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Abstract 
 
 

The evaluation of economic forecasts is a substantial and important aspect of 

economic research, and a considerable part of such evaluation is performed by 

comparing competing forecasts.  This thesis focuses on the development of statistical 

procedures in order that reliable comparison of contending forecasts can be made. 

 

The study considers three issues in particular.  The first two issues are closely related 

and concern testing the companion null hypotheses of equal forecast accuracy and 

forecast encompassing.  The established equal accuracy and encompassing tests are 

found to display problematic behaviour in certain situations, and new modified tests 

are proposed to overcome these shortcomings.  Analysis of the tests results in a 

recommendation for employing one of the newly proposed tests for each of the 

respective hypotheses.  The recommended tests follow parallel formulations and have 

a number of attractive features, notably robustness to likely forecast error properties 

of contemporaneous correlation, autocorrelation, non-normality and autoregressive 

conditional heteroscedasticity, reliable behaviour in finite samples, and good power 

performance. 

 

The third issue examines the ranking of rival forecasts according to a pre-determined 

evaluation criterion.  A recently proposed summary criterion for multi-step-ahead 

forecasts, comprising a single measure for all model representations and all forecast 

horizons of interest, is analysed, and a more reliable alternative proposed.  This 

summary criterion approach is compared to the more conventional method of ranking 

forecasts at a specific horizon for a particular model representation, and the related 

issue of forecast encompassing for linear combinations of forecasts is discussed. 

 

This thesis therefore develops robust well-behaved tests for equal forecast accuracy 

and forecast encompassing, and advances techniques for ranking competing multi-

step forecasts, providing improved, more reliable procedures for conducting economic 

forecast evaluation. 
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1.1 Preface 
 
 

The practice of forecasting comprises a fundamental and substantial part of 

economic study and analysis.  Prediction of economic variables is of paramount 

importance in both the public sector and the private sector, forming an intrinsic part 

of decision-making processes.  Given the great significance attached to such 

predictions, the issue of forecast performance assumes equal status, with the 

evaluation of economic forecasts becoming an important and valuable area of 

economic research. 

 

Forecast evaluation incorporates all forms of forecast performance assessment, and 

Granger & Newbold (1973) provide some early comment on the general issues.  

These authors examine methods to determine how good a particular forecast is, and 

how it might be modified to achieve superior prediction performance.  They argue 

strongly that an ‘objective evaluation of forecast performance is of the greatest 

importance’, and review a number of alternative techniques.  Stekler (1991) likewise 

discusses general forecast evaluation questions, and provides a variety of statistical 

tests and criteria by which forecasts can be judged.  Both papers consider measures 

of forecast adequacy, but the majority of their work concerns comparisons between 

competing forecasts.  In the literature there is a plethora of such ordinal forecast 

comparisons, with applications being in two areas - firstly in the direct comparison 

of competing forecast producers or forecast-generating mechanisms, with the goal of 

deciding which forecast is ‘best’; secondly in model building where predictive 

performance with respect to a hold-out sample is used as a diagnostic tool, and 

alternative model specifications can be compared. 
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The ubiquitous nature of forecast comparisons, combined with their central role in 

the evaluation process and consequent decision-making, generates the desire to have 

available formal statistical procedures by which these comparisons can be made.  

This thesis focuses on the development of such procedures, the aim being to 

establish reliable and robust statistical techniques for comparing competing 

forecasts.  Three areas are considered - tests for equal forecast accuracy (chapters 2 

and 4), tests for forecast encompassing (chapters 3 and 4) and criteria for ranking 

multi-step-ahead forecasts (chapter 5).  The treatise is concluded in the sixth and 

final chapter. 
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1.2 Tests for Equal Forecast Accuracy 
 
 

The accuracy of an economic forecast is crucial in the evaluation of competing 

forecasts.  The question of whether one forecast is better than another in terms of 

accuracy needs to be addressed in a statistical framework, and much work has been 

done to this end.  When comparing two rival forecasts, the accuracy issue can be 

tackled by developing tests of the null hypothesis of equal forecast accuracy of the 

competing forecasts against a one-sided or two-sided alternative.  To do this, some 

measure of accuracy must be utilised and by far the most common approach is use of 

the mean squared forecast error, although other measures may be employed; the 

important point is to choose a metric which approximates the economic loss 

associated with the use of the forecasts, i.e. the decision at hand.  Given a measure 

of accuracy, testing can proceed. 

 

Tests of the null of equal forecast accuracy must be based on series of forecast errors 

for a given forecast horizon.  These errors will most likely exhibit a number of 

statistical properties, and tests must obviously be robust to such properties in order 

to be reliable in application.  Errors from economic forecasts might strongly be 

expected to manifest contemporaneous correlation (since forecasters have 

overlapping information sets and some outcomes will surprise all forecast 

producers) and autocorrelation (especially for multi-step-ahead forecasts on 

theoretical grounds), and may well be non-normally distributed.  Forecast errors 

may possibly also be biased, although for the purpose of this analysis unbiasedness 

shall be assumed. 

In practice, particularly with forecasts of macroeconomic variables, relatively few 
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observations are available, which leads to two considerations.  Firstly, in general 

there may be insufficient data to test for the presence of the error properties 

described above, reiterating the need for robust tests.  Secondly, tests must be well-

behaved in moderately sized samples, as well as large ones, to be valuable in 

application. 

 

Dhrymes et al. (1972) consider the evaluation of econometric models, and highlight 

the difficulties associated with testing, as do Howrey, Klein & McCarthy (1974) in a 

separate study.  The earliest and simplest test of equality of prediction mean squared 

errors is the F-test, where the test statistic is comprised of the ratio of the two 

forecasts’ mean squared errors.  This is a variance ratio test and does not allow for 

any of the aforementioned properties in the forecast errors. 

 

A more workable test is that following Morgan (1939-40) and Granger & Newbold 

(1986) which employs an orthogonalising transformation to achieve robustness to 

contemporaneous correlation.  Ashley, Granger & Schmalensee (1980) use a version 

of this test in an applied context.  The Morgan-Granger-Newbold test is uniformly 

most powerful unbiased when the errors are normal and are not autocorrelated, but 

still falls short of a reliable test if these error properties are present. 

 

Other parametric tests have been proposed by authors such as Meese & Rogoff 

(1988), Diebold & Rudebusch (1991), who put forward tests which overcome the 

problem of autocorrelation, and Vuong (1989), whose work follows a classical 

hypothesis testing approach in the context of model selection on the basis of the 

Kullback Leibler Information Criterion.  Stekler (1991) and Diebold & Mariano 
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(1995) also review and present a number of nonparametric approaches to testing the 

equal accuracy null. 

 

Diebold & Mariano (1995) introduce a new parametric test in their paper which, by 

virtue of its robustness to all the above error properties, is shown to be superior to its 

predecessors in a simulation study.  The test takes a very general specification, 

performing a test on the sample mean of a loss differential function which can be 

arbitrarily defined, e.g. as the difference between the two mean squared forecast 

errors.  The Diebold-Mariano test is straightforward to implement and has very 

attractive robustness properties compared to its rivals.  The caveat to its general 

recommendation as the best equal forecast accuracy test is its finite sample 

behaviour, with the test’s empirical size significantly exceeding its nominal size in 

cases of moderate and small sample sizes. 

 

Chapter 2 of this thesis is motivated by the above literature.  In the quest to find a 

thoroughly robust and reliable test of the null of equal forecast accuracy, which is 

well behaved for all sample sizes, two issues are studied. 

 

Firstly, the Diebold-Mariano asymptotic test is analysed, with particular reference to 

its undesirable property of being oversized in moderate-sized samples.  The 

Diebold-Mariano test statistic divides the loss differential sample mean by an 

estimate of its standard error, and this estimate is found to be biased in finite 

samples.  Following this, a corrected test is proposed to alleviate the original test’s 

problems of missizing.  The modified Diebold-Mariano test embodies two 

amendments - a finite sample correction to the variance estimator in the test statistic 
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to achieve approximate unbiasedness, and use of critical values from the Student’s t 

distribution with n  degrees of freedom (where n denotes the sample size) instead 

of the originally proposed standard normal critical values. 

−1

 

A comprehensive simulation study shows the modified Diebold-Mariano test to 

exhibit significant and substantial improvements to the original test.  The oversizing 

problem is greatly reduced (although some oversizing persists in small samples for 

multi-step-ahead prediction) whilst all the advantages of the Diebold-Mariano 

approach are maintained. 

 

The second issue regards the Morgan-Granger-Newbold test, and considers the test’s 

behaviour when the forecast errors are not normally distributed.  Simulation 

highlights the test’s inadequacy under error non-normality with considerable 

oversizing present in both finite samples and in the limit.  However, the known 

power advantages of the test under normality, also confirmed by simulation, 

motivate interest in discovering whether a correction exists to correct the size 

behaviour whilst retaining the power superiority when the error distribution departs 

from normality. 

 

The source of the test’s problem in a non-normal context is found to be inconsistent 

variance estimation in the test statistic.  This in turn stems from the fact that the test 

is regression-based, and under forecast error non-normality the regression errors are 

conditionally heteroscedastic.  Three corrected tests are then proposed - two 

parametric tests employing White (1980) type corrections to achieve 

heteroscedasticity-robust estimation of the regression parameter variance, and a 
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nonparametric approach using Spearman’s rank correlation test. 

 

A simulation study examines the size and power properties of all these tests, and 

finds the parametric corrected tests to display other problems - missizing and a 

reduction in power.  The Spearman’s rank correlation test features a correct test size 

in all samples, has lower power than the Morgan-Granger-Newbold test, but 

possesses significant power advantages over the modified Diebold-Mariano test 

when the errors are non-normal, yielding a valuable test if the consideration is 

purely for one-step-ahead prediction and heavy-tailed errors are suspected.  Overall, 

however, due to its applicability to multi-step-ahead forecasts, its robustness to all 

the examined error properties, its general loss function specification, and its broadly 

reliable size and power performance, the modified Diebold-Mariano test is proposed 

as the recommended test for equal forecast accuracy. 
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1.3 Tests for Forecast Encompassing 
 
 

The comparison of competing forecasts in terms of accuracy is desirable, and 

execution of the formal tests described above will frequently lead to the inference 

that one forecast is ‘significantly better’ than the other.  However, as stressed by 

Granger & Newbold (1973), this should not result in placing complete confidence in 

the preferred forecast.  A more stringent requirement is that the inferior forecast 

embodies no useful information with regard to prediction which is not already 

contained in the preferred forecast.  If such a requirement holds, the superior 

forecast is said to encompass its competitor.  This notion of forecast encompassing 

can also be defined, and subsequently tested for, by forming a combined forecast 

comprised of a weighted average of the individual forecasts. 

 

The idea of combining forecasts began with Bates & Granger (1969) and Reid 

(1968, 1969).  These authors found that a composite forecast, generated by forming 

a weighted average of the original forecasts, could yield a lower mean squared error 

than either of the competing forecasts individually. 

 

The theory associated with combining forecasts, begun by Bates & Granger and 

Reid, was developed in a number of papers, notably by Dickinson (1973, 1975), 

Bunn (1975, 1977) and Öller (1978), and more recently by Granger & Ramanathan 

(1984) and Granger (1989).  Much empirical work has been performed, for example 

the assessment of forecasting techniques by Newbold & Granger (1974), Granger & 

Newbold (1975), Makridakis & Hibon (1979) and Makridakis et al. (1982, 1983).  

Clemen (1989) provides a thorough review of the combination of forecasts 
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literature. 

 

The link between the combination of forecasts and forecast encompassing is made 

clear by the Granger & Newbold (1973) definition (see also Nelson, 1972, and 

Cooper & Nelson, 1975) of conditional efficiency.  They define a preferred forecast 

to be conditionally efficient with respect to (or encompass) a competitor if the 

optimal weight attached to the latter in a composite predictor is zero.  This formal 

definition lends itself very naturally to a test for forecast encompassing, based on 

regression and a t-test on the optimal weight.  This established test has been 

employed widely and advocated by Chong & Hendry (1986) and Clements & 

Hendry (1993), inter alia. 

 

Additional work on the encompassing principle has been performed by Hendry & 

Richard (1982, 1983, 1989), Mizon (1984) and Mizon & Richard (1986), while 

Diebold (1989) and Wallis (1989) elaborate the relationship between combination 

and encompassing. 

 

Chapter 3 studies the issue of testing for forecast encompassing.  The forecast error 

properties discussed in the context of testing for equal forecast accuracy are equally 

of concern here, and the focus of the chapter is to provide a reliable, robust, well-

behaved test of the null that the preferred forecast encompasses its competitor. 

 

The regression test mentioned above bears a close resemblance to the Morgan-

Granger-Newbold test for the equality of prediction mean squared errors, and 

consequently intuitive doubts are raised concerning its applicability to situations 
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where forecast error non-normality persists.  Analysis of this test both theoretically 

and by simulation delivers the insight that the regression test for forecast 

encompassing is not robust to heavy-tailed error distributions, with oversizing 

characterising finite sample and limiting behaviour. 

 

The problem can again be traced to inconsistent regression parameter variance 

estimation caused by conditional heteroscedasticity in the regression errors, and 

variants of the three modified tests employed to correct the Morgan-Granger-

Newbold test can equally be applied in this context. 

 

Furthermore, an additional test for forecast encompassing is proposed, using the 

Diebold-Mariano approach with an appropriately defined loss differential to achieve 

testing of the encompassing null.  The aforementioned modifications to the Diebold-

Mariano procedure are also utilised to improve this test’s behaviour. 

 

An extensive simulation study of the tests’ empirical performances leads to similar 

conclusions to the equal accuracy question.  For one-step-ahead evaluation, the rank 

correlation test behaves well and has best power under a situation of non-normal 

errors; also one of the parametric corrected tests displays acceptable size and 

relatively good power performance.  However, the preferred test in general is the 

modified Diebold-Mariano approach test which loses little to the regression test in 

power whilst achieving good overall size behaviour for one-step- and multi-step-

ahead prediction, irrespective of the forecast error distribution and properties. 

A general recommendation is therefore proposed for the approach to the companion 

problems of testing for equal forecast accuracy and testing for forecast 
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encompassing.  The modified Diebold-Mariano tests provide reliable and robust 

statistical techniques for these aspects of forecast evaluation. 
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1.4 Testing in the Presence of ARCH Errors 
 
 

The tests for equal forecast accuracy and forecast encompassing discussed above are 

developed so as to exhibit robustness to forecast error properties which would be 

expected to arise in an applied context.  In addition to the properties of 

contemporaneous correlation, autocorrelation and non-normality already considered, 

another property demands attention - autoregressive conditional heteroscedasticity 

(ARCH).  ARCH implies predictable uncertainty through time and errors possessing 

this property would be expected whenever the volatility of the variable being 

forecast varies systematically through time.  This is of great relevance in economics, 

especially with financial variables. 

 

The notion of ARCH was introduced by Engle (1982), who developed this new class 

of statistical processes.  In the same paper, Engle finds ARCH to be significant in 

UK inflation uncertainty, and finds the same to be true for the US in another study 

(Engle, 1983).  Rich, Raymond & Butler (1992) confirm this finding of strong 

evidence of ARCH in inflation forecast errors.  The basic ARCH model has been 

generalised to GARCH by Bollerslev (1986) and multivariate specifications have 

been summarised by Bollerslev (1990) and Engle & Kroner (1995).  Bollerslev, 

Chou & Kroner (1992) provide a review of the wide application of GARCH models 

in the literature. 

 

In chapter 4, the issues of testing for equal forecast accuracy and forecast 

encompassing are revisited, with the tests examined in a world where the forecast 

errors have ARCH as a characteristic.  The example case of bivariate ARCH(1) 
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forecast errors is considered under three scenarios - independent errors, Engle-

Kroner correlated errors (following Engle & Kroner, 1995) and Bollerslev correlated 

errors (following Bollerslev, 1990), and all the tests are re-examined. 

 

The parallel results for equal accuracy and encompassing are that ARCH causes two 

problems - leptokurtosis in the errors, and autocorrelation in the loss differential 

series (or its equivalent in the regression-based tests).  These effects lead to serious 

oversizing in finite samples and in the limit for the Morgan-Granger-Newbold test 

(equal accuracy) and the regression test (forecast encompassing).  The tests which 

were previously robust to non-normality, i.e. the modified Diebold-Mariano 

approach tests and the corrected regression-based tests, overcome the leptokurtosis 

element of the ARCH effect, but still exhibit missizing due to the autocorrelation in 

the loss differential. 

 

Two new tests are therefore proposed (one for testing equality of forecast accuracy, 

one for testing forecast encompassing), which overcome the majority of the ARCH-

induced size distortions.  This improvement is achieved by including additional 

covariance lags (the number of which being determined by a Newey & West (1994) 

type lag selection rule) when estimating the variance of the loss differential mean in 

the Diebold-Mariano test statistic.  Incorporation of this information into the 

modified Diebold-Mariano approach tests recommended in chapters 2 and 3 is 

shown by Monte Carlo simulation to achieve robust reliable tests for equal forecast 

accuracy and forecast encompassing when ARCH is present in the forecast errors. 
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1.5 Ranking Competing Forecasts 
 
 

In addition to the formal tests discussed above, it is also desirable to have available 

criteria by which competing forecasts can be ranked.  These rankings will again be 

on the basis of some measure of accuracy, but are determined purely by the relative 

values of the chosen evaluation criterion for the respective forecasts, and do not 

involve executing statistical tests. 

 

The literature is replete with forecast accuracy comparisons of this kind, and the 

predominant criterion used is the mean squared forecast error (MSFE), or variants 

thereof.  Examples of such studies for the UK can be found in Ash & Smyth (1973), 

Holden & Peel (1983, 1985, 1986, 1988) and Wallis et al. (1986, 1987); also Engle 

& Yoo (1987) contains an example of a Monte Carlo forecast comparison.  The 

minimum possible MSFE is equivalent to the conditional expectation of the quantity 

to be forecast given all relevant information, and this, combined with the MSFE’s 

intuitive economic loss interpretation, generates a sound basis for its use as a 

ranking criterion. 

 

However, Clements & Hendry (1993) criticise MSFE-based measures since they are 

not invariant to isomorphic transformations and can yield different rankings 

depending on the forecast horizon considered.  Instead they propose a new criterion 

- the generalised forecast error second moment (GFESM) - which is both invariant 

to linear transforms and provides a unique ranking, including information on 

predictions at all horizons of interest.  A number of discussants commented on this 

paper, the general response being one of scepticism centred around the concept of a 
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need for invariance across different transformations (e.g. levels and changes), the 

focus on one-step-ahead prediction which GFESM points towards, and the fact that 

the criterion does not correspond to a natural or intuitive economic loss function. 

 

Chapter 5 picks up on this contentious issue of ranking competing multi-step-ahead 

forecasts.  The literature concerning GFESM is summarised, and the criterion itself 

is studied. 

 

The justification for using GFESM stems from the theory of predictive likelihood, as 

reviewed by Bjørnstad (1990), and this basis is explored.  In a world of independent 

replications of the forecast-generating mechanisms, the predictive likelihood 

foundation is shown to provide a good footing for the use of GFESM as a ranking 

criterion, but when the more realistic situation of evaluating a string of forecasts in a 

time series framework is considered, the likelihood justification is found to be more 

tenuous.  In this context, it is necessary to appeal to the replications being a ‘thought 

experiment’ for the basis to be maintained. 

 

The second issue considered relates to the behaviour of GFESM when comparing 

two misspecified models.  Two noteworthy results are found by way of a simple 

example - firstly that the ranking yielded by GFESM can be dependent on the 

arbitrarily chosen maximum forecast horizon, secondly that situations exist where 

GFESM yields a preference for one forecast whilst another forecast has a lower 

MSFE for all individual forecast horizons of interest.  These two features of the 

criterion are highly undesirable, and add weight to the criticism of GFESM. 
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Following this, an alternative measure is proposed - the generalised mean squared 

forecast error matrix (GMSFEM) - which maintains many of the GFESM 

advantages (including invariance to isomorphic transformations) whilst ensuring 

that reversals when the maximum forecast horizon is changed and the counter-

intuitive result mentioned above (where GFESM prefers an MSFE-dominated 

forecast) do not occur.  The possibility of an indeterminate conclusion is introduced 

where neither forecast is preferred; this is in some cases a limitation of the criterion 

(when the indeterminacy is caused by overly stringent dominance conditions not 

being met), but from another perspective the detection of situations where neither 

forecast is completely dominant is valuable, implying that attempts to rank the 

forecasts by a summary measure are likely to be inappropriate, and evaluation 

should instead focus on the forecast horizons and representations of interest 

separately. 

 

The GMSFEM criterion is based on mean squared error dominance for all linear 

combinations of forecasts, and this leads on to the issue of forecast encompassing 

for all linear combinations.  A test for such forecast encompassing is developed. 

 

Altogether, a number of methods for ranking competing multi-step-ahead forecasts 

are assessed.  One approach is to evaluate purely using the model representation and 

forecast horizons (individually) of interest using a criterion which corresponds with 

the economic loss associated with the decision.  An alternative is to make use of a 

single criterion which delivers a unique ranking for all representations and horizons, 

in which case the new GMSFEM criterion is recommended. 
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The tests for equal forecast accuracy and forecast encompassing developed in 

chapters 2-4 and the criteria recommended in chapter 5 together provide reliable and 

robust statistical procedures for comparing competing forecasts, making a valuable 

contribution to the theory of economic forecast evaluation. 
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Tests for Equal 
Forecast Accuracy 
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2.1 Introduction 
 
 

When evaluating competing economic forecasts, predictive accuracy is of vital 

importance, and it is therefore necessary to develop formal statistical procedures for 

comparing the accuracy of rival forecasts.  Tests of the null hypothesis that two 

forecasts of the same variable have equal accuracy (against a one- or two-sided 

alternative) are of immense value to all involved in forecasting, and thus have a 

large field of application.  The aim of this chapter is to investigate some of these 

formal forecast-comparison techniques, with a view to developing satisfactory tests 

of the equal accuracy null. 

 

Tests of equal forecast accuracy must be robust to the wide variety of properties 

exhibited by the forecast errors (upon which such tests are based) in order to be 

useful in application.  The forecast error characteristics which are particularly 

pertinent to this analysis are distribution, and correlation through space and time.  

Forecast errors may well be non-normal, errors from competing forecasts will 

almost certainly be correlated (as similarities will exist between the information sets 

used by the forecast producers and some aspects of the actual outcome will 

‘surprise’ all forecasters), and for multi-step-ahead forecasts, autocorrelation in the 

forecast errors will, as a rule, be expected on theoretical grounds, even for optimal 

forecasts.  Diebold & Mariano (1995) examine a number of tests in the light of these 

issues; this study extends their analysis along a couple of particular lines, with the 

general aim being to generate tests which are useful in practice, applicable to all 

sample sizes, and statistically valid for all forecast error properties. 

The chapter is structured in five sections.  Section 2.2 motivates the research by 
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considering the Diebold & Mariano (1995) paper, with specific reference to two 

tests of special interest.  Further analysis of these two tests forms the basis of 

sections 2.3 and 2.4, and the study is concluded in the fifth and final section. 
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2.2 Motivation for Research 
 
 

In an attempt to produce more formal statistical procedures for comparing the 

predictive accuracy of forecasts, Diebold & Mariano (1995) propose tests of the null 

hypothesis of no difference in the accuracy of two competing forecasts.  A number 

of extant tests are also examined, and their properties investigated under a variety of 

likely economic conditions.  Two main areas of interest result from this paper and 

shall be highlighted in turn. 

 
 
2.2.1: The Diebold-Mariano Asymptotic Test
 

The asymptotic test proposed by Diebold & Mariano involves testing an equivalent 

null hypothesis to that of equal forecast accuracy.  Suppose two competing forecasts 

are made and have forecast errors  ( te et t1 2, n= 1,..., ).  Now if the economic loss 

functions associated with these forecasts are denoted ,  respectively, 

then a loss differential series d g

g e t( )1 )( 2teg

e g et t t= −( ) ( )1 2  can be constructed.  The desired 

null can now be written as : 0H E dt( ) = 0, or : 0H 0=μ , where μ is the population 

mean of the loss differential series.  Given covariance stationarity and short memory 

with regard to d , Diebold & Mariano note the asymptotic distribution of the loss 

differential sample mean: 

t

 
  ),(N Vd d μ⎯→⎯  (2.1) 

 
which suggests the following test statistic: 

 

   = S1
d
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Calculation of the variance estimate can be simplified by examination of the forecast 

error autocovariances.  Now a general optimal h-steps-ahead forecast error will be a 

function of future white noise terms forming an MA( )h −1  type process.  Given this 

 structure, an optimal h-steps-ahead forecast error will have zero 

autocovariances for all lags greater than 

)1(MA −h

1−h .  In practice this result may not hold, 

but would be expected for reasonably well-conceived forecasts, and serves as a 

useful standard for the analysis of h-steps-ahead forecast errors.  Applying this result 

to the variance estimate of the loss differential sample mean, the following estimator 

for an h-steps-ahead forecast is obtained: 
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where kγ̂  is as defined below equation (2.2). 

 

Diebold & Mariano perform Monte Carlo simulation to examine the properties of 

, and do so using a quadratic loss differential series to allow comparison with 

other extant tests.  The test is analysed for 2-steps-ahead forecasts (h = 2), and the 

empirical size of  is calculated for a 2-sided test at the nominal 10% level.  

Normal and non-normal forecast errors with varying degrees of autocorrelation and 

1S

1S

 23



contemporaneous correlation are examined, and the sample sizes studied range from 

 to n .  Repetition of their simulation with 10,000 replications yields the 

results given in table 2.1.  The sample size is denoted by n, the degree of 

autocorrelation is given by the value of the MA(1) parameter θ, and 

contemporaneous correlation between the forecast errors e  and e  is given by the 

value ρ.  More formally, the simulation procedure involves generating the following 

model: 

n = 8 = 512

t1 t2

 
 draw u  (ut t1 2, ,..., )t n= 1  from  or  distribution  N( , )0 1 t6
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 transform to incorporate autocorrelation: 

  e  =  t1
2/12

1,11 )1/()( θθ ++ −tt vv

  e t  =  2
2/12

1,22 )1/()( θθ ++ −tt vv

 construct quadratic loss differential series: 

  dt  = e e  t t1
2

2
2− t n= 1,...,  

 
Further detail concerning this simulation procedure is given in section 2.3. 

 

Consideration of the simulation results shows clearly the benefits of the test statistic
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Table 2.1 
 

Empirical sizes for the Diebold-Mariano test at the nominal 10% level (h = 2)  
 

   Normal   t6  
  θ = 0 θ = 0.5 θ = 0.9 θ = 0 θ = 0.5 θ = 0.9 
 ρ = 0.0 30.00 28.79 28.53 29.31 27.94 28.06 
n = 8 ρ = 0.5 28.96 28.24 28.59 29.29 28.61 27.89 
 ρ = 0.9 29.37 29.38 29.14 29.65 28.96 28.69 
 ρ = 0.0 20.26 19.34 18.96 19.33 18.18 17.93 
n = 16 ρ = 0.5 20.50 19.78 19.18 19.69 18.47 18.09 
 ρ = 0.9 20.37 19.23 19.07 19.29 18.55 18.53 
 ρ = 0.0 15.13 14.25 14.34 14.71 14.21 13.84 
n = 32 ρ = 0.5 14.81 14.22 14.10 14.57 13.85 13.62 
 ρ = 0.9 15.22 15.14 14.82 14.79 13.97 13.94 
 ρ = 0.0 12.37 12.16 11.91 11.93 11.90 11.82 
n = 64 ρ = 0.5 12.19 11.97 12.04 12.14 12.02 12.10 
 ρ = 0.9 12.45 12.05 12.20 12.11 12.37 12.23 
 ρ = 0.0 11.50 11.11 11.13 11.14 11.34 11.39 
n = 128 ρ = 0.5 11.49 11.21 11.04 10.83 11.08 11.00 
 ρ = 0.9 11.08 10.71 10.78 10.94 10.93 11.00 
 ρ = 0.0 10.93 11.01 10.91 10.08 9.85 9.85 
n = 256 ρ = 0.5 11.03 11.06 10.88 9.89 10.24 10.24 
 ρ = 0.9 10.89 10.81 10.87 10.47 10.57 10.62 
 ρ = 0.0 10.53 10.60 10.72 9.95 9.70 9.85 
n = 512 ρ = 0.5 10.35 10.50 10.55 9.93 9.97 10.01 
 ρ = 0.9 10.07 10.21 10.28 10.11 10.11 10.11 
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1S .  The test is asymptotically correctly sized, with test sizes reasonably close to 

10% for the larger sample sizes.  These sizes are unaffected by the degree of 

contemporaneous correlation, and only negligibly impacted by different values of 

the autocorrelation parameter.  The test is also robust to the particular non-normality 

considered, with sizes approximately equal under both normal and non-normal 

simulation. 

 

The Diebold-Mariano test  can therefore be used in a wide variety of economic 

situations, without the need for restrictive assumptions (such as non-autocorrelated, 

contemporaneously uncorrelated, normal forecast errors).  The size is asymptotically 

correct for all of the examined conditions, and the test construction accommodates a 

large class of economic loss functions which may be quite general, especially when 

compared to some of the extant tests which rely on quadratic loss. 

1S

 

The major drawback of this test statistic lies in its small sample properties.  It is 

most common in economic forecasting that long time series are not available, the 

implication being that few forecast error observations exist for predictive accuracy 

comparisons.  Similarly, if in model estimation, observations are held back so as to 

perform ex post testing of the model’s predictive capability, the number of these 

retained observations (which could be used to help decide between competing 

forecasts) will again be small in practice.  The small and moderate sample properties 

of any test for comparing the accuracy of different forecasts are thus of great 

importance.  Returning to the examination of table 2.1, it can be seen that the 

Diebold-Mariano asymptotic test statistic  is seriously oversized in small samples.  

As shall be examined in section 2.3, this property worsens with longer forecast 

1S
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horizons. 

 

The conclusion, therefore, is that the test  is highly desirable due to its very 

general specification and robustness to forecast error properties, but is limited in its 

use because of the small sample oversizing.  Motivation for attempting to correct  

for small samples is thus established, and attention to this problem comprises section 

2.3. 

1S

1S

 
 
2.2.2: The Morgan-Granger-Newbold Test
 

The second area of interest generated by the Diebold & Mariano (1995) paper 

concerns the extant test attributed to Morgan, Granger & Newbold (Morgan, 1939-

40, Granger & Newbold, 1986).  This test relies on the assumption of quadratic loss, 

and also assumes that the forecast errors are normal and have no autocorrelation.  

The assumption of non-autocorrelated forecast errors implies the test will only be 

valid for 1-step-ahead forecasting, because for h-steps-ahead forecasts with h > 1, 

autocorrelation does appear in the form of an MA( )h −1  process.  The test 

procedure transforms the forecast error vectors as follows: 

 
  ,  x e et t t= −1 2 y e et t t= +1 2  (2.4) 

 
This orthogonalising transformation allows testing which is robust to 

contemporaneous correlation in the forecast errors.  Given these new variables 

, the following can be noted: x yt t,

 
  = E x yt t( ) E e e e et t t t[( )( )]1 2 1 2− +  

 27



  = E e  et t[ ]1
2

2
2−

  = 2
2

t

2  1 σσ −

 
where  are the variances of the forecast errors e  respectively.  The null 

hypothesis of interest, that of no difference in forecast accuracy where the economic 

loss function is quadratic, is now equivalent to 

2
2

2
1 ,σσ et1 2,

E x yt t( ) = 0 .  This gives rise to the 

Morgan-Granger-Newbold (MGN) test of zero correlation between  and : xt yt

 

 MGN = 
)ˆ1()1(

ˆ
21

tt

tt

yx

yx

n ρ

ρ

−− −
 ~  under  (2.5) 1−nt 0H

  where 
tt yxρ̂ = 

22
tt

tt

yx

yx

ΣΣ

Σ
 

 
The distribution result is given in Hogg & Craig (1978), with the test statistic being 

distributed as Student’s t with 1−n  degrees of freedom (one degree of freedom is 

gained by using the common population means (zero) as opposed to the sample 

means).  It can be noted that this distribution result is exact for any sample size (for 

normal forecast errors), thus the problems associated with tests having an unknown 

finite sample distribution (as with the Diebold-Mariano test) do not arise here. 

 

Simulation of this test is also performed by Diebold & Mariano, and comparable 

results for 1-step-ahead forecasting are given in table 2.2.  Empirical sizes at the 

nominal 10% level (2-sided) are again calculated for 10,000 replications, with 

conditions varying to examine different sample sizes, normal and non-normal
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Table 2.2 

Empirical sizes for the Morgan-Granger-Newbold test 
at the nominal 10% level (h = 1) 

 
Normal n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 10.18 10.30 10.02 10.11 9.72 10.35 10.67 
ρ = 0.5 10.04 9.85 10.33 10.30 10.18 10.62 10.40 
ρ = 0.9 10.09 9.86 10.18 10.43 10.00 10.45 10.05 

 

t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 17.92 20.45 22.59 24.83 25.99 26.07 26.76 
ρ = 0.5 16.21 18.54 19.80 22.05 22.38 22.62 23.67 
ρ = 0.9 11.83 12.75 12.61 13.65 13.57 13.72 13.63 
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forecast errors, and behaviour when the errors are contemporaneously correlated. 

 

As would be expected, the MGN test is correctly sized for all sample sizes and 

values of ρ (the contemporaneous correlation), provided that the forecast errors are 

normal.  The limitation of this test is its unsatisfactory behaviour under conditions of 

forecast error non-normality.  The errors simulated are only moderately non-normal, 

but create alarming oversizing for all sample sizes.  In practice, errors are unlikely to 

be normal, and samples are generally too small to permit valid testing for normality.  

Robustness is therefore a desirable and indeed essential property of any test of 

predictive accuracy. 

 

The primary feature of the simulation results which demands explanation is that 

MGN is asymptotically oversized under non-normality; when ρ = 0, the simulation 

results suggest an asymptotic convergence of the size to a limit around 30%. 

 

Now given the benefits of the asymptotic test , further analysis of MGN is only of 

value if the test demonstrates superiority in the cases in which it is designed to be 

valid - i.e. 1-step-ahead prediction with normal forecast errors.  If this does occur, 

attention must be paid to the test’s behaviour under non-normality, particularly with 

regard to the feature noted above.  If benefits exist which are peculiar to the 

Morgan-Granger-Newbold test, then motivation is provided for study concerning 

correction to attain robustness.  Examination of these issues is pursued in section 

2.4. 

1S
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2.3 Diebold-Mariano Approach Tests 
 
 

The motivation for analysis of Diebold & Mariano’s asymptotic test of predictive 

accuracy, , is given in section 2.2.  The aim now is to attempt to correct for the 

small sample missizing which  exhibits. 

1S

1S

 
 
2.3.1 Theory
 

The key element of  in this regard is the estimator of the variance of the loss 

differential sample mean.  It is useful, therefore, to begin by examining the true 

variance of the sample mean: 
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From here, Diebold & Mariano assume n (the sample size) to be large relative to k 

(the range of which reflects the number of steps ahead forecast), and use the usual 

sample autocovariance estimator for kγ  to generate their variance estimate $( )V d , as 

defined in (2.3).  It is convenient now to consider an alternative variance estimator 

which is more intuitively appealing in its construction.  The approximating 

assumption of n large relative to k is not made, and a different autocovariance 
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estimator for kγ  is employed - one which is asymptotically equivalent to the above 

but divides through by n k−  rather than n (which is more appropriate when dealing 

with finite samples): 

 

 $( )*V d  =  (2.7) ⎥
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It is trivial to show that $( )V d  and $( )*V d  are identical. 

  

The Diebold-Mariano test can further be examined by finding an expression for the 

expected value of $( )V d .  This can be done by first finding the expectation of the 

sample autocovariances: 
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The summation term in (2.8) can be expanded as follows: 
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It is now necessary to examine the expectation of each term.  The loss differential 

series population mean, μ, can be set to zero (as under the null) without loss of 

generality, giving: 
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Substituting results (2.10)-(2.12) back into the sample autocovariance expectation 

(2.8) gives: 
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Assuming now that n is large relative to k (as Diebold & Mariano) and 

approximating to order , the following result is obtained: n−1

  ≈ )ˆ( *
kE γ )(dVk −γ  (2.14) 

 
The desired expectation of the loss differential sample mean variance estimate can 
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now be evaluated using (2.7) and (2.14): 
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This result clearly shows that the Diebold-Mariano variance estimate is biased, and 

by the factor given in the final expression (2.15).  This bias persists to order n  

even if the final order n  term is dropped.  A case for dropping this term can be 

made on theoretical grounds as the analysis already involves approximation to order 

.  However, a case can also be made for retaining this term as shall be examined 

below. 

−1

−2

n−1

 

The implication, therefore, is that the test statistic  can be corrected for its finite 

sample oversizing to some extent by using the following approximately unbiased 

variance estimate and associated test statistic: 

1S
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A new test statistic, , is thus derived, correcting for the small sample bias in the 

original variance estimate.  This correction, however, is dependent on the 

assumption of n being large relative to k, and is thus an approximation of the true 

bias.  The exception to this is when the true loss differential series is white noise (it 

is assumed that such information is unknown and an 

*S

MA( )h −1  process is still used 

in the test’s construction).  In this case, the following is true, using the results for 

white noise, V d( ) =  and 0
1γ−n 0=kγ  for k ≠ 0: 
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The result is now exact, the rest of the analysis follows through, and an expression 

for E V d[ $( ) ]*  identical to that in (2.15) is obtained, but this time no approximation 

is necessary due to the nature of the white noise forecast errors.  This exact result 

with the order n  term included generates a case for retaining the final term, as −2
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alluded to earlier. 

 

Having established a corrected test statistic, it is also valuable to examine its 

distribution.  The test statistic  proposed by Diebold & Mariano has an 

asymptotic normal distribution, and so the correction  will also be normally 

distributed in the limit - the only difference between  and  is the bias 

correction which does not affect the asymptotic distribution.  Now consideration of 

these test statistics enables the following intuition to be made.  The test 

constructions take a form typical of a standard test for the significance of a 

population mean, i.e. sample mean divided by the estimated standard deviation.  

Such a test has an asymptotic normal distribution, but in finite samples takes a 

Student’s t distribution with 

1S

*S

1S *S

1−n  degrees of freedom - the usual t-ratio.  Given the 

similarity of  and  to such a test, it is intuitively appealing to compare the test 

statistics with critical values from a  distribution in finite samples.  In fact when 

the errors are normally distributed and 1-step-ahead prediction is considered, such 

an approach is exactly correct. 

1S *S

tn−1

 

Two modifications to the Diebold-Mariano asymptotic test are thus proposed - 

firstly an approximate correction for the small sample bias in the estimated variance 

of the loss differential sample mean, and secondly use of the Student’s t distribution 

critical values for finite sample tests.  The impact of these modifications can now be 

analysed by Monte Carlo simulation. 
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2.3.2 Simulation
 

Following Diebold & Mariano, Monte Carlo simulation is performed to calculate the  

finite sample size of the test statistics concerned.  The economic loss function is 

assumed to be quadratic, a variety of forecast error properties are examined, and all 

the tests are evaluated at the nominal 10% level with a null of equal forecast 

accuracy and a 2-sided alternative; 10,000 replications are performed for each 

simulation.  A range of forecast horizons are examined, with experiments conducted 

for 1- through 10-steps-ahead forecasts. 

 

Normal and non-normal errors are both examined, and varying degrees of 

autocorrelation and contemporaneous correlation are also considered.  With regard 

to the method of generating these errors, the respective situations of normality and 

non-normality are explained in turn. 

 

2.3.2a Normal Forecast Errors
 
The normal forecast errors are generated by drawing realisations from a bivariate 

standard normal distribution: 
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In order to incorporate contemporaneous correlation, the vector u is premultiplied by 

a matrix P such that: 
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   ρ = degree of contemporaneous correlation, 10 ≤≤ ρ  

 
Given that Ω=′PP , the natural choice for P is the triangular matrix: 
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This transformation yields the vector v which can itself be transformed to include 

autocorrelation.  For 1-step-ahead forecasts, no attention need be paid to 

autocorrelation as the errors are assumed to be white noise.  However, for 2-steps-

ahead forecasts, an MA(1) type process is expected and autocorrelation must be 

considered.  The transformation is as follows: 
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  where θ = degree of autocorrelation, 10 ≤≤θ  

 
This transformation requires values for  and  - these are again drawn from a 

bivariate standard normal distribution and transformed as above to incorporate 

contemporaneous correlation (the Diebold-Mariano  assumption is 

unnecessary and undesirable). 

0,1v 0,2v

00,20,1 == vv

 

For h-steps-ahead forecasts (h > 2), autocorrelation will appear in an MA( )h −1  

form, as theorised in the previous sub-section.  Now, as shall be seen later, the test 

statistics  and  are robust to forecast error autocorrelation with the sizes not 

significantly affected by changes in the MA parameter for 2-steps-ahead forecasting.  

