. Substituting in our known values relevant to one

support vector gives us the equation of the classifier. Test points can then be
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classified according to the side of the boundary on which they fall.

Although the classifier has been constructed in order that no training points

fall within the margin, this may not necessarily hold for test points. It is hoped

that a large margin separating the training data will give good test classifica-

tion. When there are more than two groups into which points can be classified

more than one linear classifier must be trained. In this thesis the ‘one against

one’ approach is used where, with k groups, each of the k(k − 1)/2 pairwise

comparisons are considered and a voting scheme determines the classification

of a test point.

K-Nearest-Neighbour

The K-nearest neighbour (KNN) algorithm is a relatively simple method for

classifying observed data where class memberships are known for a set of train-

ing data. For a particular observed datapoint the nearest K training points,

usually using Euclidian distance, are considered and a majority vote of their

K classes is taken as the class of the new datapoint. If there is a tie then

it is broken at random between the tied groups. The accuracy of the KNN

algorithm can be severely affected by the presence of outliers, especially when

K = 1. The best choice of K depends upon the data. Generally, larger values

of K reduce the effect of noise on the classification, but the boundaries between

classes become less distinct. See Hastie et al. (2001) for further details.
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1.5 MCMC for Bayesian Inference

The use of Bayesian methods in applied problems increased greatly at the end

of the 20th century. The availability of fast computers was combined with the

development of Markov Chain Monte Carlo (MCMC) algorithms, a group of

simulation methods, which allowed the study of more complex Bayesian mod-

els. The idea behind MCMC is to simulate approximate samples from the

posterior distribution of interest by generating a Markov chain which has the

posterior distribution as its limiting equilibrium distribution. This approach

originated in the statistical physics literature (Metropolis et al., 1953) and it

was then generalised by Hastings (1970). However, it was Gelfand and Smith

(1990) that brought MCMC methods to the attention of the general statistical

community, and since then the use of Bayesian methods for applied statistical

modelling has increased rapidly.

Gilks et al. (1996) gives an overview of advances in MCMC related method-

ology until 1995. MCMC software is also being produced and made freely

available to analyse a wide range of statistical models. An example is BUGS -

Bayesian inference Using Gibbs Sampling (see Spiegelhalter et al., 1996). We

will use MCMC in chapter 3.

1.5.1 Bayesian Inference

The fundamentals of Bayesian theory are reviewed in this section in an in-

troductory manner. For a more detailed approach see Bernardo and Smith

(1994).

Bayes’ Theorem

In classical inference the data, which are assumed to depend on a vector of

parameters, θ, are thought of as random with θ fixed (but unknown). In

Bayesian inference the thinking is opposite - the data are regarded as fixed (at

what has been observed) and the parameter vector θ is treated as unknown.
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1.5 MCMC for Bayesian Inference

In the Bayesian approach in addition to specifying the model for the ob-

served data y = (y1, . . . , yn) given the vector of unknown parameters θ, in the

form of the likelihood function π(y|θ), we also define the prior distribution

π(θ). The prior should contain all knowledge we have about the unknown

parameter before analysis starts. Inference concerning θ is then based on its

posterior distribution, given by

π(θ|y) =
π(y|θ)π(θ)

∫
π(y|θ)π(θ)dθ

∝ π(y|θ)π(θ). (1.13)

This formula is referred to as Bayes’ Theorem. The integral in the denomina-

tor is a normalising constant to ensure the distribution is a valid probability

distribution and it’s calculation has traditionally been a computational obsta-

cle. The main difficulty is that the calculation involves a many-dimensional

integration and the resulting distribution cannot always be written down in

closed form. However, it is possible to avoid its calculation using MCMC

methods. Equation (1.13) can be thought of as “The posterior is proportional

to the likelihood times the prior”.

Prior Distributions

Presented here are the two most popular approaches for choosing a prior dis-

tribution.

Informative priors

An informative prior for a parameter θ is a prior used when some information is

known about the parameter before any data is obtained. For example, assume

we were interested in estimating the average weight of newborn female babies.

Then before we actually collect any observations of the weight of newborn

babies, we find on a website that the average weight of a newborn is 3.4 kg. A

prior is then chosen to incorporate this information - we choose a normal prior

with mean 3.4 and variance σ2. The value of σ2 is still to be chosen and will
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incorporate the strength of our belief in the mean value of 3.4. The lower the

value of σ2, the stronger our belief in the mean. If we believe female babies

to weigh less than male babies we can also include this belief by reducing our

mean value.

Non-Informative or Diffuse Priors

In many situations no prior information concerning θ is available, or inference

based solely on the data is desirable. Typically in this case we wish to define

a prior distribution π(θ) that contains no information whatsoever about the

parameter θ in the sense that it does not favour one particular value of θ over

another. Such a distribution is called a noninformative prior for θ and it can

be argued that the information about θ contained in the posterior comes only

from the data. In classical inference prior distributions are not used in fitting

models and so ‘noninformative’ priors are often used in Bayesian inference to

compare with classical results.

In the case where the parameter space is Θ = {θ1, . . . , θn} i.e. discrete and

finite, then the distribution

π(θi) =
1

n
, i = 1, . . . , n

places the same prior probability of 1/n on any of the n candidate θ values.

Similarly, in the case of a bounded continuous parameter space, say

Θ = [a, b],−∞ < a < b < ∞, then the uniform distribution

π(θ) =
1

b − a
, a < θ < b

is noninformative. A normal distribution with large variance may also be

used as a noninformative prior. As the variance of a normal distribution is

increased, the distribution becomes ‘flatter’ around the mean (see figure 1.5).

This explains the alternative names for noninformative priors of ‘flat’ or ‘dif-

fuse’ priors.
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Figure 1.5: Normal distributions with mean 0 and variances 1, 5, 10, 20 and
100 respectively.

For unbounded intervals the definition of a noninformative distribution is

not straightforward. In the case that Θ = (−∞,∞) a distribution such as

π(θ) = c is clearly improper since
∫

π(θ)dθ = ∞. However, Bayesian inference

is still possible in the case where
∫

π(y|θ)dθ = D < ∞. Then

π(θ|y) =
π(y|θ)c

∫
π(y|θ)cdθ

=
π(y|θ)

D
.

It should be noted that there is not a ‘universal’ noninformative prior. It

is possible in some cases for a constant prior to actually be informative under

a different parameterisation. One method used to overcome this problem is

the use of Jeffreys prior. Jeffreys prior (1946) takes the form π(θ) ∝ I(θ)1/2,
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where

I(θ) = E

[[
∂

∂θ
log π(y|θ)

]2
]

is the Fisher information.

When choosing a prior from a parametric family it can be possible to select

a distribution which is conjugate to the likelihood, that is one that leads to a

posterior belonging to the same family as the prior. The use of MCMC does

not require conjugate priors but they can be computationally convenient.

1.5.2 Markov Chain Monte Carlo

We will now consider a collection of algorithms that greatly facilitate the im-

plementation of Bayesian modelling known as Markov Chain Monte Carlo

(MCMC) algorithms.

Suppose a sequence of random variables {X0, X1, X2, . . .} is generated such

that at each time t ≥ 0, the next state Xt+1 is sampled from a distribution

P (Xt+1|Xt) which depends only on the current state of the chain Xt. So given

Xt, the next state Xt+1 does not depend on the remainder of the history of

the chain {X0, X1, . . . , Xt−1}. This sequence is called a Markov chain.

The main idea behind MCMC is to generate a Markov chain which has as

its limiting equilibrium distribution the posterior distribution of interest. For

MCMC to work the chain must be aperiodic, irreducible and reversible (Gilks

et al., 1996). MCMC first appeared in Metropolis et al. (1953) although

the computational power was not available then to carry out many of the

procedures used today. The original mechanism was generalised by Hastings

(1970) in the Metropolis-Hastings algorithm, which is now described.
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The Metropolis-Hastings Algorithm

The objective of the Metropolis-Hastings (MH) algorithm is to generate ap-

proximate samples from a posterior density π(θ|y) known up to a normalising

constant. For this algorithm, at each time t, the next state θ(t+1) is chosen

by first sampling a candidate point φ from a proposal distribution q(.|θ(t)).

Note that the proposal distribution may depend on the current state θ(t). The

candidate point is then accepted with probability α(θ(t), φ) where

α(θ(t), φ) = min

{

1,
π(φ|y)q(θ(t)|φ)

π(θ(t)|y)q(φ|θ(t))

}

If a candidate point is accepted, the next state becomes θ(t+1) = φ and if the

candidate point is rejected the chain remains in the same place i.e. θ(t+1) = θ(t).

So the algorithm generates a Markov chain (θ(t)) through the following steps:

1. Start with an arbitrary initial set of parameter values θ(0).

2. Update from θ(t) to θ(t+1) (t = 0, 1, . . .) by

(a) Generate φ ∼ q(.|θ(t))

(b) Evaluate α(θ(t), φ) = min

{

1,
π(φ|y)q(θ(t)|φ)

π(θ(t)|y)q(φ|θ(t))

}

(c) Sample a point U from a Uniform(0, 1) distribution.

(d) Set

θ(t+1) =

{

φ If U ≤ α(θ(t), φ);

θ(t) otherwise.

Metropolis-Hastings updates can be carried out in different ways. Firstly all

the parameters can be updated at the same time so the candidate point φ

would become a vector of parameters. Either all the parameters are accepted

or they are all rejected. Secondly, they can be updated one parameter at a

time and each iteration t would comprise of n updates (where there are n

parameters). Lastly a combination could be used where the parameters are

split into blocks and each block of parameters is updated at the same time.
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The Gibbs Sampler

The Gibbs sampling approach is a special case of the Metropolis-Hastings al-

gorithm. The method derives its name from Gibbs random fields, where it was

used for the first time by Geman and Geman (1984).

Suppose we have a vector θ consisting of n parameters θ1, . . . , θn. Consider

the conditional density of θi given the data y and all the other elements of

θ. Let θ(−i) be the vector θ with element θi removed. Then the distributions

πi(θi|θ(−i), y) for i = 1, . . . , n are called the full conditional distributions of

π(θ|y).

The idea of Gibbs sampling is to sample from the joint posterior distribution

π(θ1, θ2, . . . , θn|y) using the full conditional distributions. The parameters θi

are updated by sampling from each of the full conditionals in turn, cycling

round the parameters in each iteration. Start with an initial parameter vector

θ(0) and then generate θ(1), θ(2), . . . as follows. Given the current state of the

chain θ(t) = (θ
(t)
1 , ..., θ

(t)
n )

Generate θ
(t+1)
1 from π(θ1|θ(t)

2 , θ
(t)
3 , θ

(t)
4 , ..., θ

(t)
n , y)

Generate θ
(t+1)
2 from π(θ2|θ(t+1)

1 , θ
(t)
3 , θ

(t)
4 , ..., θ

(t)
n , y)

Generate θ
(t+1)
3 from π(θ3|θ(t+1)

1 , θ
(t+1)
2 , θ

(t)
4 , ..., θ

(t)
n , y)

:

Generate θ
(t+1)
n from π(θn|θ(t+1)

1 , θ
(t+1)
2 , θ

(t+1)
3 , ..., θ

(t+1)
n−1 , y)

We now have the next state in the chain θ(t+1). The distribution of θ(t)

tends to π(θ|y).

The Gibbs sampler is a special case of the Metropolis-Hastings sampler

and has acceptance probability 1. Assume again that we have parameters

θ1, . . . , θn and we wish to estimate the posterior density π(.). The proposal

distribution in a Gibbs sampling update is the full conditional distribution of
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the parameter i.e. q(θi|θ−i) = πi(θi|θ−i). Let θ = (θt
1, . . . , θ

t
n) be the current

state of the chain and let θ′ = (θt+1
1 , . . . , θt

n) be the proposed state of the chain

when updating parameter θ1. Note that the full conditional distribution of the

parameter θ1 can be expressed through the following equation:

π(θ1, θ2 . . . , θn) = π1(θ1|θ2 . . . , θn)π(θ2 . . . , θn)

The acceptance probability for a Metropolis-Hastings update as given in the

section above is:

α(θ, θ′) = min

{

1,
π(θ′)q(θ|θ′)

π(θ)q(θ′|θ)

}

= min

{

1,
π(θt+1

1 , θt
2 . . . , θt

n)π1(θ
t
1|θt

2 . . . , θt
n)

π(θt
1, θ

t
2 . . . , θt

n)π1(θ
t+1
1 |θt

2 . . . , θt
n)

}

= min

{

1,
π(θt+1

1 , θt
2 . . . , θt

n)π(θt
1, θ

t
2 . . . , θt

n)π(θt
2 . . . , θt

n)

π(θt
1, θ

t
2 . . . , θt

n)π(θt+1
1 , θt

2 . . . , θt
n)π(θt

2 . . . , θt
n)

}

= 1.

It is possible to use a mixture of updating methods for the parameter val-

ues within the same iteration of the MCMC - Gibbs sampling for some of the

parameters and Metropolis-Hastings for the remainder.

Proposal Distributions

Metropolis-Hastings samplers require a proposal distribution which is used to

simulate the next parameter value. A proposal distribution is usually depen-

dent on the immediately previous value of the parameter, but independent of

other previous values to ensure the Markov property holds.

A popular choice of proposal distribution is the random walk proposal. A

common example is the normal distribution centered at the current parameter

value. The proposal variance is arbitrary in this distribution and the value
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assigned to it affects the simulation. If the variance is too small then lots of

small updates will be made to the parameter but it may take a long time to

reach all areas of the sample space. If the variance is too large this will result

in many proposals being rejected and the chain will not move very often at all.

In both cases this means good estimates of the parameter will take a long time

to achieve. See figure 1.6 for examples of plots of parameter histories when the

proposal distributions have either too small or too large variance. We wish to

strike a happy medium between these two cases where the proposed points are

accepted around 40-60% of the time.
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Figure 1.6: TOP: plot of a parameter history where the variance of the proposal
distribution is too small. Note that nearly all proposals are accepted.
BOTTOM: plot of a parameter history where the variance of the proposal
distribution is too large. Note that only a few proposals are accepted.

Symmetric proposal distributions simplify the computation in parameter

updates using the Metropolis-Hastings algorithm. The ratio to be calculated

in a Metropolis-Hastings update is

α(θ(t), φ) = min

{

1,
π(φ|y)q(θ(t)|φ)

π(θ(t)|y)q(φ|θ(t))

}
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but if, for example, the proposal distribution is Gaussian centred around the

current estimate, the ratio of proposal distributions is

q(θ(t)|φ)

q(φ|θ(t))
=

N(φ, σ2)

N(θ(t), σ2)
=

1√
2πσ2

e
−

1

2σ2
(θ(t) − φ)2

1√
2πσ2

e
−

1

2σ2
(φ − θ(t))2

= 1

thus simplifying the Metropolis-Hastings update ratio to

α(θ(t), φ) = min

{

1,
π(φ|y)

π(θ(t)|y)

}

Hence, the chain will remain in states with higher posterior probability more

often while states with lower posterior probability are visited less often. This

special case of the Metropolis-Hastings algorithm was the original case pro-

posed by Metropolis et al. (1953).

Convergence, Burn In and Thinning

MCMC has enabled the application of Bayesian methods to many situations in

different branches of study. However, to ensure that the results from MCMC

algorithms are reliable two important issues need to be taken into considera-

tion - burn in and thinning.

For a Markov chain whose distribution (θ(t)) converges as t → ∞ there is

a sufficiently large t, such that the resulting (θ(t)) is an approximate obser-

vation from the posterior distribution π(θ|y). However, the speed at which

this happens, i.e. the rate of convergence of the chain, can vary greatly. The

burn in period of a chain consists of all the iterations up to iteration t and

these iterations are discarded from the analysis. From then on, the parameter

values obtained are sampled approximately from the posterior distribution of

interest provided the conditions of irreducibility, aperiodicity and reversibility
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are satisfied (see for example, Gilks et al., 1996).

The main problem comes in determining how large ‘t’ has to be. This is

generally monitored by the use of trace plots. Trace plots are plots of the his-

tory of the parameter values over many iterations and an example of a trace

plot where convergence has been reached is shown in figure 1.7.
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Figure 1.7: A trace plot of a model parameter. The dashed line shows roughly
where the burn in period ends. Iterations to the left of the line are discarded
as burn in, iterations to the right are used for analysis.

So after the burn in period we obtain, at each iteration, a sample from the

posterior distribution π(θ|y). However, the samples obtained are not usually

independent observations. To reduce the auto-correlation between observa-

tions we can thin the chain. This means that only one observation is kept for

analysis every k iterations where the value of k can be chosen by the experi-

menter. Thus approximate independent sampling from π(θ|y) can be achieved.

Also the amount of data created is reduced which aids the analysis.
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1.6 Multilevel Modelling

There are many real-life examples of multilevel structures. The most popular

example is that of an educational system with pupils within classes within

schools. We say that pupils are nested within classes which are nested within

schools. Goldstein and Spiegelhalter (1996) use multilevel modelling in this

educational setting.

In the proteomic setting, the m/z values are called level 1 units. This is

the lowest level of classification. The level 2 units are the spectra to which the

m/z values belong. The data structure for a general dataset can theoretically

contain any number of levels.

When data conform to such a multilevel structure it is important to take

account of this in the analysis otherwise the results obtained could be inac-

curate. For example, intensities at m/z values close to one another within

one spectrum are more likely to be similar than those from another spectrum.

This means they provide less information than if they were independent ob-

servations. It is important to know how this structure in the data will affect

the analysis. Before the development of multilevel modelling, the problems

of ignoring hierarchical structures were understood but they were difficult to

solve because general tools were not available. In order to see why multilevel

modelling is important we firstly review linear modelling.

1.6.1 Linear Modelling

Linear modelling is concerned with explaining the relationship between a single

response variable Y and one or more predictor variables X1, X2, . . . , Xp. A

linear model is written as

yi = xT
i β + ei

= x1iβ1 + x2iβ2 + . . . + xpiβp + ei , (i = 1, . . . , n) (1.14)

36



1.6 Multilevel Modelling

In equation (1.14), β = (β1, . . . , βp)
T is a vector of unknown, fixed parame-

ters. The data consists of n observations each comprising a response yi and p

predictors xi. It is assumed that there exists only one random error term ei

for each observation and that these errors are iid N(0, σ2) where σ2 is unknown.

The simplest linear model is the null model and is written simply as

yi = β0 + ei , ei ∼ N(0, σ2).

In this model we are only finding the mean (β0) and the variance (σ2) of the

sample. To improve the fit of the model we can include a continuous predictor

variable. This creates a linear regression model

yi = β0 + β1x1i + ei , ei ∼ N(0, σ2).

This fits a regression line relating Y to X. Other variables can also be added so

that the response variable Y is explained by more than one predictor variable.

Categorical predictors, where the values identify group membership, can be

included in a linear model by considering an Analysis of Variance (ANOVA)

model. Here the categorical predictor divides the data into J groups. The

ANOVA model is written as

yi = β0 +

J∑

k=1

dkiαk + ei , ei ∼ N(0, σ2)

where dki = 1 if k = i, and 0 otherwise. To make sure the model is identifiable

a constraint is placed on the α’s, e.g. α1 = 0. This model can be extended

to the Analysis of Covariance (ANCOVA) model by additionally including a

continuous predictor,

yij = β0 + β1x1ij +

J∑

k=1

dkijαk + eij , eij ∼ N(0, σ2) , α1 = 0
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with dkij defined as in the ANOVA model.

In all of the above examples of linear models the general form is

yij = xT
ijβ + eij

and the only difference is in the definition of xij and β. For the ANCOVA

model xT
ij = (1, x1ij , d2ij, . . . , dJij) and βT = (β0, β1, α2, . . . , αJ). Note that

d1ij and α1 are omitted since α1 = 0.

To estimate the values of the parameters in β we can use Least Squares

Estimation to obtain Maximum Likelihood Estimates. Writing the model in

matrix form gives the following:

y = Xβ + e , E(e) = 0 , E(eTe) = σ2 (1.15)

where y = (y1, y2, . . . , yn)
T , X = (xT

1 ,xT
2 , . . . ,xT

n )T , β = (β1, β2, . . . , βp)
T ,

e = (e1, e2, . . . , en)T and e ∼ N(0, σ2I).