It is reasonable, therefore, to simplify the analysis by examining only the white 

1S *S
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noise case for 3- through 10-steps-ahead forecast simulations (note an MA( )h −1  

process is still assumed for purposes of test statistic calculation, but white noise is 

simulated, ie. 0... 121 ==== −hθθθ  so  =  respectively).  It can also 

be noted that  and  are largely unaffected by both forecast error 

contemporaneous correlation and distribution, and so for longer step-ahead 

forecasting (5-steps through 10-steps), only normal, contemporaneously 

uncorrelated and non-autocorrelated errors are considered because a sufficient 

picture of test statistic size is gained from these conditions alone due to the 

robustness of the test statistics.  No results are given for n = 8 for 8-, 9- and 10-

steps-ahead forecasts because for such a small sample size, insufficient information 

exists to construct the test statistics. 

e et1 2, t tt vv 21 ,
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2.3.2b Non-Normal Forecast Errors
 
Turning now to non-normal errors, two different methods of error generation are 

used in the simulations.  The method used by Diebold & Mariano involves 

generating two independent Student’s t random variables with six degrees of 

freedom: 

 

  = uit
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  where z  ~ N(  it , )0 1

    2  is independent of  6,itχ zit
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Contemporaneous correlation and autocorrelation are then built in following the 

same procedure as for normal errors, resulting again in errors e . et t1 2,

 

The second method of non-normal simulation generates two random variables which 

follow a bivariate Student’s  distribution, as formalised by Dunnett & Sobel 

(1954).  In order to do this, realisations are drawn from a bivariate standard normal 

distribution: 

6t

 
 z ~ N( , )0 I  

 
and first transformed to include contemporaneous correlation: 

 
 v =  ~ Pz ),0(N Ω  

 
The random variables  are now transformed to follow a  distribution, 

performed by dividing each realisation by the same chi-squared random variable at a 

given point in time t: 

tt vv 21 , 6t
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  where 2  is independent of  6,tχ itv

 
Autocorrelation can again be incorporated to yield the errors e . et t1 2,

 

The reasons for employing this second method in addition to the Diebold-Mariano 

procedure are twofold.  Firstly, under the Diebold-Mariano methodology, the 

resulting errors (ignoring autocorrelation without loss of generality) can be 
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decomposed as follows: 
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  i.e.  e t  = u  1 t1
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Now the realisations  are independent  random variables, but the forecast 

errors  generated in this way do not follow a  distribution.  The first error, 

, is , but the second, e , is a linear combination of  variates which is not 

then .  Employment of the second method of non-normal error generation, 

however, does not experience this, with the errors following a bivariate  

distribution.  The second reason for using this latter method is that the procedure 

involves dividing the realisations by the same chi-squared random variable at a 

given point in time.  This implies that, even in the case where the forecast errors are 

not autocorrelated or contemporaneously correlated, the squared errors will be 

correlated: 
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This property of the errors is intuitively appealing, the interpretation being that the 

economic series concerned is harder to predict at some times than others, thus all 

forecasters will have a larger error variance at such times, and smaller at others.  

These two reasons form two distinct advantages of the latter method compared to 

that employed by Diebold & Mariano.  The bivariate method is thus preferable, but 

both methods are used in the simulations for completeness.  In the tables, the 

Diebold-Mariano non-normal errors are denoted ‘DM ’ and the latter method’s 

non-normal errors denoted ‘Biv. ’. 

6t

6t

 

The resulting forecast error series under all three distributions, e   

now contain all the properties desired for the analysis, and can be used to construct 

the loss differential series, : 

et t1 2, ( ,..., )t n= 1

td

 
  =   dt e et1

2
2
2− t t n= 1,...,  

 
Sample sizes of n = 8, 16, 32, 64, 128, 256, 512, contemporaneous correlation 

parameters of ρ = 0, 0.5, 0.9, and autocorrelation parameters of θ = 0, 0.5, 0.9 are 

used.  Simulations are performed for the original Diebold-Mariano test  using 

standard normal critical values, the fully modified test  using t  critical values, 

1S

*S n−1
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and for the individual modifications applied separately, i.e. 1S  using  critical 

values and  using standard normal critical values.  The results are given in tables 

2.3-2.10. 

tn−1

*S

 
 
2.3.3 Results
 

With reference to the results tables, a number of observations and inferences can be 

made.  Firstly, table 2.3 gives the empirical test sizes for 1-step-ahead forecasts, and 

shows that the original Diebold-Mariano test is oversized in the smaller samples.  

The sizes are not significantly affected by variations in the level of 

contemporaneous correlation, and only marginally by the distribution of the forecast 

errors, confirming the observations made in section 2.2 (with 2-steps-ahead forecast 

simulation).  As each of the two adjustments are applied to this test, the size is 

reduced with the fully modified test completely overcoming the problem of small 

sample oversizing, in certain cases to the extreme of the test being undersized. 

 

Tables 2.4-2.6 contain the 2-steps-ahead forecast results with different degrees of 

autocorrelation simulated in each table.  These cases correspond to those examined 

by Diebold & Mariano and again give rise to the inference that the corrections 

improve the small sample test sizes.  The sizes for all the simulated tests exhibit 

robustness to forecast error distribution and contemporaneous correlation as before; 

analysis of the results in these tables also now reveals that the tests are robust to 

varying degrees of forecast error autocorrelation.  Autocorrelation and departure 

from normality have small effects on the test sizes, and in general the empirical sizes 

are closer to the nominal sizes in such cases.  Taking the 2-steps-ahead forecast
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Table 2.3 
 

Empirical sizes for the original and modified Diebold-Mariano tests 
at the nominal 10% level (h = 1) 

 
Normal n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 16.67 13.49 11.58 10.94 10.29 10.62 10.80 

 11.02 10.81 10.29 10.38 10.02 10.50 10.68 
 13.83 12.00 10.94 10.64 10.14 10.54 10.75 
 8.38 9.63 9.70 10.10 9.87 10.42 10.63 

ρ = 0.5 16.22 13.00 11.62 11.08 10.57 10.92 10.60 
 10.48 10.57 10.31 10.50 10.31 10.75 10.54 
 13.33 11.68 10.99 10.80 10.44 10.80 10.54 
 8.29 9.53 9.78 10.32 10.18 10.70 10.49 

ρ = 0.9 16.66 12.90 11.31 11.18 10.35 10.93 10.42 
 11.03 10.41 10.23 10.57 10.07 10.81 10.37 
 13.74 11.56 10.65 10.86 10.19 10.87 10.39 
 8.74 9.37 9.78 10.31 9.93 10.72 10.35 

 

DM t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 14.98 12.10 11.04 10.62 9.67 10.00 9.62 

 8.78 9.33 9.79 10.02 9.47 9.90 9.53 
 11.99 10.61 10.32 10.31 9.58 9.92 9.57 
 6.64 8.31 9.30 9.65 9.30 9.80 9.49 

ρ = 0.5 15.07 12.30 11.25 10..39 9.82 9.73 9.40 
 9.21 9.89 10.08 9.91 9.57 9.59 9.36 
 12.12 11.01 10.60 10.11 9.66 9.66 9.37 
 6.96 8.76 9.56 9.64 9.45 9.49 9.30 

ρ = 0.9 15.01 12.85 11.11 10.85 10.28 9.61 9.63 
 9.41 10.44 10.07 10.15 9.94 9.50 9.62 
 12.23 11.58 10.61 10.49 10.08 9.54 9.62 
 7.19 9.34 9.45 9.88 9.82 9.41 9.60 

 

Biv. t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 15.17 12.08 10.57 9.92 10.03 9.74 9.70 

 9.19 9.47 9.53 9.40 9.61 9.58 9.69 
 12.24 10.67 10.04 9.65 9.83 9.62 9.69 
 7.21 8.22 8.94 9.19 9.54 9.49 9.65 

ρ = 0.5 14.76 11.81 10.92 10.33 9.82 9.72 9.44 
 9.10 9.30 9.51 9.89 9.52 9.59 9.43 
 11.99 10.50 10.18 10.10 9.68 9.65 9.43 
 7.13 8.08 8.88 9.53 9.37 9.56 9.40 

ρ = 0.9 14.59 11.81 10.86 10.11 10.08 10.13 10.09 
 9.05 9.40 9.57 9.38 9.85 9.98 9.97 
 11.60 10.55 10.19 9.77 9.96 10.06 10.03 
 6.87 8.34 8.90 9.14 9.72 9.89 9.93 

 

 Note:- The first entry in each cell is for the S1 test using N(0,1) critical values, the 
second for the S1 test using tn−1 critical values, the third for the S* test using 
N(0,1) critical values, and the fourth for the S* test using tn−1 critical values. 
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Table 2.4 
 

Empirical sizes for the original and modified Diebold-Mariano tests 
at the nominal 10% level (h = 2, θ = 0) 

 
Normal n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 30.00 20.26 15.13 12.37 11.50 10.93 10.53 

 23.92 17.83 13.91 12.03 11.21 10.76 10.47 
 21.10 16.43 13.24 11.71 11.05 10.64 10.42 
 16.42 14.18 12.19 11.22 10.75 10.49 10.34 

ρ = 0.5 28.96 20.50 14.81 12.19 11.49 11.03 10.35 
 23.25 17.91 13.85 11.63 11.25 10.93 10.24 
 20.74 16.64 13.22 11.42 11.12 10.86 10.18 
 15.78 14.65 12.23 10.89 10.81 10.77 10.11 

ρ = 0.9 29.37 20.37 15.22 12.45 11.08 10.89 10.07 
 23.49 17.75 14.23 12.13 10.88 10.75 10.03 
 20.80 16.52 13.61 11.81 10.73 10.69 10.02 
 16.46 14.10 12.54 11.26 10.48 10.53 9.99 

 

DM t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 29.31 19.33 14.71 11.93 11.14 10.08 9.95 

 23.08 16.68 13.50 11.34 10.86 9.84 9.91 
 20.15 15.25 12.68 10.90 10.66 9.74 9.88 
 15.39 12.94 11.51 10.37 10.24 9.60 9.75 

ρ = 0.5 29.29 19.69 14.57 12.14 10.83 9.89 9.93 
 23.02 16.94 13.36 11.47 10.59 9.75 9.84 
 20.16 15.39 12.72 11.15 10.48 9.68 9.79 
 15.20 13.11 11.54 10.56 10.33 9.57 9.75 

ρ = 0.9 29.65 19.29 14.79 12.11 10.94 10.47 10.11 
 23.10 16.48 13.73 11.58 10.61 10.31 10.06 
 20.59 15.26 12.99 11.20 10.37 10.25 9.96 
 15.73 13.05 11.58 10.58 10.07 10.17 9.91 

 

Biv. t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 28.13 18.95 14.09 11.92 10.99 10.20 9.77 

 21.88 16.20 12.75 11.45 10.66 10.05 9.72 
 19.19 14.80 12.14 11.05 10.51 9.99 9.67 
 14.46 12.43 11.12 10.40 10.26 9.88 9.61 

ρ = 0.5 28.31 19.42 14.11 11.66 10.69 10.30 10.24 
 22.17 16.50 12.78 11.15 10.31 10.11 10.18 
 19.25 15.20 12.04 10.87 10.20 10.01 10.14 
 14.29 13.02 10.80 10.31 9.83 9.87 10.05 

ρ = 0.9 28.15 19.55 14.31 11.50 10.46 10.21 10.10 
 21.98 16.66 13.02 11.01 10.20 10.04 10.04 
 19.15 15.34 12.36 10.73 10.11 9.97 10.03 
 14.31 12.81 11.07 10.17 9.86 9.81 9.95 

 

 Note:- The first entry in each cell is for the S1 test using N(0,1) critical values, the 
second for the S1 test using tn−1 critical values, the third for the S* test using 
N(0,1) critical values, and the fourth for the S* test using tn−1 critical values. 
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Table 2.5 
 

Empirical sizes for the original and modified Diebold-Mariano tests 
at the nominal 10% level (h = 2, θ = 0.5) 

 
Normal n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 28.79 19.34 14.25 12.16 11.11 11.01 10.60 

 22.58 16.63 13.24 11.59 10.84 10.85 10.54 
 19.84 15.30 12.54 11.23 10.64 10.75 10.48 
 15.03 12.86 11.50 10.61 10.38 10.64 10.42 

ρ = 0.5 28.24 19.78 14.22 11.97 11.21 11.06 10.50 
 22.14 17.02 13.03 11.47 10.84 10.98 10.43 
 19.32 15.51 12.42 11.18 10.75 10.87 10.40 
 14.84 13.08 11.33 10.61 10.50 10.69 10.35 

ρ = 0.9 29.38 19.23 15.14 12.05 10.71 10.81 10.21 
 22.75 16.70 13.93 11.59 10.45 10.71 10.16 
 19.92 15.29 13.13 11.21 10.31 10.63 10.14 
 14.84 12.97 11.54 10.75 10.04 10.55 10.09 

 

DM t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 27.94 18.18 14.21 11.90 11.34 9.85 9.70 

 21.58 15.49 12.80 11.23 11.05 9.64 9.65 
 18.97 14.16 12.06 10.87 10.92 9.53 9.61 
 13.89 11.77 10.75 10.26 10.56 9.44 9.57 

ρ = 0.5 28.61 18.47 13.85 12.02 11.08 10.24 9.97 
 22.02 15.65 12.64 11.31 10.77 10.07 9.91 
 19.29 14.21 11.88 10.99 10.59 9.98 9.89 
 14.40 11.92 10.54 10.44 10.38 9.83 9.82 

ρ = 0.9 28.96 18.55 13.97 12.37 10.93 10.57 10.11 
 22.36 15.75 12.72 11.73 10.66 10.39 10.06 
 19.72 14.33 11.93 11.40 10.51 10.35 10.03 
 14.80 11.88 10.80 10.88 10.21 10.24 9.97 

 

Biv. t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 27.61 18.31 13.96 11.60 11.11 10.56 9.73 

 21.27 15.48 12.49 11.18 10.84 10.45 9.68 
 18.67 14.03 11.88 10.80 10.63 10.40 9.62 
 13.79 11.57 10.88 10.33 10.34 10.25 9.54 

ρ = 0.5 27.71 18.41 13.64 11.81 10.65 10.61 10.04 
 21.22 15.62 12.53 11.25 10.33 10.46 9.97 
 18.61 14.10 11.80 10.93 10.11 10.43 9.93 
 13.75 11.76 10.50 10.39 9.84 10.34 9.89 

ρ = 0.9 28.12 18.43 13.64 11.49 10.39 10.29 10.44 
 21.34 15.53 12.52 10.91 10.16 10.22 10.38 
 18.52 13.91 11.72 10.51 9.96 10.12 10.34 
 13.40 11.67 10.53 9.85 9.74 10.01 10.24 

 

 Note:- The first entry in each cell is for the S1 test using N(0,1) critical values, the 
second for the S1 test using tn−1 critical values, the third for the S* test using 
N(0,1) critical values, and the fourth for the S* test using tn−1 critical values. 
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Table 2.6 
 

Empirical sizes for the original and modified Diebold-Mariano tests 
at the nominal 10% level (h = 2, θ = 0.9) 

 
Normal n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 28.53 18.96 14.34 11.91 11.13 10.91 10.72 

 22.06 16.22 12.98 11.42 10.85 10.79 10.64 
 19.32 14.67 12.26 11.06 10.70 10.69 10.63 
 14.26 12.40 11.10 10.44 10.41 10.60 10.55 

ρ = 0.5 28.59 19.18 14.10 12.04 11.04 10.88 10.55 
 22.09 16.59 12.87 11.38 10.76 10.76 10.51 
 19.19 14.91 12.29 11.13 10.65 10.71 10.48 
 14.61 12.70 11.33 10.60 10.43 10.65 10.38 

ρ = 0.9 29.14 19.07 14.82 12.20 10.78 10.87 10.28 
 22.58 16.15 13.60 11.66 10.41 10.80 10.18 
 19.73 14.72 12.92 11.25 10.28 10.70 10.14 
 14.42 12.16 11.78 10.66 10.09 10.61 10.10 

 

DM t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 28.06 17.93 13.84 11.82 11.39 9.85 9.85 

 21.24 15.07 12.49 11.23 11.08 9.74 9.82 
 18.19 13.61 11.77 10.84 10.95 9.70 9.78 
 13.38 11.05 10.63 10.38 10.70 9.55 9.72 

ρ = 0.5 27.89 18.09 13.62 12.10 11.00 10.24 10.01 
 21.09 15.34 12.41 11.50 10.76 10.12 9.97 
 18.41 13.83 11.67 11.15 10.59 9.99 9.94 
 13.94 11.30 10.49 10.53 10.38 9.84 9.87 

ρ = 0.9 28.69 18.53 13.94 12.23 11.00 10.62 10.11 
 21.95 15.54 12.77 11.64 10.72 10.46 10.04 
 19.11 14.12 12.07 11.30 10.59 10.37 9.99 
 14.22 11.96 10.96 10.67 10.27 10.17 9.92 

 

Biv. t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 27.50 18.14 13.70 11.56 11.03 10.50 9.80 

 20.94 15.20 12.28 10.96 10.75 10.41 9.77 
 18.17 13.60 11.59 10.67 10.58 10.34 9.69 
 13.35 10.95 10.52 10.11 10.22 10.24 9.61 

ρ = 0.5 27.91 18.13 13.62 11.66 10.82 10.67 10.13 
 21.10 15.13 12.31 11.04 10.57 10.54 10.10 
 18.40 13.73 11.60 10.62 10.44 10.44 10.08 
 13.65 11.36 10.41 10.05 10.11 10.37 10.03 

ρ = 0.9 27.33 17.91 13.44 11.17 10.30 10.29 10.42 
 20.59 14.82 11.97 10.78 10.12 10.11 10.34 
 17.76 13.32 11.38 10.56 9.96 10.03 10.30 
 12.90 10.99 10.35 9.98 9.79 9.87 10.26 

 

Note:- The first entry in each cell is for the S1 test using N(0,1) critical values, the 
second for the S1 test using tn−1 critical values, the third for the S* test using 
N(0,1) critical values, and the fourth for the S* test using tn−1 critical values. 
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Table 2.7 
 

Empirical sizes for the original and modified Diebold-Mariano tests 
at the nominal 10% level (h = 3, 0=iθ  ∀i) 

 
Normal n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 36.87 26.53 18.26 14.10 11.72 11.34 11.15 

 30.90 24.12 17.01 13.73 11.53 11.16 11.06 
 22.30 20.35 15.14 12.79 11.02 10.96 10.94 
 18.14 18.47 14.27 12.16 10.73 10.84 10.89 

ρ = 0.5 37.70 26.63 17.81 14.65 12.20 11.51 11.01 
 31.60 24.02 16.70 14.03 11.95 11.39 10.96 
 22.75 20.25 15.06 13.17 11.56 11.23 10.81 
 18.37 17.93 14.04 12.52 11.32 11.09 10.76 

ρ = 0.9 37.50 25.71 18.21 14.45 12.04 11.73 10.86 
 32.03 23.44 16.94 13.88 11.79 11.55 10.80 
 23.00 19.43 15.24 12.95 11.32 11.32 10.73 
 18.16 17.32 14.17 12.37 11.10 11.19 10.65 

 

DM t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 38.17 26.18 18.20 14.19 11.65 10.74 10.02 

 31.21 23.20 16.79 13.68 11.23 10.50 9.95 
 21.67 19.00 14.74 12.83 10.84 10.32 9.79 
 17.16 16.91 13.67 12.28 10.53 10.11 9.71 

ρ = 0.5 38.13 26.16 18.26 14.22 11.72 10.51 9.91 
 31.76 23.33 16.92 13.62 11.39 10.39 9.84 
 22.40 19.10 14.83 12.41 10.86 10.20 9.76 
 17.64 16.88 13.92 11.90 10.62 10.07 9.67 

ρ = 0.9 38.40 25.91 18.44 13.85 12.11 10.13 10.07 
 31.84 23.20 17.21 13.23 11.76 10.00 10.00 
 22.27 19.15 15.42 12.24 11.28 9.92 9.90 
 17.30 17.10 14.17 11.64 10.96 9.79 9.88 

 

Biv. t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 38.27 25.42 18.42 13.56 11.60 10.30 9.92 

 31.80 22.51 17.04 12.97 11.27 10.20 9.88 
 22.44 18.51 14.87 11.96 10.96 9.94 9.73 
 17.89 16.30 13.84 11.36 10.70 9.86 9.69 

ρ = 0.5 38.30 25.09 17.95 13.62 11.16 10.55 10.11 
 31.29 22.40 16.75 12.94 10.86 10.45 10.08 
 21.92 18.27 14.68 11.95 10.48 10.22 9.98 
 17.06 16.25 13.74 11.41 10.25 10.11 9.89 

ρ = 0.9 37.40 25.40 17.91 13.62 11.40 10.77 10.42 
 30.69 22.45 16.75 13.00 11.17 10.69 10.34 
 20.58 18.03 14.67 12.09 10.73 10.46 10.27 
 15.93 15.75 13.68 11.58 10.50 10.34 10.23 

 

 Note:- The first entry in each cell is for the S1 test using N(0,1) critical values, the 
second for the S1 test using tn−1 critical values, the third for the S* test using 
N(0,1) critical values, and the fourth for the S* test using tn−1 critical values. 
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Table 2.8 
 

Empirical sizes for the original and modified Diebold-Mariano tests 
at the nominal 10% level (h = 4, 0=iθ  ∀i) 

 
Normal n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 43.22 30.90 21.27 15.94 12.96 11.55 11.21 

 37.40 28.29 19.95 15.40 12.69 11.48 11.14 
 20.87 22.06 17.16 13.92 11.77 11.05 11.00 
 16.25 19.83 16.14 13.36 11.52 10.93 10.95 

ρ = 0.5 43.57 30.99 21.37 16.55 12.69 11.95 11.03 
 37.52 28.37 20.22 15.87 12.42 11.91 10.99 
 20.72 21.80 17.16 14.46 11.87 11.54 10.84 
 16.63 19.71 16.05 13.93 11.53 11.36 10.79 

ρ = 0.9 44.06 30.58 21.84 16.25 12.88 12.19 10.92 
 37.73 28.06 20.61 15.56 12.63 12.04 10.85 
 20.56 21.55 17.51 13.97 11.90 11.59 10.75 
 16.38 19.45 16.48 13.40 11.62 11.54 10.73 

 

DM t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 45.24 31.06 21.48 16.09 12.08 11.13 10.07 

 38.44 28.20 20.32 15.54 11.82 11.03 9.99 
 20.93 21.38 16.95 13.85 11.08 10.66 9.80 
 16.25 19.00 16.13 13.39 10.84 10.55 9.71 

ρ = 0.5 45.42 30.92 21.63 15.93 12.09 10.66 10.05 
 38.84 28.44 20.27 15.43 11.80 10.55 9.96 
 20.65 21.35 17.00 13.83 11.04 10.13 9.83 
 16.24 19.35 15.92 13.29 10.81 10.01 9.78 

ρ = 0.9 45.17 30.56 21.89 15.85 12.71 10.46 10.33 
 38.81 27.70 20.76 15.19 12.46 10.36 10.29 
 20.63 20.53 17.46 13.69 11.81 10.04 10.14 
 16.18 18.64 16.41 13.04 11.50 9.89 10.07 

 

Biv. t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
ρ = 0.0 45.61 30.76 21.67 15.33 12.51 10.78 10.17 

 39.51 27.80 20.49 14.84 12.26 10.62 10.15 
 21.33 20.79 16.82 13.44 11.55 10.16 10.04 
 16.65 18.66 15.82 12.88 11.33 10.00 10.00 

ρ = 0.5 45.64 30.33 21.32 15.47 11.79 11.04 10.36 
 39.08 27.89 20.07 14.85 11.48 10.92 10.33 
 20.98 20.59 16.72 13.24 10.74 10.50 10.08 
 16.61 18.44 15.84 12.73 10.51 10.40 9.98 

ρ = 0.9 45.08 30.90 21.39 15.56 12.14 11.33 10.56 
 38.85 28.18 20.20 15.02 11.90 11.15 10.50 
 20.29 20.87 16.72 13.37 11.21 10.66 10.34 
 16.07 18.65 15.60 12.83 10.90 10.52 10.28 

 

 Note:- The first entry in each cell is for the S1 test using N(0,1) critical values, the 
second for the S1 test using tn−1 critical values, the third for the S* test using 
N(0,1) critical values, and the fourth for the S* test using tn−1 critical values. 
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Table 2.9 
 

Empirical sizes for the original and modified Diebold-Mariano tests 
at the nominal 10% level (ρ = 0, 0=iθ  ∀i, normal errors) 

 
 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 

h = 5 49.35 34.52 24.49 17.98 13.78 11.90 11.36 
 43.52 31.80 23.38 17.41 13.51 11.66 11.29 
 16.58 22.07 18.86 15.44 12.42 11.16 11.07 
 12.87 19.86 17.79 14.91 12.20 11.07 10.98 

h = 6 58.36 37.30 26.74 19.59 14.82 12.21 11.80 
 52.66 34.81 25.61 19.08 14.53 12.09 11.67 
 13.47 21.84 19.64 16.39 13.20 11.53 11.26 
 10.55 19.78 18.77 16.02 12.92 11.42 11.21 

h = 7 72.35 39.36 28.75 20.81 15.69 12.67 11.96 
 68.28 36.94 27.51 20.38 15.44 12.50 11.91 
 12.47 20.42 20.48 17.29 13.81 11.63 11.45 
 9.91 18.21 19.51 16.83 13.62 11.55 11.37 

h = 8 - 42.59 30.82 22.94 16.26 13.07 11.99 
 - 39.77 29.70 22.35 16.02 12.91 11.90 
 - 19.24 21.00 18.45 14.18 12.01 11.45 
 - 17.43 20.20 17.99 13.82 11.91 11.39 

h = 9 - 45.29 32.35 24.46 17.53 13.84 12.24 
 - 42.66 31.31 23.88 17.18 13.75 12.20 
 - 16.87 21.20 19.46 15.03 12.49 11.62 
 - 15.12 20.21 19.02 14.74 12.35 11.56 

h = 10 - 48.97 33.43 25.31 17.87 14.18 12.38 
 - 46.44 32.18 24.86 17.59 14.08 12.29 
 - 15.50 21.13 19.59 15.35 12.70 11.77 
 - 13.97 20.24 19.07 15.14 12.60 11.75 

 

 Note:- The first entry in each cell is for the S1 test using N(0,1) critical values, the 
second for the S1 test using tn−1 critical values, the third for the S* test using 
N(0,1) critical values, and the fourth for the S* test using tn−1 critical values. 
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Table 2.10 
 

Empirical sizes for the original and modified Diebold-Mariano tests 
at the nominal 10% level (ρ = 0, 0=iθ  ∀i, normal errors) 

 
 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 

h = 1 16.67 13.49 11.58 10.94 10.29 10.62 10.80 
 8.38 9.63 9.70 10.10 9.87 10.42 10.63 

h = 2 30.00 20.26 15.13 12.37 11.50 10.93 10.53 
 16.42 14.18 12.19 11.22 10.75 10.49 10.34 

h = 3 36.87 26.53 18.26 14.10 11.72 11.34 11.15 
 18.14 18.47 14.27 12.16 10.73 10.84 10.89 

h = 4 43.22 30.90 21.27 15.94 12.96 11.55 11.21 
 16.25 19.83 16.14 13.36 11.52 10.93 10.95 

h = 5 49.35 34.52 24.49 17.98 13.78 11.90 11.36 
 12.87 19.86 17.79 14.91 12.20 11.07 10.98 

h = 6 58.36 37.30 26.74 19.59 14.82 12.21 11.80 
 10.55 19.78 18.77 16.02 12.92 11.42 11.21 

h = 7 72.35 39.36 28.75 20.81 15.69 12.67 11.96 
 9.91 18.21 19.51 16.83 13.62 11.55 11.37 

h = 8 - 42.59 30.82 22.94 16.26 13.07 11.99 
 - 17.43 20.20 17.99 13.82 11.91 11.39 

h = 9 - 45.29 32.35 24.46 17.53 13.84 12.24 
 - 15.12 20.21 19.02 14.74 12.35 11.56 

h = 10 - 48.97 33.43 25.31 17.87 14.18 12.38 
 - 13.97 20.24 19.07 15.14 12.60 11.75 

 

 Note:- The first entry in each cell is for the original test (S1 using N(0,1) critical 
values), the second for the fully modified test (S* using tn−1 critical values). 
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simulation results as a whole, the reduction in small sample oversizing generated by 

the corrections becomes clear. The original Diebold-Mariano test empirical sizes 

range from 27.89-30.00 for 8=n , 17.93-20.50 for 16=n , and 13.62-15.72 for  

.  The comparable sizes for the modified test range from 13.38-16.42 for  

, 11.05-14.65 for , and 10.49-12.54 for 

32=n

8=n 16=n 32=n . 

 

Simulation results for 3- and 4-steps-ahead forecasts are given in tables 2.7 and 2.8 

respectively (the case of no autocorrelation is now the only one examined due to the 

inference of test robustness to this property).  As would be expected, the results 

again display invariance to the varying forecast error conditions of distribution and 

contemporaneous correlation.  The tests, as with the smaller step-ahead forecasts, 

are asymptotically correctly sized, but oversized in small samples.  The degree of 

this oversizing for the Diebold-Mariano test is now immense, with sizes for 3-steps-

ahead prediction being approximately 38% for 8=n , 26% for , and 18% for  

, and for the 4-steps-ahead case approximately 44% for , 31% for 

, and 21.5% for .  The size improvements gained by use of the new 

modified test are considerable, with the corresponding 3-steps-ahead approximate 

average sizes being 18% for 

16=n

32=n 8=n

16=n 32=n

8=n , 17.5% for 16=n , and 14% for , and for 

4-steps-ahead forecast approximately 16% for 

32=n

8=n , 19% for , and 16% for 

. 

16=n

32=n

 

This inference of test size improvement is consistent over all forecast horizons.  

Table 2.9 provides simulation results for 5- through 10-steps-ahead forecasts, now 

considering solely the representative case of normal, non-contemporaneously 

correlated, non-autocorrelated forecast errors.  With these longer step-ahead 
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forecasts, the small sample oversizing of  magnifies; indeed the test becomes 

almost unusable for small samples as the forecast horizon grows.  The modified test 

is not immune to this feature and generally the size worsens with longer forecast 

horizons, but to a much smaller degree, with the test remaining significantly more 

workable, notably in small samples.  Examination of these longer forecast horizons 

also highlights the result that the majority of the size correction comes through the 

finite sample bias correction to the estimated variance of the sample mean, with a 

lesser role played by the use of the Student’s t critical values. 

1S

 

One other feature of the  simulation results is that of the pattern of the test size as 

the sample size increases.  For example, the normal errors ρ = 0 row for 4-steps-

ahead forecasting shows a test size of 16.25 for 

*S

8=n , 19.83 for , 16.14 for  

, and so on.  The size initially worsens with increased n before improving 

again and asymptotically tending to 10.  This variability is due to the nature of the 

bias correction which is non-linear.  Plots of the correction factor: 

16=n

32=n

 
 CF = n n  h n h h[ (+ − + −− −1 2 11 1)]

 
are given in figure 2.1 for a number of step-ahead forecasts, and these illustrate how 

the adjustment varies with n for each h-steps-ahead forecast.  The correction factor 

is a convex function of n and so the correction when 8=n  is proportionally larger 

than when 16=n .  As n rises, this feature becomes less marked with the curve 

becoming flatter, and the observed results are thus explained.  One other 

characteristic of the correction factor can be noted from the plot containing a 

representative selection of 
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Figure 2.1 
 

Plots of  correction factor, CF *S
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different step-ahead forecasts on the same axis.  It can be seen that for low forecast 

horizons, the factor is relatively small, with significant increases (especially in small 

samples) for the longer horizons. 

 

Finally, table 2.10 summarises the simulation results for the original and fully 

modified tests for the representative case of normal, non-contemporaneously 

correlated, non-autocorrelated forecast errors, the benefits of the corrected test being 

clearly shown.  The most apparent feature of all the test size results is that the two 

modifications to the Diebold-Mariano proposed test succeed in their purpose of 

improving the small sample sizes.  Altogether, the corrected test statistic ( using 

 critical values) exhibits significant gains over the original Diebold-Mariano 

test.  The new test is not completely correctly sized in the smaller sample sizes, but 

valuable improvements are made consistently over all the forecast horizons.  The 

modified test is therefore preferable to Diebold & Mariano’s proposed test, and has 

considerable value in application. 

*S

tn−1
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2.4 Morgan-Granger-Newbold Approach Tests 
 
 

The discussion in section 2.2 highlighted issues for further study concerning the 

Morgan-Granger-Newbold test of predictive accuracy.  Now it was noted that 

analysis of this test is only worthwhile if it is superior to other tests in the situations 

where it is correctly sized.  Comparing MGN to the new modified Diebold-Mariano 

test for 1-step-ahead forecasts where the forecast errors are normal, it can be seen by 

examination of tables 2.2 and 2.3 that both tests are correctly sized (  is slightly 

undersized in the smallest samples).  Evaluation of the value of MGN relative to  

therefore relies on power considerations which are examined below.  If MGN is 

found to be preferable to  on grounds of power, analysis of its non-normal 

behaviour is necessary.  Given the results of the following sub-section, this area is 

examined and modifications to MGN are considered to ascertain whether a test 

exists which exhibits both the power advantages of MGN and robustness to non-

normal errors. 

*S

*S

*S

 
 
2.4.1 Power Comparisons
 

In examining the power of a test, Monte Carlo simulation can again be used, now 

with the alternative hypothesis simulated.  Given the null of equal forecast accuracy 

and a quadratic loss differential,  is equivalent to equality of the forecast error 

variances, given the assumption of zero means.  Construction of the alternative can 

hence be performed by the following transformation: 

0H

 

 desired alternative: V e  = 1,  V e  = p (p > 1) t( )1 t( )1
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 transformation:  e
e

e
p e

t

t

t

t

1

2

1
1 2

2

*

* /
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

 
where  are the simulated forecast errors as in section 2.3, and p is a constant 

chosen for each sample size to provide reasonable power comparisons. 

e et1 2, t

 

Simulation is then performed in the same way as before for 1-step-ahead forecasting 

(with 10,000 replications), and the powers of the two tests MGN and  *S are 

evaluated for normal errors, where both tests have correct size.  Here and throughout 

this thesis non-size-adjusted powers are used, as size-adjusted powers cannot 

typically be realised in practice, partly because empirical sizes under the null 

hypothesis may depend on nuisance parameters. 

 

In addition to the MGN and  tests, the simple F-test of predictive accuracy is also 

considered.  The F-test assumes quadratic loss and thus a null of forecast error 

variance equality, and applies a simple variance ratio test: 

*S

 

 F = 
$ )
$ )

*

*
V e
V e

t

t

(
(

1

2
 = Σ

Σ

e

e
t

t

1
2

2
2

*

*
 ~  (2.17) Fn n,

 
This test involves the same assumptions as MGN, but also requires the forecast 

errors to have no contemporaneous correlation.  For this reason, power is only 

calculated for the ρ = 0 case.  The F-test is highly restrictive and impractical for 

application, but serves as a useful benchmark in the examination of other tests’ 

power.  The results are given in table 2.11 (this table also contains power results for 
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Table 2.11 
 

Power comparisons for the F-test, the original and second modified 
Morgan-Granger-Newbold tests, the modified Diebold-Mariano test and 

the rank correlation test at the nominal 10% level (h = 1) 
 

 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
Normal p = 3 p = 2 p = 1.5 p = 1.375 p = 1.25 p =1.1875 p = 1.125 

ρ = 0.0 F 58.36 52.94 43.61 49.92 48.93 54.15 52.32 
 MGN 42.84 38.70 30.65 35.47 34.91 40.85 38.06 
 S* 27.14 33.05 28.59 34.35 34.85 40.55 37.98 
 rs 28.71 33.18 27.01 32.74 32.60 37.83 35.70 
 MGN2

* 11.20 27.22 26.56 33.45 34.29 40.31 37.87 
ρ = 0.5 MGN 50.88 46.35 35.81 43.20 42.71 48.54 46.10 

 S* 32.16 39.21 33.91 41.94 42.05 48.04 45.98 
 rs 34.29 39.15 32.57 39.29 40.34 45.37 43.24 
 MGN2

* 13.59 32.69 31.65 41.11 41.58 47.81 45.90 
ρ = 0.9 MGN 89.63 89.19 81.19 87.87 88.87 92.76 91.93 

 S* 59.87 80.14 77.36 86.67 88.26 92.52 92.09 
 rs 71.03 81.25 74.98 84.30 86.13 90.30 89.58 
 MGN2

* 30.64 73.78 75.00 86.24 88.05 92.47 92.07 
 

 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
DM t6 p = 3 p = 2 p = 1.5 p = 1.375 p = 1.25 p =1.1875 p = 1.125 

ρ = 0.0 S* 19.07 23.03 20.30 24.18 23.45 24.95 23.06 
 rs 27.56 30.85 26.51 30.92 31.01 34.36 32.69 
 MGN2

* 7.62 18.35 18.84 23.29 22.95 24.75 23.00 
ρ = 0.5 S* 25.66 31.12 27.00 31.40 29.72 32.30 30.45 

 rs 33.57 37.93 32.37 37.85 37.24 41.50 40.47 
 MGN2

* 10.19 25.29 24.92 30.45 29.17 32.04 30.41 
ρ = 0.9 S* 53.31 76.96 77.16 86.78 86.90 90.89 89.36 

 rs 71.57 83.46 78.96 87.23 88.17 92.66 91.64 
 MGN2

* 25.91 69.67 75.19 86.18 86.67 90.77 89.27 
 

 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
Biv. t6 p = 3 p = 2 p = 1.5 p = 1.375 p = 1.25 p =1.1875 p = 1.125 

ρ = 0.0 S* 21.03 24.83 22.80 26.32 25.87 28.49 26.39 
 rs 28.69 32.31 28.10 31.64 32.50 36.25 34.64 
 MGN2

* 7.83 19.80 20.65 25.24 25.49 28.26 26.33 
ρ = 0.5 S* 24.90 29.38 26.72 31.07 31.30 33.85 31.88 

 rs 33.93 37.38 32.68 37.83 38.82 43.02 41.15 
 MGN2

* 9.52 23.84 24.65 30.14 30.91 33.58 31.73 
ρ = 0.9 S* 48.07 65.58 62.65 71.68 71.58 76.98 73.77 

 rs 69.69 78.37 72.45 81.96 82.86 88.32 87.15 
 MGN2

* 22.36 57.53 59.98 70.59 71.11 76.81 73.67 
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*S  under non-normality, and two other tests  and ; these entries relate to 

later analysis conducted in sub-section 2.4.3). 

sr MGN2
*

 

Examination of the results for normal errors shows that the two tests of concern 

have roughly the same power for large sample sizes, but for samples of 64 

observations and less, MGN is superior to  in terms of power, the difference 

being more significant as the sample becomes smaller.  The F-test has consistently 

greater power than both these tests as expected and acts as a useful point of 

reference.  It can also be seen that the power rises significantly with the degree of 

contemporaneous correlation, ρ.  The reason for this is that as ρ increases, the 

forecast errors become more and more similar until ρ = 1, when they are perfectly 

correlated.  As this limit approaches, it becomes easier to determine variance 

differences, as in the extreme (when ρ = 1) the errors are directly proportional to 

each other with one variance always being an exact multiple of the other. 

*S

 

It can hence be concluded from these simulation results that the Morgan-Granger-

Newbold test has valuable power gains over the modified Diebold-Mariano test in 

small samples.  Given the importance of small samples in the analysis of tests of 

predictive accuracy, the MGN test appears to be useful and have certain advantages 

over other tests under the circumstances considered.  It is now necessary to consider 

the test’s lack of robustness to even mild non-normality, and then examine potential 

corrections. 
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2.4.2 MGN Behaviour Under Error Non-normality
 

The unusual behaviour of MGN when the forecast errors are non-normal now 

demands explanation.  Firstly, it is useful to note that the correlation test of which 

MGN is comprised is identical to the t-test on the null 0=β  in the following 

regression: 

 
  = yt ttx εβ +  

  where yt  = e et t1 2+  

   xt  = e et t1 2−  

 MGN = 
22ˆ

ˆ

txΣσ

β   ~ t  under  (2.18) n−1 0H

  where 2
ˆ

t

tt

x
yx

Σ
Σ

=β  

    212 )ˆ()1(ˆ tt xyn βσ −Σ−= −

 
The asymptotic distribution of  under the null is known and can be written as 

follows (e.g. White, 1984): 

β̂

 
    (2.19) )ˆ(2/12/1 ββ −− nD d⎯ →⎯ N( , )0 1

  where D = M Q  −2

   M = E x  t( )2

   Q =  )( 2/1
ttxnV εΣ−

 
Now the distribution of the MGN test statistic will be: 
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    (2.20) )ˆ(ˆ 2/12/1 ββ −− nD d⎯ →⎯ ])ˆplim[,0(N 1DD−

  where  =  $D $ $M Q−2

   $M  = n x  t
−1 2Σ

    =  $Q 212ˆ txn Σ−σ

 
and will consequently only be consistent if  consistently estimates D.  Examining 

the constituent parts of , it is clear that 

$D

$D $M  is consistent for M: 

 
 $M  =    = M n xt

−1 2Σ p⎯ →⎯ E xt( )2

  i.e. $M   M     (2.21) p⎯ →⎯

 
and so (2.20) can now be written as: 

 
    (2.22) )ˆ(ˆ 2/12/1 ββ −− nD d⎯ →⎯ ])ˆplim[,0(N 1QQ−

 
The analysis now proceeds to examine this estimate  implicit in the MGN test 

statistic, firstly for normal forecast errors and then for non-normal errors. 

$Q

 

2.4.2a Normal Forecast Errors
 
The forecast errors of interest - 1-step-ahead normal errors - can be decomposed into 

linear functions of standard normal random variables, which allows further analysis 

of Q and .  Referring to the sub-section 2.3.2 simulation theory: $Q

 
  =    (2.23) e t1 u t1

  =   (2.24) e t2 tt uu 2
2/12

1 )1( ρρ −+

   where u  ~  ut1 2, t IN( , )0 1
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An expression for Q can now be found: 

 
 Q = )( ttxV ε  assuming ttx ε , ssx ε  uncorrelated for s ≠ t 

  = ])  as [( 2
ttxE ε )( ttxE ε  = 0 

  = E e  e e et t t t{[( )( )] }1 2 1 2
2− +

  = E e  E e E e et t t( ) ( ) (1
4

2
4

1
2

2
22+ − t )

t

t

 
 now E e  = E u  t( )1

4
t( )1

4

    = 3 

   E e  =  t( )2
4 2

2
2
1

224
2

224
1

4 )1(4)1([ tttt uuuuE ρρρρ −+−+

      tttt uuuu 2
3
1

2/1232
2

2
1

22 )1(4)1(2 ρρρρ −+−+

      ])1(4 3
21

2/32
ttuuρρ −+

     = 3 

   E e  =  et t( )1
2

2
2 ])1(2)1([ 2

3
1

2/122
2

2
1

24
1

2
ttttt uuuuuE ρρρρ −+−+

      = 221 ρ  +

 
 so Q =  (2.25) )1(4 2ρ−

 
Similarly, the probability limit of the estimator  can be found under the null: $Q

 
    $Q p⎯ →⎯ )()( 2

tt xEV ε

    = E e  under He E e et t t t[( ) ] [( ) ]1 2
2

1 2
2+ − 0

    = [ (  ) ( ) ( )]E e E e E e et t t1
2

2
2

1 22+ +

     × [ (  ) ( ) ( )]E e E e E e et t t1
2

2
2

1 22+ −

 

 62



 now E e  = E u  t( )1
2

t( )1
2

    = 1 

   E e  =  t( )2
2 ])1(2)1([ 21

2/122
2

22
1

2
tttt uuuuE ρρρρ −+−+

     = 1 

   E e  =  et t( )1 2 ])1([ 21
22

1 ttt uuuE ρρ −+

      = ρ 

 
 so    (2.26) $Q p⎯ →⎯ )1(4 2ρ−

 
Comparison of results (2.25) and (2.26) reveals that in this case of normal errors,  

consistently estimates Q, thus  and the following results: 

$Q

$D p⎯ →⎯ D

 
 MGN    (2.27) d⎯ →⎯ N( , )0 1

 
This confirms the simulation observation that the MGN test is correctly sized for 

normal errors with no problems exhibited under such error properties. 

 

2.4.2b Non-Normal Forecast Errors
 
The above analysis can be repeated for non-normal forecast errors, with the two 

methods of error generation considered separately. 

 
Diebold-Mariano Errors

Firstly, the Diebold-Mariano approach has errors which can be decomposed as in 

(2.23) and (2.24): 

 

 63



  =   (2.28) e t1 tt z1
2/1

1
−κ

  =  (2.29) e t2 tttt zz 2
2/1

2
2/12

1
2/1

1 )1( −− −+ κρρκ

   where itκ  = 62
6,itχ ; i = 1 2,  

    z  ~ IN ; it ( , )0 1 i = 1 2,  

    62
6,itχ  is independent of  zit

 
The quantity Q in this case can then be found using the methodology employed for 

the normal errors analysis: 

 
 Q = E e  E e E e et t t( ) ( ) (1

4
2
4

1
2

2
22+ − t )

t

t

 
 now E e  = 3  where  t( )1

4
2A )( k

itk EA −= κ

   E e  =  t( )2
4 2

1
22

2
224 )1(6])1([3 AA ρρρρ −+−+

   E e  =  et t( )1
2

2
2 2

1
2

2
2 )1(3 AA ρρ −+

 
 so Q =  (2.30) 2

1
22

2
22 )13)(1(2)1(6 AA −−+− ρρρ

 
The limiting value of the estimator  under  is now: $Q 0H

 
   [ (  $Q p⎯ →⎯ ) ( ) ( )]E e E e E e et t t1

2
2
2

1 22+ +

     × [ (  ) ( ) ( )]E e E e E e et t t1
2

2
2

1 22+ −

 
 now E e  = A  t( )1

2
1

   E e  = A  t( )2
2

1

   E e  = et t( )1 2 1Aρ  
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 so    (2.31) $Q p⎯ →⎯ 2
1

2 )1(4 Aρ−

 
Under a situation of forecast error non-normality then,  does not consistently 

estimate Q and the resulting null distribution for the test statistic is: 

$Q

 
 MGN    (2.32) d⎯ →⎯ ])ˆplim[,0(N 1QQ−

   where  = ]ˆplim[ 1QQ−
2
1

2
1

2
2

2

2
)13()1(3

A
AA −+− ρρ

 

 
Now for  errors, the  quantities are: 6t Ak

 

  = Ak
6 3

2 3

k

k
kΓ

Γ
( )

( )
−  

  i.e. A  = 3/2,  A  = 9/2 1 2

 
which gives a precise result for the MGN test under the null: 

 
 MGN  d⎯ →⎯ ),0(N 2

2
3

2
5 ρ−   (2.33) 

 
This is clearly not standard normal (unless ρ = 1) and so problems with the test size 

will be present.  The degree of the problem can be found by evaluating the limiting 

size of the test statistic for a given value of ρ, using numerical integration: 

 
 ρ = 0: MGN   d⎯ →⎯ N( , . )0 2 5

   2-sided asymptotic test size at the nominal 10% level 

     = ∫  = 29.82% 
∞

−−

64485.1

/51/2 2
)(52 .dxe xπ
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 ρ = 0.5: MGN   d⎯ →⎯ N( , . )0 2 125

   2-sided asymptotic test size at the nominal 10% level 

     = ∫  = 25.92% 
∞

−−

64485.1

/4.251/2 2
)(4.252 .dxe xπ

 
 ρ = 0.9: MGN   d⎯ →⎯ N( , . )0 1285

   2-sided asymptotic test size at the nominal 10% level 

     = ∫  = 14.68% 
∞

−−

64485.1

/2.571/2 2
)(2.572 .dxe xπ

 
These theoretical sizes are confirmed by simulation with a sample size of n = 

10,000.  The empirical sizes are found to be 29.00% for ρ = 0, 25.58% for ρ = 0.5, 

and 15.08% for ρ = 0.9. 

 
Bivariate Errors

This whole process can now be repeated for the second method of generating non-

normal forecast errors - the bivariate Student’s t approach: 

 
  =   (2.34) e t1 tt z1

2/1−κ

  =  (2.35) e t2 ])1([ 2
2/12

1
2/1

ttt zz ρρκ −+−

   where tκ  = 62
6,tχ ; i = 1 2,  

    z  ~ IN ; it ( , )0 1 i = 1 2,  

    62
6,tχ  is independent of  zit

 
As before, an expression for the term Q must be derived: 

 
 Q = E e  E e E e et t t( ) ( ) (1

4
2
4

1
2

2
22+ − t )

 66



 now E e  = 3  where  t( )1
4

2A )( k
tk EA −= κ

   E e  = 3  t( )2
4

2A

   E e  =  et t( )1
2

2
2

2
2 )21( Aρ+

 
 so Q =  (2.36) 2

2 )1(4 Aρ−

 
The limiting null value of  is now: $Q

 
   [ (  $Q p⎯ →⎯ ) ( ) ( )]E e E e E e et t t1
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1 22+ + t
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 now E e  = A  t( )1

2
1

   E e  = A  t( )2
2

1

   E e  = et t( )1 2 1Aρ  

 
 so    (2.37) $Q p⎯ →⎯ 2

1
2 )1(4 Aρ−

 
and the limiting distribution for MGN when these bivariate Student’s t persist 

becomes: 

 
 MGN    (2.38) d⎯ →⎯ N( , )0 1

2
2A A−

 
Substituting in values for  and  for the bivariate  distribution gives: A1 A2 6t

 
 MGN   ∀ρ (2.39) d⎯ →⎯ N( , )0 2

 

 67



and the test exhibits size problems again.  Numerical integration shows the limiting 

test size (which is the same for all values of ρ) to be 24.48% (for a 2-sided test at the 

nominal 10% level), and simulation of a sample size of n = 10,000 confirms this 

theory with results 22.97% for ρ = 0, 23.12% for ρ = 0.5, and 22.95% for ρ = 0.9. 

 

The above analysis clearly shows in detail the problems associated with the Morgan-

Granger-Newbold test when the forecast errors are non-normal.  The asymptotic 

sizes of the test under different error specifications are derived and found to be 

severely oversized.  This behaviour clearly results from inconsistent estimation of 

the variance of  in the MGN regression.  The reason for this failure of MGN when 

departures from normality occur is that the regression errors are then conditionally 

heteroscedastic.  The classical regression assumption of 

β̂

22 )( σε =tt xE  is violated, 

and although ( )  and (e et t1 2+ )e et t1 2−  are uncorrelated under the null, they are not 

in general independent, with MGN over-rejecting the null of zero correlation when 

no correlation exists due to this element of dependency. 

 

The problems associated with the MGN test under conditions of forecast error non-

normality have implications for the work conducted by Ashley, Granger & 

Schmalensee (1980).  Ashley et al. studied the issue of causality between short run 

variations in aggregate advertising and the level of consumption spending.  Using 

the Granger (1969) definition of causality between two series , the matter can 

be examined by constructing two forecasts of  (where T is the current time 

period).  One forecast uses all the available information in existence, the other uses 

the same information with the exception of current and lagged values of .  If the 

tt YX ,

1+TX

tY
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former forecast is superior to the latter,  has unique information about  and 

thus  ‘causes’ .  Ashley et al. apply this theory to the aforementioned issue and 

employ a form of the MGN test to compare the two constructed forecasts.  Their 

results provide evidence for uni-directional causality, with fluctuations in aggregate 

consumption causing fluctuations in aggregate advertising.  However, the study does 

not consider the possibility of forecast error non-normality.  The previous analysis 

has shown that with even mildly non-normal forecast errors, there is a large 

tendency to over-reject a valid null hypothesis, and so doubt is thrown over the 

reliability of the Ashley et al. inferences.  The null of consumption fluctuations not 

causing advertising fluctuations is rejected at just less than the 9.2% significance 

level, but this could be spurious if the forecast errors are non-normal.  The 

conclusions of the Ashley et al. analysis are therefore valid under a situation of 

normality, but due to the problems of MGN become more dubious when the prospect 

of forecast error non-normality is taken into account. 

tY tX

tY tX

 

Having analysed the MGN non-normality problem and discovered the reason for its 

lack of robustness, it is now appropriate to examine alternative procedures which 

might capture the benefits of MGN (namely its power advantages) whilst being 

robust in application to non-normal forecast errors. 
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2.4.3 Robust MGN-Type Tests
 

2.4.3a Modified MGN Tests
 
The analysis in sub-section 2.4.2 concluded that the undesirable non-normal 

behaviour of MGN resulted from an inconsistent estimate of Q in (2.19) as a 

consequence of conditional heteroscedasticity in the regression errors.  This 

suggests correction is possible by use of a new consistent estimator using a White 

(1980) approach. 

 

Introducing the reasonable assumption of ttx ε , ssx ε  uncorrelated for s ≠ t, as used 

in sub-section 2.4.2, allows the following to be written: 

 
 Q =      (2.40) )( 22

ttxE ε

 
Given this expression for Q, it can be seen that a consistent estimator would be 

, but the problem is that 221
ttxn εΣ−

tε  is unobserved.  The intuitive estimator to use 

is therefore the following: 

 
  =     (2.41) $Qm1

221 ˆttxn εΣ−

 
where tε̂  are the least squares regression residuals.  It is possible to show that this is 

consistent for Q (e.g. White, 1984): 

 
  =  $Q Qm1 − )(ˆ 22221

tttt xExn εε −Σ−

     =  ttttttt xxnxExn εββεε )ˆ(2)( 2122221 −Σ−−Σ −−

        2221 )ˆ( tt xxn ββ −Σ+ −
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 now   0 )( 22221-
tttt xExn εε −Σ p⎯ →⎯

   ββ −ˆ  0 p⎯ →⎯

   4 ,   are  1-
txn Σ ttxn ε31- Σ OP ( )1

 so   0   (2.42) $Q Qm1 −
p⎯ →⎯

 
This then leads to the following consistent estimator of D: 

 

  = $Dm1 22

22

)(
ˆ 

t

tt

x
xn

Σ

Σ ε
  D   (2.43) p⎯ →⎯

 
Substitution of this into the MGN test, replacing the implicit element $D  generates a 

new modified MGN test, which is valid under both the null and alternative 

hypotheses and is only reliant on the one assumption of ttx ε  zero correlation 

through time: 

 

  = MGN1
*

2222 )(ˆ

ˆ

ttt xx ΣΣ ε

β   (2.44) 

 
This test statistic is normally distributed asymptotically, but is of a typical t-test 

form and so critical values from the Student’s t distribution with  degrees of 

freedom are used in finite samples. 

1−n

 

The asymptotic test size of  should now be correct.  Confirmation of this and 

analysis of the test’s small sample properties are possible by way of simulation in 

the usual way.  The results can be seen in table 2.12, which also gives the MGN 

empirical sizes under all error properties to allow comparisons to be made (results of 

MGN1
*
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Table 2.12 
 

Empirical sizes for the original and modified Morgan-Granger-Newbold 
tests at the nominal 10% level (h = 1) 

 
Normal n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

ρ = 0.0 MGN 10.18 10.30 10.02 10.11 9.72 10.35 10.67 
 MGN1

* 19.91 15.98 12.78 11.79 10.59 10.85 10.79 
 MGN1

* 19.87 16.05 12.91 11.71 10.60 10.82 10.94 
 MGN2

* 2.84 7.38 8.68 9.50 9.66 10.28 10.50 
ρ = 0.5 MGN 10.04 9.85 10.33 10.30 10.18 10.62 10.40 

 MGN1
* 19.80 15.39 12.96 12.03 11.02 11.16 10.71 

 MGN1
* 20.03 15.56 13.14 11.97 10.96 11.17 10.71 

 MGN2
* 3.06 7.08 9.73 9.89 9.92 10.57 10.41 

ρ = 0.9 MGN 10.09 9.86 10.18 10.43 10.00 10.45 10.05 
 MGN1

* 20.36 15.48 12.89 11.99 10.71 11.11 10.63 
 MGN1

* 19.79 15.14 12.74 12.08 10.83 11.15 10.58 
 MGN2

* 3.05 6.78 8.65 9.91 9.71 10.63 10.31 
 

DM t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
ρ = 0.0 MGN 17.92 20.45 22.59 24.83 25.99 26.07 26.76 

 MGN1
* 26.26 21.16 17.98 15.68 12.86 12.01 10.69 

 MGN1
* 25.99 21.31 17.84 15.49 13.05 11.88 10.86 

 MGN2
* 2.02 5.96 8.07 9.26 9.11 9.69 9.45 

ρ = 0.5 MGN 16.21 18.54 19.80 22.05 22.38 22.62 23.67 
 MGN1

* 25.38 20.77 17.51 14.94 12.51 11.42 10.59 
 MGN1

* 24.90 20.83 16.90 14.66 12.60 11.63 10.56 
 MGN2

* 2.17 6.42 8.54 9.04 9.24 9.36 9.22 
ρ = 0.9 MGN 11.83 12.75 12.61 13.65 13.57 13.72 13.63 

 MGN1
* 22.03 18.49 15.08 13.26 12.00 10.79 10.28 

 MGN1
* 21.85 18.34 15.16 13.35 11.88 10.98 10.31 

 MGN2
* 2.22 6.84 8.41 9.30 9.49 9.27 9.55 

 

Biv. t6 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
ρ = 0.0 MGN 15.51 16.97 18.90 19.96 21.22 21.27 22.07 

 MGN1
* 24.82 20.28 17.08 14.66 12.85 11.53 10.86 

 MGN1
* 24.90 20.00 16.65 14.38 12.90 11.53 11.03 

 MGN2
* 2.03 6.17 7.98 8.70 9.35 9.40 9.60 

ρ = 0.5 MGN 15.42 17.02 19.06 20.09 20.75 21.29 22.37 
 MGN1

* 24.84 19.95 17.21 14.89 12.53 11.40 10.74 
 MGN1

* 24.30 20.15 17.35 14.78 12.61 11.38 10.63 
 MGN2

* 2.30 5.69 7.70 8.95 9.16 9.47 9.37 
ρ = 0.9 MGN 15.13 17.04 19.00 19.69 20.57 21.36 22.85 

 MGN1
* 24.62 20.22 17.28 14.66 12.70 11.77 11.19 

 MGN1
* 24.29 20.23 17.19 14.46 12.62 11.90 11.06 

 MGN2
* 2.41 6.01 7.89 8.68 9.51 9.77 9.87 

 

Note:- The first entry for the MGN1
* test in each cell is for case 1 and the second for case 2. 
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another test, , which shall be introduced shortly, are also included).  One 

further point to note is that the modified test  is not symmetric and so 

simulation results are given for both cases (see table footnote): 

*
2MGN

MGN1
*

 

  = yt ttx εβ +  case 1: y e et t t= +1 2 x e et t t, = −1 2  

     case 2: y e et t t= −1 2 x e et t t, = +1 2

1

Q

 

 

With regard to the results, it can be seen that the modification is successful in 

correcting the asymptotic size of the test.  However, significant oversizing in small 

samples is also apparent for normal and non-normal errors.  This leads to the 

conclusion that the modifications to the Morgan-Granger-Newbold test succeed in 

generating a robust test asymptotically, but one that is impractical in application due 

to this small sample behaviour.  Further to this extent, the cases in which MGN is 

preferable to  are those involving the smaller samples; the cost of correction for 

’s erroneous non-normal behaviour leads to oversizing in precisely these 

cases, leaving no potential for  to be useful in practice. 

*S

MGN

MGN1
*

 

Further analysis of this modified MGN test gives insight into its finite sample 

behaviour.  The estimator  can be written as: $Qm1

 
  =  $Qm1

2221-21-221- )ˆ()ˆ(2 ttttttt xxnxxnxn ββεββε −Σ+−Σ−Σ

   = O O  n O O n OP P P P P( ) ( ) ( ) ( ) ( )/1 11 2 1− +− −

 
In the limit,  as noted in (2.42), but the latter two terms in the above 

decomposition, especially the second term, will converge to zero slowly.  It is the 

$Qm
p

1 ⎯ →⎯
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behaviour of these latter terms in small and moderate samples that create the poor 

test size performance observed in table 2.12. 

 

A second modified MGN test can now be considered.  This time a consistent 

estimator for Q is found by employing the fact that tt y=ε  under the null.  The 

following estimator then results: 

 
  =     (2.45) $Qm2

221
tt yxn Σ−

 
This estimator is consistent for Q under the null but not under the alternative: 

 
 under :  =  0H $Qm2

221
ttxn εΣ−

        Q  (2.46) p⎯ →⎯

 
 under :  =  1H $Qm2

221- )( ttt xxn εβ +Σ

       =  42131221 2 ttttt xnxnxn Σ+Σ+Σ −−− βεβε

       = O O OP P P( ) ( ) ( )1 1 1+ +  

          (2.47) p⎯ →⎯ 2
2

1 ccQ ββ ++

        where c  = constants, ii = 1 2,  

 
Use of  permits a consistent estimator of D to be derived: $Qm2

 

  = $Dm2
n x y

x
t t

t

Σ
Σ

2 2

2 2( )
p⎯ →⎯  D   (2.48) 

 
and substitution of this as with  generates a second modified MGN test: $Dm1
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  = MGN2
*

2222 )(

ˆ

ttt xyx ΣΣ

β   (2.49) 

 
This test would be expected to be correctly sized, but at the cost of some reduction 

in power due to the lack of consistent estimation under the alternative.  It is 

important to note that the test is consistent, i.e. the power tends asymptotically to 

one, under both the null and the alternative, even though Q is not consistently 

estimated under .  As with , use of Student’s  critical values is most 

appropriate in application. 

1H MGN1
* tn−1

 

Simulation of this test is performed for conditions identical to those considered for 

, with the exception that  is symmetric and so only one case need be 

examined.  The results, also given in table 2.12, show an improvement in size as 

expected, but in many cases, especially for the small and moderate samples, the test 

is significantly undersized.  However, given that undersizing errs on the side of 

caution and is more tolerable than oversizing, it is also worth checking the test’s 

power.  Simulation results for the power of  are given in table 2.11, and are 

not favourable.  The test has very low power for the smaller samples, in part 

resulting from the undersizing in these cases, and thus the cost of correcting for the 

MGN problems is here the removal of the small sample power advantages of MGN 

over .  Even in large samples, the  test does not attain the power of , 

leaving little value in the application of this second modified test. 

MGN1
* MGN2

*

MGN2
*

*S MGN2
* *S
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2.4.3b Rank Correlation Test
 
A second thought in the objective to find a test of the MGN form which is robust to 

the distribution of the forecast errors is to use a nonparametric test, the most obvious 

choice being Spearman’s rank correlation test.  This test of the no correlation null 

involves ranking the observations  xt ( ,..., )t n= 1  and  yt ( ,..., )t n= 1  in ascending 

order (generating vectors ), and then calculating the sample correlation of the 

ranks .  The resulting coefficient becomes the test statistic and is compared 

with specifically derived critical values: 

x yr r,

x yrt rt,

 

  = rs
Σ

Σ Σ

x y nx y

x nx y ny
rt rt r r

rt r rt r

−

− −( 2 2 2 2)( )
  (2.50) 

  = 
12)1(

]2)1+([
2

21

−

−Σ−

n
nyxn rtrt    (2.51) 

 
If there are no tied ranks, this simplifies to the following expression: 

 

  = rs 1
6

1

2

2−
−

Σd
n n

rt

( )
  where d x yrt rt rt= −   (2.52) 

 
This nonparametric test will overcome the problem of missizing under non-

normality; the question concerning its value relates to the test’s power.  Simulation 

is thus performed in the same way as in sub-section 2.4.1 to examine the power of 

Spearman’s rank correlation test relative to MGN and ; the same values of p are 

used within each sample size to allow direct comparisons to be made.  The relevant 

Spearman’s rank correlation critical values are used for sample sizes n = 8, 16, 32, 

64; for the larger samples, the normal approximation is used (e.g. Kendall & 

Gibbons, 1990): 

*S
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 n − 1 rs  ~  asy. ( , )N 0 1

 
i.e.  is standardised and then compared with the relevant standard normal critical 

value.  The exact critical values for large samples can be simulated, and execution of 

such experiments confirms the validity of the above approximation. 

rs

 

The rank correlation test simulation results are given in table 2.11 and provide the 

inference that the test is not as powerful as MGN for any sample size when the 

errors are normal (the non-normal case cannot be compared as MGN is oversized 

under such error properties).  The nonparametric test procedure of r  overcomes the 

non-normal sizing problem of MGN, but to the cost of a reduction in power.  With 

normal errors, this occurs to such an extent that the small sample power advantages 

of MGN over  are completely removed.  However,  does exhibit power gains 

over  under non-normality in all samples.  A case exists therefore for the use of 

the rank correlation test with 1-step-ahead forecasts if heavy-tailed error 

distributions are strongly expected, due to this non-normal power gain.  Generally, 

however, given that there is little or no advantage when the errors are normal, and 

that the test has no natural extension to multi-step-ahead forecasting, there remains 

little motivation for using r  in more general circumstances when compared to . 

s

*S rs

*S

s
*S
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2.5 Conclusion 
 
 

In conclusion, there is great need when examining the predictive accuracy of 

competing forecasts to have statistical testing procedures which are general in 

specification and robust to a wide range of forecast error properties.  Given the 

nature of the situations where such tests are applied, test validity in small samples is 

also crucial.  The paper by Diebold & Mariano (1995) examines a number of extant 

tests, notably one attributed to Morgan, Granger & Newbold, and proposes a new 

test for the null of equal forecast accuracy which possesses the desirable 

characteristics of a general specification and robustness to error properties. 

 

This study has sought to analyse two areas of interest arising from the work by 

Diebold & Mariano.  Firstly, it is observed by Monte Carlo simulation that the 

Diebold & Mariano proposed asymptotic test, , is heavily oversized in small 

samples.  This problem magnifies as longer forecast horizons are examined. 

1S

 

Following this observation, two modifications are applied to , the aim being to 

capture its many advantages whilst improving the small sample sizing to an 

acceptable level.  These corrections involve a modification to the variance estimate 

which accounts for the finite sample bias inherent in , and use of critical values 

from the Student’s t distribution with 

1S

1S

1−n  degrees of freedom to follow the usual 

significance test construction. 

 

The newly derived test, , significantly reduces the small sample oversizing to a 

much more acceptable level, and does so consistently over all the sample sizes and 

*S
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forecast horizons.  The benefits of  are maintained with  also having a very 

general economic loss function specification, and exhibiting robustness to forecast 

error distribution, autocorrelation and contemporaneous correlation.  The modified 

test  is consequently preferable to  and highly valuable in application. 

1S *S

*S 1S

 

The second issue of concern refers to the Morgan-Granger-Newbold test.  

Examination of the test’s power relative to  shows that in the limited cases where 

MGN’s assumptions are satisfied (1-step-ahead forecasting, normal forecast errors), 

advantages exist (in terms of power) over  in small samples.  This is useful due to 

the interest in small samples, but the main problem of MGN is its lack of robustness 

to even mildly non-normal forecast errors.  Examination of this problem reveals the 

cause to be an inconsistent variance estimate (if the test is viewed as a regression  

t-test) resulting from conditional heteroscedasticity in the regression errors. 

*S

*S

 

In response to this, three alternative tests are examined with the objective of 

removing the MGN non-normality problem whilst keeping its small sample 1-step-

ahead forecasting advantages.  The first two tests are parametric and use new 

consistent estimators of the variance which solve the MGN asymptotic oversizing, 

but again at a cost.  The first modified test, , generates small sample 

oversizing, thus where MGN has its power advantages, the corrections create 

problems with size.  The second modified test, , exhibits undersizing and low 

power in small samples, again removing the advantages of MGN.  The third test 

considered is a rank correlation test, and this nonparametric approach achieves a 

correct test size in all samples.  With regard to power,  exhibits significant power 

MGN1
*

MGN2
*

rs
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advantages over  in the case of non-normal forecast errors, but in a world of 

normal errors, the MGN power gains are lost by use of this test.  The problem of 

MGN lack of robustness can therefore be removed in a number of ways, but in doing 

so, either the advantages over  are lost or other problems are introduced, the 

exception to this being the superior performance of the rank correlation test to  

for non-normal errors. 

*S

*S

*S

 

When evaluation is purely concerned with 1-step-ahead forecasts, the tests  and 

 are robust and correctly sized, and if non-normal errors are suspected a case 

exists for using r  due to its power advantages in such circumstances.  However, 

when analysis is extended to multi-step-ahead forecast evaluation,  is the only 

test which is robust to the autocorrelation now present in the errors, achieving 

approximately the correct size in most cases.  Despite some small sample oversizing 

which remains at long horizons, the test exhibits robustness to all the examined 

forecast error properties and constitutes the best approach to equal accuracy testing 

in general. 

*S

rs

s

*S

 

Altogether, it is the conclusion of this analysis that the new fully modified test  is 

of great benefit in application, possessing all the desirable characteristics of the 

asymptotic test proposed by Diebold & Mariano but with the critical advantage of 

improved behaviour in small samples.  The Morgan-Granger-Newbold test can and 

must be corrected for its characteristics under forecast error non-normality, but these 

corrections generally remove the possibility of circumstances under which an MGN-

type test is preferable to .  The exception is  when non-normal errors are 

*S

*S rs
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suspected, but these advantages are restricted to 1-step-ahead evaluation.  The 

proposed test for predictive accuracy, , takes a very general specification, is 

robust to forecast error distribution, autocorrelation and contemporaneous 

correlation, and is reasonably sized for all samples and forecast horizons, thus 

making a significant contribution to the practice of testing for equal forecast 

accuracy. 

*S
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Chapter 3 
 
 
 
 

Tests for Forecast 
Encompassing 
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3.1 Introduction 
 
 

Following the comparison of two competing forecasts of the same quantity, it is not 

necessarily optimal to choose to use just one of the forecasts in isolation.  Both 

forecasts may contain valuable information concerning future outcomes, and it is 

frequently the case that a combined forecast formed from the individual ones is 

superior in predictive ability to either of the two available forecasts alone.  This 

notion of the combination of forecasts has given rise to a large literature, the seminal 

work being done by Bates & Granger (1969); see also Newbold & Granger (1974), 

Granger & Newbold (1986), Clemen (1989) and Granger (1989). 

 

Given two rival forecasts, it is useful to formulate some procedure for testing 

whether a preferred forecast is so superior to its competitor that combination of the 

two forecasts will not lead to an improved predictor.  Such a procedure is developed 

by Nelson (1972) and formalised by Granger & Newbold (1973) as a test for 

conditional efficiency.  One forecast is said to be conditionally efficient with respect 

to the other if the combined forecast has an error variance which is not smaller than 

that associated with the forecast in question by itself.  Chong & Hendry (1986) 

introduce the interpretation that a conditionally efficient forecast encompasses the 

other forecast, i.e. the inferior forecast has no valuable information with regard to 

prediction to contribute to the encompassing forecast.  The motivation for testing for 

forecast encompassing follows from these concepts. 

 

This chapter examines tests for forecast encompassing.  Section 3.2 analyses the 

currently applied regression test and discovers problems with its application in 
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situations of forecast error non-normality.  Section 3.3 develops two modifications 

to the original test to correct this problematic behaviour, and sections 3.4 and 3.5 

propose two new tests for the forecast encompassing null.  Some power comparisons 

are given in section 3.6, and the chapter is summarised and concluded in the final 

section, 3.7. 
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3.2 Regression Test 
 
 

The established test for forecast encompassing (e.g. Clements & Hendry, 1993) 

involves testing for conditional efficiency, as formalised by Granger & Newbold 

(1973).  The procedure considers two 1-step-ahead forecasts  of the same 

actual value .  Now  is said to be conditionally efficient with respect to  if 

the combined forecast  (some function of  and ) exhibits no significant 

improvement in the forecast error variance than that generated by  alone.  If a 

weighted average of forecasts is employed (as in equation (3.1) below) this concept 

of conditional efficiency can be tested directly: 

f ft1 2, t

yt f t1 f t2

f ct f t1 f t2

f t1

 
  combined forecast: f  = ct tt ff 21)1( λλ +−  10 ≤≤ λ   (3.1) 

  forecast errors: e  = t1 y ft t− 1  (3.2) 

    = e t2 y ft t− 2  (3.3) 

    = ect y ft ct−  (3.4) 

 
Rearranging (3.1)-(3.4) gives: 

 
  = e t1 cttt eee +− )( 21λ  (3.5) 

 
The test for conditional efficiency now amounts to running the regression 

formulated in equation (3.5) and conducting a t-test for the significance of λ.  The 

null hypothesis of λ = 0 implies that combining  with  does not improve the 

error variance from the original forecast , and thus  is said to be conditionally 

efficient with respect to .  The test is 1-sided with an alternative hypothesis of  

f t2 f t1

f t1 f t1

f t2
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λ > 0.  The null hypothesis amounts to saying that  has no valuable information 

to add to , and thus the forecast  encompasses , and the regression test for 

forecast encompassing is derived: 

f t2

f t1 f t1 f t2

 
  = yt ttx ελ +    (3.6) 

  where yt  = e  t1

   xt  = e et t1 2−  

 R = 
22ˆ

ˆ

txΣσ

λ   ~  under  (3.7) tn−1 0H

  where 2
ˆ

t

tt

x
yx

Σ
Σ

=λ  

    212 )ˆ()1(ˆ tt xyn λσ −Σ−= −

 
The forecast encompassing test centres on the regression specified in equation (3.5).  

This has obvious similarities to the Morgan-Granger-Newbold test for equal forecast 

accuracy considered in chapter 2, with (3.7) bearing a very close resemblance to 

(2.18).  Consequently, because of the problems associated with the MGN test when 

the forecast errors are non-normal, it becomes necessary to examine the behaviour 

of the test for forecast encompassing in these circumstances. 

 
 
3.2.1 Theory
 

The test in question can be decomposed and analysed in a way comparable to the 

chapter 2 examination of the MGN test.  Firstly, it can be noted that the parameter λ 

in (3.6) has the usual population interpretation: 
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 λ = 
E x y
E x

t t

t

( )
( )2  

 
which allows a useful result to be obtained under the null hypothesis: 

 
 : λ = 0 0H

  i.e. E x  = 0 yt t( )

)   E e  = E e  (3.8) t( )1
2 et t( 1 2

 
From here, the analysis depends on the distribution of the forecast errors, and thus 

proceeds in two sub-sections corresponding to the respective situations of forecast 

error normality and non-normality. 

 

3.2.1a Normal Forecast Errors
 
In this initial case, the errors made from the two forecasts of interest, denoted  

and e , are assumed to follow a bivariate normal distribution: 

e t1

t2

 
 e ~ ),0(N Ω     (3.9) 

  where Ω =   
V e C e e

C e e V e
t t

t t t

( ) ( )
( ) ( )

1 1

1 2 2

,
,

⎡

⎣
⎢

⎤

⎦
⎥

t2

) )

 
Under the null hypothesis,  is conditionally efficient with respect to , thus 

 > V e .  Furthermore, the result in (3.8) shows that V e  = C e , 

again under the null.  Normalising on V e , i.e. V e

f t1 f t2

V e t( )2 t( 1 t( 1 et t( )1 2,

t( )1 C e et t t( ) ,1 1 2= ( ) = 1

)

, and 

denoting V e  = ω > 1, gives the following variance-covariance matrix: t( 2
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 Ω = ; ω > 1  (3.10) ⎥
⎦

⎤
⎢
⎣

⎡
ω1
11

 
Now the forecast errors can be decomposed into linear functions of independent 

standard normal random variables.  The first step notes a pair of realisations from 

the standard bivariate normal distribution: 

 

 z =  ~ 
z
z

1

2

⎡

⎣
⎢

⎤

⎦
⎥ N( , )0 I  

 
Transformation of this vector z by premultiplication of a matrix T yields the 

following: 

 
  ~ Tz N(0, )TT ′  

 
It is clear, then, that choosing the matrix T such that Ω=′TT  allows the 

decomposition to be stated: 

 
 e = Tz ~ ),0(N Ω  

 
The obvious choice for T is the triangular matrix below (the minus coefficient in 

element t  is to simplify the interpretation which results in equation (3.14) below): 22

 

 T = ⎥
⎦

⎤
⎢
⎣

⎡
−− 11

01
ω

 

 
It is now possible to write the forecast errors as linear combinations of the 

independent standard normal random variables contained in z: 
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  e  =   (3.11) t1 z t1

  =  (3.12) e t2 tt zz 2
2/1

1 )1( −− ω

 
Substitution of the decomposition noted in (3.11) and (3.12) into the test statistic 

(3.7) leads to an interesting result: 

 

 R  = 
( ) ( )

( ) [ (

/n e e e

e e e e e e
t t t

t t t t t t

− −

− − −

1 1 2
1 1 2

1
2

1 2 1 1 2
2

Σ

Σ Σ Σ2 )]
 

  = 
2

21
2/12

2
2
1

21
2/12/1

])1[()1(

)1()1(

tttt

tt

zzzz

zzn

Σ−−ΣΣ−

Σ−−

ωω

ω
 

  = 
( )

( )

/n z z

z z z z
t t

t t t t

−

−

1 1 2
1 2

1
2

2
2

1 2
2

Σ

Σ Σ Σ
  (3.13) 

 
Not only is this test statistic invariant to the value of ω = V e  > 1, it is also 

identical to the test statistic for a t-test of the null β = 0 in the following regression: 

t( )2

 
  = z t1 ttz 12 ηβ +    (3.14) 

 
The regression test can therefore be written more simply in this case: 

 

 R = 
2
2

2
1

ˆ

tzs Σ

β  ~  under  (3.15) tn−1 0H

  where 2
2

21ˆ
t

tt

z
zz

Σ
Σ

=β  

     2
21

12
1 )ˆ()1(= tt zzns β−Σ− −

 
The null distribution of  is known asymptotically (e.g. White, 1984), and can be 

written down in the form of (2.19): 

β̂
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    (3.16) )ˆ(2/12/1 ββ −− nD d⎯ →⎯ N( , )0 1

  where D = M Q  −2

   M = E z  t( )2
2

   Q =  )( 12
2/1

ttznV ηΣ−

 
Now much of the chapter 2 analysis follows through at this point, so further analysis 

of the regression test can be done with reference to sub-section 2.4.2 in order to 

discover if any problems exist when implementing the regression test for forecast 

encompassing. 

 

Estimation of D is implicitly performed in the regression test, and results in a null 

distribution for R identical to that in (2.20) except that now  and .  

Now (2.21) will hold again, yielding the following intermediate result, c.f. (2.22): 

y zt = 1t

)

x zt t= 2

 
 R   (3.17) d⎯ →⎯ ])ˆplim[,0(N 1QQ−

  where  $Q s n z t= −
1
2 1

2
2Σ

 
In this world of forecast error normality, values for Q and  can be found 

under the null: 

Q̂plim

 
 Q = V z  assuming tzt t( 2 1 tz 12 η , ssz 12 η  uncorrelated for s ≠ t 

  = E z  as z  independent E zt( ) ( )1
2

2
2
t tzt1 2,

  = 1  (3.18) 

 
    $Q p⎯ →⎯ )()( 2

21 tt zEV η
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   = E z  E zt t( ) ( )1
2

2
2

   = 1 (3.19) 

 
Substituting results (3.18) and (3.19) into (3.17) gives the test statistic distribution: 

 
 R   (3.20) d⎯ →⎯ N( , )0 1

 
and the regression test for forecast encompassing would therefore not be expected to 

exhibit any problematic size behaviour when the errors are normally distributed. 