The least squares method estimates the parameters by minimising the sum

of the squared residuals
∑

i(yi − (Xβ)i)
2 and it is easy to show that

β̂ = (XTX)−1XTy (1.16)

assuming X has full rank. Thus estimates can be obtained for the parameters

in a linear model simply by multiplying the correct matrices.

1.6.2 How Multilevel Modelling Differs from Linear

Modelling

In the proteomic setting previously mentioned there exist m/z values within

spectra. The modelling problem is how to model the intensities at each m/z
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value. Let yij be the intensity for m/z value i in spectrum j. A possible model

is

yij = β0 + uj + eij , uj ∼ N(0, σ2
u) , eij ∼ N(0, σ2

e) (1.17)

In this model β0 is the estimated average for the group, uj are the spectrum

effects (which have variance σ2
u) and eij are the m/z value residuals (which have

variance σ2
e). We assume that the uj and the eij are independent and identi-

cally distributed (iid) and also that they are independent from each other.

In the ANOVA model the equivalent of the spectrum effects were the αj.

These parameters were considered to be fixed effects in the model and a con-

straint was required to fully identify the model. Conversely, in the multilevel

model in equation (1.17) the spectrum effects are treated as random effects that

come from a normal distribution. This model is called a variance components

model as the total variance in the response y is split into two parts - a vari-

ance between spectra σ2
u and a variance between m/z values within spectra σ2

e .

The next type of multilevel model is the random intercept model and is

related to the ANCOVA linear model described in the previous section. The

model is

yij = β0 + β1xij + uj + eij (1.18)

where uj ∼ N(0, σ2
u) and eij ∼ N(0, σ2

e). This will produce a different regres-

sion line for each of the spectra, although each will have the same slope as the

model assumes that the influence of the predictor variable x is the same for

each spectrum. To remove this assumption we can consider a random slopes

model. This is similar to a separate regression for each spectrum in linear mod-

elling, however, the results will not be exactly the same due to the random

effects assumption. In the random slopes model

yij = β0 + β1xij + u0j + u1jxij + eij (1.19)

where uj = (u0j, u1j) ∼ MV N(0,Ωu) and eij ∼ N(0, σ2
e). The multivariate
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normal (MVN) distribution with a mean vector µ of dimension 1 × N , and

positive-definite, real, N × N covariance matrix Σ has probability density

function

fX(x1, . . . , xN) =
1

(2π)N/2 |Σ|1/2
exp

(

−1

2
(x − µ)>Σ−1(x − µ)

)

.

We now consider a general way of expressing all multilevel models with 2

levels.

1.6.3 The General Two-Level Model

All of the multilevel models in section 1.6.2 have had two levels - m/z value

and spectrum. The general two-level model is written thus:

yij = XT
ijβ + ZT

ijuj + eij (1.20)

with uj ∼ MV N(0,Ωu) and eij ∼ N(0, σ2
e). This can be written in matrix

form as y = Xβ + Zu + e. Alternatively it can be written in multivariate

normal formulation as

y ∼ MV N(Xβ,V)

where V = ZΩuZ
T + σ2

eI is a variance/covariance matrix of dimension N ×N

(in our case N is the number of spectra multiplied by the number of m/z val-

ues).

In a similar way to how the parameter estimates were obtained for lin-

ear models using least squares estimation, Generalised Least Squares (GLS,

Aitken, 1935) can be used in the multivariate case. We wish to obtain esti-

mates of β in the following equation of which the above multivariate normal

model is a special case:

y = Xβ + e , E(e) = 0 , E(eeT ) = V.
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The likelihood for the general two level model is

L(β,V;y) ∝ (2π)−N/2|V|−1/2 exp {−1

2
(y − Xβ)TV−1(y − Xβ)}

and thus the loglikelihood is

l(β,V;y) ∝ −1

2
log |V| − 1

2
(y − Xβ)TV−1(y − Xβ)

= −1

2

(

log |V|+ (y − Xβ)TV−1(y − Xβ)
)

The deviance of the model is defined as D = −2 × l(β,V;y) and is used to

compare models. The model with the lower deviance is considered a better

model.

It can be determined using the likelihood and GLS (e.g. Mardia, Kent and

Bibby, 1979) that the solution to the maximising problem is given by

β̂ = (XTV−1X)−1XTV−1y (1.21)

and the results in equation (1.16) can be obtained on substitution of V = σ2I.

The matrix V is the covariance matrix for all observations. It is block

diagonal (with each block representing one level 2 unit) and its elements depend

on the model being used. For the general two level model in equation (1.20)

the elements of V are:

• Cov(yij, yij′) = 0, (i 6= i′, j 6= j ′).

• Cov(yij, yi′j′) = ZT
ijΩuZi′j, (i 6= i′, j = j ′)

• Cov(yij, yi′j′) = ZT
ijΩuZij + σ2

e , (i = i′, j = j ′)

where i indexes the level 1 unit and j indexes the level 2 unit.
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The use of block diagonal matrices is useful when using GLS to estimate

parameters as it involves inverting matrices. If V were not block diagonal

then inverting it would become difficult as its dimension increased. The block

diagonal structure means that each of the blocks can be inverted separately

and then combined.

1.6.4 The IGLS Algorithm

In the multilevel setting described in section 1.6.3, estimates need to be found

for the fixed effects parameters β and the variance parameters Ωu and σ2
e .

If the two variances Ωu and σ2
e were known then the covariance matrix V,

containing the variances and covariances of the random terms over all levels of

the data, can be calculated using GLS to be

β = (XTV−1X)−1XTV−1y (1.22)

Since it is unlikely that these variances will be known then they will need to

be estimated from the data using an iterative procedure. Iterative Generalised

Least Squares (IGLS) is an iterative algorithm developed by Goldstein (1986)

and is based on generalised least squares (GLS) estimation. The algorithm

will now be described.

Firstly note that, if A is an (m × n) matrix, with columns, A1, A2, ..., An,

each vectors of length m, then the vector of length mn obtained by stacking

the columns on top of one another is denoted,

vec(A) =









A1

A2

...

An









.

Secondly, if A is a matrix of dimension (m × n), with individual entries, aij,

i = 1, ..., m, j = 1, ..., n; and B is a (p× q) matrix then the Kronecker product
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of A and B is defined as,

A ⊗ B =









a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB









,

which is an (mp × nq) matrix.

The first step in the IGLS algorithm is to assume that you have a simple

linear model and obtain an initial estimate for β :

β̂ = (XTX)−1XTy

Next, define the vector of residuals. For the random intercept model de-

scribed in section 1.6.2 the residuals are ỹij = yij − β̂0 − xijβ̂1. We can then

combine these residuals into a vector Ỹ = {ỹij} from which we can define

Y∗ = vec(ỸỸT ). The matrix ỸỸT has expected value V and so Ỹ allows us

to model the variances.

The elements of V for the random intercept model are σ2
u +σ2

e for elements

on the diagonal, σ2
u for other elements within the blocks on the diagonal and

zero elsewhere. This gives the structure of Y∗ as

Y∗ =









ỹ2
11

ỹ2
21ỹ

2
11

...

ỹ2
kn









=









σ2
u + σ2

e

σ2
u
...

σ2
u + σ2

e









+E = σ2
u









1

1
...

1









+σ2
e









1

0
...

1









+E = Z∗θ+E

(1.23)

for n level 2 units each with k level 1 units and where θ = [ σ2
u σ2

e ].

To update the estimates obtained earlier from assuming a simple linear
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model we then iterate between

θ̂ = (Z∗T

V∗−1

Z∗)−1Z∗T

V∗−1

Y∗

and

β̂ = (XTV−1X)−1XTV−1y

and where V ∗ = V
⊗

V to get better estimates. Convergence occurs when

successive iterations give estimates within a certain tolerance value of each

other. Since IGLS is an extension of GLS estimation the assumption of nor-

mality is not required. If the assumption holds, however, then MLE estimates

for the parameters are obtained.

1.6.5 Hypothesis Testing

The IGLS algorithm described in the last section gives estimates of both the

fixed and variance parameters in a multilevel model along with their standard

errors. To identify when particular parameters are important in the model we

can carry out hypothesis tests to show statistical significance.

In hypothesis testing a question of interest is simplified into two mutually

exclusive hypotheses between which there is a choice; the null hypothesis, H0,

and the alternative hypothesis, H1. The null hypothesis normally represents

no difference, for example, in the melanoma dataset a possible null hypothesis

is that at an m/z value of 8,000 Daltons there is no difference in the intensities

between stage I and stage IV. The alternative hypothesis is normally a state-

ment of what the test is set up to establish, for example, that at an m/z value

of 8,000 Daltons the relative intensity in stage I is lower than in stage IV. The

appropriate test statistic is calculated and compared with the critical value (at

a particular significance level) to determine which hypothesis is accepted.

For the fixed effects in a multilevel model we are normally interested in
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whether the parameter estimate is significantly different from zero. We have

obtained the parameter estimate β̂1 and its estimated standard error ŜE(β̂1)

and thus we could carry out a t-test (Student, 1908). However, since the size

of the datasets normally considered for multilevel modelling are so large we

can obtain an approximate result using a Z-test. In this case the value of the

statistic Z is:

Z =
β̂1

ŜE(β̂1)

which is distributed as N(0,1) under H0 : β1 = 0. Thus at the 5% level we

reject the null hypothesis H0 : β1 = 0 in favour of the alternative hypothesis

HA : β1 6= 0 when |Z| > 1.96

It is also important to consider which model is the best for the data avail-

able. The best model is easy to identify when the models are nested. Two

models, A and B, are said to be nested if the parameters in model A are a

proper subset of the parameters of model B. In this case the null hypothe-

sis is H0 : θ = 0 for all θ parameters in the complex model which are not

in the simpler model. We calculate the deviance of each model, Dev(A) and

Dev(B), and then the approximate test statistic under the null hypothesis is

D = (Dev(A) − Dev(B)) ∼ χ2
p where p is the number of extra parameters in

the more complex model (for large samples).

Another method which is used to compare models is the Akaike Information

Criterion (AIC, Akaike, 1974). This method more directly takes into account

the number of extra parameters in a model. The AIC statistic λA for a model

A is calculated by λA = Dev(A) + 2p where p is the numbers of parameters in

the model. A lower value of λA indicates a more preferable model. The AIC

criterion does not require the use of nested models.

A similar criterion to AIC is the Bayesian Information Criterion (BIC,

Schwartz, 1978). The BIC statistic λB for a model B is calculated by λB =
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Dev(B)+plog(n) where p is the number of parameters in the model and n is the

number of datapoints. For the datasets considered in this thesis the values of

n will be 2,009,088 and 2,859,955 for the breast cancer and melanoma datasets

respectively and thus the value of log(n) for both datasets is around 15 as

compared with 2 in the AIC statistic. This means that the introduction of

more parameters is punished more harshly when using the BIC as compared

with the AIC. Again, a lower value of λB indicates a more preferable model

and nested models are not required.

1.6.6 False Discovery Rate

If a large number of simultaneous (independent) hypothesis tests are conducted

without multiple comparison adjustment then we would expect 100α% of the

tests to be significant even if H0 is true at the 100α% significance level.

Benjamini and Hochberg (1995) suggested a method to reduce the number

of incorrectly classified significant results. Their method selects significant

results by considering their p-values. When testing m hypotheses there are

four categories that the result can fall into as shown in table 1.4.

declared not significant declared significant total
true null hypotheses U T n
false null hypotheses N S m-n
total m-R R m

Table 1.4: The 4 ways of classifying observations

The proportion of errors committed by falsely rejecting null hypotheses is

Q = T/(T + S). The false discovery rate (FDR) is defined to be the expec-

tation of Q. The Benjamini and Hochberg (1995) algorithm is described below:

• Consider m null hypotheses H1, ..., Hm and their respective p-values

p1, ..., pm.

46



1.6 Multilevel Modelling

• Arrange the p-values in ascending order so that p(1) ≤ p(2) ≤ . . . ≤ p(m).

• Choose a value q∗ to be the FDR.

• Compare each p(i) to iq∗

m
. Let k be the smallest i such that p(i) > iq∗

m
.

• Reject all the null hypotheses with p-values p(1), ..., p(k−1) and accept all

the others.

Benjamini and Hochberg (2000) refined this algorithm. The new algorithm

is similar to the previous one in that it uses the p-values to select significant

results, however, it uses the rate of change in the p-values to decide where the

cut-off point should be instead of just the actual p-values themselves. Using

either of these two algorithms results in the threshold for significance being

increased and thus fewer results are deemed significant.

In this thesis we use the original 1995 method to identify significance when

testing multiple hypotheses in chapters 3 and 4.
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Chapter 2

Classification of Proteomic

Spectra using a Deterministic

Peak Finding Algorithm

2.1 Introduction

In section 1.4 an overview of the two main data reduction methods and the

different methods of classification were presented. This chapter will consider

the use of these methods to classify new spectra once the peaks in the data

have been obtained. After a short motivation, the algorithm for identifying

the peaks is described in section 2.3 and the results obtained are described in

sections 2.4 and 2.5.

2.2 Motivation

When searching for biomarkers for disease in proteomic data the aim is to find

a small subset of the available m/z values which correctly classify disease state.

It would also be beneficial if these biomarkers had some biological relevance.

Preliminary work carried out using principal components analysis (PCA)
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has enabled mostly correct classification of the spectra in both the breast can-

cer and melanoma datasets. However, although PCA is successful at reducing

the dimension of the datasets, subsequent classification has been based on the

PCs obtained. These PCs are constructed using all of the data and thus are

not very biologically interpretable. Results obtained from this preliminary

analysis are presented with the main results of this chapter in sections 2.4 and

2.5.

In figure 2.1 it can be seen that a mass spectrum consists of a series of

distinct peaks. Each peak is centred around a particular m/z value and has

a height which can differ across spectra. This height represents abundance of

molecules - a larger peak implies a larger number of molecules with that m/z

value were identified in the sample. To classify spectra into groups we can use

this differing peak height information.
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Figure 2.1: Example showing the presence of distinct peaks in a small section
of a mass spectrum.

A method is now introduced by which spectra can be classified according to

the peak locations and heights. This method provides much more interpretable

reasons for classifications into particular groups.
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2.3 The Peak Finding Method

2.3 The Peak Finding Method

Assume we have n spectra with k observations (m/z values) in each. Let Yij

be the observed intensity at the ith m/z value in the jth spectrum. The aim is

to model the peaks in the dataset ensuring common peak locations across all

the spectra in order to aid the interpretability of the results.

We now outline a method for peak finding. To find the location of the first

peak, find a location i1 such that i1 = argmaxi

∑n
j=1 Yij. This is equivalent

to finding the largest peak in the mean spectrum. Place a Gaussian kernel of

the form c1jN(µ1, σ
2
1) = c1jf1 at this location. As suggested by the chemistry

(e.g. Hortin, 2006), we model σi to be proportional to µi, the peak location,

remembering that the constant of proportionality ξ still needs to be chosen.

The scaling parameter c1j then needs to be calculated for each spectrum j in

order that the height of the fitted peak matches the height of the data at that

point. In order to find the location of subsequent peaks, first form

Xij = Yij −
P∑

p=1

cpjfp(i)

where P is the number of peaks already fitted. This effectively ‘subtracts’

the peaks already accounted for in the method. Then find an ij such that

ij = argmaxi

∑n
j=1 Xij, set µj = ij and find the scaling parameters as before.

Note that as we are only considering positive peak heights it is simpler to sum

the Xij instead of their squares. Repeat this algorithm until the desired num-

ber of peaks is fitted. We thus have a two-step procedure - we iteratively find

the best position to fit a peak (conditional on the presence of existing peaks)

and then calculate the required scaling parameters for the height of this peak

in order that the fitted function matches the data exactly at the peak location.

We simplify matters in this model by assuming that ξ is a known constant,

although a suitable value of ξ can be determined quite easily by trial and
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error. The algorithm takes of the order of seconds to find the peaks and so

many values of ξ could be tested to find which appears to best match the data.

However, in this thesis ξ is chosen by a least squares method minimising the

residual error.

There is a potential problem with this method as it stands concerning peaks

that overlap significantly. If all the peaks are far apart from each other then

the small area in the tails of the distributions should not affect the heights

of the other peaks significantly. However, if the peaks are close together then

height contributions from the other peaks could affect how well the modelled

peak heights actually fit the data. For an example when just two peaks are

being fitted see figure 2.2.
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Figure 2.2: Example showing a peak arrangement with extra contribution to
peak heights after a second peak has been fitted.
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In figure 2.2, the peak around m/z value 7,000 is fitted according to the

above algorithm. The green line shows the resulting fitted heights at each

m/z value when the second peak is fitted. It is seen that there is an extra

contribution to the peak height at, for example, point µ1 = 7, 000. Also the

previously correctly fitted peak at m/z = 7, 000 contributes some extra height

to peak 2 at, for example, point µ2 = 6, 900. This occurs at all points where

the distributions of the fitted peaks overlap and could result in substantially

incorrect fitted heights. This phenomenon gets worse the larger the number of

fitted peaks. In order to eliminate this problem we need to consider all peaks

simultaneously, not separately as suggested above. In fitting the second peak

we wish to match the heights of both peak 1 and peak 2. This can be achieved

by solving the following two simultaneous equations in the two unknowns c1j

and c2j:

c1jf1(i1) + c2jf2(i1) = Yi1,j

c1jf1(i2) + c2jf2(i2) = Yi2,j, (2.1)

where j is the spectrum number and ip is the m/z value location of the pth

peak. This procedure is repeated every time a new peak is added, each time

solving p equations in p unknowns for each spectrum. This system of equations

can be solved in matrix notation by C = F−1Y where C = [c1j . . . cpj],

Y = [yi1,j . . . yip,j] and

F =









f1(i1) f2(i1) . . . fp(i1)

f1(i2) f2(i2) . . . fp(i2)
...

...
. . .

...

f1(ip) f2(ip) . . . fp(ip)









.

The red line in figure 2.2 shows the fitted heights at each m/z value when

this approach has been used. The heights obtained are closer to the data than

previously.
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The algorithm can be adapted to either end after a specified number of

peaks have been fitted or to continue until the Xij’s are all less than a certain

tolerance value.

In summary, the peak finding algorithm is as follows

1. For each m/z value, add up the intensities for each spectrum in the

dataset at that m/z value to obtain a single overall spectrum.

2. Find the m/z value location of the largest peak in the overall spectrum.

3. For each spectrum, place a Gaussian kernel at this m/z value with stan-

dard deviation proportional to its mean.

4. (a) If you are fitting the first peak: For each spectrum, calculate the

scaling parameter which will match the height of the Gaussian ker-

nel to the data at that m/z value.

(b) If you are fitting subsequent peaks: For each spectrum, calculate the

scaling parameters for all peaks currently identified by the algorithm

by solving simultaneous equations.

5. For each spectrum, subtract the modelled peak(s) from the original data.

6. As in step 1, sum the intensities in this subtracted dataset at each m/z

value to obtain a new overall spectrum

7. Repeat steps 2 to 6 until a specified number of peaks have been fitted.

It should be noted that as we add the kth peak the algorithm requires

the inversion of n, k × k matrices. This results in fast calculations for small

(< 50) numbers of peaks but results for a larger number of peaks are more

computationally expensive. The algorithm is now applied to the breast cancer

and melanoma datasets.
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2.4 Applying the Algorithm to the Breast

Cancer Dataset

2.4.1 Goodness of Fit

The algorithm was firstly applied to the whole dataset in order to assess if the

fitted curves were a suitable approximation to the real data. Figure 2.3 shows

the actual spectra and the modelled peaks based on the locations obtained

using the peak finding algorithm for a small section of the data in the adcon

group between 6,800 Da and 8,400 Da. One hundred and fifty peaks were used

for the whole dataset and 8 of them were in this range. Peak locations were

common across all spectra in the dataset. The black lines are the modelled

peaks and the red lines are the cell line data which are reflected in the x axis.
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Figure 2.3: The peaks selected in the adcon group using the deterministic peak
finding method and fitting 8 peaks. Red lines show the original data (reflected
in the x-axis) and black lines show the fitted values using the peak finding
algorithm.