 

3.2.1b Non-Normal Forecast Errors
 
Turning now to consider non-normal forecast errors, it is assumed that the errors  

and  follow a bivariate Student’s t distribution with ν degrees of freedom as 

described by Dunnett & Sobel (1954).  As discussed in chapter 2, use of such non-

normal errors is preferable to the alternative approach of starting with two 

independent univariate Student’s t error vectors and transforming them to assume 

the desired correlation properties (as employed by Diebold & Mariano, 1995).  The 

reasons for preferring the bivariate method are, as argued in the previous chapter, 

that the desirable results of the errors themselves being  and the squared errors 

being correlated both occur when using this approach.  The errors can then be 

described as follows: 

e t1

e t2

νt

 

  = eit
νχ ν

2
,t

itu
  i = 1 2,  
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  where 2
,νχ t  is independent of  uit

    u =  ~ 
u
u

t

t

1

2

⎡

⎣
⎢

⎤

⎦
⎥ ),0(N Ω  

 i.e. e  = t1
νκ ,

1

t

tz
   (3.21) 

   e t  = 2
νκ

ω

,

2
2/1

1 )1(

t

tt zz −−   (3.22) 

    where νκ ,t  = νχ 2
,vt  

 
These results can again be substituted into the test statistic (3.7): 

 

 R = 
( ) ( )

( ) [ (

/n e e e

e e e e e e
t t t

t t t t t t
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2
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2
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2
1

21
2/1
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)1(

tttt

tt

wwww

wwn

Σ−ΣΣ

Σ−
 (3.23) 

  where  =  itw itt z2/1
,
−
νκ i = 1 2,  

    νκ ,t  is independent of  zit

 
As with the normal errors, this test statistic (3.23) is invariant to V e  as it is 

invariant to the choice of ω (which is in this case V u  > 1); the statistic also has a 

useful interpretation, being identical to the test statistic for the null 

t( )2

t( 2 )

0=γ  in the 

regression: 

 
  = w t1 ttw 22 ηγ +    (3.24) 
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As with the normal error case, the regression test can now be simplified: 

 

 R = 
2
2

2
2

ˆ

tws Σ

γ  ~  under  (3.25) tn−1 0H

  where 2
2

21ˆ
t

tt

w
ww

Σ
Σ

=γ  

     2
21

12
2 )ˆ()1(= tt wwns γ−Σ− −

    w  are uncorrelated bivariate  random variables wt1 2, t

)

νt

 
Following the same analysis through as before, R now takes the following 

distribution under the null hypothesis: 

 
 R   (3.26) d⎯ →⎯ ])ˆplim[,0(N 1QQ−

  where  )( 22
2/1

ttwnVQ ηΣ= −

    $Q s n w t= −
2
2 1

2
2Σ

 
and the variance term  can be found as follows: ]ˆplim[ 1QQ−

 
 Q = V w  assuming wt t( 2 1 ttw 22 η , ssw 22 η  uncorrelated for s ≠ t 

  = )  using w  definition below (3.23) ( 2
2

2
1

2
, ttt zzE −
νκ it

  = ν  where  (3.27) ,2A )( ,,
k

tk EA −= νν κ

 
    $Q p⎯ →⎯ )()( 2

22 tt wEV η

   = E w  E wt t( ) (1
2

2
2 )

   =  )()( 2
2

1
,

2
1

1
, tttt zEzE −−

νν κκ

   =  (3.28) 2
,1νA
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 so  =  (3.29) ]ˆplim[ 1QQ−
2

2
,1 AA−
ν

 
The terms  in the above equations can be expressed more explicitly: ν,kA

 

  = ν,kA
)(2

)(

2

2
ν

νν

Γ

−Γ
k

k k
 

   = A A1
2

2,ν
−

)(4)]1([
)]([4)2(

2
2

2
2

2
22

2

νν

νν

ν

ν

Γ−Γ

Γ−Γ
 

   = 
4
2

−
−

ν
ν  (3.30) 

 
Collating results (3.26), (3.29) and (3.30) then provides a result for the regression 

test under the null when forecast error non-normality persists: 

 
 R   (3.31) d⎯ →⎯ ))2()4(,0(N 1 −− − νν

 
The test consequently embodies an inconsistent variance estimate in a non-normal 

world which will introduce significant problems in the test’s application - that of 

asymptotic oversizing.  It is important to note that this is exactly the same problem 

faced by MGN when bivariate Student’s t errors are considered - the variance of 

(3.31) for  errors is 2, as in (2.39).  The regression test, like MGN, suffers from 

conditional heteroscedasticity in the regression errors, and when this is not taken 

into account the effect is the same for both tests and a lack of robustness is 

displayed. 

6t

 

The reason that the conditional heteroscedasticity has an identical effect on both 

tests, with the same asymptotic variance  resulting when bivariate  )2()4( 1 −− − νν νt
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errors are assumed, stems from the fact that the MGN and R regressions are special 

cases of a more general problem.  The two regressions and tests are, in common 

form: 

 
 ttt xy εδ +=  ; : 0H 0=δ  ; use t-test on  δ̂

 
 MGN: ttt eey 21 += , ttt eex 21 −=  

 R:   , tt ey 1= ttt eex 21 −=  

 
Now since e  are distributed bivariate , the standardised linear combinations 

,  will also be bivariate  in both cases.  Denoting these 

bivariate  variables ,  the tests can be written 

in the general form: 

et1 2, t νt

tt yyV 2/1)( −
tt xxV 2/1)( −

νt

νt ttt yyVw 2/1
1 )( −= ttt xxVw 2/1

2 )( −=

 
  ; : ttttt wxVwyV εδ += 2

2/1
1

2/1 )()( 0H 0=δ  ; use t-test on  δ̂

 
Given that the MGN and R tests amount to performing t-tests on , and that 

multiplying the dependent and independent variables by constants has no effect on 

the t-ratios, this general form can be simplified to: 

δ̂

 
  ; :  ; use t-test on  ttt ww εδ += 2

*
1 0H 0* =δ *δ̂

 
Furthermore, under the null  are uncorrelated.  The MGN and R tests can 

then be seen to be special cases of a t-test on the parameter in a regression involving 

two uncorrelated bivariate  variables.  The  t-ratio is asymptotically distributed 

, forming the general result which the Morgan-Granger-

Newbold test for equal forecast accuracy and the regression test for forecast 

w wt1 2, t

νt
*δ̂

))2()4(,0(N 1 −− − νν
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encompassing follow.  This also explains the result (3.23), and similarly (3.13); 

equivalent results to these also exist for MGN. 

 

It is interesting to note that if the Diebold-Mariano method of non-normal error 

generation is employed in exactly the same way as in their paper, then repetition of 

the above analysis finds  to be consistent for Q.  However, this result is peculiar to 

their arbitrarily chosen matrix, T, and it can be shown that  will not estimate Q 

consistently for a chosen matrix T in general, triangular or non-triangular. 

$Q

$Q

 

The analysis can be extended from here to examine the degree of oversizing that the 

test exhibits under non-normality.  The asymptotic distribution is normal with zero 

mean and variance .  For a given bivariate Student’s t distribution, 

this variance can be calculated, and the resulting asymptotic test size evaluated by 

numerical integration.  The distributions considered have six and five degrees of 

freedom respectively; analysis cannot proceed for lower degrees of freedom because 

the i’th moment of a Student’s t distribution only exists for i < ν.  The results are as 

follows: 

)2()4( 1 −− − νν

 
 :  = 2 6t )2()4( 1 −− − νν

  1-sided asymptotic test size at the nominal 10% level 

   = ∫  = 18.24% 
∞

−−

28155.1

/41/2 2
)(4 .dxe xπ

  1-sided asymptotic test size at the nominal 5% level 

   = ∫  = 12.24% 
∞

−−

64485.1

/41/2 2
)(4 .dxe xπ
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 :  = 3 5t )2()4( 1 −− − νν

  1-sided asymptotic test size at the nominal 10% level 

   = ∫  = 22.97% 
∞

−−

28155.1

/61/2 2
)(6 .dxe xπ

  1-sided asymptotic test size at the nominal 5% level 

   = ∫  = 17.11% 
∞

−−

64485.1

/61/2 2
)(6 .dxe xπ

 
Simulation of the forecast encompassing regression test under different forecast 

error properties allows confirmation of these theoretical results and also examination 

of finite sample behaviour.  Execution of such experiments forms the basis of the 

next sub-section. 

 
 
3.2.2 Simulation
 

Monte Carlo simulation is now performed to evaluate empirical sizes of the forecast 

encompassing test statistic for nominal 10% and 5% level tests against a 1-sided 

alternative ( : λ = 0, : λ > 0).  The forecast errors e  are drawn from three 

bivariate distributions in turn - normal, Student’s  and Student’s .  A range of 

sample sizes, n, are examined, ranging from n

0H 1H et1 2, t

6t 5t

= 8  to n = 512 , plus a very large 

sample size of  to confirm the above theoretical results for the test’s 

asymptotic size.  All simulation experiments performed in this chapter are based on 

10,000 replications. 

n = 10 000,

 

For the simulations involving normal forecast errors, the test statistic formulation 
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given in (3.13) is used, with the  values generated by drawing realisations 

from the standard normal distribution.  Similarly, the method for simulations using 

non-normal forecast errors involves employment of the test statistic described in 

(3.23), with  generated by drawing  values as before and then 

transforming each realisation by dividing through by the same independent chi-

squared random variable. 

z zt1 2, t

t tw wt1 2, z zt1 2,

  

The simulation results are given in table 3.1, and verify the theoretical analysis of 

sub-section 3.2.1.  Under forecast error normality, the regression test is correctly 

sized for all sample sizes, as would be expected given the fact that the variance 

estimate is consistent in this case.  When the forecast errors are non-normal, 

however, the inconsistent variance estimate impacts the test statistic and leads to 

oversizing in all sample sizes.  This can be seen in the table with the empirical sizes 

ranging from 13.08% to 18.15% at the nominal 10% level, and 7.46% to 12.24% at 

the nominal 5% level, for the errors drawn from the bivariate Student’s  

distribution.  This problem worsens for the  case, with the errors deviating further 

from normality.  The non-normal sizes appear to converge to a limit which is 

approximated empirically by the n = 10,000 experiment test sizes.  Comparison of 

these sizes with the theoretical asymptotic sizes given in the previous sub-section 

confirm the validity of the theoretical analysis.  The nominal 10% level empirical 

sizes are 18.15% and 21.91% for the  and  errors respectively, compared with  

6t

5t

6t 5t
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Table 3.1 
 

Empirical sizes for the regression test at the nominal 10% & 5% levels (h = 1) 
 

10% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000
N 10.12 9.79 9.94 10.20 10.32 10.42 10.30 9.86 
t6 13.08 14.03 15.25 16.09 16.46 17.00 17.32 18.15 
t5 15.00 16.12 16.38 17.50 18.30 18.58 19.68 21.91 

 

5% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000
N 5.18 4.97 4.95 5.29 5.27 5.18 5.32 4.75 
t6 7.46 8.45 9.74 10.29 10.49 11.13 11.54 12.24 
t5 8.93 10.00 10.61 11.47 12.30 12.75 13.93 15.81 
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the theoretical sizes of 18.24% and 22.97%; similarly, for the nominal 5% level the 

empirical sizes are 12.24% and 15.81% compared with theoretical sizes of 12.24% 

and 17.11%. 

 

The simulation results therefore confirm the theoretical proposition that the 

regression test for forecast encompassing exhibits problematic behaviour when the 

forecast errors are non-normal.  Corrections and alternative testing procedures must 

consequently be considered. 
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3.3 Modified Regression Tests 
 
 

The presence of finite sample and asymptotic oversizing in the forecast 

encompassing regression test under forecast error non-normality motivates the 

search for improved tests which do not exhibit this undesirable feature in 

application. 

 

The analysis of the previous section found the source of the problem to be 

conditional heteroscedasticity in the regression errors causing inconsistent 

estimation of the element Q in (3.26).  Now given the close similarities between R 

and the MGN test for equal forecast accuracy, two modifications to the regression 

test are immediately apparent to correct for the test’s inherent lack of robustness - 

namely equivalent tests to  and : MGN1
* MGN2

*

 

   = Rm1 2222 )(ˆ

ˆ

ttt xx ΣΣ ε

λ   (3.32) 

   = Rm2 2222 )(

ˆ

ttt xyx ΣΣ

λ  (3.33) 

 
where  are as defined in (3.6) and (3.7), and λ̂,, tt yx tε̂  are the least squares 

residuals from the regression (3.6). 

 

The modified tests given in (3.32) and (3.33) employ consistent estimators of Q as 

defined in the chapter 2 analysis in equations (2.41) and (2.45), again with ttt yx ε̂,,  

defined accordingly for the encompassing problem.  As with all the tests of this 
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form, comparison of the test statistics  is made with critical values from a 

Student’s t distribution with 

R Rm m1 , 2

1−n  degrees of freedom. 

 

The two tests also have interesting and useful interpretations, comparable to that for 

the regression test in (3.13) and (3.23).  When the forecast errors are normal, the test 

statistics of (3.32) and (3.33) become: 

 

   = Rm1
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b c d+ −
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   = 
Σ

Σ

z z

z z
t t

t t

1 2

1
2

2
2

  (3.35) 

 
As with the regression test, these results (3.34) and (3.35) are invariant to ω = 

 > 1.  Furthermore, the test statistics are identical to those which would be 

obtained if the two modified regression tests were applied to : β = 0 in the 

regression specified in (3.14).  Similar results exist for non-normal errors, with the 

test statistics being invariant to ω = V u  and identical to the test statistic 

associated with the modified regression test of the null 

V e t( )2

0H

t( 2 )

0=γ  in (3.24).  All these 

results stem from the fact that the regression (3.6) is a special case of the more 

general (3.14) when the errors are normal and (3.24) when the errors are non-

normal, as explained in sub-section 3.2.1b.  

 

Monte Carlo simulation is again conducted to examine the empirical sizes of the 

modified regression tests  and  for nominal 10% and 5% level tests against 

a 1-sided alternative.  The procedure follows the same method as that for the 

experiments performed in section 3.2 with the forecast errors drawn from bivariate 

normal,  and  distributions, and the same sample sizes being considered. 

Rm1 Rm2

6t 5t

 

The results of the simulations are given in table 3.2.  The first point to note is that 

the modification has succeeded in consistently estimating the  variance, with the 

largest sample size (  indicating that the tests are asymptotically 

correctly 

λ̂

,n = 10 000)
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Table 3.2 
 

Empirical sizes for the modified regression tests 
at the nominal 10% & 5% levels (h = 1) 

 
10% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000

N 15.75 13.10 11.47 11.28 10.74 10.58 10.34 9.84 
 8.48 9.80 9.65 10.52 10.36 10.33 10.26 9.82 

t6 18.06 15.58 14.54 13.02 12.10 11.31 10.96 10.24 
 7.13 9.59 10.62 10.36 10.31 10.41 10.43 10.16 

t5 19.56 17.14 14.92 13.27 12.09 11.31 11.38 10.29 
 7.56 9.64 10.09 10.18 10.23 9.85 10.46 10.17 

 

5% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000
N 10.06 7.96 6.21 6.01 5.73 5.46 5.33 4.75 
 1.56 3.57 4.30 4.89 5.03 5.13 5.25 4.75 

t6 12.02 9.93 8.92 7.50 6.47 5.90 5.68 5.05 
 1.07 3.16 4.28 4.51 4.69 4.86 5.00 5.00 

t5 13.47 11.42 9.20 7.67 6.83 6.09 6.02 5.16 
 1.06 3.01 3.70 4.24 4.43 4.56 5.07 5.08 

 

 Note:- The first entry in each cell is for the Rm1 test, the second for the Rm2 test. 

 104



sized for both normal and non-normal forecast errors. 

 

With regard to , however, the cost of this correction is its effect on the small and 

moderate sample sizes.  It can be seen that serious oversizing occurs for all the 

forecast error distributions, and although the magnitude of this problem now 

decreases with more observations, it is not until n

Rm1

= 128  for normal forecast errors, 

and at least n = 512  for non-normal errors that the test size approaches the (correct) 

limit.  In fact, for the smallest samples, the empirical sizes are actually worse than 

they were for the original regression test.  Further to this extent, the modification 

makes the test size worse in moderate samples when the errors are normally, or near 

normally, distributed. 

 

The first modified regression test, , therefore goes some way towards improving 

the problem of oversizing as the test statistic is now correctly sized for very large 

samples, but still falls short of a useful contribution to the practice of testing for 

forecast encompassing, with small and moderate sample oversizing still being very 

much apparent, and in some cases worse. 

Rm1

 

The finite sample behaviour can be more fully understood by decomposing the 

implicit estimator  as was performed for  in chapter 2: $Qm1 MGN1
*

 
  =  $Qm1

42131221 )ˆ()ˆ(2 ttttt xnxnxn Σ−+Σ−−Σ −−− λλελλε

   = O O  n O O n OP P P P P( ) ( ) ( ) ( ) ( )/1 11 2 1− +− − 1
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The latter two terms in the above expression, particularly the second term, converge 

slowly to zero, resulting in the poor size performance observed in small and 

moderate samples. 

 

Turning now to the simulation results for , table 3.2 shows the test to compare 

very favourably with the empirical sizes for the regression test and its first 

modification.  With reference to the 10% level experiments, apart from undersizing 

in the case of the smallest sample size, the second modified regression test is 

approximately correctly sized for all samples (and in the limit).  This picture also 

applies to the nominal 5% level tests, with a slightly greater degree of undersizing in 

the smaller samples displayed.  The test does not exhibit the problematic non-normal 

behaviour of the regression test, and overcomes the undesirable oversizing of the 

most natural modification to that test.  Even when the test is missized, it is 

undersized; this is preferable to oversizing, with less chance of a type I error 

(rejection of a true null) being made. 

Rm2

 

The second modified regression test consequently embodies a valuable correction to 

the regression test, creating a very useful method for testing for forecast 

encompassing when the focus is on 1-step-ahead forecasts.  Questions relating to the 

power of this test, following the fact that (as with ) the variance of the 

regression parameter is only consistently estimated under the null, are examined 

later in section 3.6. 

MGN2
*
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3.4 Rank Correlation Test 
 
 

The forecast encompassing regression test behaves in an undesirable manner under 

forecast error non-normality; the second modified regression test corrects the 

implicit problem of inconsistent variance estimation and provides a valuable 

substitute.  An alternative approach, given that the problems of the regression test 

manifest themselves in situations of non-normality, is to devise a nonparametric test 

for forecast encompassing. 

 

The regression test examines the significance of the coefficient λ in the two variable 

regression specified in (3.6).  An equivalent correlation test exists and can be noted 

as follows: 

 
 H0: tt yxρ  = 0  (identical to : λ = 0) 0H

 H1: tt yxρ  > 0  (identical to : λ > 0) 1H

 C = 
1)()ˆ(1

ˆ
2 −− n

tt

tt

yx

yx

ρ

ρ
 (3.36) 

  where  
22

ˆ
tt

tt
yx

yx

yx
tt

ΣΣ

Σ
=ρ  

   x e et t= t−1 2  

   y e  t t= 1

 
The obvious extension is then to employ Spearman’s rank correlation test as a 

nonparametric approach to testing for forecast encompassing.  This can be 

formalised as follows: 
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 : 0H
tt yxρ  = 0 

 : 1H
tt yxρ  > 0 

  = rs
n x y n

n /
rt rt

− − +
−

1

2 1 12
Σ [( 1) / 2]

( )

2

 (3.37)  

  where x  = rankings of  respectively yrt rt, x yt t,

 
The test statistic r  has a known distribution under the null, and the critical values 

are tabulated for the smaller sample sizes.  For samples of size n  and larger, an 

approximation is used, as described in chapter 2 where an equivalent form of the test 

is proposed as an alternative test for equal forecast accuracy.  As in the equal 

accuracy case, use of this approximation can be shown to be inconsequential by 

simulation of the critical values for the larger samples. 

s

= 64

 

For completeness, it can be shown that the test statistic is unaffected by the chosen 

value of ω.  In order to prove this, it is necessary only to show that ω does not affect 

the rankings of  and .  For normal errors (the proof for non-normal errors 

follows directly from this): 

xt yt

 
  =  =  using (3.11) and (3.12) (3.38) xt e et t1 2− tz2

2/1)1( −ω

  =  =    (3.39) yt e t1 z t1

 
It can be seen from these simple expansions that ω does not affect  at all, and only 

affects the scale of  due to its uniform effect in the decomposition given above.  

Clearly, therefore, the rankings  will be invariant to ω, resulting in the 

invariance of the test statistic. 

yt

xt

x yrt rt,
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The rank correlation test has correct size in all finite samples, and is consequently 

valid for small, moderate and large samples under forecast error normality and non-

normality, hence becoming very valuable in application.  The problematic behaviour 

of the regression test is not apparent, nor the finite sample oversizing of the first 

modified regression test.  Instead, a useful nonparametric test is derived which 

improves upon the currently applied regression test and is attractive when testing for 

forecast encompassing using 1-step-ahead forecasts. 
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3.5 Diebold-Mariano Approach Tests 
 
 

The second modified regression and rank correlation tests for forecast encompassing 

overcome the immediate problems associated with the regression test, and both are 

valuable when considering 1-step-ahead forecasts.  It is also possible to derive 

another new test using a Diebold-Mariano (1995) type approach, which takes a more 

general specification and can be readily applied to h-steps-ahead prediction (h > 1). 

 

The Diebold-Mariano test is a test of the null of equal forecast accuracy.  The 

procedure supposes that the quality of a forecast is to be evaluated according to 

some function of the forecast errors.  The null then amounts to: 

 
   = 0 E g e et t[ ( , )]1 2

   or E d = 0 where d gt( ) e et t t= ( , )1 2  

 
and the test is based on the sample mean of the loss differential series . dt

 

It is fairly straightforward to employ this approach to testing for forecast 

encompassing.  The regression test centres on the equation specified in (3.6) and 

tests the significance of λ.  Now the population interpretation of λ gives the result in 

(3.8) under the null hypothesis.  This result can be manipulated to take the form of a 

Diebold-Mariano test as follows: 

 
 under : E e  = 0 from (3.8) 0H e et t t( 1

2
1 2− )

t   or E d  = 0 where d e  (3.40) t( ) e et t t= −1
2

1 2

Once the loss differential series, d , has been specified, the Diebold-Mariano testing t
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procedure follows through as for the null of equal forecast accuracy, and the new 

test is derived. 

 

Referring to chapter 2, analysis shows that the Diebold-Mariano test can be 

improved by making two modifications - a finite sample correction to the variance 

estimate $V d( ) , and the comparison of the test against Student’s  critical values.  

Application of the original and modified tests to this problem of forecast 

encompassing thus generate two new tests which can be summarised as below: 

tn−1

 
 : λ = 0 0H

 :  λ > 0 1H

 
 1. Diebold-Mariano approach: 

   DM = d

V d$( )
   (3.41) 

    where d e  e et t t= −1
2

1 2t

     d n dt
t
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 2. Modified Diebold-Mariano approach: 

    = mDM d

V dm
$ ( )

   (3.42) 

    where ∑
−
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−− +−+−+=
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   i.e. mDM  = n n DM h n h h− −+ − + −1 2 11 2 1/ [ ( 1/2)]

   compare with t  critical values n−1

 
As with the other parametric tests, these Diebold-Mariano-type tests have useful 

interpretations as follows.  For normal forecast errors, the test statistic for the 1-step-

ahead modified Diebold-Mariano approach test can be written as below (equivalent 

results exist for h-steps-ahead forecasts and for the DM test statistic): 
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This result for  is invariant to ω and is identical to the test statistic associated 

with the modified Diebold-Mariano approach test applied to the case where the loss 

differential series is .  Similarly, when the forecast errors are non-normal, 

the test statistic is once again invariant to the respective ω, and is the same as the 

test statistic for the modified Diebold-Mariano approach test when , and 

 is as defined below (3.23).  The Diebold-Mariano tests can therefore be 

mDM

d z zt t= 1 2t

td w wt t= 1 2

wit
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considered as the tests that flow naturally from consideration of the regressions 

(3.14) and (3.24).  Again this follows from (3.6) being a special case of (3.14) and 

(3.24) for normal and non-normal errors respectively (see sub-section 3.2.1b). 

  

The tests are examined by way of Monte Carlo simulation comparable to that for the 

other tests.  For 1-step-ahead forecasts, the experiments parallel those conducted for 

the original and modified regression tests.  More specifically, empirical sizes are 

evaluated for nominal 10% and 5% level tests against a 1-sided alternative.  Forecast 

errors are drawn from the bivariate normal,  and  distributions, and sample sizes 

between  and n  are considered (the asymptotic check case, , 

is unnecessary).  The results of these simulations are given in table 3.3. 

6t 5t

n = 8 = 512 n = 10 000,

 

It has already been noted that the Diebold-Mariano type tests can be readily used for 

multi-step-ahead prediction (the other tests require further modifications to account 

for error autocorrelation which is present when h > 1), and tables 3.4-3.7 give results 

for the simulations of such longer forecast horizons.  Table 3.4 reports the 2-steps-

ahead results, with autocorrelation built in to the forecast errors according to a first 

order moving average process with parameter θ.  Values of θ = 0, 0.5, 0.9 are used 

and incorporated into the simulations by generating new forecast errors  by 

the following transformation: 

( , )* *e et t1 2

 
  =  e t1

* 212
111 )1)/(( /

t,t ee θθ ++ −

  =  e t2
* 212

122 )1)/(( /
t,t ee θθ ++ −
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Table 3.3 
 

Empirical sizes for the Diebold-Mariano approach tests 
at the nominal 10% & 5% levels (h = 1) 

 
10% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 

N 14.62 12.35 10.79 10.94 10.56 10.42 10.30 
 10.21 10.49 9.90 10.65 10.39 10.35 10.28 

t6 13.84 12.29 11.87 10.99 10.63 10.57 10.52 
 8.99 10.23 10.92 10.54 10.37 10.43 10.44 

t5 14.52 12.54 11.45 10.74 10.48 10.03 10.54 
 9.50 10.40 10.35 10.25 10.28 9.87 10.49 

 

5% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
N 8.37 6.49 5.38 5.46 5.37 5.31 5.29 
 4.36 4.92 4.77 5.06 5.21 5.18 5.27 

t6 7.06 6.15 5.72 5.27 5.02 5.10 5.04 
 3.33 4.32 4.78 4.81 4.81 4.95 5.01 

t5 7.40 6.07 5.32 4.94 4.91 4.67 5.13 
 3.37 4.26 4.28 4.45 4.60 4.59 5.12 

 

 Note:- The first entry in each cell is for the DM test, the second for the DMm test. 
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Table 3.4 
 

Empirical sizes for the Diebold-Mariano approach tests 
at the nominal 10% & 5% levels (h = 2) 

 
10% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

N θ = 0.0 18.09 14.91 12.88 11.79 10.86 10.58 10.38 
  11.28 11.79 11.31 11.04 10.46 10.34 10.27 
 θ = 0.5 18.86 15.34 12.68 11.56 10.89 10.48 10.96 
  11.41 11.87 10.94 10.67 10.51 10.36 10.79 
 θ = 0.9 18.96 15.19 12.58 11.43 10.95 10.65 11.01 
  11.45 11.79 10.87 10.73 10.51 10.36 10.86 

t6 θ = 0.0 18.19 15.52 13.24 11.78 10.98 10.78 10.27 
  10.70 11.85 11.40 10.73 10.53 10.60 10.19 
 θ = 0.5 19.19 15.18 13.02 11.20 10.67 10.71 10.07 
  10.99 11.71 11.15 10.26 10.20 10.48 9.98 
 θ = 0.9 19.54 15.31 12.84 11.27 10.78 10.58 10.14 
  11.39 11.52 10.98 10.37 10.38 10.33 10.05 

t5 θ = 0.0 19.39 16.06 12.73 11.39 11.03 10.27 10.84 
  10.91 11.88 10.97 10.66 10.55 10.11 10.77 
 θ = 0.5 19.34 15.58 12.83 11.36 10.64 10.54 10.23 
  10.78 11.78 11.03 10.29 10.21 10.37 10.18 
 θ = 0.9 20.32 15.73 12.71 11.22 10.64 10.49 10.36 
  11.31 11.75 10.97 10.35 10.15 10.23 10.27 

 

5% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
N θ = 0.0 12.60 9.96 7.25 6.51 5.64 5.39 5.23 
  6.38 6.89 5.81 5.69 5.16 5.16 5.19 
 θ = 0.5 12.81 9.57 7.05 6.15 5.79 5.61 5.36 
  6.12 6.29 5.63 5.48 5.48 5.39 5.27 
 θ = 0.9 12.85 9.40 7.00 6.05 5.62 5.71 5.53 
  5.95 6.21 5.57 5.37 5.38 5.47 5.43 

t6 θ = 0.0 12.10 9.41 7.18 5.67 5.28 5.06 5.02 
  5.76 6.07 5.47 4.86 4.96 4.89 4.91 
 θ = 0.5 12.44 8.91 6.83 5.39 5.37 5.06 4.99 
  5.72 5.59 5.42 4.84 4.98 4.93 4.89 
 θ = 0.9 12.89 8.97 6.78 5.49 5.58 5.04 5.03 
  5.89 5.45 5.15 4.75 5.06 4.89 4.94 

t5 θ = 0.0 12.50 9.60 6.84 5.47 5.35 4.93 5.37 
  6.23 6.07 5.16 4.75 5.01 4.82 5.24 
 θ = 0.5 12.06 9.13 6.72 5.19 5.04 4.94 5.54 
  5.64 5.92 5.14 4.48 4.61 4.78 5.45 
 θ = 0.9 12.69 8.94 6.53 5.24 5.10 5.01 5.36 
  5.73 5.46 5.11 4.34 4.79 4.89 5.32 

 

 Note:- The first entry in each cell is for the DM test, the second for the DMm test. 
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Table 3.5 
 

Empirical sizes for the Diebold-Mariano approach tests 
at the nominal 10% & 5% levels (h = 3, 0=iθ  ∀i) 

 
10% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 

N 18.20 16.14 14.07 13.10 11.52 10.75 10.37 
 9.68 11.86 11.73 12.01 10.92 10.52 10.26 

t6 19.18 17.40 14.63 12.63 11.52 10.83 10.56 
 9.45 12.44 12.12 11.41 10.97 10.46 10.47 

t5 20.88 18.31 14.50 12.31 11.14 10.39 10.67 
 10.09 12.34 11.73 11.02 10.52 10.17 10.55 

 

5% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
N 13.58 11.27 8.83 7.35 6.24 5.58 5.47 
 5.98 7.17 6.85 6.18 5.69 5.34 5.35 

t6 13.81 11.77 8.88 6.63 5.95 5.42 5.11 
 5.63 7.19 6.76 5.46 5.33 5.25 4.98 

t5 14.64 11.57 8.30 6.73 5.73 5.08 5.31 
 5.67 6.92 6.24 5.56 5.10 4.90 5.22 

 

 Note:- The first entry in each cell is for the DM test, the second for the DMm test. 

 116



Table 3.6 
 

Empirical sizes for the Diebold-Mariano approach tests 
at the nominal 10% & 5% levels (h = 4, 0=iθ  ∀i) 

 
10% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 

N 18.20 16.84 15.07 13.92 12.25 11.02 10.47 
 8.08 10.94 12.32 12.33 11.46 10.65 10.36 

t6 19.61 17.96 15.99 13.65 12.02 11.19 10.73 
 7.57 11.56 12.73 11.80 11.13 10.75 10.55 

t5 20.24 18.68 15.46 13.06 11.59 10.54 10.81 
 7.99 11.64 12.07 11.49 10.75 10.21 10.54 

 

5% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
N 14.33 11.94 9.95 8.19 6.54 5.87 5.55 
 4.84 6.96 7.67 6.85 5.96 5.43 5.37 

t6 14.44 12.51 10.23 7.64 6.30 5.67 5.25 
 4.45 7.21 7.35 6.13 5.61 5.40 5.08 

t5 15.31 12.59 9.85 7.36 6.04 5.34 5.35 
 4.73 6.78 7.05 5.88 5.38 4.94 5.24 

 

 Note:- The first entry in each cell is for the DM test, the second for the DMm test. 
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Table 3.7 
 

Empirical sizes for the Diebold-Mariano approach tests 
at the nominal 10% & 5% levels ( 0=iθ  ∀i, bivariate normal errors) 

 
10% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
h = 5 17.91 16.62 15.67 14.63 12.63 11.07 10.43 

 5.74 10.13 12.29 12.59 11.52 10.63 10.21 
h = 6 18.32 16.51 15.77 14.98 12.86 11.36 10.59 

 4.46 9.10 11.81 12.97 11.78 10.73 10.33 
h = 7 18.85 16.86 15.78 15.48 13.59 11.58 10.78 

 3.46 8.48 11.37 12.90 12.10 10.82 10.47 
h = 8 - 16.45 15.74 15.70 13.97 11.81 10.98 

 - 7.57 11.02 12.78 12.35 10.91 10.68 
h = 9 - 16.65 16.17 16.00 14.32 12.05 11.05 

 - 6.23 10.73 12.74 12.73 11.04 10.70 
h = 10 - 16.80 15.92 16.06 14.56 12.36 11.25 

 - 5.48 9.93 12.44 12.60 11.46 10.84 
 

5% n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
h = 5 14.46 12.30 10.85 9.10 6.98 5.93 5.71 

 3.47 6.43 7.86 7.60 6.10 5.65 5.43 
h = 6 15.51 12.52 11.02 9.68 7.41 6.17 5.77 

 2.57 5.76 7.53 7.83 6.59 5.84 5.53 
h = 7 17.14 12.75 11.35 10.10 7.93 6.41 5.81 

 2.21 5.28 7.50 7.88 6.73 5.94 5.57 
h = 8 - 12.65 11.57 10.46 8.47 6.54 5.99 

 - 4.80 7.22 8.00 7.03 6.07 5.68 
h = 9 - 13.08 12.02 10.77 9.06 6.79 6.09 

 - 3.87 7.17 8.07 7.53 6.06 5.78 
h = 10 - 13.69 11.80 10.82 9.16 7.14 6.27 

 - 3.52 6.48 7.97 7.45 6.31 5.87 
 

 Note:- The first entry in each cell is for the DM test, the second for the DMm test. 
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Tables 3.5 and 3.6 contain results from simulations of 3-steps- and 4-steps-ahead 

respectively.  In these cases, the forecast errors are generated without 

autocorrelation; the reason for this is that from table 3.4 the inference can be drawn 

that the empirical sizes of the test statistics are robust to autocorrelated errors.  The 

final table - table 3.7 - also considers only the non-autocorrelated forecast error case, 

and reports test sizes for 5- through 10-steps-ahead forecasts.  For these longer 

horizons, forecast errors are drawn solely from the bivariate normal distribution 

because, as with autocorrelated errors, the tests are robust to non-normality. 

 

With regard to the results, a number of points can be drawn.  First and foremost, it 

can be seen from table 3.3 that for 1-step-ahead forecasts, the modified Diebold-

Mariano forecast encompassing test, , is correctly sized over all forecast error 

distributions and for all sample sizes (with the exception of slight undersizing for the 

 sample under non-normality).  This test is consequently valuable in the 

practice of testing for forecast encompassing, overcoming the undesirable presence 

of oversizing in the standard regression test. 

mDM

n = 8

 

The second point to note is that although the unmodified test, DM, is correctly sized 

in the limit, small sample oversizing is again apparent.  This serves as another 

example of the conclusions drawn in chapter 2 that the original Diebold-Mariano 

test exhibits significant problems of oversizing in small samples and can be 

improved upon by use of the modified test.  This feature of  superiority to DM 

in terms of size is evident over all forecast horizons, as can be seen in tables 3.4-3.7. 

mDM

 

Not only is the test robust to the distribution of the forecast errors, it is also robust to 
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autocorrelation in the errors of h-steps-ahead forecasts (h > 1).  This can be seen in 

table 3.4 where for the 2-steps-ahead case, with forecast errors generated with first 

order autocorrelation, the tests’ empirical sizes are not impacted by changes in the 

moving average parameter, θ.  The Diebold-Mariano approach to forecast 

encompassing testing therefore brings with it the advantages of being immediately 

applicable to multi-step-ahead forecasts, and being robust to any forecast error non-

normality, autocorrelation or contemporaneous correlation. 

 

Fourthly, with reference to tables 3.5-3.7, it can be seen that the  test remains 

a valid and attractive test for longer forecast horizons.  As was found with the 

chapter 2 analysis of this approach to testing, the empirical sizes worsen somewhat 

as the forecast horizon grows.  However, table 3.7 shows that the small and 

moderate sample explosion in size which occurred with the quadratic loss 

differential series  does not occur here.  Instead, the empirical sizes 

for  never go above 13% at the nominal 10% level or much above 8% at the 

nominal 5% level, even when using forecasts as long as 8-, 9- and 10-steps-ahead.  

Further research into the question of why the size explodes in the case of quadratic 

loss, but not here, might be interesting. 

mDM

(d e et t t= −1
2

2
2 )

mDM

 

Altogether, then, the modified Diebold-Mariano approach test  forms an 

important contribution to the practice of testing for forecast encompassing.  The test 

is robust to forecast error properties of non-normality, autocorrelation and 

contemporaneous correlation, and is readily applicable to testing with h-steps-ahead 

forecasts (h > 1), with the empirical sizes correct in the 1-step-ahead case and only 

mDM
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marginally oversized in moderate samples for longer forecast horizons.  
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3.6 Power Comparisons 
 
 

Following the analysis of the problems associated with the regression test for 

forecast encompassing, three new tests have been proposed which are approximately 

correctly sized in large and moderate samples - the second modified regression test, 

the rank correlation test and the modified Diebold-Mariano approach test.  It is now 

important to compare the power of these tests both with each other and with the 

original regression test. 

 

Monte Carlo simulation is used to establish these relative powers, and this involves 

simulating the alternative hypothesis which can be written as follows: 

 
 : λ > 0 1H

  or 
E x y
E x

t t

t

(
( )2

)

)

)

 > 0  (3.44) 

 
Now the denominator in (3.44) is always positive so it is possible to condense the 

alternative to: 

 
 :  > 0 1H E x yt t(

   i.e. E e  > E e   (3.45) t( )1
2 et t( 1 2

 
The procedure for simulation is the same as that for the empirical size calculations, 

except now the variance-covariance matrix Ω differs.  Recalling the elements of this 

matrix, as given in (3.9), it is necessary to normalise on one of the constituent 

elements and then choose values for the remaining terms such that the alternative is 

generated.  The choices of these values will be restricted to ensure that the 

 122



alternative holds.  The first stage is to normalise by letting V e ; the first of the 

aforementioned restrictions on the choices of the remaining terms can then be 

derived: 

t( )1 1=

 
 :  < 1 from (3.45) (3.46) V e t( )1 1= ),( 21 tt eeC

 
The second restriction can be found by using the denominator of (3.44): 

 
  > 0 E xt( )2

  i.e. V e V e C e et t t( ) ( ) ( , )1 2 12+ t2−  > 0 

  V e  > t( )2 1),(2 21 −tt eeC   (3.47) 

 
Thirdly, it is necessary to ensure that the correlation between the forecast errors is 

less than one in absolute value: 

 

 Corr e et t( , )1 2  = 
C e e

V e V e
t t

t t

( , )
( ) ( )

1 2

1 2

 <  1 

  i.e. [ (  < V e   (3.48) , )]C e et t1 2
2

t( )2

 
Now this third restriction (3.48) subsumes the second restriction (3.47) given that 

(3.46) is imposed.  Collating this information the matrix Ω for the alternative 

hypothesis becomes: 

 

 Ω =    (3.49) ⎥
⎦

⎤
⎢
⎣

⎡
ωζ
ζ1
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  where ζ = C e  < 1 et t( , )1 2

   ω = V e  > [ (  t( )2 , )]C e et t1 2
2

 
Referring to the method of simulation employed for the tests’ size, the next step is to 

choose a matrix T such that Ω=′TT .  The most natural choice is again the 

triangular matrix: 

 

 T = ⎥
⎦

⎤
⎢
⎣

⎡
− 2
01
ζωζ

 

 
The procedure then follows through with appropriately chosen parameters 

substituted into the matrix T, then premultiplying a vector of standard normal 

random realisations by T yields the normal forecast errors, and transformation of 

these generates the Student’s  forecast  errors. νt

 

Further analysis shows that each test’s power varies according to one quantity alone, 

p, which is a combination of the chosen parameters V e  and C e .  This 

can be shown for each test in turn for (1-step-ahead) normal errors; as with the other 

proofs of this style, extension to the non-normal case follows directly: 
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 1. Regression test: 
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 2. Second modified regression test: 
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 3. Rank correlation test: 

  xt  = e     = e  et t1 2− yt t1

   =  = z t  tt zz 2
2/12

1 )()1( ζωζ −−− 2

  tx  = 1)1( −−ζ z pzt t1 2−  

 i.e. rankings derived from  are identical to rankings 
derived from , and 

tx1)1( −−ζ
xt y zt t= 2 ; therefore  and the test 

statistic and power vary according to p alone 
x yrt rt,
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 4. Modified Diebold-Mariano approach test: 

   = mDM [ ( )] ( )

( ) [ (

/n n e e e

e e e n e e e
t t t

t t t t t t

−

−

− −

− − −

1 1 2
1 1 2

1
2

1 2
2 1

1 1 2
2

1 Σ

Σ Σ )]
 

  = 

2
21

2/122
1

1

2
21

2/122
1

21
2/122

1
2/11

]})()1[({

])()1[(

])()1[()]1([

ttt

ttt

ttt

zzzn

zzz

zzznn

ζωζ

ζωζ

ζωζ

−−−Σ−

−−−Σ

−−−Σ−

−

−

 

  = 
[ ( )] [ ( )]

( ) [ (

/n n z pz z

z pz z n z pz z
t t t

t t t t t t

−

−

− −

− − −

1 1 2
1
2

1 2

1
2

1 2
2 1

1
2

1 2
2

1 Σ

Σ Σ )]
  

 
For each test, then, the power will be affected purely by changes in the value of p; a 

decrease in p represents a movement further away from the null hypothesis (λ is 

larger) and so the power rises with decreased p. 

 

Simulation experiments are conducted for all four tests at the nominal 10% level for 

the usual sample sizes between n = 8  and n = 512 .  In each case, values for V e  

and  are chosen to comply with the necessary restrictions highlighted 

above, and to give a value for p which allows meaningful comparisons between the 

tests’ powers.  Situations of forecast error normality and non-normality (using  

errors) are considered, but powers of the regression test are not calculated for non-

normal errors as the test is not correctly sized in such a case.  Non-size-adjusted 

powers are used for the reasons described in chapter 2; see Harvey, Leybourne & 

Newbold (1998) for size-adjusted powers corresponding to the results of this 

section.  Two sets of results are quoted, reflecting relatively high and low powers 

respectively. 

t( )2

C e et t( , )1 2

6t
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The simulation results are given in table 3.8.  With regard to the interpretation of 

these results, observations can first be made to compare the new tests with the 

original regression test.  It can be seen that the modified Diebold-Mariano approach 

test, , compares favourably with the regression test - for all sample sizes 

except the very small  case the difference in power between the tests is 

negligible.  The implication is thus that nothing substantial in terms of power is lost 

by moving from the problematic regression test to .  Regarding the second 

modified regression test, laying aside the n

mDM

n = 8

mDM

= 8  case where  is undersized, the 

test is only marginally less powerful than  - the potential problem of 

inconsistent estimation under the alternative not having a significant effect.  Under 

forecast error normality, the rank correlation test is not far behind  in power 

and is again not considerably inferior to the regression test.  Furthermore, when the 

errors are non-normal, the rank correlation test, as might be expected for a 

nonparametric test, has more power than .  Power comparisons with the 

regression test under non-normality are not valid as the test statistic is oversized. 

Rm2

mDM

mDM

mDM

 

All things considered, the three new tests compare very positively with the 

regression test - none are significantly inferior in terms of power, but all achieve 

good size properties in finite samples and in the limit.  For 1-step-ahead prediction, 

any of these tests could be used in place of the regression test.  The tests r  and 

 are generally more reliable than , and if heavy-tailed errors are expected, 

then a case exists for employing  due to its power advantages.  For longer forecast 

horizons, the rank correlation test has no natural extension to the situation of 

s

mDM Rm2

rs
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Table 3.8 
 

Power comparisons for the original and second modified regression tests, 
the rank correlation test and the modified Diebold-Mariano approach test 

at the nominal 10% level (h = 1) 
 

High n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
power p = 1 p = 1.75 p = 2.75 p = 4 p = 6 p = 8 p = 12 

N R 85.77 79.68 76.59 75.50 72.52 76.91 73.26 
 Rm2 69.91 75.66 74.17 74.79 72.23 76.85 72.92 
 rs 71.20 72.53 71.06 71.87 69.27 73.67 70.17 
 DMm 76.33 77.07 74.69 75.01 72.35 76.86 72.94 

t6 Rm2 61.57 67.56 64.95 63.43 59.06 61.00 55.67 
 rs 70.20 70.97 69.21 70.28 66.87 70.57 66.97 
 DMm 68.58 69.22 65.55 63.76 59.20 61.04 55.70 

 

Moderate n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
power p = 3 p = 4 p = 6 p = 8 p = 12 p = 16 p = 20 

N R 34.16 37.55 36.17 39.32 37.64 39.70 44.43 
 Rm2 26.50 34.20 35.22 38.75 37.46 39.57 44.31 
 rs 25.39 33.19 33.88 37.17 35.67 37.73 42.25 
 DMm 30.87 35.61 35.67 38.98 37.72 39.66 44.34 

t6 Rm2 22.39 31.23 31.47 32.72 30.83 31.58 33.68 
 rs 26.34 33.12 34.25 36.91 35.38 37.27 41.21 
 DMm 27.37 32.94 32.15 32.98 30.94 31.63 33.70 
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multi-step-ahead prediction, and  needs further modifications.  The modified 

Diebold-Mariano approach test, , comes into its own in such scenarios with 

direct application to the h-steps-ahead case (h > 1) making it a very valuable test for 

practitioners testing the forecast encompassing null. 

Rm2

mDM
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3.7 Conclusion 
 
 

In summary, this study has analysed issues associated with the practice of testing for 

forecast encompassing when evaluating two different forecasts of the same quantity.  

The current procedure applied to perform such testing - the regression test - has been 

shown to be valid only when the forecast errors concerned are normal.  If the errors 

deviate into even mild non-normality, the test becomes oversized both in finite 

samples and asymptotically as a result of a now inconsistent variance estimate 

implicit in the test. 

 

Correction of this inconsistent estimator is performed by two modifications to the 

regression test.  Although the first of these modified tests is correctly sized in the 

limit, the undesirable feature of small and moderate sample oversizing remains and 

is actually worse in some cases, pertaining to normal forecast errors as well.  The 

second modification is more successful, being approximately correctly sized for all 

sample sizes, with the exception of the very smallest sample cases. 

 

Moving away from the regression test approach, two other new tests for forecast 

encompassing are proposed.  Firstly, the rank correlation test is derived which forms 

a nonparametric approach to the problem.  This test yields correct sizes for all 

samples.  Secondly, the Diebold-Mariano approach tests are examined; the modified 

test is again superior to the original Diebold-Mariano approach test in terms of size, 

and again achieves the correct test sizes in all samples.  Both of these tests are thus 

robust to the distribution of the forecast errors.  The analysis is then extended to h-

steps-ahead forecasts (h > 1), and here the modified Diebold-Mariano approach test 
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demonstrates its particular value.  The modified Diebold-Mariano approach test can 

be immediately applied to longer forecast horizons unlike the second modified 

regression and rank correlation tests, and under such conditions is only marginally 

oversized in moderate sample sizes and is robust to autocorrelation in the forecast 

errors. 

 

Examination of the tests’ powers reveals very positive properties for the three new 

correctly sized tests - second modified regression test, rank correlation test and 

modified Diebold-Mariano approach test.  None of the tests lose much in power to 

the regression test under normality, and no single test is materially superior to the 

others overall.  Distinctions can be made, however, with  being the best under 

forecast error non-normality, whilst  exhibits good overall power, reliable for 

different distributions and sample sizes. 

rs

mDM

 

It is the conclusion of this analysis that the regression test lacks robustness to 

forecast error non-normality, and that the second modified regression, rank 

correlation and modified Diebold-Mariano approach tests provide robust superior 

alternatives without a significant loss in power.  Furthermore, the modified Diebold-

Mariano approach test has the added advantage of direct application to multi-step-

ahead forecasts, being robust to the presence of autocorrelation.  If the interest is 

solely 1-step-ahead prediction and non-normality is strongly suspected, the rank 

correlation test may be the best procedure to employ.  Generally, though, it is 

recommended that the modified Diebold-Mariano approach test should be favoured 

in application, with all the indications showing that it comprises the best all-round 

method available for testing for forecast encompassing. 
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This test, combined with the modified Diebold-Mariano test of chapter 2, yields a 

unified approach to the companion hypotheses of equal forecast accuracy and 

forecast encompassing, providing robust evaluation tests which can be reliably 

applied to different forecast horizons and sample sizes in the presence of a variety of 

forecast error properties. 
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Chapter 4 
 
 
 
 

Testing in the Presence 
of ARCH Errors 
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4.1 Introduction 
 
 

In chapters 2 and 3, tests for equal forecast accuracy and tests for forecast 

encompassing are examined respectively.  Following this analysis, tests are 

proposed which display robustness to non-normality, contemporaneous correlation 

and autocorrelation in the forecast errors, and behave well in finite samples.  One 

further property that might be expected to be present in economic forecast errors is 

autoregressive conditional heteroscedasticity (ARCH), as introduced by Engle 

(1982).  Intuitively, ARCH errors imply predictable uncertainty through time; more 

specifically, that the conditional variance of the errors depends on past squared 

errors.  Such behaviour is common in a number of economic situations, particularly 

in financial markets; ARCH is to be expected wherever the volatility of a variable 

appears to vary systematically over time.  It is important, then, to consider this 

property and its effects on the evaluation tests, again focusing on the development of 

robust and reliable procedures for testing the respective null hypotheses. 

 

This chapter examines the behaviour of the tests for equal forecast accuracy and 

forecast encompassing when the errors concerned exhibit ARCH, and considers 

modifications to improve finite sample and asymptotic properties of the tests.  

Section 4.2 contains the specification of the ARCH errors used in the analysis of 

tests for equal forecast accuracy, section 4.4 likewise specifies ARCH errors for the 

analysis of tests for forecast encompassing.  Sections 4.3 and 4.5 study the tests for 

equal forecast accuracy and tests for forecast encompassing respectively, and lastly 

section 4.6 concludes the chapter. 
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4.2 ARCH Error Specification and Properties 
for Equal Accuracy Tests 

 
 

Before analysis of tests for equal forecast accuracy where the errors follow ARCH 

processes can commence, the specification of the forecast errors must first be 

established and a number of properties made explicit.  This chapter focuses on errors 

which follow ARCH(1) processes and the introductory theory of this section follows 

Hamilton (1994).  If two forecasts  are considered with errors e  

respectively, then ARCH(1) implies that the conditional variance of the errors 

(conditional on information on past squared errors up to time ) follows the 

process: 

f ft1 2, t et t1 2,

t − 1

 
  ,...),( 2

2,
2

1,
2

−− titiit eeeE  =  2
1,10 −+ tieαα i = 1 2,  (4.1) 

 
Implicit here is the restriction that the errors follow the same ARCH process which 

is assumed for this section’s analysis.  Neither this assumption nor the ARCH(1) 

specification is necessary, they are made purely to illustrate the impact of 

conditional heteroscedasticity on the tests. 

 

Now for (4.1) to be a sensible representation, constraints of 0α  > 0 and 1α  ≥ 0 must 

be imposed as e  cannot be negative.  Furthermore, stationarity shall be assumed 

which in this case results in the need for 

it
2

1α  < 1. 

 

It is also possible to think of the squared forecast error series e  as following 

AR(1) processes themselves: 

et1
2

2
2, t
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  e  =  it
2

itti we ++ −
2

1,10 αα i = 1 2,  (4.2) 

  where w  ~ white noise it

   E w  = 0 it( )

)

t

   E w  =  it( 2 2τ

   E w  = 0 s ≠ t wit is( )

 
which is an AR(1) specification for  consistent with the conditional variance 

property in (4.1). 

e et1
2

2
2,

 

There are two specific cases of ARCH(1) errors which will be studied in the next 

section (considering tests for equal forecast accuracy), and more detail on the error 

specifications under each scenario follows.  The two cases relate to independent 

errors and contemporaneously correlated errors, and shall be examined in turn. 

 
 
4.2.1 Independent ARCH Forecast Errors
 

In the case where the errors  are independently distributed, an alternative 

representation for the above ARCH(1) processes can be employed: 

e et1 2, t

 
  = eit v hit it  i = 1 2,  (4.3) 

  where h  =  it
2

1,10 −+ tieαα

   v  ~ II  it D( , )0 1

 
It shall further be assumed for the purpose of this study that  ~ .  This 

representation is useful as it permits discovery of some of the properties of the 

forecast errors which are needed for the analysis of the tests.  The four properties 

vit IN( , )0 1
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required are as follows: 

 
 1. E e  =  it( )2 )()( 2

1,10 itti wEeE ++ −αα i = 1 2,  using (4.2) 

   = 
1

0

1 α
α
−

  as e  stationary (4.4) it
2

 

 2. E e  =  et t( )1 2 E e E et t( ) ( )1 2

   = 0   (4.5) 

 

 3. E e  = V e  it( )4 E eit it( ) [ ( )]2 2+ 2 i = 1 2,  

   = 2
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 4. E e  =  et t( )1
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2
2
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    = 2
1

2
0

)1( α
α
−

  (4.7) 

 
It is also possible to derive an expression for : 2τ

 
  = ,    = v h  using (4.2) and (4.3) eit

2 h wit it+ eit
2

it it
2

 i.e. h  = v h  wit it+ it it
2

  w  = h v  it it it( )2 1−

  E w  = E h  it( 2 ) E v vit it it( ) ( )2 4 22 1− +

 so 2τ  = 2   since E v  = 3 2E hit( ) it( )4
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−
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This equation (4.8) only has a real solution if  < 1/3, and thus the second moment 

of  and the fourth moment of e  do not exist if  ≥ 1/3.  The results above will 

be used in the examination of the equal forecast accuracy tests in section 4.3. 

2
1α

wit it
2
1α

 
 
4.2.2 Contemporaneously Correlated ARCH Forecast Errors
 

In addition to examining the case of independent errors, it is important to consider 

the behaviour of tests when the forecast errors are contemporaneously correlated as 

such a property would be expected in the real world.  There are a number of ways in 

which correlated ARCH errors could be specified, and two common methods are 

now studied - one following Engle & Kroner (1995) and one following Bollerslev 

(1990). 

 

4.2.2a Engle-Kroner Approach
 
Engle & Kroner (1995) propose the following specification for a multivariate 

GARCH(p,q) model when there are no exogenous influences on the system: 

 
 E e e e e e et t t t t t( , ,...)′ ′ ′− − − −1 1 2 2  =  (4.9) Ht

  where H  =  t ′ + ′ ′ + ′− −
=

−
=

∑ ∑C C A e e A G H Gi t i t i i
i

q

i t i i
i

p

0 0
1 1

 
where  is a triangular matrix.  Simplifying this to bivariate ARCH(1), the C0
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specification becomes: 

 

  = Ht 1111 AeeAC tt −− ′′+  where et  =  (4.10) e
e

t

t

1
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⎡
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⎤
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Further simplification is possible by letting  be diagonal.  This corresponds to 

Engle & Kroner’s ‘diagonal representation’, first used by Engle, Granger & Kraft 

(1984) and Bollerslev, Engle & Wooldridge (1988) for ARCH and GARCH models 

respectively.  If the particular simplification is that of 

A1

A aI1 = , then (4.10) reduces 

to: 

 
  =    (4.11) Ht C a e et t+ ′− −

2
1 1

 
This simplification is both useful and intuitively appealing since the errors e  

are individually ARCH(1).  This follows from the fact that (4.11) implies: 

et t1 2,
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  where c  = ( , ’th element of C ii )i i

 
An additional step is to make this correlated specification consistent with that for 

independent errors by letting 02211 α== cc  and 1α=a .  In full, the Engle-Kroner 

specification for contemporaneously correlated ARCH(1) forecast errors, simplified 

for this section’s analysis can be described as: 

 

  =  (4.12) Ht
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It is also possible to find a result for the element .  Taking expectations  c12
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(unconditionally) in (4.12) gives: 
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Given that the unconditional correlation between  and  is ρ: e t1 e t2
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it follows that 012 ρα=c , yielding: 
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 (4.14) 

 
Now, as with the independent errors case, a representation can be derived where the 

errors are a function of past errors and normal disturbances,  ~ , i : vit IN( , )0 1 = 1 2,

 
 if e T ,   then vt t= −1 t H T Tt t t= ′− −1 1  

 
For this to be an alternative representation of the Engle-Kroner correlated ARCH(1) 

specification,  must equal  as defined in (4.13).  A natural choice for T  

is then the triangular matrix: 

T Tt t− −′1 1 Ht t−1
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giving the required representation for : e et t1 2,

 
  = e t1

2
1,1101 −+ tt ev αα   (4.15) 

  = e t2
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

+

−

−−

2
1,110

1,21,110
1

t

tt
t

e

ee
v

αα

αρα
 

   + 2
1,110

2
1,21,1102

1,2102
)(

−

−−
− +

+
−+

t

tt
tt e

ee
ev

αα

αρα
αα  (4.16) 

 
It is useful to note that the ρ = 0 Engle-Kroner correlated errors case does not 

correspond to the case of independent ARCH errors.  This follows from the 

difference in error sepcifications and is most clearly highlighted by comparing 

equation (4.3) with (4.15) and (4.16). 

 

Again the four properties required in the following analysis can be found: 
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4.2.2b Bollerslev Approach
 
Bollerslev (1990) introduces a second multivariate conditional heteroscedastic 

specification in which the conditional correlation between  and  is fixed over 

time.  This Bollerslev approach takes the following form: 

e t1 e t2
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 E e e e e e et t t t t t( , ,...)′ ′ ′− − − −1 1 2 2  =  (4.21)  Ht

  where h  = ijt jjtiitij hhρ  i = 1 2, ; j = 1 2, ;  i ≠ j 

 
Denoting the conditional correlation cρρρ == 2112 , this yields: 
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Once again, an alternative representation involving v  ~ , , can be 

found, using a method parallel to that for the Engle-Kroner approach: 

it IN( , )0 1 i = 1 2,

 
 ,   e T vt t= −1 t H T Tt t t= ′− −1 1  

  =  Tt−1
t
t t

t

t t

11 1

21 1 22 1

0,

, ,

−

− −

⎡
⎣⎢

⎤
⎦⎥

  where t  = t11 1, −
2

1,110 −+ teαα  

   t  = t21 1, −
2

1,210 −+ tc eααρ  

   t  = t22 1, − ))(1( 2
1,210

2
−+− tc eααρ  

 
This yields the following representation for : e et t1 2,

 
  = e t1

2
1,1101 −+ tt ev αα   (4.23) 

  = e t2 ))(1( 2
1,210

2
2

2
1,2101 −− +−++ tcttct evev ααρααρ  (4.24) 
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In this case, the 0=cρ  Bollerslev correlated errors do correspond to the 

independent errors case, as is clear from (4.3) and (4.22).  The independent errors 

case is therefore a special case of Bollerslev correlated ARCH errors, but it is still 

useful for clarity to examine both cases separately. 

 

Finally, the four properties necessary for the analysis of the tests performed in the 

next section must be derived: 

 

 1. E e  = it( )2

1

0

1 α
α
−

 i = 1 2,  using (4.2) (4.25) 

 

 2. E e  = et t( )1 2 )()( 2
2

2
1 tt eEeEρ   

    where ρ = unconditional correlation 

   = 
1

0

1 α
ρα
−

  (4.26) 

 

 3. E e  = t( 1
4 ) 2

1

2
0

2
1

2

)1(1 α
α

α
τ

−
+

−
  using (4.2) (4.27) 

 

 4. E e  =  et t( )1
2

2
2 }])1([){( 22/1

22
2/12

2
2/1

221
22/1

111 tctttctt hvhvhvE ρρ −+

      using (4.23) and (4.24) 

   =  )()21( 2211
2

ttc hhEρ+

      as E v , E v , i  it( )4 3= it( )2 1= = 1 2,

       v v  independent  ht t ijt1 2, ,

   =  2
1,2

2
1,1

2
1

2
0

2 ()21( −−++ ttc eeE ααρ

       using (4.22) )2
1,210

2
1,110 −− ++ tt ee αααα
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4.3 Tests for Equal Forecast Accuracy 
 
 

Having established the specification of the forecast errors, it is now possible to 

evaluate the behaviour of the tests for equal forecast accuracy (considered in chapter 

2) when ARCH is present in those errors.  The first test examined is the Morgan-  

Granger-Newbold test, then the parametric non-normality corrections , 

 and the rank correlation correction test , plus the modified Diebold-

Mariano test .  For each test, theoretical analysis of its null distribution under 

ARCH errors is presented, followed by simulation of its size behaviour in finite 

samples; the analysis here is restricted to examine 1-step-ahead prediction.  Lastly, a 

new modified test is proposed which exhibits robustness to ARCH forecast errors, 

and longer forecast horizons are considered. 

*
1MGN

*
2MGN rs

*S

 
 
4.3.1 Morgan-Granger-Newbold Test
 

4.3.1a Theory
 
The MGN test of the null of mean squared forecast error equality (a measure of 

forecast accuracy) takes the formulation given in equation (2.18) of chapter 2.  Now 

as in the examination of ’s behaviour under error non-normality, analysis 

centres around the distribution of the test statistic.  Under the null, MGN follows a 

distribution as given in (2.20), and given the result (2.21) which clearly holds in this 

case, the starting point for the ARCH analysis is equation (2.22): 

MGN

 
 MGN   (4.29) d⎯ →⎯ ])ˆplim[,0(N 1QQ−
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  where Q =  )( 2/1
ttxnV εΣ−

    =  $Q 212ˆ txn Σ−σ

   x e et t t= −1 2 tttt eey 21, = = +ε  

 
The analysis then focuses on the estimate  implicit in the MGN test statistic under 

the cases of independent and correlated ARCH(1) errors. 

$Q

 
Independent Errors

As noted in section 4.2, independent ARCH errors are a special case of Bollerslev 

correlated errors (where 0=cρ ), but for exposition this case is considered 

separately here.  When the forecast errors are independent, the true Q can be 

expressed as follows under the null (note that the chapter 2 assumption of ttx ε , ssx ε  

uncorrelated for s ≠ t cannot be assumed in this case): 

 
 Q = n V  e et t

− −1
1
2

2
2( ( ))Σ

  = n V     dt
−1 (Σ )

t   where d e  et t= −1
2

2
2

  =     (4.30) ∑
−

=

− −+
1

1

1
0 )(2

n

k
kknn γγ

   where kγ  = C d  =  dt t k( , )+ E d dt t k( )+

 
The term kγ  can be decomposed as follows, beginning with (4.2): 

 
  e  =  t1

2
tt we 1

2
1,110 ++ −αα

  e  =  t2
2

tt we 2
2

1,210 ++ −αα

  d  = t tt wd 311 +−α  (4.31) 
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  where w t  ~ white noise 3

   E w  = 0 t( 3 )

   E w  =  ( 2  = constant) t( )3
2 2

1δ 1δ

   E w  = 0  s ≠ t wt s( )3 3

 kγ  =  E d dt t k( )+

  = 2
1

1
2

1

1 α
αδ

−

k

 

  = k   (4.32) 10αγ

 
Substituting (4.32) back into (4.30) yields: 

 

 Q =  (4.33) ⎥
⎦

⎤
⎢
⎣

⎡
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−
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1
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1
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Next, 0γ  can be evaluated: 

 
 0γ  =  E dt( )2

  = E e  E e E e et t t( ) ( ) ( )1
4

2
4

1
2

2
22+ − t
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τ  using (4.6) and (4.7) 

  = 2
1

2
1

2
0

)1)(31(
4

αα
α

−−
  using (4.8)  (4.34) 

 
Also, the bracketed term in (4.33) can be found in the limit: 

 

  =  ∑
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=

− −
1

1
1
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k

kknn α ∑ ∑
−
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1

1

1

1
1

1
1 22

n

k

n

k

kk kn αα

 148



 now  = ∑
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Collating results (4.33)-(4.35), the limiting value of Q can be found: 

 

 Q  ⎯→⎯ 3
1

2
1

1
2
0

)1)(31(
)1(4
αα

αα
−−

+
   (4.36) 

 
The second part of the theory relates to finding the probability limit of the MGN 

estimate of Q under : 0H

 
    $Q p⎯ →⎯ )()( 2

tt xEV ε

   = [ (  ) ( ) ( )]E e E e E e et t t1
2

2
2

1 22+ + t

t    × [ (  ) ( ) ( )]E e E e E e et t t1
2

2
2

1 22+ −

   = 2
1

2
0

)1(
4
α
α
−

 using (4.4) and (4.5)  (4.37) 

 
The expressions given in (4.29), (4.36) and (4.37) can now be used to determine the 

asymptotic distribution of the MGN test statistic under independent errors: 

 

 MGN  d⎯ →⎯ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−
+

)1)(31(
1,0N

1
2
1

1

αα
α   (4.38) 

It is clear, therefore, that the MGN test is not robust to ARCH in the forecast errors, 

and will be incorrectly sized in the limit.  Numerical integration can be performed to 
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find the exact degree of the problem for different ARCH parameters 1α , and table 

4.1a shows a number of MGN theoretical asymptotic test sizes for a 2-sided test at 

the nominal 10% level for these independent errors, and also for correlated errors 

studied below.  The variance term in (4.38) does not exist for  ≥ 1/3 and thus 2
1α 1α  

parameter values are only considered up to this boundary.  It can be seen from the 

entries in the table that the problem is severe.  Even with moderate amounts of 

ARCH, e.g. 3.01 =α , MGN has an asymptotic test size of 30.24% which is totally 

unsatisfactory and requires correction. 

 
Engle-Kroner Correlated Errors

Considering now the case where the errors are correlated as specified by the 

simplified Engle-Kroner approach, parallel theory to that conducted above can be 

written down, beginning by analysing the true Q under the null, which again takes 

the form given in (4.33).  Now in this case, 0γ  becomes: 

 
 0γ  =  E e E e E e et t t( ) ( ) ( )1

4
2
4
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2

2
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    using (4.19) and (4.20) 

  = 
)1)(31(

)1)(1(4

1
2
1

1
22

0

αα
αρα

−−

+−
  using (4.8)  (4.39) 

 
which, combined with (4.35), leads to the following limiting expression for Q: 
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Table 4.1a 
 

Theoretical asymptotic sizes for the MGN test at the nominal 10% level 
 

Error specification α1 Distribution variance Asymptotic test size 
 0.1 1.2600 14.28 

Independent 0.2 1.7045 20.77 
 0.3 2.5440 30.24 
 0.4 4.4872 43.75 
 0.5 12 63.49 
 0.1 1.2474 14.08 

Engle-Kroner 0.2 1.6364 19.85 
correlated (∀ρ) 0.3 2.3151 27.97 

 0.4 3.7692 39.69 
 0.5 9 58.35 
 0.1 1.2636 14.34 

Bollerslev 0.2 1.7262 21.06 
correlated (ρc = 0.5) 0.3 2.6260 31.01 

 0.4 4.7911 45.24 
 0.5 13.6071 65.57 
 0.1 1.2714 14.46 

Bollerslev 0.2 1.7759 21.71 
correlated (ρc = 0.9) 0.3 2.8342 32.86 

 0.4 5.7303 49.20 
 0.5 21.0692 72.01 

 

Note:- Calculations of MGN theoretical sizes with Bollerslev correlated ARCH(1) errors 
use simulated values of ρ, as given in table 4.1b. 

 
 
 
 

Table 4.1b 
 

Simulated values of ρ under Bollerslev correlated ARCH(1) errors 
 

α1 ρc = 0.5 ρc = 0.9 
0.1 0.4983 0.8992 
0.2 0.4936 0.8969 
0.3 0.4854 0.8927 
0.4 0.4729 0.8859 
0.5 0.4542 0.8745 
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  Q  ⎯→⎯ 2
1
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As with the independent error case, the probability limit of  must also be found: $Q

 
   [ (  $Q p⎯ →⎯ ) ( ) ( )]E e E e E e et t t1

2
2
2

1 22+ + t

t    × [ (  ) ( ) ( )]E e E e E e et t t1
2

2
2

1 22+ −

   = 2
1

22
0

)1(
)1(4

α
ρα

−
−

 using (4.17) and (4.18) (4.41) 

 
Combining (4.29), (4.40) and (4.41) yields the asymptotic distribution of MGN 

when the errors are Engle-Kroner correlated ARCH(1): 

 

 MGN  d⎯ →⎯ ⎟⎟
⎠

⎞
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As might be expected, the MGN test is found to be incorrectly sized, with the 

limiting test distribution being normal with a variance greater than one; in this 

simplified Engle-Kroner specification the variance is invariant to the amount of 

contemporaneous correlation.  The degree of the problem can be seen in table 4.1a, 

and as before a very serious lack of robustness to ARCH errors is displayed, 

reinforcing the motivation for finding a new correctly sized test. 

 
Bollerslev Correlated Errors

The final scenario requiring examination is that of contemporaneously correlated 

ARCH(1) errors as specified by Bollerslev.  Once again the first stage is to find an 

expression for Q: 

 0γ  =  E e E e E e et t t( ) ( ) ( )1
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1
2

2
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      using (4.33) 

 
Turning now to the estimator of : $Q

 
   [ (  $Q p⎯ →⎯ ) ( ) ( )]E e E e E e et t t1
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 using (4.25) and (4.26) (4.45) 

 
The asymptotic distribution of the MGN test statistic can now be found for the 

Bollerslev approach to specifying contemporaneously correlated ARCH(1) errors, 

using (4.29), (4.44) and (4.45): 

 

 MGN  d⎯ →⎯ ⎟
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This more complex result again shows the lack of MGN robustness to ARCH errors.  

The asymptotic test size now depends on the conditional correlation, cρ , and also 

on the unconditional correlation, ρ.  It can again be noted that independent ARCH 

errors are a special case of this result, with (4.46) reducing to (4.38) when 0=cρ , 
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since this implies 0=ρ  (found by taking expectations in (4.21)). 

 

Now for a given conditional correlation, the unconditional correlation has no 

analytic expression.  This follows from: 

 

 ρ = 
E e e

E e E e
t t

t t

( )

( ) ( )
1 2

1
2

2
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  = ( )))((
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      using (4.22) and (4.25) 

 
where the expectation of the square root term cannot be expressed analytically.  The 

unconditional correlation, ρ, must therefore be simulated. 

 

Table 4.1a contains the theoretical test sizes for MGN for these Bollerslev correlated 

errors, with ρ being simulated using 10,000 replications of a sample size of 10,000, 

the results of these simulations being given in table 4.1b.  The test again exhibits 

considerable oversizing in the limit, as with the previous cases of error specification. 

 

4.3.1b Simulation
 
It is now important to simulate the behaviour of MGN to establish its finite sample 

size properties and also to check the theoretical asymptotic sizes.  Simulation can  be 

performed by using equations (4.3) for independent errors, (4.15) and (4.16) for 

Engle-Kroner correlated errors, and (4.23) and (4.24) for Bollerslev correlated 

errors.  A value of 2.00 =α  is used - 0α  does not affect the limiting test size, and 

does not distort the general picture in finite samples.  In each case of ARCH(1) 
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errors, simulations are performed for sample sizes between n = 8  and , and 

in some representative cases 

n = 512

n = 10 000,  to check the asymptotics.  To minimise the 

effects of the starting value, n + 100  observations are simulated and then the first 

100 are discarded before the test is applied.  All the experiments are evaluated at the 

nominal 10% level with a null of equal mean squared forecast errors against a 2-

sided alternative.  One-step-ahead forecasts ( )h = 1  are solely considered, and 

10,000 replications are performed for each simulation. 

 

Table 4.2 gives simulation results for independent errors for a range of ARCH 

parameters.  These results clearly confirm the theoretical conclusion of lack of test 

robustness to ARCH errors.  In all cases where 1α  is positive (i.e. ARCH is present), 

MGN is oversized, to greater degrees as the amount of ARCH increases.  Similar 

results are found for the Engle-Kroner and Bollerslev correlated cases - simulations 

for these are performed for 2.01 =α  and 4.01 =α , and are given in tables 4.3 and 

4.4 (along with other tests which are considered below).  The asymptotics are 

confirmed (tables 4.2 and 4.3), with the n = 10 000,  results coming very close to the 

theoretical limiting sizes given in table 4.1a - less so as the ARCH parameter 

approaches the  = 1/3 boundary. 2
1α

 

The foremost inference from all these results is that MGN is not a valid test under 

any conditions where the forecast errors follow ARCH processes, and correction is 

imperative. 
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Table 4.2 
 

Empirical sizes for the MGN test at the nominal 10% level 
(h = 1, independent ARCH(1) errors) 

 
α1 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000
0.0 9.90 10.02 10.01 10.35 10.13 10.09 9.82 10.13 
0.1 12.09 12.92 13.75 14.03 14.37 14.36 14.23 14.31 
0.2 14.56 16.87 18.35 19.20 19.99 20.04 20.26 20.63 
0.3 17.90 21.41 24.15 26.35 27.38 28.50 28.34 29.76 
0.4 21.40 26.32 29.87 33.32 35.59 37.44 38.64 42.02 
0.5 24.82 31.55 35.92 41.19 43.85 46.87 49.58 56.52 

 156



Table 4.3 
 

Empirical sizes for the  and MGN MGN MGN r Ss, , , ,* *
1 2

* LS *  tests 
at the nominal 10% level (h = 1, ARCH(1) errors, 2.01 =α ) 

 
Ind. n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000

MGN 14.56 16.87 18.35 19.20 19.99 20.04 20.26 20.63 
MGN1

* 25.35 22.86 21.17 19.87 19.29 18.53 18.25 17.96 
MGN2

* 4.62 11.65 15.02 16.35 17.44 17.51 17.79 17.93 
rs 11.56 15.41 16.28 16.76 16.87 16.94 16.52 17.39 
S* 11.89 14.85 16.24 16.98 17.67 17.68 17.86 17.93 

LS* 14.79 12.96 11.92 11.79 10.81 11.13 10.15 10.44 
 

EK 0.5 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000
MGN 14.79 17.04 17.63 18.50 19.48 19.13 19.44 19.94 

MGN1
* 25.45 23.60 20.95 19.52 18.99 18.32 17.95 17.66 

MGN2
* 4.50 11.70 14.71 16.36 17.12 17.43 17.47 17.64 

rs 11.08 15.67 15.78 16.56 16.51 16.77 16.80 17.25 
S* 11.64 14.87 16.29 16.94 17.41 17.57 17.54 17.64 

LS* 14.45 13.17 11.69 11.69 10.46 11.04 9.97 9.97 
 

EK 0.9 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000
MGN 14.92 16.90 17.31 18.87 19.18 18.99 19.76 19.74 

MGN1
* 25.33 23.26 20.59 19.87 18.99 18.20 18.18 17.85 

MGN2
* 4.74 11.89 14.58 16.56 17.07 17.06 17.70 17.82 

rs 11.53 15.45 15.56 16.40 16.77 16.70 16.95 16.90 
S* 11.85 15.09 15.98 17.26 17.30 17.24 17.72 17.84 

LS* 14.88 13.56 11.63 11.83 10.80 10.40 10.57 10.07 
 

BV 0.5 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000
MGN 14.64 17.20 18.16 19.50 20.03 20.22 20.47 20.95 

MGN1
* 25.64 23.39 21.33 19.64 19.04 18.26 17.98 17.79 

MGN2
* 4.44 11.60 14.80 16.21 17.08 17.26 17.42 17.79 

rs 11.12 15.33 16.13 16.57 16.73 17.17 16.77 17.20 
S* 11.60 14.73 16.29 16.76 17.38 17.40 17.50 17.79 

LS* 13.87 13.02 11.65 11.40 10.52 10.71 10.15 10.09 
 

BV 0.9 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000
MGN 14.51 16.76 17.67 20.39 20.04 20.33 21.42 21.52 

MGN1
* 25.56 23.43 20.92 20.30 18.79 17.98 18.54 18.02 

MGN2
* 4.64 11.54 14.29 16.60 16.93 17.14 17.87 18.00 

rs 11.43 15.31 15.87 16.88 16.87 16.76 17.20 17.02 
S* 11.80 15.02 15.62 17.11 17.07 17.26 17.94 18.00 

LS* 14.67 13.39 11.33 11.89 10.41 10.58 10.50 10.03 
 

Note:- ‘Ind.’ denotes independent errors, ‘EK 0.5’ denotes Engle-Kroner correlated errors 
where ρ = 0.5, ‘EK 0.9’ denotes Engle-Kroner correlated errors where ρ = 0.9, ‘BV 
0.5’ denotes Bollerslev correlated errors where ρc = 0.5, and ‘BV 0.9’ denotes 
Bollerslev correlated errors where ρc = 0.9. 
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Table 4.4 
 

Empirical sizes for the  and MGN MGN MGN r Ss, , , ,* *
1 2

* LS *  tests 
at the nominal 10% level (h = 1, ARCH(1) errors, 4.01 =α ) 

 
Ind. n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 

MGN 21.40 26.32 29.87 33.32 35.59 37.44 38.64 
MGN1

* 32.39 31.76 30.71 29.90 29.18 28.73 27.84 
MGN2

* 6.57 16.24 21.08 23.71 25.59 26.47 26.31 
rs 15.52 22.01 23.84 24.48 25.53 25.35 24.77 
S* 15.43 19.92 22.99 24.58 25.94 26.70 26.44 

LS* 14.42 12.77 12.43 11.25 10.63 10.41 10.23 
 

EK 0.5 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
MGN 21.62 25.86 27.86 30.71 32.30 33.70 35.36 

MGN1
* 32.34 31.79 30.25 29.56 28.96 27.89 28.02 

MGN2
* 6.15 16.44 21.16 23.96 25.62 25.87 26.79 

rs 15.64 21.77 23.20 24.00 24.31 24.55 24.41 
S* 15.32 20.40 23.02 24.83 25.94 26.03 26.85 

LS* 13.84 12.93 12.43 11.20 10.56 10.65 10.13 
 

EK 0.9 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
MGN 21.22 25.44 27.38 30.50 33.06 33.70 35.92 

MGN1
* 32.00 31.55 29.08 29.76 28.75 28.03 28.01 

MGN2
* 6.27 16.77 21.19 24.29 25.61 26.04 26.74 

rs 15.41 21.71 22.68 23.92 24.18 24.69 24.74 
S* 15.43 20.70 22.72 25.06 26.01 26.22 26.80 

LS* 14.59 13.21 12.36 11.25 11.13 10.18 10.00 
 

BV 0.5 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
MGN 21.00 26.52 30.17 33.34 35.93 38.28 39.67 

MGN1
* 32.65 31.90 30.44 30.64 29.33 28.42 28.10 

MGN2
* 5.94 15.91 20.87 23.70 25.05 25.84 26.32 

rs 15.59 21.89 23.94 24.52 25.07 25.66 25.21 
S* 14.96 20.21 22.70 24.54 25.39 25.99 26.39 

LS* 13.38 12.88 12.28 11.08 10.49 10.11 9.91 
 

BV 0.9 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
MGN 20.99 26.35 29.91 34.23 37.85 40.14 41.34 

MGN1
* 32.37 32.32 30.22 30.53 29.87 29.37 28.37 

MGN2
* 5.93 15.65 19.77 23.47 25.15 25.75 26.22 

rs 15.46 21.72 22.91 24.81 25.26 25.33 25.50 
S* 15.27 20.01 21.53 24.31 25.41 26.04 26.28 

LS* 13.70 12.47 11.64 10.99 10.19 10.34 9.53 
 

Note:- ‘Ind.’ denotes independent errors, ‘EK 0.5’ denotes Engle-Kroner 
correlated errors where ρ = 0.5, ‘EK 0.9’ denotes Engle-Kroner correlated 
errors where ρ = 0.9, ‘BV 0.5’ denotes Bollerslev correlated errors where 
ρc = 0.5, and ‘BV 0.9’ denotes Bollerslev correlated errors where ρc = 0.9. 
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4.3.2 Non-Normality Robust Tests
 

4.3.2a Theory
 
The next tests to consider are the chapter 2 corrections to MGN, providing 

alternative testing procedures which were robust to non-normality.  Firstly, it is 

possible to establish the asymptotic distributions of the two variance-correction tests 

 (given in equations (2.44) and (2.49) respectively) when the errors 

are ARCH(1) in the same way as for MGN: 

MGN MGN1
* , 2

*

2

t )

 
     (4.47) MGN1

* d⎯ →⎯ ])ˆplim[,0(N 1
1QQm

−

     (4.48) MGN2
* d⎯ →⎯ ])ˆplim[,0(N 1

2QQm
−

  where  =  $Qm1
221 ˆttxn εΣ−

    =  $Qm2
221
tt yxn Σ−

 
Now the true element Q can be written under the null as in (4.30) or (4.33) for all 

the considered ARCH specifications, and these two equations lead to two useful 

results below.  Firstly, the probability limits of  can be found under  as 

follows: 

$ , $Q Qm m1 0H

 
    $ , $Q Qm m1 2

p⎯ →⎯ )( 22
ttxE ε

    = E e  e e et t t t[( ) ( ) ]1 2
2

1 2
2− +

    = E e  E e E e et t t( ) ( ) (1
4

2
4

1
2

2
22+ −

    = E d  t( )2

    = 0γ      (4.49) 

 
Now substituting results (4.30) and (4.49) into (4.47) and (4.48) gives one version of 
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the distribution results for  and : MGN1
* MGN2

*
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The interesting point to be made here is that the tests will only be correctly sized if 

all the autocorrelations of  are zero.  Problems will therefore occur if  exhibits 

any autocorrelation, with ARCH being an example of this more general conclusion. 

dt dt

 

If results (4.33) and (4.49) are now substituted into (4.47) and (4.48), an explicit 

result for the  null distribution is found: MGN MGN1
* , 2

*
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  using (4.35) (4.52) 

 
The asymptotic distribution variance of the test statistics is the same under 

independent, Engle-Kroner correlated and Bollerslev correlated errors, and a lack of 

robustness to ARCH forecast errors is displayed due to the autocorrelation present in 

the loss differential . dt

 

The rank correlation variant of the MGN test, as defined in (2.51), cannot be 

examined in such a clear way theoretically, and inference concerning this test is left 

to simulation. 
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The remaining alternative test to MGN when testing for equal forecast accuracy is 

the preferred test of chapter 2 - the modified Diebold-Mariano test, .  For 1-step-

ahead errors, this test’s formulation is: 

*S

 

  = *S d

V d$( )
         (4.53) 

  where d  = n d  t
−1Σ

   $( )V d  = n n d dt
− −− −1 11( ) ( )Σ 2  

 
and the asymptotic distribution can be written as: 

 
   *S d⎯ →⎯ )])()(ˆplim[,0(N 1 dVdV −      (4.54) 

 
Once again, the issue of the test’s behaviour centres around variance estimation, and 

it is necessary to find expressions for V d( )  and its estimate in the limit: 

 
 nV d( )  = nV  n dt( )−1Σ
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     = E d dt( )2 2+  

     p⎯ →⎯ 0γ        (4.57) 

 
Collating (4.54)-(4.57) gives two results for the distribution of  under , 

parallel to those of (4.50) and (4.52): 

*S 0H

 

    (4.58) *S d⎯ →⎯ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−+ ∑

−

=

−
∞→

1

1

1 )(21,0N lim
n

k
kknnn ρ

   *S d⎯ →⎯ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

1

1

1
1

,0N
α
α

       (4.59) 

 
*S  therefore has the same asymptotic distribution as  and  in this 

equal mean squared forecast error null case, for independent, Engle-Kroner 

correlated and Bollerslev correlated ARCH(1) errors. 