54



2.4 Applying the Algorithm to the Breast Cancer Dataset

It is clear that the algorithm is picking out the peak locations well. The

differences in height for different spectra are apparent and are a good match

to the original data. To analyse how well the model fits the data we now

consider residual plots. These show the differences between the data and the

fitted model and are presented in figure 2.4 for the adcon group over the same

range of m/z values as previously.
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Figure 2.4: The residuals obtained for the adcon group by subtracting the
model from the data.

Overall the residuals seem to be fairly small on day 1, however, there are

some patterns evident in figure 2.4. There are two main reasons for these

patterns. Firstly some of the peaks have too large a variance as can be seen

at m/z values around 7,000 and 8,100 Da in figure 2.5. For the single peak

at 8,100 Da the large variance results in a much wider peak than is actually

present. Around 7,000 Da the presence of two close peaks each with too large

a variance results in the trough between them being incorrectly modelled. Sec-

ondly, the prerequisite that the peaks have to have common locations across
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Figure 2.5: An example spectrum over the range 6,800-8,400 Da and the fitted
model obtained from the peak finding algorithm. The red line shows one
spectrum from the breast cancer dataset and the black line shows the fitted
model.

all spectra means that, in some cases, the model is not matching to the correct

peak height for that particular spectrum. For example, at 7,900 Da the model

is matching to a datapoint on the slope of the peak.

Peak variances are linked to the m/z value at which they occur - the stan-

dard deviation is proportional to the location. So to ensure the peaks have

smaller variances the constant of proportionality, ξ, can be made smaller. This,

however, will have effects on all of the other peaks and may create less well

fitting peaks somewhere else.

2.4.2 Classification

The complete dataset (144 spectra - 24 in each of 6 groups) was split into

training and test sets with 16 spectra from each of the 6 groups comprising

the training set - 96 spectra in total. The peak finding procedure detailed

in the previous section was run on the training set using ξ = 0.000039 for
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the value of the proportionality constant. This value was obtained from the

MCMC analysis to be presented in chapter 3. A selection of ξ values were

tested around the value 0.000039 and the resulting peak locations did not

change substantially. The peak locations obtained were used to fit the model

to the test data and then various classification methods were employed to pre-

dict the group memberships of the test spectra. This algorithm was repeated

1,000 times.

Three different sets of methods for classifying the test data were used -

support vector machines (SVM), discriminant analysis (linear and quadratic,

LDA and QDA) and K-nearest-neighbour (KNN, K = 1, 5, 10 or 20) all of

which are described in more detail in section 1.4.2. The peak finding algorithm

fitted the peaks in order of size and, since it is not necessarily true that the

larger peaks are the better classifiers, the peak locations obtained needed to

be reordered. The most ‘dataset independent’ way of doing this was to order

the peaks by best classification of the training data using the same method.

For each method of classification the best 50 classifiers were used to classify

the data instead of the full 150 as this greatly reduced the computation time.

Six of the methods of classification thus required the peaks to be reordered.

It is impossible to order the peaks by best classification of the training data

when using 1-nearest-neighbour as the training set is always perfectly classified.

The classification results are summarised in table 2.1 which shows the method

used to classify, the maximum percentage of correct classifications with a 4 s.d.

range and the number of peaks that had to be included to reach this maximum

percentage. PCA and ICA were also carried out on the complete spectra before

classification. As previously the PCs/ICs were ordered by best classification

of the training data before their use to classify a test set. A summary of the

results of this analysis is shown in table 2.2. The complete classification curves

for all analyses are shown in figures 2.6 and 2.7.
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method correctly classified ± 2s.d. no of peaks

LDA 84% (78,90) 28
SVM 75% (69,81) 50

KNN (K=5) 74% (67,81) 22
KNN (K=10) 72% (64,80) 19
KNN (K=1) 72% (65,79) 44

QDA 70% (62,78) 6
KNN (K=20) 70% (62,78) 21

Table 2.1: Percentage of correct classifications obtained using the peak finding
algorithm and 7 different classification methods.

method correctly classified ± 2s.d. no of pcs/ics

PCA+LDA 89% (84,94) 50
PCA+SVM 83% (78,88) 30
PCA+QDA 76% (70,82) 9

PCA+KNN (K=1) 71% (64,77) 50
PCA+KNN (K=5) 65% (58,72) 50
PCA+KNN (K=10) 62% (54,70) 50
PCA+KNN (K=20) 59% (51,67) 50

ICA+LDA 90% (85,95) 50
ICA+SVM 84% (79,89) 30

ICA+KNN (K=5) 75% (68,82) 25
ICA+KNN (K=10) 74% (68,80) 19
ICA+KNN (K=1) 74% (68,80) 50
ICA+KNN (K=20) 72% (64,78) 20

ICA+QDA 41% (32,50) 10

Table 2.2: Percentage of correct classifications obtained using PCA/ICA on
the complete spectra and 7 different classification methods.
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Figure 2.6: Classification curves using LDA, QDA, SVM and KNN (K = 1)
combined with the fitted peak heights, and the PCs and ICs obtained from
the entire dataset. Black lines show the mean and red lines ± 2 s.d.
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Figure 2.7: Classification curves using KNN (K = 5, 10, 20) combined with
the fitted peak heights, and the PCs and ICs obtained from the entire dataset.
Black lines show the mean and red lines ± 2 s.d.
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From tables 2.1 and 2.2 it can be seen that LDA and SVM appear to be

the better classifiers achieving correct classification rates of 84%-90% and 75%-

84% respectively. Note that although the PCA/ICA classification rates were

calculated using the complete spectra and are thus relatively high, the correct

classification rates for the peak finding method are not much lower despite the

reduction in the amount of data used. Also the PCA classifications require

around 50 PCs to obtain their maximum correct classification rates, whilst the

peak finding algorithm often requires fewer peaks to reach its maximum.

Using KNN on the PCs results in a lower number of correct classifications

than using KNN on the peaks for all 4 values of K considered. Using KNN

on the ICs results in a similar classification rate to the peak finding results.

QDA does particularly badly when combined with ICA resulting in only 41%

correct classifications.

Tables 2.3 and 2.4 show the peak locations most often identified as the best

classifiers of the training data, when using LDA and SVM respectively, over

all 1,000 iterations. The m/z values of 8,104 Da, 7,453 Da and 4,393 Da are

the best first classifiers of the training data using both classification methods

collectively being chosen first 96.6% and 90.1% of the time for LDA and SVM

respectively. Note that only classifiers with totals above 150 are shown.

In figures 2.8 to 2.10 plots of the data are shown around the three m/z

values in tables 2.3 and 2.4 which are selected most often as the first best

classifier. It is clear why these locations were picked as the best classifiers of

the data as the differences in height between the groups are so large. For the

peak in figure 2.8 at an m/z value of 8,104 Da the distinction between classes

is quite clear. The adcon and adtax groups have the highest peaks, the tdcon

and tdtax groups have middle sized peaks and the mccon and mctax groups

have flatter peaks.

61



2.4 Applying the Algorithm to the Breast Cancer Dataset

order of best classification
of training data

peak location 1st 2nd 3rd 4th 5th 6th total

8,104 664 129 8 10 12 9 832
7,453 180 384 14 12 9 11 610
11,701 0 1 265 97 47 35 445
5,416 0 89 79 59 93 73 393
11,133 0 9 104 129 64 48 354
4,393 122 6 53 36 61 41 319
10,231 7 47 34 65 50 43 246
4,345 0 70 43 42 28 37 220
4,881 18 32 42 46 26 27 191
13,835 0 0 16 45 49 72 182
3,050 0 88 7 29 19 10 153
total 991 855 665 570 458 406

Table 2.3: Peak locations which best classify the training data using LDA.

order of best classification
of training data

peak location 1st 2nd 3rd 4th 5th 6th total

4,393 243 83 209 66 47 38 686
8,104 390 112 71 27 24 17 641
4,345 9 267 143 87 62 38 606
5,416 0 102 203 59 44 21 429
4,881 59 150 52 25 44 52 382
7,453 268 34 14 16 19 13 364
2,180 0 0 8 67 95 66 236
10,231 5 62 22 27 35 28 179
5,707 0 27 27 38 45 38 175
5,366 0 25 27 60 23 21 156
total 974 862 776 472 438 331

Table 2.4: Peak locations which best classify the training data using SVM.
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Figure 2.8: Plot of the data around m/z value 8,104 separated by group.
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Figure 2.9: Plot of the data around m/z value 7,453 separated by group.
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Figure 2.10: Plot of the data around m/z value 4,393 separated by group.

The peak in figure 2.9 at an m/z value of 7,453 Da is the next best classi-

fier. For this peak we can see that the heights in the adcon and adtax groups

are much higher than the other four groups. For both the peak at 8,104 Da

and the peak at 7,453 Da the heights for the control spectra are larger than

those for the respective Taxol treated spectra. This suggests that the Taxol

treatment affects a cell by reducing the number of molecules at these m/z val-

ues. For the peak in figure 2.10 at an m/z value of 4,393 Da the opposite is

true. The peak heights are higher in the treated spectra than in the controls.

The largest peaks at this m/z value are to be found in the mccon and mctax

spectra. The heights in the other four groups are comparable in size.

Tables 2.5 to 2.6 show misclassification tables based on 1,000 simulations

for the LDA and SVM classification methods at the optimum number of peak

locations (indicated in column 4 of table 2.1). It appears that it is relatively

easy to discriminate between the three different types of cell-line but it is much
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harder to differentiate between Taxol-treated or non-Taxol-treated. The latter

is the more important comparison for the physician.

classified as
adcon adtax tdcon tdtax mccon mctax

tr
u
e

gr
ou

p

adcon 79.2 15.3 0.1 0 5.2 0.3
adtax 10.5 85.8 0 0 3.4 0.3
tdcon 0 0.8 88.9 9.7 0.2 0.4
tdtax 0 0.1 10.0 87.7 0.4 1.8
mccon 0.2 0.1 0 0 88.9 10.8
mctax 0.3 0.1 0 0 17.2 82.4

Table 2.5: Percentage of correct classifications using LDA on the fitted peak
heights at 30 locations.

classified as
adcon adtax tdcon tdtax mccon mctax

tr
u
e

gr
ou

p

adcon 67.4 24.6 0 0 8.0 0
adtax 19.6 75.7 0 0 4.8 0
tdcon 0.1 0 94.3 2.9 2.6 0
tdtax 4.4 0 12.0 80.7 2.8 0.2
mccon 2.1 0.7 0 0 80.7 16.5
mctax 2.0 2.2 0 0 26.2 69.6

Table 2.6: Percentage of correct classifications using SVM on the fitted peak
heights at 50 locations.

There are an appreciable amount of adcon and adtax spectra misclassified

into the mccon group. This is not wholly unexpected as ADR/MCF-7 cell-lines

are treated versions of MCF-7 cell-lines and thus some similarities should be

expected.
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2.5 Applying the Algorithm to the Melanoma Dataset

2.5 Applying the Algorithm to the Melanoma

Dataset

2.5.1 Goodness of Fit

To check if the algorithm was giving a suitable approximation to the data the

whole dataset was modelled and a fitted curve for each spectrum obtained

using the deterministic peak finding algorithm. In figure 2.11 we see a small

subset of the data, between 6,800 Da and 8,400 Da which shows sections from

six actual spectra and the modelled peaks based on the locations obtained

using the peak finding algorithm. One hundred and fifty peaks were used for

the whole dataset and 10 of them were in this range. The black lines are the

modelled peaks and the red lines are the cell line data which are reflected in

the x axis.
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Figure 2.11: The peaks selected in 6 spectra from the melanoma dataset using
the deterministic peak finding method and fitting 10 peaks.

The peaks in the data are identified well by the algorithm and height dif-
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ferences between different spectra are apparent which results in a good match

to the original data. We now consider residual plots to assess how well the

model fits the data. Residual plots for the same six spectra shown in figure

2.11 are presented in figure 2.12.
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Figure 2.12: The residuals obtained for the 6 spectra in figure 2.11 by sub-
tracting the model from the data.

In general the residuals are fairly small, however, there are three areas in

figure 2.12 where the residuals show patterns. As discussed in section 2.4.1

for the breast cancer dataset two possible reasons are peaks having too large

a variance or modelled peaks not having exactly the same location as the data

due to the common location restriction. These reasons explain the residual

patterns around the m/z value 6,500 Da. In addition we note that for the

melanoma dataset many of the peaks appear to have a non-Gaussian shape.

This results in modelled peaks with broader slopes than the data on one side

of the peak and thus the residuals show this pattern. From figure 2.13 we can

see that the modelled peak at an m/z value of 7,800 Da gives rise to this type

of residual pattern. Some of these problems will be addressed in chapter 3 by

using multiple peaks.
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Figure 2.13: An example spectrum over the range 6,000-8,500 Da and the fitted
model from the peak finding algorithm. The red line shows one spectrum from
the melanoma dataset and the black line shows the fitted model.

2.5.2 Classification

All of the spectra in the dataset (205 spectra - 101 in stage I and 104 in

stage IV) were designated ‘training’ or ‘test’ with 68 spectra from each of the

stages comprising the training set. Using the peak finding algorithm with

ξ = 0.000020, obtained from the MCMC analysis of this dataset to be pre-

sented in chapter 3, the training spectra were modelled. The peak locations

obtained were used to fit the model to the test data and then the various clas-

sification methods used previously were used to predict the stages of the test

spectra. The peak locations were reordered according to best classification

of the training data and, for LDA/QDA, by the absolute t-statistic at each

peak. The classification results from 1,000 repetitions of this algorithm are

summarised in table 2.7. PCA and ICA were also carried out on the complete

spectra before classification. As previously the PCs/ICs were ordered by best

classification of the training data before using the best 50 to classify the test

data. A summary of the results of the PCA/ICA analyses are shown in table

2.8. The complete classification curves for all analyses are shown in figures

2.14 and 2.15.
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method correctly classified ± 2s.d. no of peaks

t-test & LDA 85% (80,90) 12
SVM 83% (78,88) 48

bestclass & LDA 81% (76,86) 26
KNN (K=20) 81% (76,86) 28
t-test & QDA 80% (75,85) 8
KNN (K=10) 80% (75,85) 23
KNN (K=5) 80% (75,85) 31

bestclass & QDA 78% (74,82) 3
KNN (K=1) 75% (70,80) 50

Table 2.7: Percentage of correct classifications obtained using the peak finding
algorithm and 7 different classification methods.

method correctly classified ± 2s.d. no of pcs/ics

PCA+LDA 86% (82,90) 48
PCA+SVM 85% (80,90) 50
PCA+QDA 81% (75,87) 28

PCA+KNN (K=1) 76% (70,82) 50
PCA+KNN (K=20) 76% (70,82) 50
PCA+KNN (K=10) 74% (68,80) 50
PCA+KNN (K=5) 65% (55,75) 50

ICA+QDA 89% (80,98) 28
ICA+LDA 85% (80,90) 30
ICA+SVM 82% (76,88) 30

ICA+KNN (K=1) 60% (38,82) 1
ICA+KNN (K=5) 60% (38,82) 5
ICA+KNN (K=10) 60% (41,79) 2
ICA+KNN (K=20) 60% (41,79) 2

Table 2.8: Percentage of correct classifications obtained using PCA/ICA on
the complete spectra and 7 different classification methods.
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Figure 2.15: Classification curves using KNN (K = 1, 5, 10, 20) combined with
the fitted peak heights, and the PCs and ICs obtained from the entire dataset.
Black lines show the mean and red lines ± 2 s.d.
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2.5 Applying the Algorithm to the Melanoma Dataset

LDA and SVM are shown to be good classifiers in tables 2.7 and 2.8 with

correct classification rates of 81%-86% and 82%-85% respectively. Note that,

similarly to the breast cancer dataset, the reduction in data used for the peak

finding method as compared with the complete spectra does not result in much

lower correct classification rates. Again the PCA classifications require around

50 PCs to obtain their maximum correct classification rates whereas the peak

finding algorithm often requires fewer peaks to reach its maximum. When

the same data were analysed by Mian et al. (2005) the data were split into

training, test and blind sets and classification was carried out using artificial

neural networks. The correct classification rate using these methods was 88%.

Using KNN on the ICs results in a much lower number of correct classi-

fications than any of the other methods with the average maximum correct

classification being 60%. However, the standard deviations in each of the IC

+ KNN cases are large. Not only does this give unreliable results but also

puts the lower confidence limit below 50% - suggesting results worse than the

value expected by chance. For the case K = 1 the entire classification curve

except for the first point is below the 50% level. ICA combined with QDA

also results in a large standard deviation. Neither of these methods should be

used to obtain reliable information about classifications.

Considering the results over all 1,000 iterations, the peak locations identi-

fied most often as the best classifiers of the training data are shown in tables

2.9 and 2.10 for the LDA and SVM classification methods. The best first

classifiers of the data occur at m/z values of 3,885 Da, 28,160 Da, 3,316 Da

and 2,227 Da using both LDA and SVM. They are collectively chosen first

99.5% and 99.2% of the time respectively. The three m/z values which are

selected most often as the first best classifier in tables 2.9 and 2.10 are plotted

in figures 2.16 to 2.18. In all three cases the average heights of the peaks in

stage I appears to be higher than those in stage IV.
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2.5 Applying the Algorithm to the Melanoma Dataset

order of best classification
of training data

peak location 1st 2nd 3rd 4th 5th 6th total

3,885 917 51 1 0 1 1 971
28,160 60 153 43 24 13 17 310
8,154 0 2 9 51 69 62 193
2,040 0 108 22 21 15 23 189
7,978 0 4 23 41 62 46 176
3,316 12 22 82 24 17 16 173
8,949 0 3 12 48 52 50 165
8,820 0 108 25 15 7 8 163
2,771 0 69 54 17 16 5 161
2,227 6 67 37 19 17 15 161
7,777 0 2 31 28 49 50 160
2,495 2 92 30 11 7 9 151
total 997 681 369 299 325 302

Table 2.9: Peak locations which best classify the training data using LDA.

order of best classification
of training data

peak location 1st 2nd 3rd 4th 5th 6th total

3,885 916 25 5 2 3 0 951
2,040 0 104 59 68 54 44 329
28,160 29 85 58 41 30 34 277
2,771 0 175 43 19 10 19 266
2,359 0 17 46 59 47 48 217
3,316 14 45 53 35 30 20 197
8,949 0 1 37 48 63 40 189
2,227 33 57 43 16 15 15 179
2,269 0 61 42 35 17 22 177
2,495 0 86 40 18 14 7 165
2,540 0 24 20 33 29 23 129
9,460 0 17 36 29 13 17 112
total 992 697 482 403 325 289

Table 2.10: Peak locations which best classify the training data using SVM.
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Figure 2.16: Plot of the data around m/z value 3,885 separated by stage.
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Figure 2.17: Plot of the data around m/z value 28,160 separated by stage.
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Figure 2.18: Plot of the data around m/z value 3,316 separated by stage.

A little further analysis shows why these three peaks are good classifiers. If

we consider the relative intensities for all spectra at one peak location we can

identify a dividing point at a particular relative intensity which results in the

majority of stage I spectra having lower (higher) intensities and the majority

of stage IV spectra having higher (lower) intensities.

For the peak in figure 2.16 at an m/z value of 3,885 Da, a dividing point

is located at a relative intensity of 4. At this point 75% of the stage I spectra

have higher intensities and 88% of the stage IV spectra have lower intensities.