MGN1
* MGN2

*

 

Interpreting results (4.52) and (4.59), it can be seen that problems caused by ARCH 

errors persist in these tests.  Some of the effects are removed and the distortion is 

less severe than for MGN, but these previously robust tests are found to be oversized 

in the limit when ARCH is present.  The factor remaining which drives the problem 

relates not to the leptokurtosis inherent in the ARCH specification, as these tests are 

robust to such effects (this also explains why  and  improve on 

MGN which is not robust to leptokurtosis), but relates to the autocorrelation in d  

(or 

MGN MGN1 2
* *, *S

t

ttx ε  depending on the view point: ttt xd ε=  under ). 0H

 

Table 4.5 reports theoretical asymptotic test sizes for  and  for MGN MGN1 2
* *, *S
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Table 4.5 
 

Theoretical asymptotic sizes for the  and  tests MGN MGN1 2
* *, *S

at the nominal 10% level with independent, Engle-Kroner correlated 
and Bollerslev correlated ARCH(1) errors 

 
α1 Distribution variance Asymptotic test size 
0.1 1.2222 13.68 
0.2 1.5 17.93 
0.3 1.8571 22.74 
0.4 2.3333 28.16 
0.5 3 34.23 
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different 1α , and highlights the conclusion that the problem of ARCH remains, 

albeit to a lesser degree.  The two points of particular importance are that under 

ARCH errors, the autocorrelation in  causes problems for the tests beyond merely 

the introduction of non-normality, and that the limiting distributions of all the non-

normality robust tests are both the same and oversized.  It is clear that a new test 

must be derived to take account of the autocorrelation in d  and provide a robust 

alternative to all the tests so far considered. 

dt

t

 

4.3.2b Simulation 
 
Simulation of the four tests  and  allows examination of their 

finite sample properties under an ARCH error specification.  Tables 4.3 and 4.4 

contain results of simulation experiments for independent and correlated (by both 

Engle-Kroner and Bollerslev models) errors for ARCH(1) parameters 

srMGNMGN ,, *
2

*
1

*S

1α  = 0.2, 0.4. 

 

A number of points are clear.  Firstly, the n = 10 000,  asymptotic check simulation 

confirms the theory of the previous sub-section, with  and  test 

statistics all converging to the theoretical limiting size.  A second observation is that 

the rank correlation variant of MGN, the r  test, also appears to have the same 

asymptotic distribution as the other three tests, the simulations giving every 

indication of convergence to the same limit.  Lastly, the theoretical conclusion that 

the problem of ARCH remains in these ‘corrected’ tests is very much true 

empirically, verifying the analysis.  None of the tests are correctly sized for any 

sample size under any error specification.  All four tests converge to an incorrect 

size,  from above, ,  and  from below (as might be expected 

MGN MGN1 2
* *, *S

s

MGN1
* MGN2

* rs
*S
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from their properties discovered in chapter 2).  Overall, oversizing is the 

predominant and most prevalent feature of all the simulations, confirming the 

conclusion to the theory that a new test is required. 

 
 
4.3.3 A Modified Test 
 

The theoretical and simulation results of the previous sub-sections give rise to the 

conclusion that none of the tests for equal forecast accuracy so far considered are 

robust to forecast errors which follow an ARCH specification. 

 

In order to develop such a robust test, the source of the problem must be found.  It 

was noted in sub-section 4.3.2a that the problem of incorrect asymptotic test size for 

the  and  tests was the presence of autocorrelation in d .  

Consistent variance estimation in the test statistics and hence a correct limiting test 

size can therefore only be achieved by taking account of this autocorrelation. 

MGN MGN1
* *, 2

*S t

 

Examining  in detail shows that the true variance can be written as in (4.55) with 

 autocovariance lags.  The 1-step-ahead  test does not include any of these 

lags in its estimation of the true variance, and as a result has probability limit as 

given in (4.58).  The most obvious possibility for correcting  for ARCH errors is 

thus to add autocovariance lags to the variance estimate even in the 1-step-ahead 

case.  This is then effectively equivalent to running the  h-steps-ahead test (h > 1) 

for 1-step-ahead errors, and this way the autocorrelation in  might be picked up 

sufficiently to generate an approximately correctly sized test. 

*S

1−n *S

*S

*S

dt

With regard to  and , the autocorrelation present in MGN1
* MGN2

*
ttx ε  (= ) can dt
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be accounted for by including estimation of some of the autocovariances, i.e. the 

new tests would have new estimators of Q as follows: 

 
 modified MGN : 1

*
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=

−

=
++

−

=

− +
q

k

kn

t
ktkttt

n

t
tt xxnxn

1 1

22221

1

221 ˆˆ2ˆ εεε

 
 modified MGN : 2

*

   =  (4.61) $Qm4 ∑∑∑
=

−

=
++

−

=

− +
q

k

kn

t
ktkttt

n

t
tt yxyxnyxn

1 1

22221

1

221 2

 
where q is the number of autocovariance lags included.  However, given that 

 and  exhibit size problems even when no ARCH is present, and that 

 is the preferred test for equal forecast accuracy in such cases, it makes most 

sense to consider modifying . 

MGN1
* MGN2

*

*S

*S

 

Simulation can be performed as before to determine the success or otherwise of this 

 modification.  Table 4.6 gives simulation results for  with additional lags 

added to study the effects of the new test.  For a given number of lags, the finite 

sample correction part of  expounded in chapter 2 is altered to maintain 

approximate unbiasedness in the estimation of the variance of 

*S *S

*S

d , e.g. for 3 

additional lags, this is equivalent to a 4-steps-ahead test and the correction factor is 

.  Lags from zero (unadjusted ) to six are considered, and it 

can be seen that for each sample size, adding lags to the original  test initially 

n n n( − + − −7 12 1 1) *S

*S
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Table 4.6 
 

Empirical sizes for the  test with additional lags *S
at the nominal 10% level (h = 1, independent ARCH(1) errors, 2.01 =α ) 

 
 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 

0 lags 11.89 14.85 16.24 16.98 17.67 17.68 17.86 
1 lags 14.79 12.96 11.92 11.41 11.27 11.56 11.04 
2 lags 17.84 16.66 13.73 11.79 10.81 10.95 10.22 
3 lags 17.22 18.88 16.12 12.59 11.19 11.13 10.01 
4 lags 14.14 20.64 17.75 13.93 11.91 11.11 10.15 
5 lags 10.91 20.46 19.08 15.32 12.33 11.27 10.26 
6 lags 10.29 19.90 20.25 16.27 12.92 11.49 10.44 
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improves the test size, and then the cost of including greater numbers of lags 

outweighs their contribution to consistent variance estimation and the test size 

becomes worse again. 

 

It can be concluded, then, that this modification of adding covariance lags to  is 

successful in attaining a correct test size and consequently robustness to ARCH 

errors.  However, the question still remains of how many lags to include - table 4.6 

shows that the optimal number of lags would increase with the sample size, starting 

with 1 lag for  and rising non-linearly to 3 or 4 lags for .  For a given 

application, though, the degree of ARCH will be unknown, and some general 

purpose lag selection rule is required. 

*S

n = 8 n = 512

 

One of the most established lag selection criteria for covariance estimation is the 

Newey-West procedure, described in Newey & West (1994).  In this paper they 

propose a rule which chooses the number of lags, or the bandwidth, m according to: 

 
 m =   where ‘[.]’ denotes ‘integer part of’ (4.62) ][ 3/1ng ×

 
Newey & West, following Priestley (1981), inter alia, give a data dependent method 

for choosing the optimal value of the parameter g in (4.62).  Furthermore, the 

Newey-West procedure involves use of the Bartlett kernel to weight the included 

autocovariance lags.  Application of this procedure to the problem of selecting 

additional lags to  does not prove favourable.  The numbers of lags suggested by 

the criterion are somewhat unpredictable due to the data dependency of the 

parameter, and are not monotonically increasing with the sample size. 

*S

A more appropriate selection criterion can be found by taking the Newey-West rule 

 168



as given in (4.62) and specifying the parameter arbitrarily.  Such an approach avoids 

data dependency and can yield sensible bandwidths which fit with the intuition of 

optimal lag selection derived from observing table 4.6. 

 

As for the kernel, Newey & West conclude from their simulations that the ‘choice of 

kernel is of secondary importance’.  An alternative kernel which is useful in this 

case (to maintain variance estimation approximate unbiasedness and equally weight 

included covariance lags) is what Christiano & den Haan (1996) refer to as the 

unweighted, truncated kernel (following Hansen & Hodrick, 1980 and White, 1984), 

i.e. the kernel is equal to one for all included lags. 

 

One point to note is that in the case of ARCH errors, the squared error process is 

AR(1).  Now in chapters 2 and 3,  follows an MA process of known order which 

gives strong justification for using the unweighted truncated kernel as employed in 

the multi-step-ahead  test.  When ARCH errors are present this justification is 

lost; however, it is valuable to maintain the Diebold-Mariano-type structure and 

simply add lags to  as is done when using multi-step-ahead forecasts.  This is 

then equivalent to approximating the AR(1) process with an MA process of low 

order, and the ARCH effects should be picked up without need for altering the 

whole test structure. 

td

*S

*S

 

With regard to choosing this arbitrary bandwidth, the minimum value for the 

parameter g which gives n ≥ 1 for all sample sizes considered is 0.5.  This and a 

parameter value of 0.75 give sensible but different bandwidths and the new tests 

derived by including lags according to these rules are simulated, the results being 
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shown in table 4.7b.  Table 4.7a gives the bandwidths suggested by the two criteria 

for the different sample sizes, plus entries for MGN and  for the purpose of 

comparison.  The simulation results are very encouraging, with good size properties 

being found for both criteria across different ARCH parameters and different sample 

sizes.  Wherever ARCH is present, the modification under both criteria improves 

substantially on the MGN and  tests (with the trivial exception of when there is 

very little ARCH and the sample size is very small).  Choosing between the two 

criteria, on the whole where they differ in their bandwidth selection, the  

criterion appears to outperform the  criterion, leading to the conclusion 

that it should be preferred and used as the general purpose lag selection rule. 

*S

*S

]5.0[ 3/1n

]75.0[ 3/1n

 

The analysis thus far has concentrated on 1-step-ahead errors alone.  It is already 

known from chapter 2 that  is robust to autocorrelation in the forecast errors, and 

achieves this property by adding 

*S

1−h  lags for an h-steps-ahead forecast.  It makes 

sense, therefore, to use 1−+ hm  lags for the new test, where h is the forecast 

horizon and m the bandwidth included to capture the effects of ARCH. 

 

Collating these results and conclusions, a new modified test for equal forecast 

accuracy can be formulated: 

 

  = *LS
d

V dL
$ ( )

         (4.63) 
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Table 4.7a 
 

Bandwidths suggested by alternative selection criteria 
 

 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 
[0.5n1/3] 1 1 1 2 2 3 4 

[0.75n1/3] 1 1 2 3 3 4 6 
 
 
 
 

Table 4.7b 
 

Empirical sizes for MGN, , and the  test with additional lags *S *S
(bandwidth chosen by alternative selection criteria) 

at the nominal 10% level (h = 1, independent ARCH(1) errors) 
 

α1 Test n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
0.0 MGN 9.90 10.02 10.01 10.35 10.13 10.09 9.82 

 S* 8.31 9.57 10.12 10.12 10.06 10.32 9.80 
 S* 0.5 15.68 14.16 12.11 12.63 11.15 10.93 10.34 
 S* 0.75 15.68 14.16 15.12 13.61 11.47 11.16 10.91 

0.1 MGN 12.09 12.92 13.75 14.03 14.37 14.36 14.23 
 S* 10.18 11.96 13.41 13.30 13.95 13.83 13.72 
 S* 0.5 15.19 13.43 12.04 12.14 10.87 11.11 10.43 
 S* 0.75 15.19 13.43 14.62 13.14 11.39 11.28 10.67 

0.2 MGN 14.56 16.87 18.35 19.20 19.99 20.04 20.26 
 S* 11.89 14.85 16.24 16.98 17.67 17.68 17.86 
 S* 0.5 14.79 12.96 11.92 11.79 10.81 11.13 10.15 
 S* 0.75 14.79 12.96 13.73 12.59 11.19 11.11 10.44 

0.3 MGN 17.90 21.41 24.15 26.35 27.38 28.50 28.34 
 S* 13.61 17.55 19.57 20.72 21.88 22.19 21.96 
 S* 0.5 14.51 12.85 12.05 11.54 10.64 10.71 10.26 
 S* 0.75 14.51 12.85 13.05 12.07 10.88 10.74 10.59 

0.4 MGN 21.40 26.32 29.87 33.32 35.59 37.44 38.64 
 S* 15.43 19.92 22.99 24.58 25.94 26.70 26.44 
 S* 0.5 14.42 12.77 12.43 11.25 10.63 10.41 10.23 
 S* 0.75 14.42 12.77 12.77 11.59 10.60 10.39 10.30 

0.5 MGN 24.82 31.55 35.92 41.19 43.85 46.87 49.58 
 S* 17.04 22.22 26.15 28.65 29.84 30.78 30.95 
 S* 0.5 14.12 12.79 12.72 10.92 10.99 10.47 9.97 
 S* 0.75 14.12 12.79 12.16 11.10 10.49 10.07 9.79 

 

Note:- ‘S* 0.5’ and ‘S* 0.75’ denote the S* test with additional lags chosen by the 
selection criteria [0.5n1/3] and [0.75n1/3] respectively. 
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Table 4.7b shows the comparison between MGN and the new  (  with 

) test under different degrees of ARCH, and the earlier tables 4.3 and 4.4 

also contain results for  compared to all the tests under different ARCH 

specifications.  The value of  is clearly illustrated, with dramatic reductions in 

oversizing achieved by the new test whenever ARCH is present.  remains 

slightly oversized in the smaller samples, but is generally robust, and provides a 

workable alternative to all other tests for equal forecast accuracy.  Finally, table 4.8 

shows results for the 2-steps-ahead case, with  again performing well, being 

robust to forecast error autocorrelation and, although not as well sized as for 1-step-

ahead errors, still forming a useful multi-step-ahead test. 

*LS *S

[ . ]/05 1 3n

*LS

*LS

*LS

*LS

 

Altogether, this new test  maintains all the advantages of  over its 

competitors, such as a general loss function specification, robustness to 

contemporaneous correlation and autocorrelation in the forecast errors, is readily 

*LS *S
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Table 4.8 
 

Empirical sizes for the  test at the nominal 10% level *LS
(h = 2, independent ARCH(1) errors) 

 
α1 θ n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
0.0 0.0 17.94 17.84 15.12 13.61 11.47 11.16 10.66 

 0.5 18.92 17.23 13.76 13.16 11.74 11.14 10.73 
 0.9 19.18 17.06 13.32 13.07 11.69 10.81 10.58 

0.1 0.0 17.98 17.36 14.62 13.14 11.39 11.28 10.46 
 0.5 18.37 16.71 13.45 13.12 11.73 11.19 10.49 
 0.9 18.78 16.25 12.97 12.94 11.79 11.17 10.51 

0.2 0.0 17.84 16.66 13.73 12.59 11.19 11.11 10.26 
 0.5 18.14 16.02 13.00 12.82 11.47 11.05 10.41 
 0.9 18.47 15.84 12.64 12.63 11.71 10.96 10.47 

0.3 0.0 17.77 16.16 13.05 12.07 10.88 10.74 10.39 
 0.5 17.72 15.07 12.88 12.34 11.13 10.81 10.42 
 0.9 18.09 15.16 12.42 12.21 11.40 10.76 10.39 

0.4 0.0 17.37 15.53 12.77 11.59 10.60 10.39 10.40 
 0.5 17.60 14.48 12.35 11.75 11.07 10.52 10.19 
 0.9 17.93 14.73 12.10 11.76 11.18 10.60 10.05 

0.5 0.0 17.11 14.90 12.16 11.10 10.49 10.07 9.88 
 0.5 17.72 14.02 12.00 11.35 10.64 10.18 9.64 
 0.9 17.73 14.21 11.72 11.28 10.89 10.32 9.83 

 

Note:- For these 2-steps-ahead errors, autocorrelation is incorporated by generating 
ARCH(1) errors uit , i = 1,2 and then transforming them to follow an MA(1) 
process with parameter θ, i.e. eit = (uit + θ ui,t-1) / (1 + θ 2)1/2, i = 1,2. 
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applicable to multi-step-ahead forecasting, and most importantly has the added 

advantage of providing a much needed test which exhibits robustness to ARCH 

forecast errors.  The example case considered in the analysis is that of ARCH(1) 

errors, but the root problems (leptokurtosis in the errors and autocorrelation in d ) 

and the associated solution (including additional covariance lags in the estimation of 

), are common to general specifications of ARCH forecast errors. 

t

)( tdV
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4.4 ARCH Error Specification and Properties 
for Encompassing Tests  

 
 

In the same way that section 4.2 outlined the specification of ARCH forecast errors 

which had equal forecast accuracy in preparation for the section 4.3 analysis of the 

tests, so it is now necessary to determine the specification for ARCH forecast errors 

where one forecast encompasses the other, in order to enable the next section to 

study tests for forecast encompassing.  Again, ARCH(1) processes are assumed for 

the sake of clarity. 

 

Given two forecasts  with corresponding errors e  it can be said that  

encompasses  if the error variance of some combined forecast  does not 

significantly improve upon the error variance of  alone (see chapter 3).  This can 

be expressed as λ = 0 in the following regression: 

f ft1 2, t tet1 2, f t1

f t2 f ct

f t1

 
  = e t1 ttt ee ελ +− )( 21  (4.64) 

 
and gives rise to two conditions which characterise forecast encompassing: 

 
  > V e  (4.65) V e t( )2 t( 1 )

)  =  (4.66) V e t( )1 C e et t( ,1 2

 
It is clear, then, that a model of contemporaneously correlated ARCH forecast errors 

must be employed so as to impose the forecast encompassing conditions on the error 

specification.  The Engle-Kroner approach allows this to be done easily; the 

Bollerslev model, however, has complications since the unconditional correlation, ρ, 

has no analytic expression.  In a Bollerslev world, the forecast encompassing errors 
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cannot be specified analytically, and so, given that this analysis is simply illustrating 

the effects of ARCH on forecast evaluation tests, attention is restricted to the Engle-

Kroner error model. 

 

The Engle-Kroner bivariate ARCH(1) specification is given in (4.10), and simplified 

further in (4.11).  In section 4.2, the next assumption was to let 02211 α== cc  which 

gave errors with equal variance.  In this case it is now necessary to let c  and c  

differ, i.e. 

11 22

0111 α=c , 0222 α=c ; if it is further assumed that 02α  > 01α , the forecast 

encompassing condition (4.65) is imposed upon the errors.  The second condition, 

(4.66), is added by letting 012112 α== cc .  Putting all this together gives the 

following error specification: 
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It is also useful to normalise on V e , i.e. V e  =  = 1, which amounts 

to setting 

t( )1 t( 1 ) C e et t( , )1 2

101 1 αα −= , and can be done without loss of generality: 
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Having established the basic error specification, as in previous sections a 

representation can be derived yielding errors as a function of past errors and normal 

disturbances, v  ~ , it IN( , )0 1 i = 1 2, : 
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yielding the following representation for : e et t1 2,
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This representation given in (4.71) and (4.72) can be used to determine a number of 

properties which will be needed in the section 4.5 analysis of tests for forecast 

encompassing: 
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4.5 Tests for Forecast Encompassing 
 
 

Turning now to the examination of tests for forecast encompassing, the section 4.4 

specification of the forecast errors can be used to evaluate the different tests 

contained in chapter 3 when ARCH is a feature of the errors.  The analysis mirrors 

that performed in section 4.3 for tests for equal forecast accuracy, with both 

theoretical and simulation considerations given for each test.  The tests studied are 

firstly the regression test, R, followed by the non-normality robust tests  

and .  Finally, a modified test equivalent to the  test proposed in section 

4.3 is presented. 

R R rm m1 2, , s

mDM *LS

 
 
4.5.1 Regression Test
 

4.5.1a Theory
 
The regression test for forecast encompassing has the specification given in (3.7), 

and takes the same form as MGN, the difference being the specification of .  The 

distribution analysis of MGN contained in section 4.3 holds for R as well, and it is 

possible to write an equivalent result to (4.29) for the regression test under the null 

hypothesis: 

yt

 
 R   (4.79) d⎯ →⎯ ])ˆplim[,0(N 1QQ−

  where Q =  )( 2/1
ttxnV εΣ−

    =  $Q 212ˆ txn Σ−σ

   x e et t t= −1 2 ttt ey 1, = =ε  

As with MGN, the analysis now centres around the estimate  implicit in the $Q
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regression test under ARCH(1) forecast errors as specified in section 4.4, i.e. Engle-

Kroner correlated errors where one forecast encompasses the other. 

 

Firstly, the true element Q can be found as follows, beginning with a version of 

(4.30): 

 

 Q =     (4.80) ∑
−

=

− −+
1

1

1
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k
kknn γγ

  where kγ =    )( ktt ddE +
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The distinction between (4.80) and (4.30) is the definition of  which distinguishes 

the encompassing case.  Now the 

dt

kγ  term can be expressed more explicitly by the 

following, beginning with two results which follow from the conditional expectation 

specification given in (4.69): 
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  = k   (4.82) 10αγ

 
Substituting into (4.80) then gives the following for Q: 
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Once again 0γ  must be found: 
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The bracketed term in (4.83) has already been found in the limit, as in (4.35), and 

substitution of both of these results into (4.83) gives the limiting expression for Q: 
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Turning to the estimate of Q, the probability limit of  must again be derived under 

: 
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The desired asymptotic distribution of the regression test when the errors are 

ARCH(1) can now be found using (4.79), (4.85) and (4.86): 
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This result shows that the regression test for forecast encompassing does not have an 

asymptotic standard normal distribution, but has a limiting variance which exceeds 

one and depends on the degree of ARCH in the errors.  It is also noteworthy that the 

asymptotic variance for R is the same as that for MGN under the Engle-Kroner 

correlated error case given in (4.42).  This follows from the autocorrelation structure 

of  being the same in both cases plus the chapter 3 result of regression error 

conditional heteroscedasticity impacting both tests in the same way.  Table 4.9 

(along with entries concerning tests analysed below) shows the extent of the lack of 

robustness, and, as with the MGN analysis, motivates the need for a new correctly 

sized test.  The theoretical sizes given in table 4.9 differ from those for MGN given 

in table 4.1a purely because the encompassing alternative is 1-sided as opposed to 

the equal accuracy 2-sided alternative hypothesis. 

td

 

4.5.1b Simulation
 
Monte Carlo simulation can now be performed to check the theoretical sizes of R 

given in table 4.9, and to examine the test’s finite sample properties.  Paralleling the 

experiments for MGN, sample sizes between n = 8  and n = 512  are considered, plus 
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Table 4.9 
 

Theoretical asymptotic sizes for the  and  tests 21,, mm RRR mDM
at the nominal 10% level with Engle-Kroner ARCH(1) errors 

 
α1 Test Distribution variance Asymptotic test size 
0.1 R 1.2474 12.56 

 Rm1, Rm2, DMm 1.2222 12.32 
0.2 R 1.6364 15.82 

 Rm1, Rm2, DMm 1.5 14.77 
0.3 R 2.3151 19.98 

 Rm1, Rm2, DMm 1.8571 17.35 
0.4 R 3.7692 25.46 

 Rm1, Rm2, DMm 2.3333 20.07 
0.5 R 9 33.46 

 Rm1, Rm2, DMm 3 22.97 
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in one case n = 10 000, , with 1-step-ahead forecasts evaluated at the nominal 10% 

level.  The null is one of encompassing against a 1-sided alternative; 10,000 

replications are performed for each simulation.  Equations (4.71) and (4.72) are used 

to generate the errors, and the starting value has its impact minimised by simulating 

 observations each time and discarding the first 100 observations. n + 100

 

One further point to note is that the test statistic R is invariant to the choice of 02α , 

provided it lies within the specified range 02α  > 11 α− .  This can be shown as 

follows, beginning with the following version of the test statistic: 

 

 R = 
222
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Now the error representations given in (4.71) and (4.72) can be employed in this 

proof, plus the fact that in the simulations, starting values for e  are arbitrarily 

assumed to be zero (the effect of this becomes negligible since the first 100 

observations are dropped in each experiment).  Collating this information gives: 

et1 2, t

 
  = yt

2
1,1111 1 −+− tt ev αα  from (4.71) 

 i.e. y1 = 111 1 α−v  since e  = 0 1 0,

  y2 = 2
11112 1 yv αα +−  

  y3 = 2
21113 1 yv αα +−  

  etc. 

 so yt  = ),...,,;( 112111 tt vvvf α   (4.88) 
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Thus: 
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Now (4.90) shows that R is invariant to c, and thus provided 02α  > 11 α− , this 

proves that R is not affected by the parameter 02α , given that forecast encompassing 

holds. 

 

Table 4.10 provides the results of the simulation experiments for a number of ARCH 
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parameters 1α , and includes results for another test, , to enable comparison 

later in sub-section 4.5.3.  As would be expected, the picture is one of serious 

oversizing.  A distinct lack of robustness to ARCH in the forecast errors is revealed 

at all sample sizes, which worsens as the degree of ARCH rises.  Tables 4.11 and 

4.12 contain comparisons with other tests which shall be discussed shortly, and 

results in table 4.11 provide confirmation of the theoretical limiting size for 

mLDM

2.01 =α . 

 

The general inference is that, like MGN, the regression test for forecast 

encompassing is not statistically valid when ARCH is present in the forecast errors, 

and once again the need for correction is highlighted. 

 
 
4.5.2 Non-Normality Robust Tests 
 

4.5.2a Theory 
 
Using the same analysis as in the previous sub-section, the chapter 3 non-normality 

correction tests can now be examined.  The two parametric corrections  

have the same asymptotic distribution as  respectively, as given in 

(4.47) and (4.48), but with the difference that  is now defined as .  

Repeating the sub-section 4.3.2a theory for the forecast encompassing case yields: 

R Rm m1 2,

MGN MGN1
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Table 4.10 
 

Empirical sizes for the R and  tests mLDM
at the nominal 10% level (h = 1, Engle-Kroner ARCH(1) errors) 

 
α1 Test n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
0.1 R 11.51 11.65 11.65 12.66 12.33 12.70 12.76 

 LDMm 11.30 11.63 11.01 11.55 10.90 10.51 10.41 
0.2 R 13.53 14.01 14.33 15.67 15.61 15.77 15.71 

 LDMm 11.65 11.78 11.20 11.50 11.12 10.56 10.56 
0.3 R 15.37 16.43 17.05 18.66 18.94 19.45 19.15 

 LDMm 12.09 12.19 11.84 11.58 11.38 10.35 10.90 
0.4 R 16.96 18.70 19.82 21.69 22.03 23.27 23.45 

 LDMm 12.50 12.71 12.60 11.86 11.87 10.62 10.85 
0.5 R 18.52 20.57 22.41 24.35 25.16 27.11 27.70 

 LDMm 12.94 13.32 13.41 12.20 12.15 11.03 10.80 
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Table 4.11 
 

Empirical sizes for the  and  tests msmm DMrRRR ,,,, 21 mLDM
at the nominal 10% level (h = 1, Engle-Kroner ARCH(1) errors, 2.01 =α ) 

 
 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n=10000

R 13.53 14.01 14.33 15.67 15.61 15.77 15.71 15.83 
Rm1 19.32 17.33 15.93 15.76 15.46 15.39 14.94 14.79 
Rm2 11.37 13.41 13.77 14.75 14.85 15.01 14.75 14.79 
rs 11.06 12.94 13.83 14.41 14.04 14.31 14.19 14.80 

DMm 13.37 14.14 14.19 14.85 14.91 15.06 14.77 14.79 
LDMm 11.65 11.78 11.20 11.50 11.12 10.56 10.56 10.03 
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Table 4.12 
 

Empirical sizes for the  and  tests msmm DMrRRR ,,,, 21 mLDM
at the nominal 10% level (h = 1, Engle-Kroner ARCH(1) errors, 4.01 =α ) 

 
 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 

R 16.96 18.70 19.82 21.69 22.03 23.27 23.45 
Rm1 22.12 21.31 20.83 21.07 20.56 20.36 20.15 
Rm2 13.86 16.92 18.33 19.49 19.48 19.80 19.70 
rs 13.58 16.47 17.76 18.20 18.36 18.80 18.65 

DMm 16.09 17.74 18.66 19.65 19.53 19.81 19.73 
LDMm 12.50 12.71 12.60 11.86 11.87 10.62 10.85 
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The rest of the theory in sub-section 4.3.2a then follows through yielding an 

asymptotic distribution for the parametric corrections which is the same as that for 
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Investigation into the behaviour of the rank correlation variant of R, as given in 

(3.36) is studied later through simulation. 

 

The modified Diebold-Mariano approach test, , mirrors the earlier  test, the 

distinction being the definition of .  Specifying d e  for the 

encompassing hypothesis, the result of (4.81) again holds, and this allows the 

deduction that the chapter 3 preferred test for forecast encompassing has the 

following limiting distribution: 

mDM *S
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As with tests for equal forecast accuracy, the non-normality robust tests for forecast 

encompassing are affected by ARCH in the forecast errors, causing oversizing as a 

result of the autocorrelation now present in d .  Table 4.9 gives the limiting sizes for 

these ‘corrected’ tests for different ARCH parameters, and the degree of the problem 

t
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is exposed.  A robust test for forecast encompassing is clearly needed. 

 

4.5.2b Simulation 
 
Simulation of these tests provides confirmation of the above theoretical results (see 

tables 4.11 and 4.12), showing that all the non-normality robust tests  

and  are significantly oversized in finite samples and in the limit.  The tests 

are all invariant to 

R R rm m1 2, , s

mDM

02α  given that 02α  > 11 α−  is satisfied, and proofs equivalent to 

that performed for R exist to demonstrate this property.  All four tests tend to the 

same limiting, and incorrect, size.  Once again, a lack of robustness is displayed in 

these tests when the forecast errors follow ARCH processes. 

 
 
4.5.3 A Modified Test 
 

The above analysis and simulation show that a test for forecast encompassing which 

exhibits robustness to ARCH forecast errors is required.  The problem in the tests 

considered in the previous sub-section is that of unaccounted-for autocorrelation in 

.  The tests  and  can be modified to overcome this problem by 

adding additional autocovariance lags in the variance estimation contained in the 

test statistics.  The theory is exactly the same as for the modified tests for equal 

forecast accuracy in section 4.3. 

dt R Rm m1, 2 mDM

 

Focusing on the preferred test, , the modified test becomes: mDM

 

  = mLDM d

V dL
$ ( )

        (4.94) 
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  where d  = n d  t
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 compare with t  critical values n−1

 
The choice of bandwidth, m, can again be determined by a lag selection criterion as 

given in (4.62); table 4.13 gives empirical sizes for  with additional lags 

running from zero to six, and inspection confirms that the best choice for the 

parameter g in (4.62) is again 0.5, as noted in (4.94) above.  The result is a test for 

forecast encompassing, , which is robust and has good size properties, as 

given in tables 4.10-4.12.  Table 4.14 provides results for 2-steps-ahead prediction, 

with  remaining robust for this longer horizon. 

mDM

mLDM

mLDM

 

The new test, , therefore provides an alternative to  which maintains 

all the  advantages, whilst having the highly desirable additional property of 

being robust to ARCH forecast errors.  This result applies broadly beyond the case 

of bivariate ARCH(1) errors, and demonstrates how a test can be made robust to 

ARCH errors in general. 

mLDM mDM

mDM
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Table 4.13 
 

Empirical sizes for the  test with additional lags mDM
at the nominal 10% level (h = 1, Engle-Kroner ARCH(1) errors, 2.01 =α ) 

 
 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 

0 lags 13.37 14.14 14.19 14.85 14.91 15.06 14.77 
1 lags 11.65 11.78 11.20 11.56 11.50 11.00 11.22 
2 lags 10.13 12.62 11.42 11.50 11.12 10.59 10.74 
3 lags 8.52 12.29 12.16 12.01 11.32 10.56 10.55 
4 lags 6.37 11.15 12.03 12.48 11.48 10.60 10.56 
5 lags 4.49 10.48 11.87 12.75 11.84 10.87 10.68 
6 lags 3.89 9.50 11.71 13.01 11.83 10.95 10.54 
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Table 4.14 
 

Empirical sizes for the  test at the nominal 10% level mLDM
(h = 2, Engle-Kroner ARCH(1) errors) 

 
α1 θ n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
0.1 0.0 9.65 12.44 11.46 12.22 11.37 10.65 10.34 

 0.5 10.32 12.28 11.40 12.23 11.06 10.95 10.19 
 0.9 10.75 12.77 11.42 12.03 10.88 11.02 10.30 

0.2 0.0 10.13 12.62 11.42 12.01 11.32 10.60 10.68 
 0.5 10.51 12.47 11.50 11.88 11.28 10.61 10.20 
 0.9 10.61 12.81 11.42 11.96 11.12 10.88 10.25 

0.3 0.0 10.52 12.65 11.54 12.05 11.34 10.56 10.87 
 0.5 10.77 12.59 11.58 12.09 11.40 10.72 10.35 
 0.9 10.92 12.77 11.64 11.92 11.33 10.67 10.34 

0.4 0.0 10.97 12.55 11.70 12.03 11.57 10.48 10.76 
 0.5 11.06 12.59 11.84 12.07 11.31 10.89 10.47 
 0.9 10.96 13.03 11.93 12.04 11.37 11.08 10.51 

0.5 0.0 11.14 12.68 11.91 12.01 11.56 10.70 10.74 
 0.5 11.01 12.92 12.08 12.26 11.30 10.97 10.69 
 0.9 11.10 12.11 12.11 12.23 11.48 10.93 10.60 

 

Note:- For these 2-steps-ahead errors, autocorrelation is incorporated by generating 
ARCH(1) errors uit , i = 1,2 and then transforming them to follow an MA(1) 
process with parameter θ, i.e. eit = (uit + θ ui,t-1) / (1 + θ 2)1/2, i = 1,2. 
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4.6 Conclusion 
 
 

In conclusion, the behaviour of tests for equal forecast accuracy and tests for 

forecast encompassing have been analysed in the important case of ARCH forecast 

errors.  The established tests (MGN and R respectively) are found to be seriously 

oversized in finite samples and in the limit.  The alternative tests explored in chapter 

2  and ) and in chapter 3 ( ,  and ) correct for 

the leptokurtosis element of the ARCH problem, but the problem of autocorrelation 

in the respective loss differentials d  remains, with these ‘corrected’ tests also 

having an incorrect asymptotic test size. 

( ,* *MGN MGN rs1 2 , s
*S ,R R rm m1 2 mDM

t

 

Two new modified tests are proposed:  for testing for equal forecast accuracy, 

and  for testing for forecast encompassing.  These tests take account of the 

effects of ARCH in the errors by adding additional covariance lags to the variance 

estimates in  and  respectively according to a given rule for lag selection, 

and using an unweighted truncated kernel.  The result is then two tests which exhibit 

robustness to ARCH errors, as well as to non-normal, contemporaneously correlated 

and autocorrelated errors.  They are applicable to multi-step-ahead forecast 

evaluation (albeit with some moderate size distortions for  in the smallest 

samples) and also take very general loss function specifications.  These newly 

proposed tests consequently make a valuable contribution to the practice of testing 

for equal forecast accuracy and forecast encompassing. 

*LS

mLDM

*S mDM

*LS
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Chapter 5 
 
 
 
 

Ranking Competing 
Forecasts 
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5.1 Introduction 
 
 

In the evaluation of competing forecasts, it is desirable to be able to rank rival 

forecasts in order of their predictive ability.  The forecasts of the variable of interest 

can be used in this way to examine the past performance of the forecast-generating 

models or methods, and thereby give an indication of the likely value of each in 

future application. 

 

A number of criteria for ranking competing forecasts exist.  Some of the most 

common criteria are mean squared forecast error (MSFE) based measures which 

evaluate a simple form of economic loss to the user.  Clements & Hendry (1993) 

criticise these measures due to their lack of invariance across alternative isomorphic 

representations of the system concerned, and instead propose a new invariant 

summary criterion based on the determinant of the generalised forecast error second 

moment matrix - denoted GFESM.  This chapter analyses some aspects of the 

GFESM criterion and explores alternative measures and related issues. 

 

The study is comprised of six sections.  Section 5.2 reviews the literature on the 

GFESM criterion; section 5.3 then provides a critique of the use of this measure 

based on two premises - a questioning of the criterion’s underlying justification, and 

analysis of its behaviour when comparing misspecified models.  Section 5.4 

investigates the possibility of another, more well-behaved, invariant criterion, and 

section 5.5 examines the related issue of testing for forecast encompassing with 

linear combinations of forecasts.  The chapter is concluded in section 5.6. 
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5.2 Literature Review 
 
 

In the practice of ranking competing forecasts, one of the most established and 

frequently used measures is the mean squared forecast error (MSFE): 

 
 MSFE = E e  (5.1) T h[ +

2 ]

]

  where e = forecast error 

   h = forecast horizon 

 
The forecast which has the minimum possible MSFE is known as the optimal 

forecast, and equates to the conditional expectation of the quantity to be predicted.  

Given a number of competing forecasts, then, rankings can be established by this 

mean squared error measure of economic loss - the lower the MSFE, the better the 

model or method. 

 

In a multivariate situation, a number of MSFE-based criteria are used.  The MSFE 

matrix becomes the variance-covariance matrix between the forecast errors of the 

variables concerned: 

 
  = Vh E e eT h T h[ + +′  (5.2) 

  where e   = (T h+ )k ×1  vector of h-steps-ahead forecast errors 

 
and criteria are derived using this matrix.  One approach is to use the trace MSFE 

(TMSFE): 

 
 TMSFE = tr  (5.3) ace( )Vh

Another is to use the MSFE determinant (DMSFE): 
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 DMSFE = Vh   (5.4) 

 
A third criterion proposed by Granger & Newbold (1986) chooses the forecast 

which has the lowest value of MSFEM (mean squared forecast error matrix): 

 
 MSFEM =  (5.5) dVd h′

 
for every non-zero vector d.  MSFEM optimality then implies optimality for all 

linear functions of the series.  Such an optimum will not necessarily exist unless the 

conditional mean of the future given the past is included in the set of forecasts 

compared, i.e. the criterion may not provide a ranking of the rival forecasts. 

 

MSFE-based measures of forecast accuracy therefore exist in univariate and 

multivariate settings, and are frequently applied.  The criteria are simple, intuitive, 

correspond to the conditional expectation of the future quantity, and have a clear 

economic loss interpretation.  Such is the basis for the widespread use of MSFE 

measures when making comparisons between contending forecasts. 

 

In criticism of MSFE criteria, Clements & Hendry (1993) argue that these measures 

‘constitute an inadequate and potentially misleading basis for model selection’.  

Their motivation for this statement stems from an analysis of how MSFE type 

criteria behave under transformations to the models concerned.  Clements & Hendry 

consider a class of transformations which are linear, non-singular and scale-

preserving.  If a linear system is denoted by: 

 200



 tsΦ  =   (5.6) ut

  where  u  ~ )t ,0(ID Ω  

    = [ :′st ]′ ′x zt t  

   xt  = k variables in system to be forecast 

   z  = N predetermined variables t

   Φ = [ : ]I B−  

   Ω, B = model parameters 

 
then the desired class of transformations can be written as: 

 
  =  (5.7) tPsPM 1−Φ Mut

  where  M is ( )k k× , M  = 1 

   P is (k+N × k+N) upper block triangular 

 
The model specified in (5.6) is invariant to these transformations, thus (5.7) 

summarises the class of isomorphic representations of the system associated with the 

linear non-singular scale-preserving transformations.  Clements & Hendry then 

examine the effects of applying these M and P transforms on the rankings suggested 

by the MSFE-based forecast comparison criteria (5.1), (5.3), (5.4) and (5.5). 

 

Firstly, the simple MSFE used for univariate models is found to be invariant to 

isomorphic transformations of the type considered above when 1-step-ahead 

forecasts are employed.  However, when longer forecast horizons are used, the 

MSFE is no longer invariant under M and P transformations, and so comparisons for 

the purpose of forecast evaluation between one representation of a variable and a 
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different representation of that same variable are not valid.  Furthermore, when 

parameter uncertainty is included, the rankings of rival forecasts of a given variable 

are also not invariant to these transformations, with the rankings possibly switching 

when different representations of the system are examined. 

 

Each of the other MSFE-based criteria exhibit similar problems.  The multivariate 

measure TMSFE varies under both M and P transformations for all forecast 

horizons, with the solitary exception of invariance 1-step-ahead when a P transform 

is applied.  DMSFE and MSFEM are slightly better, being invariant for all steps 

ahead forecasts for M transformations, plus 1-step-ahead for P transformations, but 

again both fall down under P transforms where multi-step-ahead forecasts are 

concerned. 

 

The isomorphic transformations considered above are widely applied.  Different 

representations of a system such as levels, differences and cointegrating 

combinations are all contained in the P class of transforms, and thus the Clements & 

Hendry findings have serious implications for the validity of forecast comparisons 

using MSFE-type evaluation criteria.  Put simply, multi-step MSFE-based measures 

cannot in general be used to give valid comparisons between different isomorphic 

representations of the same model, or to provide rankings which will be consistent 

over alternative representations of the models concerned, even when a common 

basis for comparison is used across models.  There are a few exceptions to this 

generalisation, e.g. DMSFE and MSFEM under M transformations, but the broad 

picture is of MSFE-based criteria unreliability when different model representations 

are considered.  No MSFE-type measure is invariant to multi-step P transformations, 
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thus forecast performance comparisons between a model’s level and its change are 

not valid for h-steps-ahead forecasts (h > 1).  In addition to this, rankings between 

models using levels representations, achieved using multi-step MSFE-based criteria, 

may switch if the models are transformed to changes representations.  This 

fundamental lack of invariance leads Clements & Hendry to their conclusion 

mentioned above, that MSFE-based criteria are inadequate and possibly misleading 

in the evaluation of competing forecasts. 

 

Out of this background, Clements & Hendry motivate the desire for a measure 

which yields unique forecast accuracy rankings.  Such a measure must clearly be 

invariant to transformations which generate different but isomorphic representations 

of a system. 

 

In order to obtain an invariant criterion, Clements & Hendry take into account the 

covariance terms between the forecast errors from different horizons from the multi-

step-ahead forecasts considered.  Their proposed criterion is the determinant of the 

generalised forecast error second moment matrix, denoted GFESM: 

 
 GFESM = hφ  = E E Ev v[ ′ ]

]

 (5.8) 

  where  = [ ,′Ev ,...,′ ′ ′+ + +e e eT T T h1 2  

 
The forecast errors from all horizons up to and including h are thus stacked in a 

vector , then used to form the generalised forecast error second moment matrix 

; the determinant of this matrix is the GFESM criterion which is invariant 

to both M and P type transformations, i.e. invariant to the desired class of linear 

Ev

E E Ev v[ ′ ]
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scale-preserving non-singular transformations to the system. GFESM consequently 

provides a unique ranking of competing models for a given maximum forecast 

horizon, consistent over all isomorphic representations of the models of interest. 

 

Clements & Hendry show that when the true model is known (i.e. errors are white 

noise), and no parameter uncertainty exists, the GFESM h-steps-ahead criterion is 

h
1φ , thus a recursion exists with the complete ranking determined by the 1-step-

ahead forecast errors.  This result is used to argue that ‘model evaluation should 

focus on one-step performance’.  However, when deviation away from the particular 

conditions necessary for this result occurs, the recursion breaks down and analysis 

of the 1-step-ahead GFESM is insufficient to determine multi-step-ahead forecast 

rankings. 

 

The GFESM criterion is not the only measure of forecast evaluation which has the 

property of invariance to linear scale-preserving non-singular transformations.  

Clements & Hendry cite two other criteria - the log-likelihood, and forecast 

encompassing.  The log-likelihood criterion is derived from a predictive likelihood 

approach to the evaluation of competing forecasts.  The log-likelihood of the 

variables to be predicted by a model reduces to a concentrated log-likelihood 

function which varies with hφ̂  alone, where  is the maximum likelihood estimate 

of 

hφ̂

hφ .  This result forms the justification for the Clements & Hendry use of the 

GFESM criterion, and is analysed more fully in section 3.  Forecast encompassing is 

concerned with whether one forecast-generating mechanism is conditionally 

efficient with respect to a rival generating mechanism (see Nelson, 1972, Granger & 
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Newbold, 1973, and Chong & Hendry, 1986), i.e. one forecast encompasses the 

other if it can explain the errors made by the inferior forecast; the inferior forecast 

then has no information to contribute to the encompassing forecast with regard to 

prediction (see chapter 3). 

 

A number of discussants commented on the Clements & Hendry paper, and several 

aspects relating to the GFESM measure are examined.  Diebold argues that the lack 

of invariance exhibited by MSFE rankings across alternative model representations 

is actually desirable.  Each user of forecasts has individual preferences, and these 

preferences should dictate their choice of measure and model representation.  

McNees adds to this, pointing out that all applied forecasting operates in the realm 

of misspecified models, and it is far from intolerable to expect one model to be 

preferred for, say, forecasts of a variable’s level, and another model for prediction of 

that variable’s change.  The practitioner should decide which model is most 

appropriate for their particular situation, given their preferences.  Rather than using 

GFESM as a summary invariant measure with which to choose a preferred model 

for all purposes, McNees argues that several models should be considered as each 

may be useful and preferable in a specified context.  Again, the emphasis is on the 

user - once a particular use of a model is established, one of the available forecasts 

can be chosen in accordance with the practitioner’s interests.  Wallis supports this 

view: forecasters and forecast evaluators cannot take the loss functions of all users 

into consideration; it is best, therefore, to present information which can be used in a 

wide spectrum of individual cases (e.g. forecast comparisons in levels and changes, 

for different forecast horizons etc.), rather than produce one single summary 

evaluation conclusion based on GFESM.  West notes that if a natural measure of 
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forecast quality exists in a given context, then it is relatively unimportant that 

different measures, which may be appropriate in other contexts, yield conflicting 

rankings of the competing forecasts.  Baillie and Engle are two further exponents of 

this view that different models perform better in terms of prediction under different 

representations, with the question being which representation is of interest, rather 

than the seeking of an invariant criterion which, Engle claims, actually disguises the 

issue. 

 

The second common criticism of the Clements & Hendry GFESM proposal relates 

to the focus on 1-step-ahead forecasts.  Baillie, Meese and Newbold all give 

examples of how two misspecified models will be ranked differently by the MSFE 

criterion depending on whether the forecast horizon is one or two (or more).  The 

danger of a purely 1-step-ahead analysis is thus highlighted, and economic situations 

frequently arise where one model may forecast the short term best, and another the 

long term.  Baillie also adds that examples such as the prediction of stock returns, 

which are more predictable over long horizons than short ones, illustrate the need 

for long forecast horizon consideration.  The GFESM analysis implies concentration 

on 1-step-ahead errors which loses this information.  Furthermore, even when a 

longer horizon GFESM criterion is used, the different step-ahead forecast errors are 

implicitly weighted and a conclusive ranking is obtained; the implication is then that 

one model is preferable absolutely, and the fact that other models may perform 

better at a specified forecast horizon is masked. 

 

Diebold and Engle note in criticism of GFESM that the criterion does not 

correspond easily to the established decision theory of minimising expected loss.  
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The conventional approach to forecast evaluation specifies some notion of loss, or 

cost of error, and selects the model which incurs the minimum expected loss.  While 

the loss functions of users can rarely be accurately defined, this methodology points 

to a certain model for a certain use.  This relates to the criticisms outlined above, 

where one forecast may well involve less loss for a given use compared to another 

forecast, which itself may be preferable if that use were to change.  Diebold argues 

that rather than analysing the loss function associated with each particular problem, 

the GFESM measure is a generalisation whose primary advantage is that of 

convenience.  GFESM is comprised of a determinant of an expected value, not an 

expected value of a determinant, hence it is difficult to see how it conforms to the 

concept of cost of error, and therefore how the measure fits with the intuition of 

decision via minimised loss. 

 

Further criticisms of GFESM are also made.  Wallis states that applied empirical 

work shows that there is commonly ‘no unambiguous ranking of competing 

forecasts across variables, subperiods, and forecast horizons’.  The Clements & 

Hendry GFESM criterion seeks to establish an unambiguous ranking; Wallis claims 

this only ‘sweeps the problem under the carpet’.  Howrey observes that cases 

frequently occur where the difference between the GFESMs of two competing 

models is indefinite, i.e. neither of the models dominates the other in all dimensions.  

In such cases it is possible that GFESM will choose the model which actually 

performs worst in terms of forecasting the individual variables of interest.  

Armstrong & Fildes (1995) argue that ‘invariance of rankings to transformations is 

only one of the many criteria that are helpful for examining forecast accuracy’. 
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In response to these criticisms, Clements & Hendry reply to the discussants, 

reiterating the problems which may arise when using MSFE-based criteria for 

forecast evaluation.  Rankings of forecasts obtained by such criteria may be unique 

to the representation used, and no generality to other isomorphic representations can 

be claimed.  This creates obvious dangers when alternative representations of a 

model are of interest to the user.  They also add further justification to the use of 

GFESM by highlighting its connections with predictive likelihood and arguing that 

it is a natural criterion since it ‘measures the volume of space around a forecast 

error, centred on zero, with smaller volumes being preferable’.  This conviction of 

the need for invariance in forecast evaluation criteria is illustrated by the use of 

GFESM in Clements & Hendry (1995) where the imposition of unit roots and 

cointegrating restrictions in linear systems of I(1) variables in levels, differences, 

and cointegrating combinations is assessed in terms of the impact on forecast 

accuracy, and also in Clements & Hendry (1996) where the issue of testing for 

seasonal unit roots in the context of forecasting is considered.  However, in a more 

recent paper, Hendry (1996) tempers this conviction, stating that ‘although 

invariance is useful to determine a unique measure for a fixed model independently 

of its representation, it is not compelling, and often several forecast-accuracy indices 

are reported’. 

 

Altogether, Clements & Hendry criticise the use of MSFE-based criteria in forecast 

evaluation due to their lack of invariance to linear non-singular scale-preserving 

transformations to the models concerned.  The problems which may result are 

especially pertinent to cases where there is no unique data transformation of interest 

to the user.  Instead, Clements & Hendry propose an invariant criterion - GFESM - 
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which has faced considerable criticism for its approach, underlying principles, and 

nature of reducing the forecast evaluation problem to a single number.  The GFESM 

criterion has its drawbacks, therefore, but remains a useful contribution to the 

literature on the comparison of competing forecasts, overcoming the basic lack of 

invariance of the established measures. 
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5.3 The GFESM Criterion 
 
 

5.3.1 Justification for GFESM
 

The justification for using GFESM as a criterion for ranking competing forecasts 

stems from an analysis of predictive likelihood.  The system that Clements & 

Hendry (1993) consider follows a study by Engle & Yoo (1987) where forecasts are 

compared over horizons .  The study takes the form of a Monte Carlo 

simulation where the system is independently replicated n times.  In this framework, 

the predictive likelihood of a given forecast can be examined.  The previous section 

discussed the prediction of several variables, but for simplicity attention is now 

restricted to univariate series.  The results and conclusions of the analysis follow 

through in a multivariate setting. 

h,...,1

 

For a given replication, it is now assumed that there are two forecasts for each 

horizon, i.e. forecast 1 is , forecast 2 is , where f k1 f k2 k h= 1,..., .  It can further be 

assumed that the actual values  are specified as follows: yk

 
  = yk kkkkk effg +);,( 21 β ; k h= 1,...,  (5.9) 

 
where  is an error term and  is a function of the two forecasts with parameter ek gk

kβ , continuous such that  can be purely associated with one forecast and the 

error.  The following assumption is also made about the errors: 

yk

 
  ~ ( ,..., )e eh1 ),0(N Ω  (5.10) 

 
i.e. the errors are assumed to follow a multivariate normal distribution with mean 
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zero and variance-covariance matrix Ω.  In vector form the system is: 

 
 y = g e(.) +  (5.11) 

 
where each element is an (h )×1  vector for a given replication.  The joint density of 

y can then be written as follows: 

 
 y ∼ )(.),(N Ωg  

 ),( Ωβyf  = (.)]}[](.)[exp{)2( 1
2
12/12/ gygyh −′−− −−− ΩΩπ  (5.12) 

 
Now the analysis so far has considered one replication.  It is necessary then to find 

the joint density for all n replications (indexed i n= 1,..., ): 

 
 ),( Ωβyf  = 

  ∏
=

−−− −Ω′−−Ω
n

i
iiii

h gygy
1

1
2
12/12/ (.)]}[](.)[exp{)2( π  (5.13) 

 
The result is then the likelihood function for the system: 

 
 ),( yL Ωβ  = 

  
⎭
⎬
⎫

⎩
⎨
⎧

−Ω′−−Ω ∑
=

−−−
n

i
iiii

nnh gygy
1

1
2
12/2/ (.)][](.)[exp)2( π  (5.14) 

 
Taking natural logs yields the log-likelihood function: 

 
 ),(ln yL Ωβ  = 

  ∑
=

− −Ω′−−Ω−−
n

i
iiii

nnh gygy
1

1
2
1

22 (.)][](.)[)ln()2ln( π  (5.15) 

 
which can be concentrated for Ω: 
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 )(ln yLc β  = ))(ˆln(2 βΩnC −    (5.16) 

  where C  = ]1)2[ln(2 −− πnh  

   )(  = ˆ βΩ ∑
=

− ′−−
n

i
iiii gygyn

1

1 ](.)(.)][[  

 
The concentrated log-likelihood function therefore depends solely on ⎜ ⎜.  

Now vectors  exist such that ; 

)(ˆ βΩ

),( 21 ββ j
j fffg =);,( 21 β j = 1 2,  which allows 

predictive likelihood to be used as a ranking criterion.  Substitution of  into the 

concentrated log-likelihood (5.16) gives a value for the predictive likelihood of 

forecast , and substitution of  yields the likelihood of ; the forecast with the 

higher likelihood will thus be preferred (ranked first). 

1β

1f
2β 2f

 

Now ranking on the basis of predictive likelihood in this way is the same as ranking 

on the basis of ⎜ ⎜, the preferred forecast having the smallest value of 

⎜ ⎜.  With enough replications, , so predictive likelihood amounts 

to a forecast comparison based on an estimate of the population quantity 

)(ˆ βΩ

)(ˆ βΩ ΩΩ ⎯→⎯pˆ

Ω .  Given 

that  

Ω  = hφ , the link with the GFESM criterion becomes clear, and justification for 

employing GFESM in the Clements & Hendry framework is derived with a firm and 

valid base in predictive likelihood. 

 

However, when the framework is changed to the more realistic setup of constructing 

the GFESM criterion in the context of applied time series analysis, the justification 

for using the GFESM measure becomes less clear.  In practice, estimation of Ω 
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comes about by finding the component sample variances and covariances.  Thus the 

estimate Ω̂  is constructed as in the Clements & Hendry framework, with the crucial 

difference that the  replications are now n different starting points in the 

time series.  The property of independence between replications which yielded the 

earlier justification no longer applies since overlapping occurs, e.g.  is 

forecasting the same value as , and many additional covariance terms are 

introduced.  The joint density does not condense to a function of  ⎜ ⎜ as before, 

with more forecasts in existence than observations, and it is far from clear that the 

link between predictive likelihood and the GFESM criterion still holds.  Clements & 

Hendry argue for the use of the GFESM measure, but when the estimate is 

constructed in the context of an applied time series, the justification for using an 

estimate of the population quantity 

i = 1,...,n

$ ( )yT 3

$ ( )yT−1 4

)(ˆ βΩ

hφ  as a forecast ranking criterion breaks down. 

 

Having said this, the predictive likelihood justification can be maintained if the 

possibility of replication is viewed as a ‘thought experiment’.  Under such a 

philosophy, the replication itself need not be executed and the population quantity 

Ω  of the thought experiment could be consistently estimated from a series of 

forecasts.  Then if the population quantity Ω , i.e. GFESM, is a useful quantity to 

estimate in the thought experiment, it is equally useful and sensible to estimate it in 

the real world. 

 

In closing, one result which holds under both of the frameworks mentioned above is 

that the GFESM criterion will always rank the true model as the best if it is 

available, provided the errors are normal.  If the true model is evaluated in 
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competition with one or more misspecified models, then the GFESM for the true 

model must be the lowest asymptotically.  This follows in the normality framework 

because if the true β is such that y is purely associated with one model’s forecast 

(the true model’s), then the estimate  for that β will, in the limit, be the 

minimum 

)(ˆ βΩ

Ω  possible, thus the likelihood and the GFESM criterion will give this 

true model the highest ranking. 

 
 
5.3.2 GFESM Behaviour Under Model Misspecification
 

The GFESM criterion for the evaluation of competing forecasts is now studied to 

examine its behaviour when misspecified models are employed.  In applied 

forecasting, the true model is rarely, if ever, known.  Contending forecasts are 

consequently generated by a number of approximations to this unknown truth.  

Analysis of misspecifications is therefore vital.  This sub-section considers the 

behaviour of GFESM for the simplest non-trivial example of two rival forecasts 

generated by two non-nested misspecified models.  More specifically, the true 

model is assumed to be an ARMA(1,1) process, with the two misspecifications 

being an AR(1) model and an MA(1) model: 

 
 true model A:  = yt 11 −− −+ ttty θεεφ  t T= 1,...,  (5.17) 

 model B: yt  = tty ηα +−1  t T= 1,...,  (5.18) 

 model C: yt  = 1−− tt uu β  t T= 1,...,  (5.19) 

 
where tε  ~ .  The criterion’s behaviour is studied by examining the 

rankings generated when comparing the three models given above in a pairwise 

),0(IID 2σ
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manner.  1-step- and 2-steps-ahead forecasts are considered, and comparison is 

made with the rankings suggested by the MSFE evaluation criterion. 

 

5.3.2a Specification of Criteria
 
True Model A

For the true model, the optimal forecasts and associated errors are as follows: 

 
 1-step-ahead:  = $ ( )yT 1 TTy θεφ −  

   = eT ( )1 1+Tε  

 
 2-steps-ahead:  =  $ ( )yT 2 TTy φθεφ −2

   = eT ( )2 12 )( ++ −+ TT εθφε  

 
From this, the MSFE and GFESM criteria can be found (see section appendix): 

 
  = =  (5.20) 1MSFEa 1GFESMa

2σ

  =   (5.21) 2MSFEa ])(1[ 22 θφσ −+

  =   (5.22) 2GFESMa
4σ

 
 
Model B

The AR(1) misspecified model has the representation given in (5.18).  Now in 

practice the autoregressive parameter α must be estimated.  The least squares 

approach minimises  and yields the following estimator: 2
tηΣ

 α̂  = 
Σ
Σ
y y
y
t t

t

−

−

1

1
2  

 
It is then possible to note that: 

 215



 

 α̂  = 2
1

1
1

1

−
−

−
−

Σ
Σ

t

tt

yn
yyn

  p⎯ →⎯
C y y

V y
t t

t

( , )
( )

−1  

 
provided that  is a stationary process.  The estimator yt α̂  therefore tends in 

probability to the first autocorrelation of the true ARMA(1,1) model, which is 

known for given values of the parameters φ and θ: 

 

 α̂   ρ(1) = p⎯ →⎯
φθθ
θφφθ

21
))(1(

2 −+
−−   (5.23) 

 
The optimal forecasts and forecast errors can now be found: 

 
 1-step-ahead:  = $ ( )yT 1 Tyα̂  

  e  = T ( )1 TTTy θεεαφ −+− +1)ˆ(  

 
 2-steps-ahead:  =  $ ( )yT 2 Ty2α̂

   =  eT ( )2 TTTTy φθεεθφεαφ −−++− ++ 12
22 )()ˆ(

 
As with the true model, the MSFE and GFESM criteria can be derived from this 

information (see section appendix): 

 
  =    (5.24) 1MSFEb 1GFESMb

p⎯ →⎯ )1( 2
1

21
2

2 pp θσ −+

  where p  = 1 θφ −  

   p  =  2 φθθ 21 2 −+

    2MSFEb
p⎯ →⎯ 222

12
1

4
22

3
2
1

2
2

22 1)[( θφφσ +++− −− pppppp

     (5.25) )](2 2
3

2
1

2
2

2 ppp−−− φφθ
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  where p  = 3 φθ−1  

  p  =  4
21 φ−

 
     2GFESMb

p⎯ →⎯ 2
1

4
22

3
2
1

2
2

22
1

21
2

4 )[(1{( ppppppp −−− −+ φθσ

     )](21 2
3

2
1

2
2

2222
1 pppp −−−+++ φφθθφ

     (5.26) })( 22
1

21
21 ppp φθ−+−

 
 
Model C

This second model misspecification takes an MA(1) formulation as given in (5.19).  

As with model B, the parameter β must be estimated, and the least squares method 

of doing this amounts to minimising .  Now it is possible to note that: 2
tuΣ

 
  =  ut tyL 1)1( −− β

 
which leads to the following result: 

 
     (5.27) 2min tuΣ

β

p⎯ →⎯ ])1[(min 1
tyLV −− β

β

 
The true model  is ARMA(1,1) which then gives, by substitution into (5.27):  yt

 
    (5.28) 2min tuΣ

β

p⎯ →⎯ ])1()1()1[(min 11
tLLLV εθφβ

β
−−− −−

 
The least squares estimator  can now be found by minimising the right hand side 

of (5.28), i.e. minimising the variance of an ARMA(2,1) process.  For given values 

of φ, θ and β, the variance of such a process can be written as (see section 

appendix): 

β̂
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  = *
0γ ⎥

⎦

⎤
⎢
⎣

⎡

+−−−
+−+−+

)1)(1(
)2(21

322

22
2

φβββφφ
φθθφβφθθσ ; −1< β < 1 (5.29) 

 
Minimisation of (5.29) with respect to β involves solving the following function for 

β (see section appendix): 

 
  )2)(1( 232 φθθφφβββφ +−+−−

   = 0 (5.30) )32))(2(21( 222 φββφφθθφβφθθ −++−+−++

 
and the result is the estimator , found numerically for given values of φ and θ.  

Once again, the optimal forecasts and associated errors can now be derived: 

β̂

 
 1-step-ahead:  =  =  $ ( )yT 1 Tuβ̂− TyL 1)ˆ1(ˆ −−− ββ

  e  =  T ( )1 TT yLy 1
1 )ˆ1(ˆ −
+ −+ ββ

 
 2-steps-ahead:  = 0 $ ( )yT 2

  e  =  T ( )2 TTTTy φθεεθφεφ −−++ ++ 12
2 )(

 
The MSFE and GFESM criteria for the MA(1) model can be specified using these 

results (see section appendix): 

 
  =  =  1MSFEc 1GFESMc

132
4

2 )]1([ −+−− φβββφσ p

   ×  (5.31) )]2([ 2
2 φθθφβ +−+p

  =   (5.32) 2MSFEc 2
1

4
2 pp−σ
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  =  2GFESMc 22
1322

4
4 [)1({ ppp −− +−− φβββφσ

    (5.33) }])1([)]2( 2
31

11
4

2 ppp −− −−+−+ βφφθθφβ

 
where the  are as defined above. p j

 

5.3.2b Comparison of Criteria
 
Behaviour of the GFESM criterion can now be examined by comparison with the 

MSFE criterion.  Such comparison is performed by considering the rankings that 

each measure suggests for the evaluation of a given pair of models.  Noting that the 

1-step-ahead GFESM is simply the 1-step-ahead MSFE, the following ranking 

comparisons are analysed: 

 
 (i)  vs.  1MSFEb 1MSFEa

 (ii)  vs.  2MSFEb 2MSFEa

 (iii)  vs.  1MSFEc 1MSFEa

 (iv)  vs.  2MSFEc 2MSFEa

 (v)  vs.  1MSFEb 1MSFEc

 (vi)  vs.  2MSFEb 2MSFEc

 (vii)  vs.  2GFESMb 2GFESMa

 (viii)  vs.  2GFESMc 2GFESMa

 (ix)  vs.  2GFESMb 2GFESMc

 
In each case, the ranking can be established by taking a ratio of the two criterion 

values, e.g. to compare  vs. , the ratio  is used.  

Use of such ratios cancels out the  and  terms in the 1-step- and 2-steps-ahead 

1MSFEb 1MSFEa 11 MSFE/MSFE ab

2σ 4σ
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criteria respectively.  It is then possible to evaluate the ratios for given values of φ 

and θ.  In this study, a large range of possible ),( θφ  values are considered, initially 

in steps of 0.1 (i.e. φ = -0.9,-0.8,...,0.9; θ = 0,0.1,...,0.9).  The extreme values are 

also considered by including φ = -0.99,0.99; θ = 0.99.  Note that negative values of 

θ are unnecessary as their inclusion would merely generate duplicates of other 

values, since ratio values for ),( θφ −  are identical to those for ),( θφ− . 

 

Taking the  vs.  comparison as an example, the interpretation of 

the ratio values can be made clear: a value greater than 1 implies  > 

, and therefore the true model is preferred (ranked above model B) for 1-

step-ahead forecasts using the MSFE criterion; a value less than 1 leads to the 

reverse conclusion; and a value equal to 1 implies the models have equal MSFEs 1-

step-ahead and thus the conclusion is indeterminate.  The ratio values for the nine 

ranking comparisons listed above are given in tables 5.1-5.9. 

1MSFEb 1MSFEa

1MSFEb

1MSFEa

 

The first point to note regarding the results occurs where the models are ranked 

equally, i.e. a ratio value of 1 is obtained.  This happens in three cases.  Firstly, 

where θ = 0, the true model and the AR(1) model (model B) are identical, and thus 

their forecasts will also be identical in the limit.  This same result occurs for the true 

model and the MA(1) model (model C) when φ = 0.  Thirdly, when φ = θ, a common 

factor exists and the true model reduces to a white noise process, i.e. tty ε= .  The 

estimates α̂  and  in models B and C respectively will therefore tend in probability 

 

β̂
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Table 5.1 
 

AR(1) vs. ARMA(1,1) comparison:  =  11 MSFE/MSFE ab 11 GFESM/GFESM ab

 
 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99

φ = -0.99 1.0000 1.0098 1.0394 1.0889 1.1584 1.2478 1.3572 1.4866 1.6360 1.8055 1.9752 
φ = -0.9 1.0000 1.0084 1.0346 1.0795 1.1438 1.2279 1.3320 1.4561 1.6005 1.7651 1.9306 
φ = -0.8 1.0000 1.0069 1.0294 1.0694 1.1280 1.2061 1.3041 1.4224 1.5611 1.7203 1.8811 
φ = -0.7 1.0000 1.0056 1.0245 1.0596 1.1126 1.1846 1.2765 1.3888 1.5217 1.6754 1.8316 
φ = -0.6 1.0000 1.0043 1.0200 1.0503 1.0976 1.1635 1.2492 1.3554 1.4825 1.6306 1.7821 
φ = -0.5 1.0000 1.0032 1.0158 1.0414 1.0831 1.1429 1.2222 1.3222 1.4433 1.5858 1.7326 
φ = -0.4 1.0000 1.0023 1.0120 1.0332 1.0692 1.1227 1.1957 1.2892 1.4042 1.5411 1.6831 
φ = -0.3 1.0000 1.0015 1.0086 1.0255 1.0560 1.1032 1.1695 1.2565 1.3653 1.4963 1.6336 
φ = -0.2 1.0000 1.0009 1.0057 1.0186 1.0436 1.0845 1.1440 1.2242 1.3265 1.4517 1.5841 
φ = -0.1 1.0000 1.0004 1.0033 1.0125 1.0323 1.0667 1.1192 1.1924 1.2880 1.4070 1.5346 
φ = 0 1.0000 1.0001 1.0015 1.0074 1.0221 1.0500 1.0953 1.1611 1.2498 1.3625 1.4851 
φ = 0.1 1.0000 1.0000 1.0004 1.0035 1.0133 1.0348 1.0726 1.1307 1.2119 1.3180 1.4356 
φ = 0.2 1.0000 1.0001 1.0000 1.0009 1.0064 1.0214 1.0514 1.1012 1.1745 1.2737 1.3861 
φ = 0.3 1.0000 1.0004 1.0004 1.0000 1.0017 1.0105 1.0324 1.0733 1.1379 1.2296 1.3366 
φ = 0.4 1.0000 1.0010 1.0018 1.0011 1.0000 1.0029 1.0164 1.0474 1.1024 1.1858 1.2872 
φ = 0.5 1.0000 1.0018 1.0043 1.0046 1.0021 1.0000 1.0047 1.0248 1.0686 1.1424 1.2377 
φ = 0.6 1.0000 1.0028 1.0080 1.0111 1.0094 1.0038 1.0000 1.0075 1.0376 1.0999 1.1882 
φ = 0.7 1.0000 1.0041 1.0132 1.0215 1.0240 1.0182 1.0069 1.0000 1.0123 1.0589 1.1387 
φ = 0.8 1.0000 1.0058 1.0200 1.0369 1.0492 1.0500 1.0360 1.0132 1.0000 1.0219 1.0893 
φ = 0.9 1.0000 1.0077 1.0288 1.0589 1.0909 1.1143 1.1157 1.0852 1.0320 1.0000 1.0401 
φ = 0.99 1.0000 1.0098 1.0388 1.0864 1.1513 1.2309 1.3183 1.3962 1.4126 1.2343 1.0000 

 

 Note:- 1 denotes indeterminate, >1 denotes ARMA(1,1) preferred, and <1 denotes AR(1) preferred 

 221



Table 5.2 
 

AR(1) vs. ARMA(1,1) comparison:  22 MSFE/MSFE ab

 
 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99

φ = -0.99 1.0000 1.0045 1.0162 1.0331 1.0535 1.0761 1.1000 1.1246 1.1492 1.1736 1.1952 
φ = -0.9 1.0000 1.0041 1.0148 1.0302 1.0486 1.0690 1.0905 1.1123 1.1342 1.1557 1.1746 
φ = -0.8 1.0000 1.0036 1.0133 1.0271 1.0437 1.0619 1.0808 1.0999 1.1188 1.1372 1.1532 
φ = -0.7 1.0000 1.0032 1.0118 1.0244 1.0393 1.0556 1.0722 1.0887 1.1048 1.1202 1.1335 
φ = -0.6 1.0000 1.0027 1.0104 1.0218 1.0354 1.0500 1.0647 1.0790 1.0925 1.1051 1.1157 
φ = -0.5 1.0000 1.0022 1.0089 1.0193 1.0318 1.0452 1.0583 1.0706 1.0819 1.0920 1.1001 
φ = -0.4 1.0000 1.0017 1.0074 1.0168 1.0285 1.0410 1.0530 1.0638 1.0731 1.0810 1.0869 
φ = -0.3 1.0000 1.0012 1.0059 1.0143 1.0253 1.0372 1.0485 1.0584 1.0663 1.0724 1.0764 
φ = -0.2 1.0000 1.0007 1.0043 1.0116 1.0219 1.0336 1.0448 1.0543 1.0614 1.0662 1.0687 
φ = -0.1 1.0000 1.0004 1.0027 1.0087 1.0182 1.0298 1.0414 1.0512 1.0583 1.0625 1.0640 
φ = 0 1.0000 1.0001 1.0014 1.0057 1.0141 1.0256 1.0379 1.0487 1.0566 1.0611 1.0625 
φ = 0.1 1.0000 1.0000 1.0004 1.0030 1.0097 1.0206 1.0336 1.0461 1.0558 1.0618 1.0639 
φ = 0.2 1.0000 1.0001 1.0000 1.0009 1.0052 1.0147 1.0280 1.0425 1.0550 1.0637 1.0680 
φ = 0.3 1.0000 1.0004 1.0004 1.0000 1.0016 1.0083 1.0209 1.0370 1.0530 1.0660 1.0739 
φ = 0.4 1.0000 1.0009 1.0019 1.0011 1.0000 1.0026 1.0124 1.0289 1.0484 1.0668 1.0803 
φ = 0.5 1.0000 1.0016 1.0044 1.0049 1.0023 1.0000 1.0042 1.0181 1.0398 1.0643 1.0853 
φ = 0.6 1.0000 1.0024 1.0078 1.0119 1.0105 1.0042 1.0000 1.0065 1.0266 1.0563 1.0863 
φ = 0.7 1.0000 1.0033 1.0120 1.0222 1.0270 1.0210 1.0077 1.0000 1.0104 1.0408 1.0801 
φ = 0.8 1.0000 1.0041 1.0166 1.0354 1.0533 1.0587 1.0432 1.0151 1.0000 1.0183 1.0637 
φ = 0.9 1.0000 1.0049 1.0210 1.0496 1.0881 1.1260 1.1404 1.1067 1.0375 1.0000 1.0345 
φ = 0.99 1.0000 1.0055 1.0241 1.0597 1.1161 1.1964 1.3015 1.4216 1.4996 1.2979 1.0000 

 

 Note:- 1 denotes indeterminate, >1 denotes ARMA(1,1) preferred, and <1 denotes AR(1) preferred  
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Table 5.3 
 

MA(1) vs. ARMA(1,1) comparison:  =  11 MSFE/MSFE ac 11 GFESM/GFESM ac

 
 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99

φ = -0.99 15.238 17.821 20.607 23.599 26.793 30.193 33.796 37.604 41.616 45.831 49.802 
φ = -0.9 2.3322 2.5660 2.8134 3.0740 3.3478 3.6347 3.9346 4.2474 4.5732 4.9117 5.2274 
φ = -0.8 1.5185 1.6210 1.7291 1.8425 1.9613 2.0851 2.2139 2.3476 2.4862 2.6296 2.7627 
φ = -0.7 1.2476 1.3053 1.3664 1.4307 1.4982 1.5686 1.6417 1.7176 1.7961 1.8772 1.9523 
φ = -0.6 1.1218 1.1563 1.1934 1.2329 1.2745 1.3181 1.3636 1.4109 1.4598 1.5104 1.5572 
φ = -0.5 1.0569 1.0773 1.0998 1.1241 1.1501 1.1775 1.2063 1.2363 1.2675 1.2999 1.3299 
φ = -0.4 1.0234 1.0347 1.0475 1.0617 1.0772 1.0937 1.1113 1.1299 1.1493 1.1695 1.1883 
φ = -0.3 1.0076 1.0129 1.0193 1.0266 1.0349 1.0439 1.0537 1.0641 1.0751 1.0868 1.0977 
φ = -0.2 1.0015 1.0034 1.0058 1.0087 1.0122 1.0161 1.0205 1.0253 1.0304 1.0359 1.0411 
φ = -0.1 1.0001 1.0004 1.0009 1.0015 1.0023 1.0033 1.0044 1.0056 1.0070 1.0085 1.0099 
φ = 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
φ = 0.1 1.0001 1.0000 1.0001 1.0004 1.0010 1.0018 1.0028 1.0042 1.0058 1.0078 1.0099 
φ = 0.2 1.0015 1.0004 1.0000 1.0004 1.0018 1.0043 1.0080 1.0132 1.0202 1.0295 1.0403 
φ = 0.3 1.0076 1.0035 1.0009 1.0000 1.0011 1.0045 1.0110 1.0213 1.0369 1.0604 1.0938 
φ = 0.4 1.0234 1.0139 1.0066 1.0018 1.0000 1.0021 1.0091 1.0230 1.0469 1.0875 1.1550 
φ = 0.5 1.0569 1.0387 1.0233 1.0112 1.0030 1.0000 1.0037 1.0168 1.0440 1.0942 1.1736 
φ = 0.6 1.1218 1.0901 1.0619 1.0376 1.0182 1.0050 1.0000 1.0064 1.0298 1.0800 1.1604 
φ = 0.7 1.2476 1.1939 1.1444 1.1000 1.0614 1.0301 1.0084 1.0000 1.0112 1.0528 1.1287 
φ = 0.8 1.5185 1.4220 1.3319 1.2487 1.1735 1.1077 1.0536 1.0153 1.0000 1.0210 1.0868 
φ = 0.9 2.3322 2.1120 1.9060 1.7145 1.5385 1.3791 1.2387 1.1214 1.0356 1.0000 1.0398 
φ = 0.99 15.238 12.860 10.687 8.7180 6.9544 5.3964 4.0452 2.9032 1.9767 1.2901 1.0000 

 

 Note:- 1 denotes indeterminate, >1 denotes ARMA(1,1) preferred, and <1 denotes MA(1) preferred 
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Table 5.4 
 

MA(1) vs. ARMA(1,1) comparison:  22 MSFE/MSFE ac

 
 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99

φ = -0.99 25.378 27.743 29.867 31.764 33.454 34.956 36.292 37.479 38.536 39.479 40.242 
φ = -0.9 2.9078 3.1316 3.3341 3.5160 3.6783 3.8229 3.9514 4.0656 4.1672 4.2577 4.3307 
φ = -0.8 1.6938 1.7956 1.8889 1.9734 2.0492 2.1169 2.1772 2.2308 2.2784 2.3208 2.3549 
φ = -0.7 1.3160 1.3749 1.4300 1.4804 1.5260 1.5670 1.6036 1.6362 1.6652 1.6909 1.7116 
φ = -0.6 1.1489 1.1850 1.2195 1.2517 1.2813 1.3080 1.3320 1.3534 1.3725 1.3894 1.4031 
φ = -0.5 1.0667 1.0882 1.1096 1.1301 1.1492 1.1667 1.1825 1.1967 1.2094 1.2207 1.2298 
φ = -0.4 1.0263 1.0381 1.0504 1.0626 1.0743 1.0852 1.0952 1.1043 1.1124 1.1197 1.1255 
φ = -0.3 1.0082 1.0136 1.0198 1.0262 1.0325 1.0386 1.0443 1.0495 1.0541 1.0584 1.0618 
φ = -0.2 1.0016 1.0034 1.0057 1.0083 1.0110 1.0137 1.0163 1.0186 1.0208 1.0228 1.0244 
φ = -0.1 1.0001 1.0004 1.0008 1.0014 1.0020 1.0027 1.0033 1.0039 1.0045 1.0051 1.0055 
φ = 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
φ = 0.1 1.0001 1.0000 1.0001 1.0004 1.0008 1.0014 1.0020 1.0027 1.0033 1.0039 1.0045 
φ = 0.2 1.0016 1.0004 1.0000 1.0004 1.0016 1.0034 1.0057 1.0083 1.0110 1.0137 1.0160 
φ = 0.3 1.0082 1.0038 1.0010 1.0000 1.0010 1.0038 1.0082 1.0136 1.0198 1.0262 1.0319 
φ = 0.4 1.0263 1.0157 1.0073 1.0019 1.0000 1.0019 1.0073 1.0157 1.0263 1.0381 1.0492 
φ = 0.5 1.0667 1.0460 1.0275 1.0128 1.0033 1.0000 1.0033 1.0128 1.0275 1.0460 1.0645 
φ = 0.6 1.1489 1.1125 1.0776 1.0464 1.0216 1.0056 1.0000 1.0056 1.0216 1.0464 1.0743 
φ = 0.7 1.3160 1.2543 1.1922 1.1325 1.0793 1.0370 1.0095 1.0000 1.0095 1.0370 1.0745 
φ = 0.8 1.6938 1.5846 1.4706 1.3556 1.2452 1.1468 1.0684 1.0176 1.0000 1.0176 1.0619 
φ = 0.9 2.9078 2.6637 2.4020 2.1285 1.8526 1.5880 1.3520 1.1640 1.0422 1.0000 1.0343 
φ = 0.99 25.378 22.769 19.926 16.886 13.717 10.536 7.5021 4.8207 2.7160 1.3957 1.0000 

 

 Note:- 1 denotes indeterminate, >1 denotes ARMA(1,1) preferred, and <1 denotes MA(1) preferred  
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Table 5.5 
 