For the peak in figure 2.17 at an m/z value of 28,160 Da, the dividing point

is at a relative intensity of 1.4. Then 73% of the stage I spectra have higher

intensities and 68% of the stage IV spectra have lower intensities. Lastly for

the peak in figure 2.18 at an m/z value of 3,316 Da, a dividing point is located

at a relative intensity of 3.1. At this point 70% of the stage I spectra have

higher intensities and 80% of the stage IV spectra have lower intensities.
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2.5 Applying the Algorithm to the Melanoma Dataset

Tables 2.11 to 2.12 show misclassification tables for the LDA and SVM

classification methods at the optimum number of peak locations (indicated in

column 4 of table 2.7). The results for the two methods are similar although

the percentage of correct stage I classifications is slightly higher when using

SVM. To obtain this 4.2% increase, however, requires the use of nearly twice

as many peak locations.

classified as
stage 1 stage 4

tr
u
e stage 1 76.1 23.9

stage 4 14.6 85.4

Table 2.11: Percentage of correct classifications using LDA on the fitted peak
heights at 26 locations.

classified as
stage 1 stage 4

tr
u
e stage 1 80.3 19.7

stage 4 14.3 85.7

Table 2.12: Percentage of correct classifications using SVM on the fitted peak
heights at 48 locations.
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2.6 Summary

In this chapter we have developed a deterministic peak finding algorithm and

have shown how it can be used to successfully model mass spectrometry data.

Also it has been shown how we can use the models obtained to classify new

spectra. The results were obtained using C++ and the R programming lan-

guage.

The algorithm is good at identifying the peaks in the data and it provides

differing heights for peaks which match the data well. Some differences in

the peak heights between the data and the model are apparent but these can

mostly be attributed to the restriction that was in place of common peak lo-

cations across spectra.

When considering classifying new spectra it was found that the method

of classification could drastically change the percentage of correct classifica-

tions obtained. LDA and SVM provided consistently good results over both

datasets. The SVM method provided better results than LDA for the two

group classification in the melanoma dataset. This could be due to the sim-

plicity of the problem when compared with the 6 group case in the breast

cancer dataset or alternatively it could be due to the greater amount of train-

ing data available for this dataset. For the breast cancer dataset there were

only 4 spectra from each day of each group in the training set which may not

be a representative sample of the population of spectra. It is also possible

that the SVM method performed better than the LDA method because it is

more robust against distant observations on the wrong side of the boundary.

The possibility of some outliers being present is taken into account when con-

structing an SVM and the classification boundary should not alter much, if at

all, from the boundary if those outliers were excluded. However, in LDA the

presence of an outlier would skew the discrimination boundary.

When using LDA and SVM to classify, the results obtained using the algo-
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rithm were comparable with using the information contained in the compete

spectra despite the reduction in the number of available datapoints. This shows

promise for the use of data reduction methods to analyse high-dimensional pro-

teomic data.

Whichever method was used to classify new spectra in the breast cancer

dataset it was found that it was relatively easy to distinguish between the three

different types of spectrum (MCF-7/ADR, T47D or MCF-7). It was harder to

separate out control and treated specimens of the same type of cell line. Some

MCF-7/ADR spectra were misclassified into the MCF-7 group which should

not be surprising as they are both derived from the same original cell-lines.

In Mian et al. (2003) the breast cancer dataset was studied using artificial

neural networks (ANNs). This research highlighted the m/z values 10,518 Da,

11,100 Da, 11,687 Da and 13,239 Da as showing good classification ability be-

tween control and treated cell-lines. Only m/z values between 10 kDa and 15

kDa were considered in that analysis. The methods described in this chapter

provide similar results to two of these values at 11,133 Da and 11,701 Da.

These values are shown in tables 2.3 and 2.4 as some of the best classifiers of

the training data.

In Mian et al. (2005) the melanoma dataset was also studied using ANNs.

The research concluded that the best predictive capability came from the re-

gion between 2,000 Da and 5,000 Da and that very little predictive value was

obtained from the range between 10,000 Da and 15,000 Da. These observa-

tions are replicated in the work presented in this chapter. If we consider tables

2.9 and 2.10 we see that the majority of locations which best classify the data

are in the 2-5 kDa range and that no good classifiers exist between 10-15 kDa.

Indeed the only classifier with an m/z value greater than 10kDa is observed

at 28,160 Da. This location is one of the top three best classifiers identified in

this chapter.

78



2.6 Summary

There are three main advantages to analysing spectra using the methods

considered in this chapter. Firstly, the initial peak finding method relies on

simple calculations which can be carried out quickly. The datasets considered

in this chapter were of length ≈ 14,000. Fitting 150 peaks to one of the datasets

whilst also correcting the heights for peaks close to one another took around 90

seconds. This is a much quicker method of identifying peaks than the MCMC

analysis that will be carried out in chapter 3. Secondly, in the classification

step the new spectra are only being classified using the peak heights at each

location. This drastically reduces the dimension of the classification problem

from 144 × 14,000 to 144 × 150 for the breast cancer dataset and from 205

× 14,000 to 205 × 150 for the melanoma. Lastly when we compare with

traditional methods for data reduction, for example PCA, the peak finding

algorithm provides us with much more interpretable reasons for classification

into particular groups.
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Chapter 3

Modelling Mass Spectrometry

Data Using Markov Chain

Monte Carlo Simulation

3.1 Introduction

In section 1.5 an overview of some basic Bayesian theory and a short intro-

duction to the algorithms used in Markov Chain Monte Carlo (MCMC) was

presented. This chapter will consider the use of these methods to model the

available datasets. The initial model used in the MCMC simulations will be

introduced in section 3.2 and the results obtained from this are described in

section 3.3. More complex models are discussed in sections 3.4 and 3.5 and

the results are compared with those already obtained.

3.2 Modelling the Data

3.2.1 The Model

The aim is to use mass spectra to firstly differentiate between drug-treated

breast cancer cell-lines and non-treated controls as in Dryden et al. (2005),
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3.2 Modelling the Data

and Mian et al. (2003) who use neural networks; and secondly to differentiate

between stage I and stage IV melanoma as in Mian et al. (2005).

It can be noted from figures 3.1 and 3.2 that the spectra consist of a se-

quence of peaks of varying heights. Figure 3.1 shows sections of 6 spectra in

the breast cancer dataset, one from each of the groups, and figure 3.2 shows

sections of two spectra from the melanoma dataset, one from each of the two

stages. A possible modelling approach is therefore to fit a series of Gaussian

peaks to the data with locations, heights and variances to be estimated. This

approach can be implemented using the MCMC methods described in section

1.5 to construct samples from the joint posterior distribution of the unknown

parameters, namely the locations, heights and variances of the peaks.

The model used for each datapoint yis is distributed as yis ∼ N(θis, τ
−1)

where the yis are independent of each other and where θis is the sum of scaled

Gaussian distributions:

θis =

k∑

j=1

hjs(ξµ
2
j)

− 1

2 exp

(

−1

2
(ξµ2

j)
−1(xi − µj)

2

)

(3.1)

where the index i = 1, . . . , p represents the position on the spectrum, xi is the

ith m/z value, s = 1, . . . , n is the spectrum number and j = 1, . . . , k is the

peak number. (The constant 1/(2π) has been subsumed in the hjs parame-

ters.) The parameters µj and hjs represent respectively the location and the

scaling that adjusts the height of the peaks in the model, and ξ is a constant of

proportionality that models the fact that the standard deviation of the peaks

increases linearly with the mean.

The means of the yis’s are similar due to the model formulation, however,

they are independent. The independence assumption on the yis’s holds because

the random errors are independent. There is no constraint that the integral of

the whole spectrum remains fixed.
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Figure 3.1: BREAST CANCER: Plots of the section of data between m/z
values 6,800 and 8,400 for replicate 1 in each of the six groups on day 4.
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Figure 3.2: MELANOMA: Plots of the section of data between m/z values
6,800 and 8,400 for replicate 1 in each of the two stages of melanoma.

The model we wish to fit has common locations µj (j = 1, . . . , k) and a

common constant of proportionality ξ across the spectra. The heights of each

peak are allowed to differ across spectra and the values of the hjs’s will indicate

the presence or absence of a peak at a particular m/z value. Using common

locations will enable us to determine the height difference between spectra at

any particular location.
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3.2 Modelling the Data

3.2.2 Priors for the Parameters

Variance parameters are restricted to be strictly positive values and so prior

distributions such as the normal should not be used. The conjugate prior for a

variance parameter with normal data is the inverse gamma distribution. This

is equivalent to a gamma prior on the precision parameter τ = 1/σ2. We are

considering vague priors for all the model parameters to try to ensure any

inferences come from the actual data and not because of strong prior infor-

mation. The vague gamma prior chosen for τ is Gamma(ε, ε) with ε = 0.001

which has mean ε
ε

= 1 and large variance ε
ε2

= 1
0.001

= 1000.

The parameter ξ describes the proportionality of peak standard deviation

to peak location. Since the peak standard deviation is constrained to be pos-

itive, the value of ξ must also be positive. A Uniform(0, 0.01) distribution

was used for the prior distribution in this case. The maximum possible peak

location is around 30 kDa which makes ξ × µ2 = 0.01 × 900 = 9 and hence a

maximum peak standard deviation of 3 kDa.

The height scaling parameters h are similarly constrained to be positive.

However, plots of the data suggest that the heights are free to lie anywhere

within a restricted range of values. A suitably noninformative distribution of

this type is the uniform distribution and for this reason a Uniform(0, 100)

prior was chosen for these parameters.

When running the MCMC algorithms it is possible for the estimate of

one location parameter to become very close to another. If this continues it

is possible to have many parameters referring to the same peak and, in the

extreme case, all location parameters could become equal which would not

give biologically interpretable results. To ensure location parameters do not

become too close without good reason a Strauss prior is used (Kelly and Ripley,

1976). A Strauss prior has two parameters: an intensity β and a tolerance R
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and the joint distribution is:

π(µ1, . . . , µk) ∝ e−β(number of pairs of µ′

js that are R-close). (3.2)

Here R-close means within tolerance R. The tolerance R is how close peaks

are allowed to be without penalty. The intensity β represents how strongly

one wishes to penalise a ‘close’ proposal - the higher the value of β the higher

the penalty. The use of this prior will penalise proposals where locations are

too similar such that if a proposed peak is too close to another, it will only

be accepted if it results in a higher posterior density. We use β = 4, 000 and

R = 100. This effectively ensures peaks cannot be within 100Da of each other

unless the posterior density is greatly increased by close peaks.

These priors and the likelihood given by the data model in equation (3.1)

are combined using Bayes’ Theorem to give the following posterior density

function

posterior ∝ π(y|ξ, µ, h, τ)π(ξ)π(τ)π(µ)π(h)

∝
p
∏

i=1

n∏

s=1

τ
1

2 exp



−τ

2

[

yis −
k∑

j=1

hjs(ξµ
2
j)

− 1

2 exp

(

−1

2
(ξµ2

j)
−1(xi − µj)

2

)]2




× εετ ε−1e−ετ

Γ(ε)

× e−β( number of pairs of µ′

js that are R-close) (3.3)

where we assume that ξ, τ , µ and h are a priori independent. This is the

distribution from which we wish to sample parameter values.

3.2.3 Updating the Parameters

Throughout this section λ(t) will be used to denote the set of all the cur-

rent model parameters, and λ∗ will be used to denote the proposed set of

parameters. Since zero mean normal proposal distributions are used for all
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Metropolis-Hastings updates their ratio is equal to 1 and does not appear in

the acceptance probability calculations.

Updating τ

The complicated likelihood expression shown in equation (3.3) means the full

conditional distributions of most of the parameters cannot be written down

easily. However, the precision parameter τ is not involved in calculating θis

and thus its full conditional distribution can be easily determined. Hence, the

precision parameter τ is the only parameter in this model that can be updated

using conjugate Gibbs sampling. The full conditional distribution of τ is

P (τ |µ1, . . . , µk, h1,1, . . . , hks, ξ, y)

∝ τ
pn
2

+ε−1 exp

(

−τ

[

1

2

p
∑

i=1

n∑

s=1

(yis − θis)
2 + ε

])

i.e. τ ∼ Gamma

(

pn

2
+ ε ,

1

2

p
∑

i=1

n∑

s=1

(yis − θis)
2 + ε

)

.

(3.4)

So at each iteration of the MCMC algorithms a new value for τ will be drawn

from this distribution.

Updating ξ

When updating ξ the only part of the posterior that changes is the contribution

from the likelihood. The prior contribution remains the same since the prior

on ξ is uniform and thus is independent of the value of ξ. Assume that the

current value of ξ is ξt and the proposed value is ξ∗ ∼ N(ξt, σ
2
ξ ). Then the

equation for the acceptance probability α is:

α(λ(t), λ∗) = min

{

1,
π(y|λ∗)π(λ∗)

π(y|λ(t))π(λ(t))

}
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= min







1,

p
∏

i=1

n∏

s=1

exp



−τ

2

[

yis −
k∑

j=1

hjs

(ξ∗µ2
j)

1

2

exp

(

−(xi − µj)
2

2ξ∗µ2
j

)]2




p
∏

i=1

n∏

s=1

exp



−τ

2

[

yis −
k∑

j=1

hjs

(ξtµ
2
j)

1

2

exp

(

−(xi − µj)
2

2ξtµ2
j

)]2










.

(3.5)

The move from ξt to ξ∗ is accepted with this probability and the ξ parameter

updated accordingly. Note that values of ξ outside the range (0, 0.01) have

zero prior and are consequently rejected.

Updating µ

When updating a peak location µ the posterior changes in two places - both

the likelihood and the prior contributions. Assume we are updating the j th

mean. Let µj,(t) be the jth mean in the current set of parameters and µj,∗ ∼
N(µj,(t), σ

2
µj

) be the jth mean in the proposed set of parameters. Thus the

equation for the acceptance probability α in this case is:

α(λ(t), λ∗) =

min







1,

e−β(NR(µj,∗))

p
∏

i=1

n∏

s=1

exp




−τ

2



yis −
k∑

j=1

hjs

(ξµ2
j,∗)

1
2

exp

(

− (xi − µj,∗)
2

2ξµ2
j,∗

)



2





e−β(NR(µj,(t)))

p
∏

i=1

n∏

s=1

exp




−τ

2



yis −
k∑

j=1

hjs

(ξµ2
j,(t))

1
2

exp

(

− (xi − µj,(t))
2

2ξµ2
j,(t)

)



2











(3.6)

where NR(µj,·) is the number of peak locations within distance R of loca-

tion µj,·. This step updates just one of the peaks and should be repeated for

each location in the model.
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Updating h

When updating a height scaling h only the likelihood changes. Similar to the

updating procedure for ξ, the prior contribution remains the same since the

prior on h is uniform. Let h
(t)
js be the jth scaling parameter of spectrum s in the

current set of parameters and h∗
js ∼ N(h

(t)
js , σ2

hjs
) be the jth scaling parameter

on spectrum s in the proposed set of parameters. Thus the equation for α is:

α(λ(t), λ∗) = min







1,

p
∏

i=1

exp



−τ

2

[

yis −
k∑

j=1

h∗
js

(ξµ2
j)

1

2

exp

(

−(xi − µj)
2

2ξµ2
j

)]2




p
∏

i=1

exp



−τ

2

[

yis −
k∑

j=1

h
(t)
js

(ξµ2
j)

1

2

exp

(

−(xi − µj)
2

2ξµ2
j

)]2










,

(3.7)

and the proposed value of the jsth scaling h is accepted with this probability.

As for the µ updates, this procedure only updates one peak height for one

spectrum and should repeated for each h in turn in every MCMC iteration.

3.2.4 The Adapting Stage

All the proposal distributions used in MCMC algorithms in this chapter are

N(µ, σ2) where µ is the current value of the parameter. The value of σ2 will

determine how many of the proposed parameter values are accepted. The value

of σ2 can be initialised but it is difficult to know before starting the MCMC if

this value is going to lead to the best acceptance rates.

To try to resolve this problem an adapting stage is built into the MCMC

procedure. The proportion of acceptances for each parameter updated using

Metropolis-Hastings should be around 40% to 60% to allow good mixing (Gel-

man, Roberts and Gilks, 1997). During the adapting stage the percentage of

acceptances for each parameter is monitored and each of the proposal vari-
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ances changed if the percentage is too low or too high. A general adapting

procedure for a particular parameter is (Browne and Draper, 2000):

1. Run through 100 iterations of the MCMC algorithms and calculate the

percentage of acceptances Pacc for that particular parameter in the last

100 iterations.

2. (a) if Pacc < 50% then decrease the variance of the proposal distribution

to σ2
new = σ2

old/(2 − (Pacc

50
)) and run for another 100 iterations.

(b) if Pacc > 50% then increase the variance of the proposal distribution

to σ2
new = σ2

old × (2− (100−Pacc

50
)) and run for another 100 iterations.

3. When at least 300 iterations have been carried out (and every 100 itera-

tions thereafter) check to see if the 3 most recent values of Pacc lie within

the range 40% < Pacc < 60%.

4. (a) if the 3 most recent values of Pacc are not all within the range then

return to adapting the proposal variance as in step 2.

(b) if they are then the variance of the proposal distribution is accept-

able and is not changed further.

Then, once all the parameters have been initialised using this method, the

actual burn in process and main iterations can take place. An upper bound

is placed on the length of the adapting stage e.g. 5,000 iterations so that,

in the rare occasion that the variances of the proposal distributions are not

acceptable after such a time, the burn in period commences regardless.

3.2.5 Computational Speed Ups

The methods described in section 3.2.3 to update the parameter values are

theoretically correct. However, when they are used exactly as described they

are very computationally expensive. For example, when updating a height
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scaling parameter h, the calculation in equation (3.7) involves a complete re-

calculation of the posterior distribution with the proposed set of parameters.

However, since we only update one parameter at a time most of the posterior

distribution remains the same. The repeated calculation of all the other parts

therefore just wastes time which could better be used running the algorithm

for more iterations. Instead, to calculate the new posterior value we simply

subtract the contribution which has changed and add in the new contribution.

When a peak is placed at a particular location the value of θ is calculated

at every m/z value. When an m/z value is a large distance away from the peak

location the value of θ is almost zero. The calculation of lots of things that are

essentially zero also wastes time. To reduce the number of calculations needed

we restrict how far a peak is allowed to have an influence. This restriction is

set at a range of 6 of its standard deviations on either side of the mean. All

other m/z values are then set to zero for that peak.

We could also speed up the time taken to model the data by using the

High Performance Computing (GRID) system. Since each of the sections of

data is analysed separately we could run them in parallel. There are many

processors available and each section could be submitted to a different one.

This would reduce the total time taken to the longest time taken for any one

section. However, the parameters ξ and τ , which should be common across

sections, will now have to modelled separately in each.

3.2.6 The Splitting Algorithm

Full evaluation of the likelihood as shown in equation (3.3) is very time con-

suming. In order to model the data within a reasonable time we wish to split

the m/z values into distinct sections, where the dividing points are at low in-

tensity values. We can then update the heights of peaks in one section without

having to evaluate the whole likelihood.
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Assume we have n spectra each of length p. The idea is to split this dataset

into a partition of smaller sections of m/z values with lengths p1, p2, . . . , pm

such that
∑m

i=1 pi = p.

It is possible to split the dataset in a huge number of possible places. How-

ever, many of these ways will split one peak over two sections. We should try

to place split points so that the peaks in one section should not have much

effect on other sections.

The main aim of the analysis is to identify where spectra in different groups

have peaks of different heights. Biologically this could represent, for example,

a molecule that is more abundant in cancer patients than non-cancer patients

and which could be further analysed to introduce new drugs to treat the dis-

ease. However, there is only valuable information at and around peaks. There

is no valuable information to be gained at an m/z value where the relative

intensity is zero in all groups as this means that there are no molecules present

at all. Hence a sensible place to suggest splitting the data is where the rel-

ative frequency of molecules at that m/z value is close to zero. To ensure

that the split points have intensities as small as possible we consider the sum

over all spectra. These sums are shown in figure 3.3 for the breast cancer and

melanoma datasets respectively.

The splitting algorithm used is essentially binary - each section of the data

is split into two parts by the next step. To ensure that the algorithm does

not degenerate after the first split point is placed we need to be careful in how

future points are chosen. If, for example, the first datapoint available has the

lowest intensity then this would be chosen as the split point giving two parts,

one with length 1. This is not desirable and so we limit the range of m/z

values in which the split point can be found to the lower and upper quartiles

of the m/z values. The complete algorithm is detailed below.
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Figure 3.3: The sum of the data over all spectra in the breast cancer (left) and
melanoma (right) datasets respectively.

1. Sum the data over all spectra at each m/z value.

2. The splitting step:

• Calculate the lower quartile and upper quartile of the m/z values

in each section of data.

• Find the m/z value with the lowest intensity within each of these

interquartile ranges. Place split points at these locations.

3. For each new section of data that contains more than 1,200 m/z values

apply the splitting step again to this section.

The cut-off choice of 1,200 m/z values is arbitrary and was chosen as a

tradeoff between the speed of fitting the model and keeping the number of

sections relatively small. Using this algorithm the breast cancer data was split

into 17 sections and the melanoma data into 19 sections. The split points

chosen are shown in tables 3.1 and 3.2.

Each of the sections of data shown in tables 3.1 and 3.2 can now be anal-

ysed separately of the other sections in the dataset since we are assuming that

the fitted model will be close to zero at the ends of each partition. However,

this will involve the use of different τ and ξ parameters in each section.
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m/z 3022 4187 5167 6056 7587 8266 9937 10728 13053
length 1115 1057 779 645 1008 414 952 423 1159

m/z 14948 16735 19128 19957 21110 24357 27149 29994
length 771 870 971 322 437 1170 945 914

Table 3.1: Split points obtained from the algorithm for the breast cancer data
and the number of m/z values in each part.

m/z 2652 3621 4388 5668 7415 8497 9916 10692
length 737 942 659 982 1175 659 804 415

m/z 11367 13465 15652 16417 18604 19409 20695 23734
length 349 1023 985 328 898 317 493 1108

m/z 24790 26735 29994
length 368 658 1051

Table 3.2: Split points obtained from the algorithm for the melanoma data
and the number of m/z values in each part.

3.3 Application to Datasets

The methods outlined in the previous two sections are now applied to both

the breast cancer dataset and the melanoma dataset. Each dataset ranges over

the same m/z values - 2,000 Da to 30,000 Da. The sections of data obtained

by using the splitting algorithm detailed in the previous section were modelled

separately and the results combined.

To find suitable starting values for the parameters we use the peak find-

ing method detailed in chapter 2. This has two main benefits. Firstly if the

parameters start in reasonable places the amount of time the algorithm takes
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to adapt the proposal variances may be reduced. Secondly, and more impor-

tantly, given starting values based on peak size, it is unlikely that a prominent

peak will be ignored. With random starting values this may not be the case

as parameters could converge elsewhere.

The number of peaks to be fitted to the data differed between each sec-

tion. The number of visible peaks was counted and then this number was

increased to account for any hidden peaks. This should not affect the results

of the MCMC as the fitted heights of the extra peaks can be close to zero if

no peak is present. For each section the adapting stage was used to fine-tune

the parameter values before a burn in of 1,000 iterations and an MCMC run

of 5,000 iterations. The adapting stage took 3,000 iterations on average before

the proposal acceptance rates were suitable.

3.3.1 Results for the Breast Cancer Dataset

As explained in section 3.2, the model parameters included peak locations

(µj), peak heights (hjs), a proportionality constant (ξ) used to model the peak

variances, and a residual variance parameter (1/τ). The current parameter

values were checked at each iteration to determine the maximum a posteriori

(MAP) parameter estimates.

In figure 3.4 one complete spectrum from the dataset is shown (black) along

with the fitted model using the MAP parameter estimates (red). In total 138

peaks have been modelled. A smaller section of the dataset, between 7,600 Da

and 8,300 Da, is shown in figure 3.5. This figure shows all the adcon spectra

grouped by day. Similarly to figure 3.4, the black lines show the data and the

red lines the MAP estimates, and table 3.3 shows the parameter values that

are used to construct these MAP estimates.
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Figure 3.4: A single breast cancer spectrum and its fitted model. The black
line shows a single spectrum from the breast cancer dataset and the red line
shows the fitted model using the MAP parameter estimates.
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Figure 3.5: A section of the MAP after 5,000 iterations and original data for
all 24 spectra in the adcon group on each day separately. The black lines show
sections of the spectra from the breast cancer dataset and the red lines show
the fitted models using the MAP parameter estimates.

parameter ξ τ µ1 µ2 µ3 µ4 µ5

MAP value 0.000039 3.5862 8110 7904 7694 7939 8212

Table 3.3: The MAP estimates of ξ, τ and the five location parameters µj for
the section of the breast cancer data shown in figure 3.5.
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The MAP estimates of θ shown in figures 3.4 and 3.5 seem to approximate

the spectra quite well and the visible peaks have been identified by the model.

However, some of the fitted heights are not very accurate for some peaks, for

example the peak at around m/z value 8,100 Da on all four days. Here the

modelled heights are not as large as the data. This could be attributed to the

non-normal shape of this peak which is most evident on day 4.

Convergence of the parameters can be checked by inspecting trace plots.

Figure 3.6 shows the trace plots for the precision parameter τ and the propor-

tionality parameter ξ and figure 3.7 shows the trace plots for the five location

parameters µj which relate to the section of data shown in figure 3.5.
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Figure 3.6: Trace plots of the precision parameter τ (left) and the proportion-
ality constant ξ (right) for a section of the breast cancer dataset.

Trace plots for the 720 height scaling parameters are omitted. There ap-

pear to be no patterns in most of the traces which implies the chains are

mixing well and that the adapting and burn-in period are of a suitable length.

In the case of peak 5, shown in figure 3.7, the trace appears skewed in one

direction. This is because this location was close to the end of this section of

data and proposals out of the range were immediately rejected. The trace for

peak 4 centres around an m/z value of 7,940 Da and appears to have a smaller

acceptance probability than the others. This peak location is close to a more

important peak in the model centred around 7,905 Da.
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Figure 3.7: Trace plots of the five location parameters µj for a section of the
breast cancer dataset.

To see how well the model fits the data the Akaike Information Criterion

(AIC) statistic can be calculated (Akaike, 1974). The number of parameters

in the model is comprised of 138 locations, 19,872 heights, 17 residual vari-

ances and 17 proportionality constants (each of the 17 sections had a separate

estimate of ξ and τ). For the model used in this section the AIC is thus

−2 × loglikelihood + 2 × no. of parameters

= (−2 × 1, 317, 360) + (2 × 20, 044)

= −2, 594, 632. (3.8)

This value will be used in the rest of this chapter to determine whether more
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complex models are appropriate. Similarly, the BIC statistic for this model is

−2, 343, 817. Comparisons of the models using the AIC and BIC statistics will

be discussed later.

For each day and at each peak location in the model t-statistics (Student,

1908) were calculated using the maximum posterior estimates of the height

parameters to identify which locations differed in height between the related

pairs of control and treated cell-lines (e.g. adcon and adtax ). Pairwise com-

parisons between the three control cell-lines (e.g. tdcon and mccon) were also

calculated. Due to the large number of tests a false discovery rate algorithm

was used (see section 1.6.6) to reduce the number of results identified as sig-

nificant. The results of these analyses are shown in tables 3.4 and 3.5. The

numbers in the tables indicate which day(s) had significant t-statistics after the

FDR algorithm had been applied with q∗ = 0.05. Similar statistics were also

calculated which ignored the day information. However, under this assumption

none of the locations differed significantly in height for any of the comparisons.

It appears from tables 3.4 and 3.5 that it is easier to distinguish between

groups on days 3 and 4. This should be expected since the Taxol treatment

will have had more time to take effect. In most cases of the control-treated

comparisons the t-statistics were positive suggesting that the Taxol treated

cell-lines have smaller heights. Also it should be noted that significant differ-

ences between adcon and adtax cell-lines do not occur very often - the only

exception occurring at an m/z value of 5,407 Da. This should also not be

surprising since the MCF-7/ADR cell-lines are meant to be resistant to Taxol.

We should be careful when using these m/z values to show differences

between groups as inference is based on only 6 observations per group. Tests

using such small amounts of data lack power and much more data would be

needed to obtain reliable biomarkers.
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m/z 2959 3053 3709 3809 3835 4019

adc/tdc (3) (4)
adc/mcc (3) (2)
tdc/mcc (1) (4) (4) (3,4) (3,4)

m/z 4119 4388 4541 4641 4703 4803

adc/tdc (4) (4)
adc/mcc (4) (3,4) (2,3) (2,3,4)
tdc/mcc (3,4) (4) (3,4) (2,4) (4)

m/z 4887 5103 5253 5376 5669 6916

adc/tdc (4) (3) (4)
adc/mcc
tdc/mcc (1,2,3,4) (2,4) (3,4) (2) (3,4)

m/z 7147 7443 7694 7939 8110 8212

adc/tdc (3) (4) (4) (4)
adc/mcc (4) (2,4) (4)
tdc/mcc (2,4) (2,3) (3,4)

m/z 9187 10016 10230 10435 11137 11357

adc/tdc (3)
adc/mcc (3) (4)
tdc/mcc (3,4) (2) (2,3) (3) (3)

m/z 13636 14046 14250 15402 17252 17764

adc/tdc (4) (4) (4)
adc/mcc
tdc/mcc (3) (3) (3) (3,4) (3) (2,4)

m/z 19030 20360 21010 23083

adc/tdc (2) (4) (4)
adc/mcc
tdc/mcc (1) (4)

Table 3.4: The peak locations with significant t-statistics between the three
pairs of control groups.
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m/z 3592 4389 4703 5407 5669 6369

adc/adt (3)
tdc/tdt (2) (4) (4) (2)
mcc/mct (4) (4)

m/z 7019 8110 8473 10228 11719 12389

adc/adt
tdc/tdt (4) (3) (3)
mcc/mct (4) (4) (4)

m/z 12643 13432 13636 14046 14460 14856

adc/adt
tdc/tdt (3) (3)
mcc/mct (4) (4) (4) (4) (4)

m/z 15043 15402 16315 17983 18506 19030

adc/adt
tdc/tdt (3) (1)
mcc/mct (4) (4) (4) (4) (4)

m/z 20815 21010 22227 23083 24117 25373

adc/adt
tdc/tdt (3) (1) (3)
mcc/mct (4) (4) (4) (4)

Table 3.5: The peak locations with significant t-statistics between the pairs of
control and treated cell-lines.

3.3.2 Results for the Melanoma Dataset

One complete melanoma spectrum (black) is shown in figure 3.8 along with

the fitted model using the MAP parameter estimates (red). In total 112 peaks

have been modelled. To see the model more clearly, a smaller section of the

dataset, between 7,400 Da and 8,500 Da, is shown in figure 3.9.
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Figure 3.8: A single melanoma spectrum and its fitted model. The black line
shows a single spectrum from the melanoma dataset and the red line shows
the fitted model using the MAP parameter estimates.
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Figure 3.9: A section of the MAP after 5,000 iterations and original data for
6 spectra in each of the melanoma stages separately.

parameter ξ τ
MAP value 0.000020 0.4306

parameter µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8

MAP value 7788 7988 8158 7888 7672 8368 8258 7572

Table 3.6: The MAP estimates of ξ, τ and the eight location parameters µj

for the section of the melanoma data shown in figure 3.9.
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Figure 3.9 shows 6 spectra from each of the stages of melanoma. Again,

the black lines show the data and the red lines the MAP estimates. The MAP

estimates for each of the model parameters are given in table 3.6.

The MAP estimates of θis model the data well albeit with a similar problem

to the breast cancer data in that some of the fitted heights are not sufficiently

large to correctly match the data. This can be seen in figure 3.9 where the

MAP at an m/z value around 7,800 Da falls short of the datapoints.
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Figure 3.10: Trace plots of the eight location parameters µj for the melanoma
dataset.

We again check convergence of the parameters by inspecting trace plots.

Figure 3.10 shows the trace plots for the eight location parameters µj and figure

3.11 shows the trace plots for the precision parameter τ and the proportionality

parameter ξ. Trace plots for the 1,640 height scaling parameters are omitted.

In general the traces are acceptable as there are no obvious patterns.
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Figure 3.11: Trace plots of the precision parameter τ (left) and the propor-
tionality constant ξ (right) for a section of the melanoma dataset.

In table 3.7 are the m/z values with significant t-statistics between the two

stages of melanoma after the FDR algorithm has been applied with q∗ = 0.05.

The majority of the statistics are positive which suggests that as the stage of

melanoma increases the abundance of molecules at these m/z values decreases.

All of the significant peaks in the range 11,300 - 12,200 Da have negative t-

statistics which suggests an increase in the number of molecules between stage

I and stage IV. The melanoma results are more reliable than the breast cancer

results as they are based on a larger amount of information.

The AIC statistic can be calculated as for the breast cancer dataset. The

number of parameters in the model is comprised of 112 locations, 22,960

heights, 19 residual variances and 19 proportionality constants (each of the

19 sections had a separate estimate of ξ and τ) and thus for the single peaks

model the AIC is (−2 × 2, 811, 217) + (2 × 23, 110) = −5, 576, 214. Similarly,

the BIC statistic for this model is −5, 278, 873. Comparisons of the models

using the AIC and BIC statistics will be discussed later.

In the fitted models for both the breast cancer and the melanoma there are

some height parameters which are not as large as the data. To try to improve

the fit more complex models are now introduced.
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m/z 2227 2262 2306 2488 2539 2766

t-statistic 8.077 6.316 5.400 7.885 5.741 5.687

m/z 2962 3298 3556 3828 3888 3974

t-statistic 7.310 5.231 4.681 8.500 9.085 4.294

m/z 4478 4656 4778 5107 6455 6652

t-statistic 4.198 4.836 4.898 4.738 5.860 5.342

m/z 6752 7572 7672 7788 7988 8158

t-statistic -5.408 7.988 7.443 7.410 5.769 5.500

m/z 8368 8928 9323 9481 9670 11528

t-statistic 5.043 4.845 4.860 5.458 4.555 -5.499

m/z 11704 13946 14210 14659 17234 17424

t-statistic -5.471 5.155 6.951 6.350 4.619 5.151

m/z 17810 18207 28172 28745 29233

t-statistic 5.270 4.525 7.566 6.905 6.479

Table 3.7: The peak locations with significant t-statistics between the two
stages of melanoma.
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3.4 Double Peaks

As pointed out in section 3.3.1, the peak present in the breast cancer dataset

at an m/z value of 8,100 Da in figure 3.5 does not look Gaussian and thus the

model does not fit well to the data at this location. On further examination

of this peak it appears to possibly consist of a combination of two peaks at

the same location. The first is a peak with small variance which accounts for

the spikiness of the overall peak, and the second is a peak with larger variance

which contributes a baseline amount of intensity.

In the model discussed in section 3.2.1 peaks were fitted at certain m/z

values and the standard deviation of these peaks was proportional to the lo-

cation. To take the combination peaks into account a slight alteration of the

model is needed. At each peak location two peaks will now be fitted. The first

will be fitted as in the previous model and the second will be fitted to exactly

the same location but will have an increased variance.

3.4.1 The Double Peaks Model

Each datapoint yis is distributed as yis ∼ N(θis, τ
−1) where θis is changed to:

θis =
k∑

j=1

hjs(ξµ
2
j)

− 1

2 exp

(

−1

2
(ξµ2

j)
−1(xi − µj)

2

)

+
k∑

j=1

h∗
js(ωξµ2

j)
− 1

2 exp

(

−1

2
(ωξµ2

j)
−1(xi − µj)

2

)

(3.9)

where the index i = 1, . . . , p represents the position on the spectrum, xi is the

ith m/z value, s = 1, . . . , n is the spectrum number, j = 1, . . . , k is the peak

number, ξ is the constant of proportionality and µj are the peak locations.

Note that the two peaks have the same location but the second peak has a

larger variance by a factor of ω > 1. From preliminary analysis it appeared
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that ω = 2 was a reasonable choice. We fix this parameter initially and exam-

ine different variances in section 3.5.

The parameters hjs represent the scaling that adjusts the height of the

peaks with small variance and the parameters h∗
js are similar for the peaks

with large variance.

As in the previous section, the model will be fitted to each section of data

separately and the results pooled to obtain an overall model. The results are

presented in the next section.

3.4.2 Results for the Breast Cancer Dataset

To compare with the single peaks model 138 peaks have again been modelled.

A small section of the dataset, between 7,600 Da and 8,300 Da, is shown in

figure 3.12. This figure shows one spectrum in the adcon group from day 4.

The black line shows the data, the red line shows the MAP estimate of θ under

the single peaks model and the green line shows the MAP estimate under the

double peaks model. Table 3.8 shows the parameter values that give the MAP

estimate under the double peaks model.

Comparing the two models we see that the double peaks model provides a

better fit to the data than the single peaks model for the peak at 8,100 Da as

the fitted heights are increased, better matching the data. However, the fit is

still not perfect as the fitted heights remain smaller than the data. When the

MAP parameter estimates in table 3.8 are compared with those for the single

peaks model it can be seen that the peak locations have not changed greatly.

The proportionality parameter has decreased from its value in the single peaks

model. Since ξ no longer has to solely account for the variance of the complete

peaks a smaller value allows the peaks with smaller variance to be modelled

more closely.
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Figure 3.12: A section of the MAP after 5,000 iterations using single peaks
(red), double peaks (green) and original data for one spectrum in the adcon
group from day 4.

parameter ξ τ µ1 µ2 µ3 µ4 µ5

MAP value 0.000024 5.5413 8111 7911 7694 7936 8211

Table 3.8: The MAP parameter estimates for the section of the breast cancer
data shown in figure 3.12 using the double peaks model (green).
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Trace plots for all the modelled parameters were checked. There were

no evident patterns except for the one sided proposals for one peak due to

its proximity to the end of the section. To compare this model with the

one in the previous section we recalculate the AIC. The number of param-

eters in the model is comprised of 138 locations, 39,744 heights, 17 residual

variances and 17 constants. For the double peaks model the AIC is thus

(−2 × 1, 585, 413) + (2 × 39, 916) = −3, 090, 994. This value is lower than

that of the single peaks model and so the double peaks model is an improve-

ment when using this criterion. The BIC statistic for this model is −2, 591, 523.

As with the single peaks model t-statistics were calculated between pairs

of control groups (on each day separately and combined) and also between

similar control/treated pairs (on each day separately and combined). The

tests were carried out on the MAP estimates of θ at each peak location and

the false discovery rate algorithm was again used because of multiple testing.

The peaks exhibiting significant differences between the groups remain almost

identical to the ones identified in tables 3.4 and 3.5. Again combining days

resulted in no significant results.

3.4.3 Results for the Melanoma Dataset

Figure 3.13 shows one spectra from the melanoma dataset over the same range

of m/z values as examined previously. The black line shows the data and the

red and green lines the MAP estimates of θ under the single and double peaks

models respectively. The MAP parameter estimates under the double peaks

model which were used to construct the green curve are shown in table 3.9.

From figure 3.13 we can see that the double peaks model again provides a

better fit to the data than the single peaks model for the peak at 7,800 Da as

the fitted heights are increased. The MAP estimate of θ for the area between

m/z values of 7,900 Da and 8,000 Da is more accurate.
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Figure 3.13: A section of the MAP after 5,000 iterations using single peaks
(red), double peaks (green) and original data for one spectrum in the melanoma
dataset.

parameter ξ τ
MAP value 0.000015 0.8547

parameter µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8

MAP value 7787 7887 8160 7991 7681 8370 8260 7581

Table 3.9: The MAP parameter estimates for the section of the melanoma
data shown in figure 3.13 using the double peaks model (green).
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No patterns were visible in the trace plots for the parameters so the chains

were mixing in an acceptable manner.

To find peaks with significantly different heights between the two stages of

melanoma t-statistics were calculated using the MAP estimates of θ at each

peak location and the FDR algorithm. The significant locations remain essen-

tially the same as in the single peaks model and the signs of the majority of

significant t-statistics remain positive showing that the heights of the peaks in

stage IV are lower than in stage I.

To compare with the previous model for this dataset we calculate the

AIC. The model contains 112 location parameters, 45,920 heights, 19 resid-

ual variances and 19 constants. For the double peaks model the AIC is thus

(−2 × 2, 908, 745) + (2 × 46, 070) = −5, 725, 350. Similarly to the results for

the breast cancer data this AIC value is much lower than for the single peaks

model and we conclude that, out of these two options, the double peaks model

is much more preferable using this criterion. The BIC statistic for the double

peaks model is −5, 132, 598. The statistic has increased compared with that

in the single peaks model as a penalty has been imposed for the introduction

of nearly twice the number of parameters.

A more complex model will now be developed which incorporates the non-

symmetry of some of the peaks.

3.5 Peak Offsetting

When analysing a substance by mass spectrometry it is common practice to

carry out two sets of analyses - with different resolutions. The resolution will

determine how well the mass spectrometer can differentiate between molecules

at m/z values close to each other. The first analysis is carried out with a
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standard resolution and the results studied to find sections of the spectrum

that warrant further attention. The second analysis is then carried out with

a much higher resolution on only these sections of data. More precise data is

obtained and more accurate differences can be identified. See figure 3.14 for

an example of a chemical compound’s mass spectrum showing a single peak

studied at higher resolution.

Figure 3.14: The mass spectrometry results for a single peak using a machine
with higher resolution. From Wiley, J. & Sons (2006)

The data we are considering was obtained using a mass spectrometer with

a standard resolution of 0.2%. This results in spectra resembling the ‘series of

Gaussian peaks’ that has been mentioned already. As shown in figure 3.14 a

peak may consist of many spikes. Spikes within the same peak can represent

either a completely different molecule or the same overall molecule with slight

modifications.

An m/z value is essentially a measure of mass. The mass of a molecule can

be changed in two ways. Firstly an atom can have larger mass than normal if
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it is an isotopic variant. For example, there are 3 different isotopes of hydrogen

- hydrogen, deuterium and tritium - which have relative masses of 1, 2 and 3

respectively. If a molecule contains some of these isotopic variants it will have

greater mass and thus its spike will appear at a different m/z value to the

original molecule. Secondly post-translational modifications can occur. Before

mass spectrometry of the sample takes place it is possible that the structure of

some proteins could change, for example via the attachment of another func-

tional group. When the results are obtained the spike for the new bigger ion

will appear at an m/z value greater than the original.

From this it can be seen that fitting a double peaks model is a move in

the right direction since many spikes make up the overall peak. However, the

restriction of equating locations is not necessarily sound. The peaks in the data

are much more likely to have longer right hand tails due to isotopic variation

and post-translational modifications. To account for this the locations of the

peaks with larger variance could be altered from µj to µj + δj. The double

peaks model is adjusted accordingly in the next section.

3.5.1 The Offset Peaks Model

To model the offset peaks we slightly alter the equation for θis described in

section 3.2.1. Each peak location still combines two peaks - the first will be

fitted as in both the previous models and the second will be fitted to a location

within δj to the right of the location µj.

Each datapoint yis is distributed as yis ∼ N(θis, τ
−1) where θis is now:

θis =

k∑

j=1

hjs(ξµ
2
j)

− 1

2 exp

(

−1

2
(ξµ2

j)
−1(xi − µj)

2

)

+

k∑

j=1

h∗
js(ωξ(µj + δj)

2)−
1

2 exp

(

−1

2
(ωξ(µj + δj)

2)−1(xi − (µj + δj))
2

)

(3.10)
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where the index i = 1, . . . , p represents the position on the spectrum, xi is the

ith m/z value, s = 1, . . . , n is the spectrum number, j = 1, . . . , k is the peak

number, ξ is the constant of proportionality and µj are the peak locations. The

δj parameters model the offset from the main location µj of the second peaks.

It is possible for a δj to be zero if no offset is present. The variance scaling

factor for the double peaks is modelled by ω. The parameters hjs represent

the scaling that adjusts the height of the peaks with small variance and the

parameters h∗
js are similar for the offset peaks with larger variance.

The MCMC algorithm is altered to incorporate another Metropolis-

Hastings step for the offset parameters δj. A uniform δj ∼ Unif(0, 0.1) prior

was used for these parameters. Since we are only considering offsets to the

right the minimum offset possible is 0. The maximum offset is set to be 0.1

since it is possible for another peak to be present if the m/z value is greater

than 100 Da away. When updating a δj the only part of the posterior that ac-

tually changes is the contribution from the likelihood. The prior contribution

remains the same since the prior on δj is uniform. Assume that the current

value of δj is δj,t and the proposed value is δj,t+1 ∼ N(δj,t, σ
2
δ ). Then the

equation for α, the acceptance probability, is:

α(λ(t), λ∗) = min







1,

p∏

i=1

n∏

s=1

exp
(

−τ

2
[yis − θ∗is]

2
)

p
∏

i=1

n∏

s=1

exp

(

−τ

2

[

yis − θ
(t)
is

]2
)







.

(3.11)

where θ∗is is the proposed value of θis (see equation (3.10)) under the proposed

set of parameter values. The move from δt to δ∗ is accepted with this proba-

bility and the δj parameter updated accordingly. Note that values of δ outside

the range (0, 0.1) are assumed to have zero prior and are not considered. This

step is repeated for each of the peaks.
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3.5.2 Offset Peaks and Differing Variances

In the following results section we consider two possibilities. Firstly we main-

tain the restriction that the ω parameters are all equal to 2 and secondly, to

make the model as general as possible, we allow these variance scaling param-

eters to vary at each peak. For this new model the ω parameters will have a

prior distribution ω ∼ Unif(1.5, 10). We do not wish the variances of the two

peaks at the same location to become equal so the lower bound was set to be

1.5. The upper bound was set to 10 to allow locations to mainly consist of a

single peak.

The MCMC algorithm is altered to incorporate another Metropolis-

Hastings step for the variance scaling parameters ωj. When updating an ωj the

posterior only changes through the likelihood. The prior contribution remains

the same since the prior on ωj is uniform. Assume that the current value of

ωj is ωj,t and the proposed value is ωj,t+1 ∼ N(ωj,t, σ
2
ω). Then the acceptance

probability α is calculated as in equation (3.11) and the move from ωj,t to

ωj,t+1 is accepted with this probability. Note that values of ωj outside the

range (1.5,10) have zero prior and are not considered. This step is repeated

for each of the peaks.

In summary, the four models considered in this chapter are:

model section
I single Gaussian peaks 3.2
II double peaks mixture model 3.4.1
III offset peaks mixture model 3.5.1
IV offset peaks with differing variances 3.5.2

Table 3.10: A summary of the four models considered in this chapter.

The results from these models will now be presented.
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3.5.3 Results for the Breast Cancer Dataset

To enable suitable comparisons to be drawn with the previous models, 138

peaks have again been modelled. Figure 3.15 shows the same section of data

as before but with the MAP estimates of θ under all four models considered in

this chapter. The black lines show the data, the red lines the MAP estimates

of θ under the single peaks model, the green line the MAP under the double

peaks model, the turquoise line the MAP under the offset peaks model and the

blue line the MAP under the differing variances model. Table 3.11 shows the

parameter values that give the MAP estimate under the offset peaks model

(turquoise) and table 3.12 the parameter values under the differing variance

model (blue).

7600 7700 7800 7900 8000 8100 8200

0
5

10
15

m/z value

da
ta

Figure 3.15: A section of the MAP after 5,000 iterations using all the models
and original data for one spectrum in the adcon group for day 4. The red line
shows the MAP under the single peaks model, the green line the double peaks
model, the turquoise line the offset peaks model and the blue line the differing
variances model.
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parameter ξ τ
MAP value 0.000022 8.671

parameter µ1 µ2 µ3 µ4 µ5

MAP value 8106 7834 7664 7931 8265

parameter µ1 + δ1 µ2 + δ2 µ3 + δ3 µ4 + δ4 µ5 + δ5

MAP value 8141 7920 7711 7962 8266

Table 3.11: The MAP parameter estimates for the section of the breast cancer
data shown in figure 3.15 under the offset peaks model (turquoise).

parameter ξ τ
MAP value 0.000017 9.703

parameter µ1 µ2 µ3 µ4 µ5

MAP value 8110 7843 7671 7951 8264

parameter µ1 + δ1 µ2 + δ2 µ3 + δ3 µ4 + δ4 µ5 + δ5

MAP value 8137 7922 7720 8151 8265

parameter ω1 ω2 ω3 ω4 ω5

MAP value 1.50 1.74 2.03 3.42 1.68

Table 3.12: The MAP parameter estimates for the section of the breast cancer
data shown in figure 3.15 under the differing variances model (blue).

From figure 3.15 we can see that the offset peaks model again provides

a better fit to the data than the previous models for the peak at 8,100 Da.

The fitted heights are increased further, better matching the data although

there still remains some difference. For the purposes of model comparison we

recalculate the AIC. The number of parameters in the model is comprised of

138 locations, 39,744 heights, 138 offset parameters, 17 residual variances and

17 proportionality constants. For the model used in this section the AIC is

thus (−2× 2, 182, 023)+ (2× 40, 056) = −4, 283, 938. This value is lower than

that of the double peaks model and so the offset peaks model is a further im-

provement. The BIC statistic for the offset peaks model is −3, 782, 705. The

statistic has again lowered from that in the double peaks model and so the

offset peaks model is an improvement.
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The difference between the data and the fitted model is slightly reduced by

the use of the more complicated model with differing variances, however, this

new model does not appear to give a much better fit to the data shown than

that under the offset model. The more complicated model must fit better in

other places, however, as we see a reduction in the AIC and BIC. The number

of parameters in the model is comprised of 138 locations, 39,744 heights, 138

offset parameters, 138 variance scaling parameters, 17 residual variances and

17 proportionality constants. For the model used in this section the AIC is

thus (−2×2, 188, 279)+(2×40, 192) = −4, 296, 174 and the BIC is −3, 793, 243.

Trace plots for all the modelled parameters were checked in both models.

There were no evident patterns except for the proposals only accepted in one

direction for one peak due to its proximity to the end of the section.

When the MAP parameter estimates in tables 3.11 and 3.12 are compared

with those for the previous models we see that the peak locations have again

not changed much. The offset parameters for visible peaks are all positive and

the variance scaling parameters are all around the value 2. For the fifth peak

it is seen that the value of δ5 is zero as the offset peak is fitted to effectively

the same location. The value of the proportionality parameter has decreased

although not by as much as last time.

The t-statistics using the MAP estimates of θ between pairs of control

groups and between related control/treated groups did not show any signifi-

cantly different peak locations compared with those of the original single peaks

model for either of the offset models, although the absolute value of a large

number of the t-statistics has increased. Comparisons which ignored day in-

formation all remained insignificant. The significant peak locations after cor-

recting for multiple testing can be seen in tables 3.4 and 3.5.
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3.5.4 Results for the Melanoma Dataset

The same small section of the dataset as examined previously is shown in figure

3.16 along with the MAP estimates of θ for each of the four models. Figure

3.16 shows one spectrum from the melanoma dataset - the black line shows the

data and the red, green, turquoise and blue lines the MAP estimates of θ under

the single peaks, double peaks, offset peaks and differing variance peaks mod-

els respectively. Tables 3.13 and 3.14 show the parameter values that are used

to construct the MAP estimates of θ under the offset peaks model (turquoise)

and differing variances model (blue).
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Figure 3.16: A section of the MAP after 5,000 iterations using offset peaks and
original data for one spectra in the melanoma dataset. The red line shows the
MAP under the single peaks model, the green line the double peaks model, the
turquoise line the offset peaks model and the blue line the differing variances
model.
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parameter ξ τ
MAP value 0.000012 1.526

parameter µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8

MAP value 7789 8163 8267 7989 7665 8369 7889 7453

parameter µ1+δ1 µ2+δ2 µ3+δ3 µ4+δ4 µ5+δ5 µ6+δ6 µ7+δ7 µ8+δ8

MAP value 7869 8196 8267 8035 7748 8372 7954 7544

Table 3.13: The MAP parameter estimates for the section of the melanoma
data shown in figure 3.16 under the offset peaks model (turquoise).

parameter ξ τ
MAP value 0.000005 2.422

parameter µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8

MAP value 7775 7875 8149 7996 7669 8363 8249 7473

parameter µ1+δ1 µ2+δ2 µ3+δ3 µ4+δ4 µ5+δ5 µ6+δ6 µ7+δ7 µ8+δ8

MAP value 7814 7940 8175 8048 7723 8392 8290 7502

parameter ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

MAP value 2.04 2.69 3.40 3.06 1.60 1.89 2.71 2.39

Table 3.14: The MAP parameter estimates for the section of the melanoma
data shown in figure 3.16 under the differing variances model (blue).

From figure 3.16 we can see that the offset peaks model does not appear

to show much difference in the range shown compared with the double peaks

model. However, when considering the AIC we see a reduction so the model

provides a better fit in some areas of the data using this criterion. The number

of parameters is 46,182 (112 locations, 45,920 heights, 112 offset parameters,

19 residual variances and 19 proportionality constants). For the model used in

this section the AIC is thus (−2 × 3, 136, 830) + (2 × 46, 182) = −6, 181, 296.

This lower value indicates that the offset peaks model is an improvement upon

the double peaks model. The BIC statistic is −5, 587, 103 which is lower than

that of both the single and double peaks models.

When comparing the MAP estimates of θ from the differing variances

model with those from the simpler offset peaks model it can be seen that
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the more complicated model gives a much better fit to the data shown. The

height of the peak at around 7,800 Da is much more closely fitted and the

range between 7,900 and 8,000 Da is an improvement over all the previ-

ous models. This is borne out by a reduction in the AIC. The number of

parameters in the differing variances model is 46,294 (112 locations, 45,920

heights, 112 offset parameters, 112 variance scaling parameters, 19 residual

variances and 19 proportionality constants). For this model the AIC is there-

fore (−2×3, 146, 468)+(2×46, 294) = −6, 200, 348 and the BIC is −5, 604, 714.

All the offset parameters applying to visible peaks are non-zero so none of

the peaks in the range are symmetrical. This was also true for the majority of

the peaks in the other parts of the dataset. This suggests that the assumption

of peaks having longer right hand tails was sensible. The value of the offset

peak µ8 + δ8 given in table 3.13 has moved 100 Da to the right compared with

µ8. This is the upper limit of the permissible values for a δ. We can see from

figure 3.16 that the relative intensity at both the m/z values is negligible and

so this causes no problem. In the final model the variance scaling parameters

ω seem to be around the value 2 which suggests our previous model using a

standard scaling of 2 was not unreasonable.

No patterns were visible in any of the trace plots for the parameters so

the chains were acceptable. To check if any peaks were different between

the two stages of melanoma t-statistics were again calculated using the MAP

estimates of θ at each peak location and then correcting for multiple testing.

The locations remain essentially the same as in the previous two models and

the majority of the t-statistics are positive showing that the heights of the

peaks in stage IV are lower than in stage I. However, at around 11,500 to

11,900 Da the t-statistics show the opposite. In Mian et al. (2005) the area

around 11,701 Da was identified as one showing significant variability in the

data. The absolute value of the majority of t-statistics increases under the two

offset peaks models.
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3.6 Summary

In this chapter we have shown how MCMC algorithms can successfully be

used to simulate from a model for mass spectrometry data and also how we

can incorporate the peak finding procedure from chapter 2 to provide a suit-

able starting point. The use of these methods greatly reduces the dimension

of the datasets to a relatively small number of parameters. The number of

datapoints are 2,009,088 and 2,859,955 for the breast cancer and melanoma

datasets respectively. For the final model in this chapter the respective num-

bers of modelled parameters were 40,192 and 46,294 - around 2% of the original

number of datapoints in each case.

It has been shown that it is important to consider the data not as a com-

bination of single peaks but as a combination of double peaks with offset

locations. Using the AIC calculations it is seen that using offsets to model

the peaks gives much better results. The MAP curves match the data more

closely for only a slight increase in the number of parameters. A summary of

the AIC results is shown in table 3.15. We conclude that although the AIC is

lowest for the different variances model, it is not a large amount lower than

the AIC for the simpler offset peaks model for either dataset when compared

with the reductions for the previous model alterations. To model the data we

should use offset peaks with different variances.

cancer melanoma
AIC BIC # parameters AIC BIC # parameters

single -2,594,632 -2,343,817 20,044 -5,576,214 -5,278,873 23,110
double -3,090,994 -2,591,523 39,916 -5,725,350 -5,132,598 46,070
offset -4,283,938 -3,782,705 40,056 -6,181,296 -5,587,103 46,182

variance -4,296,174 -3,793,243 40,192 -6,200,348 -5,604,714 46,294

Table 3.15: The AIC and BIC statistics for the four models considered in this
chapter.

For comparison we will now also consider the BIC statistics. From the BIC
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results we see that, in agreement with the previous conclusions using AIC,

the model including offset peaks with differing variances is deemed to be the

most suitable. When moving from the single peaks to the double peaks model,

the BIC heavily penalised the introduction of nearly double the number of

parameters for the melanoma dataset which led to an increase in the statistic.

However, when the more complex models were analysed the BIC statistic fell

again.

In this chapter we split the datasets into sections and model each of the sec-

tions separately. This resulted in having around 20 different estimates for the

proportionality constant ξ - one in each section instead of the overall parame-

ter that we would prefer to model. When checking the values of ξ obtained for

each section it was found that, for all sections that contained visible peaks, the

value of ξ converged to roughly the same value in each section. For the sections

without visible peaks the value of ξ was larger but the peaks had negligible

height. It seems reasonable to assume that the value of ξ is approximately

constant over all sections.

The analysis of the breast cancer and melanoma datasets using the MCMC

methods discussed in this chapter requires a large amount of computational

time. This is primarily because each section of the data must be run sequen-

tially so as not to split processor time between tasks. The High Performance

Computing (GRID) system was used to compare the times taken to analyse the

datasets. Using a desktop computer to carry out the analysis of the complete

datasets resulted in total analysis times of 563.5 minutes and 706.5 minutes for

the breast cancer and melanoma datasets respectively. When using the GRID,

the time taken for the analysis of each section of data was reduced by approx-

imately 25% in both datasets. However, since there are multiple processors on

the GRID, each section of the data can be submitted to a different one and the

analysis carried out in parallel. This reduces the time taken for each dataset

to the time taken for the largest section. The times taken when running the
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analysis in parallel are 74.9 minutes and 78.4 minutes for the breast cancer

and melanoma datasets respectively.

In Dryden et al. (2005) the breast cancer dataset was analysed using a

variant of the Hotelling T 2 test (Hotelling, 1931). The day information can be

taken into account when using the Hotelling test as vectors can be constructed

of the peak heights over all four days. A brief description of the technique now

follows.

Let x̄Ai and x̄Bi be the q-vectors of means in groups A and B respectively

at m/z value i (i = 1 . . . p), with sample sizes nA, nB. Let Sxi be the unbiased

pooled within-group q × q covariance matrix at m/z value i. For the breast

cancer data q = 4 as there are 4 days of information available and p = 13951

is the number of recorded m/z values between 2000 and 30,000 Da. The two

sample Hotelling T 2 test of H0 : µAi = µBi versus H1 : µAi 6= µBi at m/z value

i is T 2
x,i = (x̄Ai − x̄Bi)

TS−1
xi (x̄Ai − x̄Bi) under certain assumptions (see Dryden

et al., 2005) and we reject H0 in favour of H1 at the 100α% level if

T 2
x,i > Tcrit(α) =

(nA + nB)(nA + nB − 2)q

nAnB(nA + nB − q − 1)
Fq,nA+nB−q−1(1 − α)

where Fν1,ν2
(1 − α) is the 1 − α quantile of the Fν1,ν2

distribution.

The Dryden et al. (2005) method tries to account for the extra noise

which would be inherent in further repetitions of the experiment. The noise

is considered to be iid Gaussian with mean zero and variance σ2 and thus the

unobserved noisy vector wi = xi + εi where εi ∼ Nq(0, σ
2Iq) independently.

The offset test statistic is then T 2
i (σ2) = (x̄Ai− x̄Bi)

T (Sxi +σ2Iq)
−1(x̄Ai− x̄Bi).

Given σ2, T 2
i (σ2) can be observed and these statistics can be used for inference.

A suitable value of σ2 is determined by a calibration method and subsequently

H0 is rejected if T 2
i (σ2) > Tcrit(α).
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3.6 Summary

The significant results obtained from this analysis are shown in table 3.16.

When comparing these results with the MCMC result tables presented in this

chapter we see that most of the values in table 3.16 are identified by the MCMC

method. The exceptions are the rows including 7,687 Da, 11,381 Da and 15,377

Da for the control/treated comparisons and the rows including 6,231 Da, 6,552

Da, 10,169 Da and 13,811 Da for the control/control comparisons.

adc/adt tdc/tdt mcc/mct adc/tdc adc/mcc tdc/mcc
3839

4127 4120
4396 4396

4648
4813 4798

5364
5692 5653 5661

6231 6282
6552 6552

7029 7017 7019
7687 7685

8094
10169

10265 10248
11381 11351 11369 11340
13854 13811 13831
14028 14048 14055

15377 15390 15402

Table 3.16: Significant m/z values in the breast cancer dataset from Dryden
et al. (2005). Similar values are listed on the same line.

There are some differences between the results from the two methods. In

the MCMC analysis the significant result at 7,029 Da is between mccon and

mctax - in table 3.16 it is between the adcon and adtax groups. Also the last

row in table 3.16 shows differences with adc/tdc and adc/mcc - in the MCMC

analysis the difference at this m/z value is with tdc/mcc comparison.

It should be noted that the Hotelling analysis does not reveal any signifi-

cant differences between any of the spectra for m/z values higher than 15,500
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3.6 Summary

Da. The MCMC approach provides many such m/z values of which the ma-

jority are for mcc/mct and tdc/mcc comparisons.

In Mian et al. (2003) the breast cancer dataset was studied using artificial

neural networks (ANNs). This research highlighted the m/z values 10,518 Da,

11,100 Da, 11,687 Da and 13,239 Da as showing good classification ability be-

tween control and treated cell-lines. Only m/z values between 10 kDa and 15

kDa were considered in that analysis. The models described in this chapter do

not reproduce any of these results. However, since the work was investigating

classification and we are testing for significance one may expect different con-

clusions.

In Mian et al. (2005) the melanoma dataset was studied using ANNs. They

find that there was a large difference between stage I and stage IV melanoma

at 11,700 Da in terms of the variability between the two groups at this m/z

value. The models used in this chapter do identify this m/z value as one ex-

hibiting differences between the two groups.
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Chapter 4

Applying Multilevel Modelling

to Proteomic Mass

Spectrometry Data

4.1 Introduction

In section 1.5 an overview of some multilevel modelling techniques was pre-

sented. This chapter will consider the use of this framework to model the

available datasets via the use of mixed effect models. Inference will be carried

out using the software package MLwiN (Rasbash et al., 2000). The construc-

tion of the model will be described in section 4.2 and the results obtained

from the analysis are described in section 4.3. A series of related models are

considered and the results are compared with those from the MCMC analysis

presented in chapter 3.

4.2 The Model

One of the main aims of this thesis is to identify locations along a spectrum

which enable us to differentiate between drug-treated breast cancer cell-lines

and non-treated controls and to differentiate between stage I and stage IV
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4.2 The Model

melanoma. In this chapter we aim to find these locations by considering a

multilevel model for the data. Multilevel modelling is a useful technique to

apply when the data have an obvious hierarchical structure such as here where

we have m/z values within spectra.

4.2.1 Model Summary

In chapter 3 the data were considered as a mixture model of Gaussian peaks.

The initial model used was yis ∼ N(θis, τ
−1) where θis is

θis =

k∑

j=1

hjs(ξµ
2
j)

− 1

2 exp

(

−1

2
(ξµ2

j)
−1(xi − µj)

2

)

. (4.1)

The index i = 1, . . . , p represents the position on the spectrum, xi is the ith

m/z value, s = 1, . . . , n is the spectrum number, j = 1, . . . , k is the peak

number, ξ is the constant of proportionality and µj are the peak locations.

A more complex model was then introduced which considered each peak

in the data as a combination of two peaks - one spiky peak as already mod-

elled and another with a larger variance to accommodate a baseline amount

of intensity. This larger variance was set to be twice the variance of the spiky

peak. Offset peaks were also considered in a third model which resulted in

better matching to the data for asymmetrical peaks. The equation for θis for

the double and offset peaks models is

θis =

k∑

j=1

hjs(ξµ
2
j)

− 1

2 exp

(

−1

2
(ξµ2

j)
−1(xi − µj)

2

)

+

k∑

j=1

h∗
js(ωjξ(µj + δj)

2)−
1

2 exp

(

−1

2
(ωjξ(µj + δj)

2)−1(xi − (µj + δj))
2

)

(4.2)
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4.2 The Model

where i, xi, s, n, j, ξ and µj are as in equation (4.1), the δj parameters model

the offset of the second peaks from the main location µj (set to zero for the

double peaks model) and the ωj are the variance scaling factors for the double

peaks. For the double peaks and offset peaks models these ωj were set to 2. A

final extension of the model considered the possibility that the variance scaling

parameters ωj were different for each peak.

4.2.2 The Multilevel Model

In the two datasets to be analysed there exists a two-level structure - m/z

values within spectra. As shown in section 1.6.3 a multivariate normal model

is of the form y ∼ MV N(Xβ,V) and for two-level models this can be rewritten

as

yij = XT
ijβ + ZT

ijuj + eij

uj ∼ MV N(0,Ωu) , eij ∼ N(0, σ2
e)

where i indexes m/z value and j indexes spectrum in our example. The value

of y is the observed datapoint at m/z value i in spectrum j, β and u are

vectors of parameters, the matrix X is the design matrix for the fixed effects

and the matrix Z is the design matrix for the random effects. The uj and the

eij are independent. Such a model is called a linear mixed effect model.

As discussed previously the main points of interest in the data are the

location and height of peaks and from this information we wish to discover

where the groups are different. We can accommodate this requirement in

the model by fitting a common fixed effect for each peak in each group to

represent an average intensity. Differences in the fixed effect estimates will

show any locations with significant differences in peak height between groups.

Incorporating random effects for each peak in each spectrum will better match

the fitted model to the data.
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4.2 The Model

Due to computational limitations, inference on the full dataset is difficult

in MLwiN. In order to analyse the data we must therefore consider using the

splitting algorithm described in section 3.2.6 which creates a partition of the

available m/z values into a number of sections. We obtain 17 sections for the

breast cancer dataset and 19 sections for the melanoma dataset.

We now describe how to create the fixed and random predictors used in

the initial model of equation (4.1). This model does not involve the presence

of multiple peaks at each location. Firstly the peak finding method described

in chapter 2 is used to obtain 150 peak locations across the whole dataset. For

each section of data the relevant peak locations are selected in order from this

list so that they are in order of decreasing peak size. Consider a section of the

data of length t with p relevant peak locations. For the first peak location, µ1,

identified in this section by the algorithm we construct a peak at this location

from the equation

θi = (ξµ2
1)

− 1

2 exp

(

−1

2
(ξµ2

1)
−1(xi − µ1)

2

)

(4.3)

where the index i = 1, . . . , t represents the position on the spectrum, xi is

the ith m/z value and ξ is the constant of proportionality. The value of ξ is

obtained from the MCMC analysis in chapter 3.

We now create from this the design matrices for the X and Z predictor

variables associated with the first peak location. The random predictor con-

sists of n replicates of this first fitted peak where n is the number of spectra in

the dataset. If there are g groups in the dataset (6 for the breast cancer and

2 for the melanoma) then we also create g fixed predictors for this first peak.

The parts of the fixed and random design matrices relevant to the first group

are identical. The fixed predictors for the remainder of the groups indicate

where we wish to measure differences from the first group. Fixed and random

predictors should be created this way for each of the peak locations identified
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4.2 The Model

by the algorithm. For an example structure diagram for the fixed effect matrix

see figure 4.1. In this figure we have a dataset containing three spectra - one

in each of three groups - and two peak locations, the second earlier (in m/z

terms) than the first.

Figure 4.1: Diagram showing the general structure of the fixed effects design
matrix X. The matrix is of dimension 3t × 3p. The areas of white contain
zeros and the gradient of grey represents the slopes of the peak. The top of
the peak is indicated by black.

For the breast cancer dataset we have 144 spectra in 6 groups so the dimen-

sion of the fixed effect design matrix X is 144t×6p where t is the length of the

section of data and p is the number of peaks fitted. The respective dimension

for the melanoma dataset is 205t × 2p.

For the more complex models we calculate additional fixed and random

effects using the same method. These extra effects are to model the presence

of the double peaks at each location. For the j th peak location we construct
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4.2 The Model

the peak using the equation

θis = (ωjξ(µj + δj)
2)−

1

2 exp

(

−1

2
(ωjξ(µj + δj)

2)−1(xi − (µj + δj))
2

)

(4.4)

where, in addition to the parameters in equation (4.3), δj models the offset of

the double peak from the original location (zero for the double peaks model)

and ωj models the scaling parameter for the double peak variance (2 for the

double and offset peaks models).

In summary, if the total number of peaks fitted in the model is p and the

number of spectra in the dataset is n then the model becomes

Y
nt×1

= X
nt×gp

β
gp×1

+ Z
nt×pn

U
pn×1

+ E
nt×1

U ∼ MV N(0,Ωu) , E ∼ N(0,Ωe).

The vector Y is the vector obtained by stacking the spectra one by one into

a single column and the vector E is the stacked error vector. The first column

of the fixed effect design matrix X consists of n replicates of the first fitted

peak. The second column to the gth column, where g is the number of groups,

consist of replicates of the first fitted peak when the corresponding points in

the Y vector are in groups 2, . . . , g and zero otherwise. This pattern repeats

in the next columns of X for other peaks in the model. The random effects

design matrix Z is similar to the fixed effects design matrix X except we do

not distinguish between groups. However, we do distinguish between spectra

and a different random effect will be obtained for each spectrum. Therefore

the ith column of the Z matrix consists of n replicates of the ith fitted peak.

The model parameters β and U are estimated by using an iterative pro-

cedure, namely the iterative generalised least squares (IGLS) algorithm as

described in section 1.6.4.
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4.3 Application to Datasets

4.2.3 The Shifting Procedure

The peak finding procedure from chapter 2 finds a series of locations where

Gaussian peaks can be placed which allow us to obtain a quick approximation

of the data. However, we found in chapter 3 that the locations obtained from

this algorithm may not be ‘optimal’ in the sense that the model deviance could

be decreased by adjusting the peak locations.

To reduce the deviance for the mixed effect models investigated in this

chapter we can consider shifting the location of a peak by one recorded m/z

value at a time in either direction until we reach a local minimum deviance.

This involves the recalculation of the design matrices X and Z. If the deviance

increases after the first shift we should instead consider moves in the opposite

direction until we reach the local minimum. This procedure should be used

on each of the peaks in the model. Every time a peak is moved the fixed and

random predictors associated with that peak will need to be recalculated.

For the case where two or more peaks are close together we should repeat

the procedure on these peaks. It is possible that, after moving the first peak,

the movement of the second one has an effect on the best location for the first.

After all the peaks have been moved once we should check that we cannot

decrease the deviance further by making extra changes. If peaks are far apart

then this second round of checking should not be required.

4.3 Application to Datasets

4.3.1 Results for the Breast Cancer Dataset

Firstly the IGLS algorithm was run to get estimates for each of the fixed and

random effects and the variances Ωu and σe using the 150 peaks obtained from

the peak finding algorithm. To try and improve the fit of the model the shift-
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4.3 Application to Datasets

ing procedure described in section 4.2.3 was used. The first peak was moved

one m/z value at a time to the left or right until the deviance did not decrease

further. This procedure was repeated for all of the peaks in the model. After

carrying out this shifting it appeared that the peaks had moved to locations

similar to those obtained from the MCMC analysis in chapter 3.

In figure 4.2 the original data from 7,600 Da to 8,200 Da are shown along

with the fixed effects which model the average spectrum for the groups. The

black line shows the fixed predictor under the single peaks model and the blue

line shows the fixed predictor under the model where the double peaks can

have offset peaks and differing variances. The change in fit is most obvious for

the peak around 8,100 Da. Here the peak is non-Gaussian and the increase

in model complexity has allowed the model to better fit the peak shape. In

the groups adcon, tdcon and tdtax there there are two obvious peaks present

between 7,800 Da and 8,000 Da. The fixed effect in these groups changes

to model the data more accurately. The peak at 7,700 appears to be fairly

symmetric so the fixed effect does not change greatly between the two models

shown.

To determine whether any of the peaks could be removed from the model

Z-tests were calculated at the 5% level. If the fixed effects for a peak were

insignificant for all of the six groups then the peak was removed. This resulted

in 22 peak locations being omitted which leaves 128 to model the presence of

a peak in any of the six groups.

These 128 remaining locations at which a peak was present were further

checked to identify where the fixed effects significantly differed between groups.

As in chapter 3 we need to correct for the large number of tests being carried

out. This was achieved by using the false discovery rate algorithm described

in section 1.6.6 with q∗ = 0.05. Following this procedure, forty five peaks were

deemed significant for one or more of the control/control comparisons and their
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Figure 4.2: Plots of the breast cancer data with the fixed effects under the
single peaks model (black) and the differing variance model (blue).

locations are shown in table 4.1. Thirty peaks were significant for one or more

of the control/treated comparisons and their locations are shown in table 4.2.

From table 4.2 it can be seen that there are some differences identified between

the two chemoresistant groups adcon and adtax. The treatment should have no

effect on these cell lines. Also only one location was identified in the MCMC

analysis in chapter 3 which exhibited differences between these two groups.

However, in chapter 3 the tests for significance were separated by day and

this information was not considered in the multilevel framework considered

in this chapter. This may explain some of the differing results between the

approaches.
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4.3 Application to Datasets

m/z 2226 2426 2724 2954 3584

groups AM AT,TM AT,AM TM AM,TM

m/z 3709 4019 4229 4329 4389

groups TM AT,TM AT AT AM,TM

m/z 4641 4703 4803 4887 5103

groups AM,TM AM,TM AM,TM TM AT,TM

m/z 5376 5553 5669 6566 7019

groups AT,TM AT AT,AM AT AT

m/z 7146 7274 7694 7939 8110

groups AT,TM AT AT,AM AT AM

m/z 8212 9187 9651 10115 10230

groups AT TM TM TM AT,TM

m/z 10435 10888 11137 11357 11918

groups AM,TM AT AT,AM AT AT,AM

m/z 12643 13432 14046 14250 14857

groups AM AT AT AT AT,TM

m/z 15402 16315 17764 20360 26743

groups TM AT AT,TM AT AT

Table 4.1: The peak locations in the breast cancer dataset with sig-
nificant differences between adcon/tdcon(AT), adcon/mccon(AM) and td-
con/mccon(TM).
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m/z 2186 2687 3590 4391 4703

groups T,M T,M M T T

m/z 5406 6693 7019 7694 8110

groups A,M T M A A,M

m/z 8473 8769 10228 10426 11718

groups T M M M A,T

m/z 12643 13432 14046 14857 15043

groups A,M A M M T

m/z 15402 16315 17983 19030 20010

groups M A T M A,T

m/z 20815 21010 23083 25373 26743

groups M A T M A

Table 4.2: The peak locations in the breast cancer dataset with significant
differences between adcon/adtax(A), tdcon/tdtax(T) and mccon/mctax(M).

The fixed effect parameters for the adcon group appeared to be larger than

for the other groups at most peak locations. One notable exception occurs

at an m/z value of 4,389 Da. This location had two of the most significant

differences between groups of all the peaks modelled. These occurred between

the adcon and mccon groups and between the tdcon and mccon groups. Plots

of the original data around this m/z value are shown in figure 4.3. Also highly

significant were the peaks at m/z values of 10,231 Da and 10,425 Da. At both

of these locations the difference lies between the tdcon and mccon groups.
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Plots of these m/z values are shown in figure 4.4.

The locations 4,389 Da and 10,231 Da identified here as exhibiting some of

the most significant differences between groups were also identified as the same

in the MCMC analysis presented in chapter 3. In addition they were identified

in the classification analysis presented in chapter 2 as being some of the best

classifiers of new spectra. The remainder of the top ten most significant loca-

tions identified by the multilevel analysis also appear in the MCMC analysis

results shown in tables 3.4 and 3.5 but not in the classification results. This

lack of similarity should not be unexpected as we are examining classification

in chapter 2 and identifying differences in chapter 4.

For the MCMC analysis we concluded that it was important to consider the

peaks as a combination of two offset peaks with different variances as the AIC

statistic was lowest for this model. We can incorporate this into the multilevel

model by changing the fixed and random effects appropriately. For each of the

three more complex models (double peaks, offset peaks and differing variance

peaks) the number of fixed and random effects will double compared with the

original model to accommodate the parameters for the peaks with larger vari-

ances.

In figure 4.5 the estimates of the data are shown for each of the four models

considered in this chapter for the m/z values between 7,400 Da and 8,400 Da.

The data are reflected in the x-axis for comparison. The single peaks model is

represented by the red curve, the double peaks model by the black curve, the

offset peaks model by the green curve and lastly the differing variances model

by the blue curve.

At 8,100 Da and 7,950 Da the fit to the data improves as the complexity

of the model increases, with the blue curve providing a visibly better match.

At around 8,050 Da moving through the four models (red to blue) allows the
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Figure 4.3: Plots of the original data around the m/z value 4,389 Da separated
by group.
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Figure 4.4: Plots of the original data around the m/z values 10,231 Da and
10,425 Da separated by group.
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Figure 4.5: The estimates obtained for one spectrum from the single(red),
double(black), offset(green) and differing variance(blue) models as compared
to the original breast cancer data (reflected in the x axis).

lowest point between the two peaks to be reduced. Modelling using offsets

(green and blue) has allowed the non-symmetric peak at 8,050 Da to be more

closely modelled and also the peak at 7,700 Da to move to the left resulting

in a better fit to the data. The deviances associated with the four models are

shown in table 4.3.

The single peaks and double peaks models are nested and so a likelihood

ratio test can be calculated to determine which of the two models is preferable.

The number of parameters is increased by 896 when moving to the double peaks

model and these parameters consist of 768 extra fixed effects and 128 extra
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model
single double offset variance

deviance -1,259,241 -1,563,974 -1,796,832 -1,921,647

Table 4.3: The deviances for the four models of the breast cancer data consid-
ered in this chapter.

variances. The test is thus

−1, 259, 241 − (−1, 563, 974) = 304, 733 >> χ2
896,0.95 = 966.8

and the double peaks model is a significant improvement on the simpler model.

The offset and differing variances models are not nested and so likelihood ratio

tests cannot be used. However, the AIC and BIC statistics can be calculated

and are shown in table 4.4. The number of parameters does not change after

the double peaks model and so we find that the the model considering peaks

with differing variances is the most preferable as it has the lowest deviance.

model
single double offset variance

AIC -1,257,449 -1,560,388 -1,793,246 -1,918,061
BIC -1,246,237 -1,537,951 -1,770,809 -1,895,624

Table 4.4: The AIC and BIC statistics for the four models of the breast cancer
data considered in this chapter.
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4.3.2 Results for the Melanoma Dataset

Before starting the multilevel analysis the peak finding algorithm from chap-

ter 2 was implemented to obtain 150 peak locations across the entire dataset.

These locations were used to create the fixed and random predictor matrices

and the IGLS algorithm was then used to obtain estimates for the effects and

the variances Ωu and σe for each section of the data. Using the shifting proce-

dure described in section 4.2.3, each peak was moved one m/z value at a time

to the left or right in order to minimise the deviance of the model. This pro-

cedure was repeated for all of the peaks in the model and, after the procedure

was completed, the peaks had moved to locations similar to those obtained

from the MCMC analysis in chapter 3.

In figure 4.6 the original data from 7,400 Da to 8,500 Da are shown along

with the fixed effects which model the average spectrum for the groups. The

black line shows the fixed effect under the single peaks model and the blue

line shows the fixed effect under the model where the double peaks can have

differing variances. The change in fixed effect is most obvious in the stage I

plot. As the peak at 7,800 Da is non-symmetric, the addition of peak offsetting

has enabled the fitted peak to change shape to better match the original data.

The peak height in stage IV remains roughly the same although the location

changes, whereas both the height and location change in stage I.

To determine whether any of the peaks could be removed from the model

Z-tests were calculated at the 5% level. If the fixed effects for a peak were

insignificant for both stage I and stage IV then the peak was removed. This

resulted in 46 peak locations being removed which leaves 104 to model the

presence of a peak in one or both of the groups. These remaining locations were

studied to identify where the fixed effect in stage I was significantly different to

that in stage IV. After correcting for multiple testing using the false discovery

rate algorithm in section 1.6.6, forty peaks were deemed significant and their

locations are shown in table 4.5 along with the associated values of the Z
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Figure 4.6: Plots of the melanoma data with the fixed effects under the single
peaks model (black) and the differing variance model (blue).

statistic. From table 4.5 it can be seen that the fixed effect parameters for

stage IV generally appeared to have lower values than their counterparts in

stage I. There are only 3 m/z values where the peaks have larger magnitude

in stage IV - 6,754 Da, 11,524 Da and 11,705 Da. For the two peaks in the

11,600 Da area the fixed effect in stage I is deemed not significantly different

to zero and so these locations refer to peaks only present in stage IV. For the

peak at 6,754 Da the fixed effects in both groups were significantly different to

zero and thus there is a peak present in both groups. The original data at the

two m/z values around 11,600 Da are shown in figure 4.7 showing the obvious

difference between stage I and stage IV.
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m/z 2227 2312 2489 2535 2729

Z statistic -8.250 -6.000 -8.333 -5.167 -6.000

m/z 2777 2960 3065 3304 3552

Z statistic -6.333 -8.333 -8.250 -5.889 -6.667

m/z 3891 3972 4477 4653 4777

Z statistic -8.833 -4.545 -4.333 -5.000 -5.250

m/z 6452 6650 6754 7571 7671

Z statistic -5.890 -5.532 6.469 -8.000 -7.538

m/z 7789 7986 8156 8364 8931

Z statistic -7.438 -5.690 -5.606 -5.000 -4.750

m/z 9323 9481 9672 11524 11705

Z statistic -4.941 -5.452 -4.500 5.636 5.469

m/z 13943 14210 14655 17235 17424

Z statistic -5.147 -7.230 -6.000 -4.688 -5.200

m/z 17811 18206 28170 28742 29239

Z statistic -5.143 -4.750 -7.543 -7.125 -6.600

Table 4.5: The peak locations with significant Z statistics between the two
stages of melanoma.
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Figure 4.7: Plots of the melanoma data at the peak locations where the stage
IV intensity is higher than in stage I.

In chapter 3, considering the peaks as a combination of two offset peaks

with different variances was deemed important because this model had the

lowest AIC statistic. By changing the fixed and random predictors appropri-

ately this structure can be incorporated into the multilevel model. For each of

the three more complex models (double peaks, offset peaks and differing vari-

ance peaks) the number of fixed and random effects increases from 208 and

104 respectively under the single peaks model to 416 and 208 to accommodate

the parameters for the peaks with larger variances.

In figure 4.8 the estimates of the data are shown for each of the four models

considered in this chapter for the m/z values between 7,400 Da and 8,400 Da.

The data are reflected in the x-axis for comparison. The single peaks, double,

offset and differing variances models are respectively represented by the red,

black, green and blue curves.
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Figure 4.8: The estimates obtained for one spectrum from the single(red),
double(black), offset(green) and differing variance(blue) models as compared
to the original melanoma data (reflected in the x axis).

At 7,800 Da and 8,150 Da increasing the complexity of the model provides

a much better fit to the data, with the blue curve showing the best match of the

four models. At around 7,950 Da moving from the single to the double peaks

model (red to black) allows the peaks to be modelled more closely because of

the reduction in the ξ parameter. In that area there are now troughs present

instead of just an overall curve as there was under the single peaks model.

Although the second peak around 7,950 Da is modelled more closely with the

black curve the first peak in that area is not fitted well. When the additional

complexity of the offset peaks and different variances is implemented the fit is
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much improved. The deviances associated with the four models are shown in

table 4.6.

model
single double offset variance

deviance -2,228,228 -2,527,056 -2,801,919 -2,980,246

Table 4.6: The deviances for the four models of the melanoma data considered
in this chapter.

Since the single peaks and double peaks models are nested, we can carry

out a likelihood ratio test to determine which of the two models is preferable.

The number of parameters is increased by 312 when moving to the double

peaks model (208 extra fixed effects and 104 extra variances) and thus the test

is:

−2, 228, 228 − (−2, 527, 056) = 298, 828 >> χ2
312,0.95 = 354.2

and the double peaks model is thus a significant improvement on the simpler

model. Likelihood ratio tests cannot be used for further model comparisons

as the offset and differing variances models are not nested. Using the model

deviances and the AIC/BIC statistics shown in tables 4.6 and 4.7 we consider

the differing variances model to be the most preferable as it has both the low-

est deviance and the lowest AIC/BIC.

model
single double offset variance

AIC -2,227,602 -2,525,806 -2,800,669 -2,978,996
BIC -2,223,574 -2,517,764 -2,792,627 -2,970,954

Table 4.7: The AIC and BIC statistics for the four models of the melanoma
data considered in this chapter.
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4.4 Summary

In this chapter we have shown how multilevel modelling techniques can success-

fully be used to model mass spectrometry data. The peak finding procedure

from chapter 2 is used to provide a suitable starting point for the fixed and

random predictors. These predictors are then shifted by one recorded m/z

value at a time in order to minimise the deviance of the model. Using mixed

effect models means that the data are described using a much smaller number

of parameters than there are original datapoints.

In agreement with the results from chapter 3 it has been shown that it is

important to consider the data not as a combination of single peaks but as

a combination of double peaks with offset locations. Using likelihood ratio

tests where applicable and AIC/BIC calculations otherwise it has been shown

that using the model allowing offset peaks with different variances gives much

better results than the simpler models. By doubling the number of parameters

in the model we obtain a much better match to the data. A summary of the

model deviances and AIC/BIC statistics are shown in table 4.8. We conclude

that the most complex of the four models is the most preferable.

cancer melanoma
deviance AIC BIC deviance AIC BIC

single -1,259,241 -1,257,449 -1,246,237 -2,228,228 -2,227,602 -2,223,574
double -1,563,974 -1,560,388 -1,537,951 -2,527,056 -2,525,806 -2,517,764
offset -1,796,832 -1,793,246 -1,770,809 -2,801,919 -2,800,669 -2,792,627

variance -1,921,647 -1,918,061 -1,895,624 -2,980,246 -2,978,996 -2,970,954

Table 4.8: The deviances and AIC/BIC statistics for the four models consid-
ered in this chapter.

It should be noted that there are other hidden parameters in the multilevel

models considered in this chapter, for example, the proportionality constant ξ

which models the fact that the peak width increases with the m/z value and

the peak locations µj. However, the model deviances are so large compared
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with the number of hidden parameters that even if they were included the

overall conclusions would remain the same.

When comparing the m/z values obtained from this analysis which exhibit

different intensities between the groups with those from the MCMC analysis

presented in chapter 3 we see that there are great similarities. The majority

of the peak locations still indicate that the peak heights are lower in stage

IV than in stage I. For both datasets the locations exhibiting significant dif-

ferences between groups remain similar across the two analyses in chapter 3

and this chapter. In the breast cancer dataset the numbers of significant loca-

tions for the control/control comparisons are 40 and 45 for chapters 3 and 4

respectively. For the control/treated comparisons the corresponding number

of significant locations is 30 in both chapters. For the melanoma dataset the

numbers of significant locations remain similar between the two analyses at 40

and 41 respectively. However, for the breast cancer dataset there are a greater

number of differences identified between the adcon and adtax groups in the

multilevel analysis than in the MCMC analysis. This may be attributable to

the omission of day information in the multilevel analysis.

The results obtained by Dryden et al. (2005) and Mian et al (2005) are also

found in the multilevel analysis. In Dryden et al. (2005), however, no signifi-

cant results are found at m/z values greater than 15,000 Da. In this chapter

there are numerous examples. The number of significant results obtained may

have been affected by small sample sizes and if more data was available the

number may be reduced. Mian et al (2005) identified the m/z value 11,701

Da as a location where the two groups have highly different variability. This

location is identified in the multilevel analysis as one where the two groups

differ.
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Chapter 5

Conclusions and Further Work

5.1 Conclusions

The two main objectives of this thesis were to model the spectra obtained

from SELDI-TOF mass spectrometric analysis of cancerous cells and sera and

to identify where significant differences in protein expression levels occurred

between groups. This has involved the use of existing statistical techniques

along with the development of a procedure to identify peaks present in the

data.

The data obtained from mass spectrometry of proteins is high-dimensional

in nature and thus the first task was to reduce the dimensionality of the prob-

lem. This was achieved in chapter 2 with the development of a peak finding

algorithm. The algorithm worked by identifying the largest peak in the mean

spectrum and fitting a Gaussian peak to this location with heights that differ

between spectra to match the data. The effects of this peak are then subtracted

from the data and the process repeated on the remaining data until a specified

number of peaks have been fitted. By using this algorithm to identify peaks in

the data we reduced the number of m/z values needed to describe a spectrum

from ≈ 14, 000 to 150. Despite this 100 fold reduction, the ability to classify

test spectra given a set of training spectra did not fall greatly. When the
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complete spectra were used, correct classification rates of 89% and 86% were

obtained when using principal components analysis combined with linear dis-

criminant analysis for the breast cancer and melanoma datasets respectively.

After dimension reduction using the peak finding algorithm instead of principal

components analysis, the respective correct classification rates were 84% and

81%. The maximal correct classifications when using the algorithm each used

around 30 peak locations whereas information from all 14,000 m/z values was

used to obtain the higher rates. Classification using peak locations provides

us with much more interpretable reasons for classifying a particular spectrum

into a group than when using the principal components. We can identify a

particular m/z value which classifies well and then molecules around this m/z

value can be further investigated by chemists to determine if they hold any

potential information for drug development.

Methods were also developed in chapters 3 and 4 to determine where sig-

nificant differences in protein expression levels occurred between groups. In

chapter 3 the use of Markov chain Monte Carlo methods enabled a parametric

model to be fitted to the data. The model parameters initially included peak

locations, peak heights, a proportionality constant used to calculate the peak

variances and a residual variance/precision parameter. The parameters were

all updated using Metropolis-Hastings steps with normal proposal distributions

with the exception of the residual variance parameter which was updated us-

ing a Gibbs sampling step. The likelihood expression was complex and the

full conditional distribution could only easily be written down for the residual

variance parameter. An adapting stage was built into the MCMC algorithm to

fine tune the proposal variances so that the proposals were accepted between

40% and 60% of the time. The peak finding procedure from chapter 2 was

used at the beginning of the MCMC algorithm to provide a suitable starting

point for each of the chains. This helped to ensure that prominent peaks in

the data were not missed by a bad choice of starting value. The model was

extended via three more related models to include a combination of two offset
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peaks with different variances at each peak location. This model provided a

better fit to the data than the initial model and a selection of m/z values were

identified which exhibit differences between groups. The m/z values identified

by this MCMC analysis showed similarities to those obtained by Dryden et al.

(2005). It was also shown in chapter 3 that by using parallel processing on

the GRID computing system we can greatly reduce the computational time

needed to carry out MCMC analysis of the data.

An algorithm was developed to create a partition of the data so that each

section could be modelled separately. The split points were placed at m/z

values with low average intensity in an attempt to not split peaks across sec-

tion. Using this algorithm on the two datasets resulted in 17 sections for the

breast cancer and 19 for the melanoma. This partition was used for both the

MCMC work and the multilevel modelling work to reduce computation time.

The methods used in chapters 2 and 3 do not take into account the complete

structure of the data. To incorporate this hierarchical structure in the data

a multilevel modelling framework was used in chapter 4. Using the IGLS al-

gorithm to estimate the parameter values a mean spectrum for each group

was identified and differences in these mean spectra were calculated using ap-

proximate Z tests. The four models used for the Bayesian analysis were also

considered here and the most appropriate model was determined by likelihood

ratio tests and AIC statistics. In agreement with the Bayesian analysis it was

found that the model consisting of offset peaks with differing variances was

considered the most appropriate.

In summary, the overall results obtained from this research are shown in ta-

bles 5.1 and 5.2. These tables show the m/z values which have been identified

as being important in differentiating between different groups. Only the most

significant result for each m/z value is shown. At 5,416 Da both the mcc/mct

and adc/adt comparisons are significant in the MCMC and multilevel analyses

but the comparison with the largest statistic has changed between chapters.
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Similar reasoning applies to the location at 8,110 Da.

m/z value 4,393 4,881 5,416 7,453 8,110 10,230

% times one of top
6 best classifiers 31.9 19.1 39.3 61.0 83.2 24.6

(chapter 2)
largest t statistic -8.576 -8.803 8.713 12.852 9.219 5.408
between groups adc/mcc tdc/mcc mcc/mct adc/tdc mcc/mct tdc/mcc

(chapter 3) (3) (3) (4) (3) (4) (2)
largest Z statistic
between groups 14.800 11.318 6.068 11.290 9.891 13.102

(chapter 4) adc/mcc tdc/mcc adc/tdc adc/tdc adc/mcc tdc/mcc

Table 5.1: m/z values identified as important in the analyses between groups
in the breast cancer dataset.

m/z value 2,495 2,771 3,316 3,885 8,949 28,160

% times one of top
6 best classifiers 15.1 16.1 17.3 97.1 16.5 31.0

(chapter 2)
t statistic

between stages 7.885 6.471 4.171 9.085 4.845 7.566
(chapter 3)
Z statistic

between stages 8.333 6.333 5.889 8.833 4.750 7.543
(chapter 4)

Table 5.2: m/z values identified as important between stages in the melanoma
dataset.

These m/z values should be investigated more thoroughly to identify pre-

cisely which molecules are present at these locations. These molecules could

then be studied to ascertain if they show any promise for drug development.

The work in this thesis has considered a variety of ways to analyse mass

spectrometry data. There remain, however, many ways in which the methods

currently in use could be improved. Some potential improvements are dis-

cussed in the next section.
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5.2 Further Work

5.2.1 Different distributions for peaks

The model that has been developed in this thesis for proteomic spectra con-

sists of a mixture of Gaussian peaks at differing locations along a spectrum. In

chapter 3 it was noted that some of the peaks in the data do not appear to be

Gaussian and that a large number of peaks appear to have longer right hand

tails. This is a more obvious problem with the melanoma data although it

does sometimes occur in the breast cancer data. The work presented in chap-

ter 3 attempted to reduce this problem by considering the modelled peaks as a

combination of two offset peaks with differing variances. This solution allowed

the modelling of the longer right hand tails although, in some cases, the peak

heights did not match the data exactly.

Another possible way to model the data would be to use other distributions

for the peaks. Three possibilities are the lognormal, beta or gamma distribu-

tions and an example of each is shown in figure 5.1. When the parameter
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Figure 5.1: Plots of the lognormal, gamma and beta distributions showing how
certain parameter values could be chosen to model non-Gaussian peaks.

values are changed then the peaks can appear more symmetrical. This could
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prove useful in a dataset such as the breast cancer dataset studied in this

thesis where there are a combination of symmetric and non-symmetric peaks.

In the MCMC algorithm the parameters describing the distributions at each

peak could be updated to accommodate this difference. Beta distributions

have been used in this context by Müller et al. (2006) to model MALDI-TOF

data although the number of observations in the dataset is small (17 control,

24 tumour). In their analysis the data are interpreted as a histogram and a

mixture model is fitted. However, given the large number of ‘observations’ in

the histogram the results of the analysis should not differ much from those

already presented in this thesis.

5.2.2 Aligning Spectra

In the peak finding algorithm described in chapter 2 one of the main restric-

tions is that the peaks have common locations across all spectra. This is

an important restriction which aids the interpretability of the results and al-

lows comparison. However, it does sometimes result in slightly incorrect peak

heights in the cases where the peak location is not an exact match for that

particular spectrum. In these cases the modelled peak is matching to a point

on the slope of a peak.

If we consider figure 5.2 we can see that this misalignment problem is quite

common. It should also be noted that the misalignments for each of the two

spectra shown in figure 5.2 are in the same direction for all the peaks in the

range (and others not shown). This suggests that there has been a shift in the

spectrum which has moved it a number of m/z values in a particular direction.

The true peaks in figure 5.2 probably lie somewhere between the two examples

shown.

To reduce this problem of shifted spectra we could use an algorithm to

align all of the spectra before analysis starts. One possible method is that of
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dynamic programming as used by Glasbey et al. (2005). Specialised software

is also becoming available for spectrum alignment, e.g. SpecAlign (Wong et

al., 2005).
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Figure 5.2: Plot of a section of the melanoma data and the fitted peaks ob-
tained from the algorithm described in chapter 2. Note that the peaks around
m/z values of 6,450, 6,700 and 7,800 Daltons are misaligned compared to the
original data and this misalignment can occur in both directions.

5.2.3 Further Modelling

As explained at the beginning of chapter 4 it is important to take into account

the complete structure of a dataset if it is known. This was considered in this

thesis by using multilevel modelling to incorporate the hierarchical structure of

the data. Each of the m/z values belongs to a particular spectrum and will be

more similar to m/z values nearby than it will to others from another spectrum.
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This worked well for the melanoma dataset as the structure of the data

is relatively simple and conformed to the two level model explained in sec-

tion 1.6.3. However, for the breast cancer dataset, the structure is not quite

so simple. For this dataset not only do we have a m/z values within spec-

tra hierarchy but there is also information concerning the day the spectrum

was obtained and the experiment number. In this case we could include some

peak/day interactions. By not taking into account the day information when

analysing the breast cancer dataset in chapter 4 it is likely that we will have

obtained an incorrect number of significant results.

Day information for the breast cancer dataset should also be incorporated

into the MCMC work in chapter 3. As the model currently stands, the fact

that the same samples are studied over a period of four days is ignored. To

remedy this a piecewise linear function of time could also be fitted as part of

the MCMC procedure.

Also, further modelling could be carried out in the MLwiN package by con-

sidering Bayesian fitting procedures for multilevel models. This would enable

closer comparisons with the Bayesian approach of chapter 3

5.2.4 Clustering within groups

The ability to classify unknown spectra into the correct groups is important

and could potentially enable physicians to determine the course of treatment

for particular patients. In chapter 2 we achieved a rate of above 80% for cor-

rect classifications of test spectra for both the breast cancer and the melanoma

datasets. However, depending on which spectra were used as training data,

some spectra were misclassified.

The melanoma dataset identifies spectra as belonging to one of two groups

- stage I or stage IV. From looking at the data it has been noted that there
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appears to be more than one type of spectrum present in stage IV. At an m/z

value around 11,700 Da about 25% of the stage IV spectra are very different

to the rest of the spectra in that group.

The presence of different clusters within a particular tumour classification

could be important in identifying certain medical characteristics. For example,

one cluster within the whole group could signify people in which the disease is

more likely to recur in the future. The ability to predict recurrence would be

of great benefit to patients and physicians alike.

5.2.5 Reversible Jump

The breast cancer and melanoma datasets were studied in chapter 3 using a

Bayesian approach which utilised MCMC algorithms. This approach modelled

the spectra as a series of peaks with differing heights and locations. However,

one limitation of the method used in chapter 3 is that the number of peaks

to be found in the data is fixed before any analysis starts. The peaks are

identified using the peak finding algorithm described in chapter 2 which picks

peaks in order of decreasing size. If too few peaks are fitted then this could

result in some small but important peaks being ignored. In the opposite case,

too many peaks could be identified which would cause overfitting to the data.

To remove this dependence on a user-specified number of modelled peaks,

the MCMC algorithm could be adapted to use reversible jump methods. Re-

versible jump MCMC was introduced by Green (1995) as a method to simulate

the posterior distribution when the number of parameters varies. By using

this method, the initial set of peak location parameters can be increased or

decreased at each update by the proposal of a birth or a death step.

For the algorithms used in chapter 3 this would mean that the number of

peaks in the model could become a parameter itself and would not have to

remain restricted to a fixed value - 150 in the current analysis.
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