AR(1) vs. MA(1) comparison:  =  11 MSFE/MSFE cb 11 GFESM/GFESM cb

 
 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99

φ = -0.99 0.0656 0.0567 0.0504 0.0461 0.0432 0.0413 0.0402 0.0395 0.0393 0.0394 0.0397 
φ = -0.9 0.4288 0.3930 0.3677 0.3512 0.3417 0.3378 0.3385 0.3428 0.3500 0.3594 0.3693 
φ = -0.8 0.6585 0.6212 0.5954 0.5804 0.5751 0.5784 0.5891 0.6059 0.6279 0.6542 0.6809 
φ = -0.7 0.8015 0.7704 0.7498 0.7406 0.7426 0.7552 0.7776 0.8086 0.8472 0.8925 0.9382 
φ = -0.6 0.8915 0.8686 0.8547 0.8519 0.8611 0.8827 0.9161 0.9607 1.0155 1.0796 1.1444 
φ = -0.5 0.9462 0.9312 0.9236 0.9264 0.9417 0.9706 1.0133 1.0695 1.1386 1.2200 1.3028 
φ = -0.4 0.9771 0.9687 0.9661 0.9731 0.9926 1.0265 1.0759 1.1410 1.2218 1.3177 1.4163 
φ = -0.3 0.9925 0.9888 0.9896 0.9989 1.0204 1.0568 1.1100 1.1809 1.2699 1.3769 1.4883 
φ = -0.2 0.9985 0.9975 0.9999 1.0098 1.0310 1.0673 1.1210 1.1941 1.2874 1.4014 1.5216 
φ = -0.1 0.9999 1.0000 1.0025 1.0110 1.0299 1.0632 1.1143 1.1858 1.2791 1.3952 1.5195 
φ = 0 1.0000 1.0001 1.0015 1.0074 1.0221 1.0500 1.0953 1.1611 1.2498 1.3625 1.4851 
φ = 0.1 0.9999 1.0000 1.0003 1.0031 1.0124 1.0330 1.0696 1.1260 1.2049 1.3079 1.4216 
φ = 0.2 0.9985 0.9997 1.0000 1.0005 1.0046 1.0171 1.0431 1.0869 1.1512 1.2372 1.3325 
φ = 0.3 0.9925 0.9969 0.9995 1.0000 1.0007 1.0060 1.0212 1.0509 1.0974 1.1595 1.2220 
φ = 0.4 0.9771 0.9872 0.9953 0.9993 1.0000 1.0009 1.0072 1.0239 1.0530 1.0904 1.1144 
φ = 0.5 0.9462 0.9644 0.9814 0.9935 0.9991 1.0000 1.0010 1.0079 1.0235 1.0440 1.0546 
φ = 0.6 0.8915 0.9199 0.9493 0.9744 0.9913 0.9988 1.0000 1.0011 1.0076 1.0184 1.0239 
φ = 0.7 0.8015 0.8411 0.8853 0.9287 0.9648 0.9884 0.9985 1.0000 1.0011 1.0058 1.0089 
φ = 0.8 0.6585 0.7073 0.7658 0.8303 0.8941 0.9479 0.9833 0.9980 1.0000 1.0009 1.0024 
φ = 0.9 0.4288 0.4771 0.5398 0.6176 0.7091 0.8080 0.9007 0.9678 0.9965 1.0000 1.0003 
φ = 0.99 0.0656 0.0785 0.0972 0.1246 0.1656 0.2281 0.3259 0.4809 0.7146 0.9568 1.0000 

 

 Note:- 1 denotes indeterminate, >1 denotes MA(1) preferred, and <1 denotes AR(1) preferred 
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Table 5.6 
 

AR(1) vs. MA(1) comparison:  22 MSFE/MSFE cb

 
 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99

φ = -0.99 0.0394 0.0362 0.0340 0.0325 0.0315 0.0308 0.0303 0.0300 0.0298 0.0297 0.0297 
φ = -0.9 0.3439 0.3206 0.3044 0.2930 0.2851 0.2796 0.2760 0.2736 0.2722 0.2714 0.2712 
φ = -0.8 0.5904 0.5589 0.5364 0.5205 0.5093 0.5016 0.4964 0.4931 0.4910 0.4900 0.4897 
φ = -0.7 0.7599 0.7296 0.7076 0.6920 0.6811 0.6736 0.6686 0.6654 0.6635 0.6625 0.6622 
φ = -0.6 0.8704 0.8462 0.8285 0.8163 0.8081 0.8028 0.7994 0.7972 0.7960 0.7954 0.7952 
φ = -0.5 0.9375 0.9209 0.9092 0.9020 0.8979 0.8959 0.8950 0.8946 0.8946 0.8945 0.8945 
φ = -0.4 0.9744 0.9649 0.9591 0.9569 0.9574 0.9592 0.9614 0.9633 0.9647 0.9655 0.9657 
φ = -0.3 0.9919 0.9877 0.9864 0.9884 0.9930 0.9987 1.0041 1.0085 1.0116 1.0132 1.0137 
φ = -0.2 0.9984 0.9973 0.9985 1.0032 1.0108 1.0196 1.0281 1.0350 1.0398 1.0424 1.0432 
φ = -0.1 0.9999 1.0000 1.0019 1.0073 1.0162 1.0271 1.0380 1.0471 1.0535 1.0571 1.0582 
φ = 0 1.0000 1.0001 1.0014 1.0057 1.0141 1.0256 1.0379 1.0487 1.0566 1.0611 1.0625 
φ = 0.1 0.9999 1.0000 1.0003 1.0026 1.0088 1.0191 1.0315 1.0433 1.0523 1.0576 1.0592 
φ = 0.2 0.9984 0.9997 1.0000 1.0005 1.0036 1.0112 1.0222 1.0339 1.0435 1.0494 1.0512 
φ = 0.3 0.9919 0.9966 0.9995 1.0000 1.0006 1.0045 1.0126 1.0231 1.0326 1.0388 1.0407 
φ = 0.4 0.9744 0.9854 0.9946 0.9992 1.0000 1.0007 1.0050 1.0129 1.0216 1.0277 1.0297 
φ = 0.5 0.9375 0.9576 0.9775 0.9922 0.9990 1.0000 1.0009 1.0052 1.0119 1.0175 1.0195 
φ = 0.6 0.8704 0.9010 0.9353 0.9670 0.9891 0.9986 1.0000 1.0009 1.0048 1.0094 1.0112 
φ = 0.7 0.7599 0.7998 0.8489 0.9026 0.9515 0.9846 0.9982 1.0000 1.0009 1.0037 1.0052 
φ = 0.8 0.5904 0.6337 0.6913 0.7638 0.8459 0.9232 0.9764 0.9975 1.0000 1.0007 1.0017 
φ = 0.9 0.3439 0.3773 0.4251 0.4931 0.5874 0.7091 0.8435 0.9508 0.9954 1.0000 1.0002 
φ = 0.99 0.0394 0.0442 0.0514 0.0628 0.0814 0.1136 0.1735 0.2949 0.5521 0.9299 1.0000 

 

 Note:- 1 denotes indeterminate, >1 denotes MA(1) preferred, and <1 denotes AR(1) preferred  
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Table 5.7 
 

AR(1) vs. ARMA(1,1) comparison:  22 GFESM/GFESM ab

 
 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99

φ = -0.99 1.0000 1.0101 1.0416 1.0981 1.1856 1.3125 1.4896 1.7300 2.0495 2.4660 2.9406 
φ = -0.9 1.0000 1.0098 1.0408 1.0966 1.1832 1.3091 1.4849 1.7240 2.0418 2.4563 2.9289 
φ = -0.8 1.0000 1.0091 1.0385 1.0923 1.1764 1.2994 1.4717 1.7067 2.0197 2.4286 2.8955 
φ = -0.7 1.0000 1.0081 1.0351 1.0856 1.1659 1.2842 1.4511 1.6796 1.9850 2.3852 2.8432 
φ = -0.6 1.0000 1.0068 1.0308 1.0772 1.1523 1.2645 1.4241 1.6441 1.9396 2.3283 2.7745 
φ = -0.5 1.0000 1.0055 1.0259 1.0673 1.1363 1.2410 1.3919 1.6015 1.8849 2.2598 2.6918 
φ = -0.4 1.0000 1.0041 1.0207 1.0565 1.1184 1.2146 1.3553 1.5530 1.8227 2.1817 2.5976 
φ = -0.3 1.0000 1.0028 1.0156 1.0453 1.0994 1.1861 1.3155 1.5000 1.7543 2.0958 2.4938 
φ = -0.2 1.0000 1.0016 1.0107 1.0342 1.0799 1.1562 1.2733 1.4434 1.6812 2.0036 2.3824 
φ = -0.1 1.0000 1.0008 1.0064 1.0237 1.0606 1.1259 1.2298 1.3845 1.6045 1.9068 2.2654 
φ = 0 1.0000 1.0002 1.0030 1.0144 1.0424 1.0961 1.1860 1.3244 1.5257 1.8069 2.1444 
φ = 0.1 1.0000 1.0000 1.0008 1.0069 1.0260 1.0678 1.1430 1.2641 1.4457 1.7050 2.0209 
φ = 0.2 1.0000 1.0002 1.0000 1.0018 1.0127 1.0422 1.1020 1.2049 1.3660 1.6025 1.8963 
φ = 0.3 1.0000 1.0008 1.0009 1.0000 1.0035 1.0209 1.0645 1.1482 1.2875 1.5005 1.7719 
φ = 0.4 1.0000 1.0018 1.0036 1.0021 1.0000 1.0059 1.0327 1.0957 1.2118 1.4001 1.6488 
φ = 0.5 1.0000 1.0032 1.0082 1.0089 1.0042 1.0000 1.0095 1.0499 1.1405 1.3024 1.5280 
φ = 0.6 1.0000 1.0048 1.0146 1.0212 1.0185 1.0077 1.0000 1.0151 1.0764 1.2087 1.4103 
φ = 0.7 1.0000 1.0066 1.0224 1.0390 1.0459 1.0359 1.0138 1.0000 1.0247 1.1210 1.2962 
φ = 0.8 1.0000 1.0083 1.0308 1.0616 1.0889 1.0961 1.0717 1.0266 1.0000 1.0442 1.1865 
φ = 0.9 1.0000 1.0096 1.0382 1.0851 1.1453 1.2026 1.2236 1.1724 1.0648 1.0000 1.0817 
φ = 0.99 1.0000 1.0101 1.0416 1.0979 1.1849 1.3099 1.4795 1.6863 1.8366 1.5113 1.0000 

 

 Note:- 1 denotes indeterminate, >1 denotes ARMA(1,1) preferred, and <1 denotes AR(1) preferred 
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Table 5.8 
 

MA(1) vs. ARMA(1,1) comparison:  22 GFESM/GFESM ac

 
 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99

φ = -0.99 78.416 92.020 104.82 115.95 124.44 129.20 129.01 122.54 108.32 84.786 53.128 
φ = -0.9 4.1503 4.6556 5.1383 5.5779 5.9519 6.2353 6.4009 6.4194 6.2590 5.8857 5.3350 
φ = -0.8 2.0582 2.2444 2.4242 2.5914 2.7393 2.8607 2.9477 2.9921 2.9849 2.9168 2.7950 
φ = -0.7 1.4789 1.5777 1.6743 1.7656 1.8484 1.9193 1.9746 2.0105 2.0230 2.0079 1.9670 
φ = -0.6 1.2309 1.2893 1.3475 1.4036 1.4555 1.5012 1.5387 1.5659 1.5804 1.5801 1.5651 
φ = -0.5 1.1076 1.1426 1.1784 1.2137 1.2471 1.2773 1.3030 1.3228 1.3354 1.3394 1.3344 
φ = -0.4 1.0446 1.0644 1.0855 1.1069 1.1277 1.1470 1.1640 1.1777 1.1873 1.1919 1.1909 
φ = -0.3 1.0147 1.0243 1.0352 1.0469 1.0586 1.0699 1.0801 1.0886 1.0950 1.0986 1.0990 
φ = -0.2 1.0030 1.0065 1.0108 1.0157 1.0210 1.0263 1.0313 1.0356 1.0390 1.0411 1.0417 
φ = -0.1 1.0002 1.0008 1.0016 1.0028 1.0041 1.0055 1.0069 1.0081 1.0092 1.0099 1.0101 
φ = 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
φ = 0.1 1.0002 1.0000 1.0002 1.0008 1.0018 1.0032 1.0049 1.0066 1.0083 1.0096 1.0101 
φ = 0.2 1.0030 1.0008 1.0000 1.0009 1.0036 1.0082 1.0146 1.0226 1.0312 1.0389 1.0418 
φ = 0.3 1.0147 1.0070 1.0019 1.0000 1.0021 1.0089 1.0210 1.0390 1.0628 1.0900 1.1023 
φ = 0.4 1.0446 1.0271 1.0130 1.0035 1.0000 1.0041 1.0180 1.0444 1.0875 1.1549 1.2675 
φ = 0.5 1.1076 1.0748 1.0457 1.0221 1.0061 1.0000 1.0074 1.0334 1.0867 1.1860 1.3560 
φ = 0.6 1.2309 1.1742 1.1213 1.0745 1.0363 1.0101 1.0000 1.0128 1.0598 1.1633 1.3406 
φ = 0.7 1.4789 1.3811 1.2871 1.2000 1.1232 1.0604 1.0169 1.0000 1.0224 1.1078 1.2727 
φ = 0.8 2.0582 1.8713 1.6892 1.5168 1.3590 1.2211 1.1089 1.0307 1.0000 1.0423 1.1809 
φ = 0.9 4.1503 3.6406 3.1424 2.6697 2.2346 1.8473 1.5172 1.2543 1.0723 1.0000 1.0812 
φ = 0.99 78.416 64.740 51.610 39.522 28.852 19.858 12.678 7.3310 3.7226 1.6582 1.0000 

 

 Note:- 1 denotes indeterminate, >1 denotes ARMA(1,1) preferred, and <1 denotes MA(1) preferred 
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 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99
φ = -0.99 0.0128 0.0110 0.0099 0.0095 0.0095 0.0102 0.0115 0.0141 0.0189 0.0291 0.0553 
φ = -0.9 0.2409 0.2169 0.2026 0.1966 0.1988 0.2099 0.2320 0.2686 0.3262 0.4173 0.5490 
φ = -0.8 0.4859 0.4496 0.4284 0.4215 0.4295 0.4542 0.4993 0.5704 0.6766 0.8326 1.0360 
φ = -0.7 0.6762 0.6390 0.6182 0.6149 0.6308 0.6691 0.7349 0.8354 0.9812 1.1879 1.4455 
φ = -0.6 0.8124 0.7809 0.7649 0.7675 0.7917 0.8423 0.9255 1.0500 1.2272 1.4735 1.7727 
φ = -0.5 0.9029 0.8800 0.8706 0.8794 0.9112 0.9716 1.0682 1.2107 1.4115 1.6872 2.0172 
φ = -0.4 0.9573 0.9433 0.9404 0.9545 0.9918 1.0589 1.1644 1.3187 1.5352 1.8305 2.1812 
φ = -0.3 0.9855 0.9790 0.9810 0.9985 1.0385 1.1086 1.2180 1.3779 1.6021 1.9076 2.2690 
φ = -0.2 0.9970 0.9952 0.9999 1.0182 1.0577 1.1266 1.2347 1.3938 1.6181 1.9245 2.2871 
φ = -0.1 0.9998 1.0000 1.0048 1.0209 1.0563 1.1198 1.2215 1.3734 1.5900 1.8882 2.2427 
φ = 0 1.0000 1.0002 1.0030 1.0144 1.0424 1.0961 1.1860 1.3244 1.5257 1.8069 2.1444 
φ = 0.1 0.9998 1.0000 1.0006 1.0061 1.0241 1.0644 1.1375 1.2558 1.4338 1.6888 2.0006 
φ = 0.2 0.9970 0.9994 1.0000 1.0010 1.0091 1.0338 1.0861 1.1783 1.3246 1.5425 1.8202 
φ = 0.3 0.9855 0.9939 0.9990 1.0000 1.0014 1.0119 1.0426 1.1051 1.2114 1.3765 1.6075 
φ = 0.4 0.9573 0.9754 0.9907 0.9986 1.0000 1.0017 1.0144 1.0491 1.1143 1.2122 1.3008 
φ = 0.5 0.9029 0.9334 0.9641 0.9871 0.9981 1.0000 1.0020 1.0160 1.0495 1.0981 1.1269 
φ = 0.6 0.8124 0.8558 0.9048 0.9503 0.9828 0.9976 1.0000 1.0023 1.0156 1.0390 1.0519 
φ = 0.7 0.6762 0.7289 0.7944 0.8658 0.9312 0.9769 0.9970 1.0000 1.0023 1.0120 1.0185 
φ = 0.8 0.4859 0.5388 0.6102 0.6999 0.8012 0.8976 0.9664 0.9960 1.0000 1.0018 1.0048 
φ = 0.9 0.2409 0.2773 0.3304 0.4064 0.5126 0.6510 0.8064 0.9348 0.9930 1.0000 1.0005 
φ = 0.99 0.0128 0.0156 0.0202 0.0278 0.0411 0.0660 0.1167 0.2300 0.4934 0.9114 1.0000 
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 Table 5.9 
 

AR(1) vs. MA(1) comparison:  22 GFESM/GFESM cb

 

 

 Note:- 1 denotes indeterminate, >1 denotes MA(1) preferred, and <1 denotes AR(1) preferred 
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1GFESM 1MSFE 1

1GFESM 1MSFE 2

1GFESM

2GFESM

),(

The most interesting inference is found by studying tables 5.5 and 5.9.  Table 5.5 

contains the results of the comparison between the two misspecified models by the 

 criterion (= ).  Table 5.9 contains results of the GFESM  

comparison of the same models.  The expected result occurs that the AR(1) model is 

preferred for some values of φ and θ, and the MA(1) model preferred for others.  In 

general, this is consistent across the forecast horizon. However, there are a few cases 

where this does not hold.  These cases (boxed and highlighted in the tables) 

represent values of φ and θ for which  ranks the AR(1) model as best, but 

 concludes that the MA(1) model should be ranked first.  Tables 5.10 and 

5.12 magnify the 

 

Examination of tables 5.1-5.4 confirms that when the true model is compared with a 

misspecified alternative, the true model always has the lower MSFE.  This is 

illustrated by the ratio values all exceeding 1 (with the exception of the special cases 

noted above where the models are the same and the ratio equals 1).  The same 

observation can be made for the GFESM criterion using tables 5.7 and 5.8 (tables 

5.1 and 5.3 are the  comparisons as  = GFESM ) with the true 

model ranked first in all but the special cases, illustrating the proof of this result 

contained in sub-section 5.3.1. 

 

to zero and the theoretical result is then that all three models are white noise and 

have the same forecasts asymptotically.  In each of these three cases, forecast 

performance will be identical across the models by both criteria, and the ratio results 

will clearly be 1. 

θφ  ranges around which this phenomenon occurs, and a clear



Table 5.10 
 

AR(1) vs. MA(1) comparison:  =  (region magnified) 11 MSFE/MSFE cb 11 GFESM/GFESM cb

 
φ θ 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 
-0.84 0.491 0.492 0.493 0.494 0.496 0.497 0.499 0.501 0.504 0.506 0.509 0.511 0.514 0.518 0.521 0.524 0.528 0.532 0.535 0.539 0.543 0.548 0.552 0.556 0.561 
-0.82 0.536 0.537 0.539 0.540 0.542 0.544 0.547 0.549 0.552 0.555 0.559 0.562 0.566 0.569 0.573 0.577 0.582 0.586 0.591 0.595 0.600 0.605 0.610 0.615 0.620 
-0.8 0.578 0.580 0.582 0.584 0.586 0.589 0.592 0.595 0.599 0.602 0.606 0.610 0.614 0.619 0.623 0.628 0.633 0.638 0.643 0.649 0.654 0.660 0.666 0.672 0.678 
-0.78 0.618 0.620 0.623 0.625 0.628 0.631 0.635 0.638 0.642 0.647 0.651 0.656 0.660 0.665 0.671 0.676 0.682 0.688 0.694 0.700 0.706 0.713 0.719 0.726 0.733 
-0.76 0.656 0.658 0.661 0.664 0.668 0.671 0.675 0.679 0.684 0.689 0.694 0.699 0.704 0.710 0.716 0.722 0.729 0.735 0.742 0.749 0.756 0.763 0.771 0.778 0.786 
-0.74 0.691 0.694 0.697 0.701 0.705 0.709 0.713 0.718 0.723 0.728 0.734 0.740 0.746 0.753 0.759 0.766 0.773 0.780 0.788 0.796 0.804 0.812 0.820 0.829 0.837 
-0.72 0.724 0.728 0.731 0.735 0.740 0.744 0.749 0.755 0.760 0.766 0.772 0.779 0.786 0.793 0.800 0.808 0.816 0.824 0.832 0.840 0.849 0.858 0.867 0.877 0.886 
-0.7 0.755 0.759 0.763 0.768 0.772 0.778 0.783 0.789 0.795 0.802 0.809 0.816 0.823 0.831 0.839 0.847 0.856 0.865 0.874 0.883 0.893 0.902 0.912 0.923 0.933 
-0.68 0.784 0.789 0.793 0.798 0.803 0.809 0.815 0.822 0.828 0.835 0.843 0.851 0.859 0.867 0.876 0.885 0.894 0.904 0.914 0.924 0.934 0.945 0.955 0.966 0.978 
-0.66 0.812 0.816 0.821 0.827 0.832 0.838 0.845 0.852 0.859 0.867 0.875 0.884 0.892 0.901 0.911 0.920 0.930 0.941 0.951 0.962 0.973 0.985 0.996 1.008 1.020 
-0.64 0.837 0.842 0.847 0.853 0.859 0.866 0.873 0.881 0.889 0.897 0.905 0.914 0.924 0.934 0.944 0.954 0.965 0.976 0.987 0.999 1.011 1.023 1.035 1.048 1.061 
-0.62 0.861 0.866 0.872 0.878 0.885 0.892 0.900 0.908 0.916 0.925 0.934 0.944 0.954 0.964 0.975 0.986 0.997 1.009 1.021 1.033 1.046 1.059 1.073 1.086 1.100 
-0.6 0.883 0.888 0.895 0.901 0.909 0.916 0.924 0.933 0.942 0.951 0.961 0.971 0.981 0.992 1.004 1.016 1.028 1.040 1.053 1.066 1.080 1.094 1.108 1.122 1.137 
-0.58 0.903 0.909 0.916 0.923 0.931 0.939 0.947 0.956 0.966 0.975 0.986 0.996 1.008 1.019 1.031 1.044 1.056 1.070 1.083 1.097 1.111 1.126 1.141 1.156 1.172 
-0.56 0.922 0.929 0.936 0.943 0.951 0.960 0.969 0.978 0.988 0.998 1.009 1.020 1.032 1.044 1.057 1.070 1.083 1.097 1.111 1.126 1.141 1.157 1.172 1.189 1.205 
-0.54 0.940 0.947 0.954 0.962 0.970 0.979 0.988 0.998 1.009 1.019 1.031 1.043 1.055 1.068 1.081 1.095 1.109 1.123 1.138 1.153 1.169 1.185 1.202 1.219 1.236 
-0.52 0.956 0.963 0.971 0.979 0.988 0.997 1.007 1.017 1.028 1.039 1.051 1.063 1.076 1.089 1.103 1.117 1.132 1.147 1.163 1.179 1.195 1.212 1.230 1.247 1.266 
-0.5 0.971 0.978 0.986 0.995 1.004 1.013 1.023 1.034 1.045 1.057 1.070 1.082 1.096 1.110 1.124 1.139 1.154 1.170 1.186 1.203 1.220 1.238 1.256 1.274 1.293 
-0.48 0.984 0.992 1.000 1.009 1.018 1.028 1.039 1.050 1.062 1.074 1.087 1.100 1.114 1.128 1.143 1.158 1.174 1.191 1.208 1.225 1.243 1.261 1.280 1.299 1.319 
-0.46 0.996 1.004 1.013 1.022 1.032 1.042 1.053 1.064 1.077 1.089 1.102 1.116 1.130 1.145 1.161 1.176 1.193 1.210 1.227 1.245 1.264 1.283 1.303 1.323 1.343 

 

Note:- 1 denotes indeterminate, >1 denotes MA(1) preferred, and <1 denotes AR(1) preferred 
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Table 5.11 
 

AR(1) vs. MA(1) comparison:  (region magnified) 22 MSFE/MSFE cb

 
φ θ 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 
-0.84 0.419 0.418 0.417 0.416 0.415 0.414 0.414 0.413 0.412 0.412 0.411 0.411 0.410 0.410 0.410 0.409 0.409 0.409 0.409 0.409 0.409 0.408 0.408 0.408 0.408 
-0.82 0.462 0.460 0.459 0.458 0.457 0.456 0.456 0.455 0.454 0.454 0.453 0.453 0.452 0.452 0.452 0.451 0.451 0.451 0.451 0.450 0.450 0.450 0.450 0.450 0.450 
-0.8 0.502 0.500 0.499 0.498 0.497 0.496 0.496 0.495 0.494 0.494 0.493 0.493 0.492 0.492 0.491 0.491 0.491 0.491 0.490 0.490 0.490 0.490 0.490 0.490 0.490 
-0.78 0.540 0.539 0.537 0.536 0.535 0.535 0.534 0.533 0.532 0.532 0.531 0.531 0.530 0.530 0.529 0.529 0.529 0.529 0.528 0.528 0.528 0.528 0.528 0.528 0.528 
-0.76 0.576 0.575 0.574 0.573 0.572 0.571 0.570 0.569 0.569 0.568 0.567 0.567 0.566 0.566 0.566 0.565 0.565 0.565 0.565 0.564 0.564 0.564 0.564 0.564 0.564 
-0.74 0.610 0.609 0.608 0.607 0.606 0.605 0.604 0.604 0.603 0.602 0.602 0.601 0.601 0.600 0.600 0.600 0.599 0.599 0.599 0.599 0.599 0.599 0.598 0.598 0.598 
-0.72 0.643 0.642 0.641 0.640 0.639 0.638 0.637 0.636 0.636 0.635 0.634 0.634 0.634 0.633 0.633 0.632 0.632 0.632 0.632 0.632 0.631 0.631 0.631 0.631 0.631 
-0.7 0.674 0.672 0.671 0.670 0.670 0.669 0.668 0.667 0.667 0.666 0.665 0.665 0.665 0.664 0.664 0.664 0.663 0.663 0.663 0.663 0.663 0.662 0.662 0.662 0.662 
-0.68 0.703 0.702 0.701 0.700 0.699 0.698 0.697 0.697 0.696 0.695 0.695 0.694 0.694 0.694 0.693 0.693 0.693 0.693 0.692 0.692 0.692 0.692 0.692 0.692 0.692 
-0.66 0.730 0.729 0.728 0.727 0.726 0.726 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.722 0.721 0.721 0.721 0.721 0.720 0.720 0.720 0.720 0.720 0.720 0.720 
-0.64 0.756 0.755 0.754 0.753 0.752 0.752 0.751 0.750 0.750 0.749 0.749 0.749 0.748 0.748 0.748 0.747 0.747 0.747 0.747 0.747 0.747 0.747 0.746 0.746 0.746 
-0.62 0.780 0.779 0.778 0.778 0.777 0.776 0.776 0.775 0.775 0.774 0.774 0.774 0.773 0.773 0.773 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 
-0.6 0.803 0.802 0.801 0.801 0.800 0.799 0.799 0.798 0.798 0.798 0.797 0.797 0.797 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.795 0.795 0.795 0.795 0.795 
-0.58 0.824 0.823 0.823 0.822 0.822 0.821 0.821 0.820 0.820 0.820 0.819 0.819 0.819 0.819 0.818 0.818 0.818 0.818 0.818 0.818 0.818 0.818 0.818 0.818 0.818 
-0.56 0.844 0.843 0.843 0.842 0.842 0.842 0.841 0.841 0.841 0.840 0.840 0.840 0.840 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 
-0.54 0.863 0.862 0.862 0.861 0.861 0.861 0.860 0.860 0.860 0.860 0.859 0.859 0.859 0.859 0.859 0.859 0.859 0.859 0.859 0.859 0.859 0.859 0.859 0.859 0.859 
-0.52 0.880 0.880 0.879 0.879 0.879 0.878 0.878 0.878 0.878 0.878 0.878 0.878 0.878 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877 
-0.5 0.896 0.896 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 
-0.48 0.911 0.911 0.911 0.911 0.910 0.910 0.910 0.910 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 
-0.46 0.924 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 

 

Note:- 1 denotes indeterminate, >1 denotes MA(1) preferred, and <1 denotes AR(1) preferred  
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Table 5.12 
 

AR(1) vs. MA(1) comparison:  (region magnified) 22 GFESM/GFESM cb

 
φ θ 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 
-0.84 0.359 0.364 0.371 0.378 0.386 0.395 0.404 0.415 0.427 0.439 0.453 0.468 0.484 0.501 0.520 0.541 0.563 0.587 0.613 0.642 0.673 0.706 0.743 0.783 0.827 
-0.82 0.407 0.414 0.421 0.429 0.438 0.448 0.458 0.470 0.483 0.497 0.512 0.529 0.547 0.566 0.587 0.610 0.634 0.661 0.689 0.720 0.754 0.790 0.830 0.873 0.920 
-0.8 0.454 0.462 0.470 0.479 0.488 0.499 0.511 0.524 0.538 0.554 0.570 0.589 0.608 0.629 0.652 0.677 0.703 0.732 0.763 0.796 0.833 0.872 0.914 0.960 1.010 
-0.78 0.500 0.508 0.517 0.527 0.538 0.550 0.563 0.577 0.592 0.609 0.627 0.647 0.668 0.691 0.715 0.742 0.771 0.801 0.835 0.870 0.909 0.951 0.996 1.044 1.096 
-0.76 0.545 0.553 0.563 0.574 0.586 0.598 0.613 0.628 0.644 0.662 0.682 0.703 0.726 0.750 0.777 0.805 0.836 0.868 0.904 0.942 0.983 1.027 1.074 1.125 1.180 
-0.74 0.588 0.597 0.608 0.619 0.632 0.646 0.661 0.677 0.695 0.714 0.735 0.758 0.782 0.808 0.836 0.866 0.898 0.933 0.971 1.011 1.054 1.100 1.150 1.203 1.261 
-0.72 0.629 0.639 0.651 0.663 0.676 0.691 0.707 0.725 0.744 0.764 0.786 0.810 0.836 0.863 0.893 0.925 0.959 0.996 1.035 1.077 1.122 1.171 1.223 1.279 1.338 
-0.7 0.669 0.680 0.692 0.705 0.719 0.735 0.752 0.770 0.790 0.812 0.835 0.861 0.888 0.917 0.948 0.981 1.017 1.056 1.097 1.141 1.188 1.238 1.293 1.351 1.413 
-0.68 0.707 0.719 0.731 0.745 0.760 0.777 0.795 0.814 0.835 0.858 0.883 0.909 0.937 0.968 1.000 1.035 1.073 1.113 1.156 1.202 1.251 1.303 1.359 1.419 1.484 
-0.66 0.744 0.756 0.769 0.784 0.800 0.817 0.836 0.856 0.878 0.902 0.928 0.955 0.985 1.017 1.051 1.087 1.126 1.168 1.212 1.260 1.311 1.365 1.423 1.485 1.552 
-0.64 0.778 0.791 0.805 0.820 0.837 0.855 0.875 0.896 0.919 0.944 0.971 0.999 1.030 1.063 1.098 1.136 1.177 1.220 1.266 1.315 1.368 1.424 1.484 1.548 1.616 
-0.62 0.811 0.825 0.839 0.855 0.872 0.891 0.912 0.934 0.958 0.984 1.011 1.041 1.073 1.107 1.144 1.183 1.225 1.269 1.317 1.368 1.422 1.480 1.542 1.607 1.677 
-0.6 0.842 0.856 0.871 0.888 0.906 0.926 0.947 0.970 0.995 1.021 1.050 1.081 1.114 1.149 1.187 1.227 1.270 1.316 1.366 1.418 1.474 1.533 1.596 1.664 1.735 
-0.58 0.872 0.886 0.902 0.919 0.938 0.958 0.980 1.004 1.029 1.057 1.086 1.118 1.152 1.189 1.228 1.269 1.313 1.361 1.411 1.465 1.522 1.583 1.648 1.717 1.790 
-0.56 0.899 0.914 0.930 0.948 0.967 0.988 1.011 1.036 1.062 1.090 1.121 1.153 1.188 1.226 1.266 1.308 1.354 1.402 1.454 1.509 1.568 1.630 1.696 1.766 1.841 
-0.54 0.925 0.940 0.957 0.976 0.995 1.017 1.040 1.065 1.092 1.122 1.153 1.186 1.222 1.261 1.302 1.345 1.392 1.441 1.494 1.551 1.610 1.674 1.741 1.813 1.889 
-0.52 0.949 0.965 0.982 1.001 1.021 1.044 1.067 1.093 1.121 1.151 1.183 1.217 1.254 1.293 1.335 1.380 1.427 1.478 1.532 1.589 1.650 1.715 1.784 1.857 1.934 
-0.5 0.972 0.988 1.005 1.025 1.046 1.068 1.093 1.119 1.147 1.178 1.211 1.246 1.283 1.323 1.366 1.412 1.460 1.512 1.567 1.625 1.687 1.753 1.823 1.897 1.976 
-0.48 0.992 1.009 1.027 1.047 1.068 1.091 1.116 1.143 1.172 1.203 1.236 1.272 1.310 1.351 1.395 1.441 1.490 1.543 1.599 1.658 1.721 1.788 1.859 1.935 2.015 
-0.46 1.011 1.028 1.047 1.067 1.089 1.112 1.138 1.165 1.194 1.226 1.260 1.296 1.335 1.377 1.421 1.468 1.518 1.572 1.628 1.689 1.753 1.821 1.893 1.969 2.050 

 

Note:- 1 denotes indeterminate, >1 denotes MA(1) preferred, and <1 denotes AR(1) preferred 

 



zone is visible where this switching between model preferences by the GFESM  

criterion occurs.  The zone is where φ and θ are of opposite sign and, approximately, 

23.046.0 +θ  < φ  < 11.071.0 +θ .  The occurrence of this GFESM ranking 

reversal between misspecified models when different maximum forecast horizons 

are employed adds weight to the criticism of GFESM.  The argument against the 

Clements & Hendry emphasis on a mainly 1-step-ahead focus is reinforced (given 

that the true model is normally unknown in practice and misspecification is to be 

expected), with GFESM failing to give an unambiguous invariant ranking across all 

forecast horizons. 

 

Furthermore, examination of these findings alongside table 5.6 - the results of the 

AR(1) vs. MA(1) comparison using the 2-steps-ahead MSFE criterion - shows that 

in each of the cases where GFESM has a rank reversal, the MSFE criterion does not 

switch between horizons.  The same is true in table 5.11 where the region is 

magnified consistent with tables 5.10 and 5.12.  This peculiar behaviour can then be 

summarised in the following way.  For a range of ),( θφ  values, MSFE concludes 

that the AR(1) model is preferable in terms of forecasting performance to the MA(1) 

model over both 1-step- and 2-steps-ahead forecast horizons.  In contrast, whilst 

 obviously gives this inference (since it is equal to ),  

(which takes both the 1-step- and 2-steps-ahead forecasts into account) concludes 

that the MA(1) model should be preferred to the AR(1) model.  This unusual 

characteristic of GFESM would be expected to be even more widespread in a more 

complex example - this study purely considers the simplest example of two non-

trivial non-nested misspecified models, and only examines 1-step- and 2-steps-ahead 

1GFESM 1MSFE 2GFESM
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forecasts. 

 

The GFESM criterion for ranking competing forecasts was proposed as an invariant 

summary measure for all isomorphic representations of a system and to give a 

unique unambiguous ranking of the models of interest for a given maximum forecast 

horizon, h (incorporating information from all 1-,2-,...,h-steps-ahead forecasts).  

These are valuable properties per se, but the criterion has a number of 

disadvantages.  Many of these are expounded by the discussants of the Clements & 

Hendry paper, the justification for using the criterion in an applied time series 

context is questioned in sub-section 5.3.1, and criticism of the GFESM measure is 

strengthened by the above analysis.  There are a number of cases in the simple 

example studied where the GFESM ranking changes according to the maximum 

step-ahead forecast employed.  Moreover, in these cases the undesirable result is 

obtained that whilst the MSFE (which corresponds directly to the notion of 

economic loss) ranks one model consistently above the other 1-step-ahead and 2-

steps-ahead, the GFESM criterion associated with both forecast horizons 

( ) prefers the MSFE-dominated, or ‘inferior’, model absolutely.  It is 

interesting to note, however, that these problems occur predominantly when φ and θ 

are relatively large in absolute value and of opposite sign.  In such cases, the 

misspecifications are particularly severe, and given sufficient data an analyst should 

be able to detect the model misspecifications, forming something of a caveat to the 

conclusions of this analysis. 

2GFESM

 

Altogether, the GFESM criterion has invariance as its primary advantage, but the 

question remains of whether invariance is necessary, and more particularly, whether 
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the costs of employing a criterion such as GFESM, with its undesirable features and 

somewhat tenuous justification, outweigh the first-best desire for the property of 

invariance. 
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Section 5.3 Appendix
 
 
True Model A
 

1MSFEa  =  =  1GFESMa E eT[ ( )]2 1

 =  ][ 2
1+TE ε

 = 2σ  

 

2MSFEa  = E e  T[ ( )]2 2

 =  ])(2)([ 21
2

1
22

2 ++++ −+−+ TTTTE εεθφεθφε

 =  ])(1[ 22 θφσ −+

 

2GFESMa  = E e E e e
E e e E e

T T

T T T

[ ( )] [ ( ) ( )]
[ ( ) ( )] [ ( )]

2

2
1 1

1 2 2
T 2  

 = 
])(1[)(

)(
222

22

θφσθφσ
θφσσ
−+−
−  

 = 4σ  

 

Model B
 

1MSFEb  =  =  1GFESMb E eT[ ( )]2 1

   p⎯ →⎯ }]){[( 2
131

1
2 TTTypppE θεεφ −+− +
−

   where p  = 1 θφ −  

    p  =  2 φθθ 21 2 −+

    p  = 3 φθ−1  
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 =  )()()()( 222
1

22
31

1
2 TTT EEyEppp εθεφ ++− +
−

   )()(2 31
1

2 TTyEppp εφθ −−−

 = )  1( 2
1

21
2

2 pp θσ −+

 

2MSFEb  = E e  T[ ( )]2 2

   p⎯ →⎯ }]))({[( 2
112

2
31

1
2

2
TTTT pypppE φθεεεφ −++− ++

−

  =  )()()(])([ 2
1

2
1

2
2

222
31

1
2

2
++

− ++− TTT EpEyEppp εεφ

     )())((2)( 2
31

1
2

2222
TTT yEpppE εφφθεθφ −−−+

  =  222
12

1
4

22
3

2
1

2
2

22 1)[( θφφσ +++− −− pppppp

    )](2 2
3

2
1

2
2

2 ppp−−− φφθ

   where p  =  4
21 φ−

 

2GFESMb  = E e E e e
E e e E e

T T

T T T

[ ( )] [ ( ) ( )]
[ ( ) ( )] [ ( )]

2

2
1 1

1 2 2
T 2

2

 

 now E e    eT T[ ( ) ( )]1 2 p⎯ →⎯ ])(E{[ 131
1

2 TTTyppp θεεφ −+− +
−

    ]}))([( 112
2

31
1

2
2

TTTT pyppp φθεεεφ −++− ++
−

    =  )())()(( 22
31

1
2

2
31

1
2 TyEpppppp −− −− φφ

    )])(()([ 2
31

1
2

2
31

1
2 pppppp −− −+−− φθφφθ

    )()()( 222
11 TTTT EEpyE εφθεε ++× +

    =  )( 2
1

21
21

2 ppp φθσ −+

 so  =  2GFESMb E e E e E e eT T T T[ ( )] [ ( )] [ ( ) ( )]2 21 2 1 2−

    p⎯ →⎯ 222
12

1
4

22
3

2
1

2
2

22
1

21
2

4 1)[(1{( θφφθσ +++−+ −−− pppppppp

     })()](2 22
1

21
21

2
3

2
1

2
2

2 pppppp φθφφθ −− +−−−
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Model C
 

Estimate of β: 

 let: *
0γ  =  ])1()1()1[( 11

tLLLV εθφβ −−− −−

 now let: z  =  t tLLL εθφβ )1()1()1( 11 −−− −−

   tzLL )1)(1( φβ −−  = tL εθ )1( −  

   2211 −− −− ttt zzz φφ  = 1−− tt θεε  (i) 

    where φβφ +=1  

    βφφ −=2  

 multiply each term in (i) by tε  and take expectations: 

   )( ttzE ε  =  (ii) 2σ

 multiply each term in (i) by 1−tε  and take expectations: 

   )( 1−ttzE ε  =  (iii) )( 1
2 θφσ −

 multiply each term in (i) by  in turn: z z zt t t, ,− −1 2

    = 2211
2

−− −− ttttt zzzzz φφ 1−− tttt zz εθε  (iv) 

    = 212
2

111 −−−− −− ttttt zzzzz φφ 111 −−− − tttt zz εθε  (v) 

    = 2
222112 −−−− −− ttttt zzzzz φφ 122 −−− − tttt zz εθε  (vi) 

 take expectations of (iv), (v), (vi) and use information in (ii), (iii): 

    =  (vii) *
22

*
11

*
0 γφγφγ −− )( 1

22 θφθσσ −−

    =  (viii) *
12

*
01

*
1 γφγφγ −− θσ 2−

    = 0 (ix) *
02

*
11

*
2 γφγφγ −−
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    where *
0γ  = V z ;   = C z  t( ) *

kγ zt t k( )−

 solve (vii), (viii), (ix) for : *
0γ

   (ix) gives  =  *
2γ

*
02

*
11 γφγφ +

   (viii) gives  =  *
1γ )()1( 2*

01
1

2 θσγφφ −− −

 substitution into (vii) gives: 

    =  *
0γ )()1([)()1( 2*

01
1

212
2*

01
1

21 θσγφφφφθσγφφφ −−+−− −−

     )(] 1
22*

02 θφθσσγφ −−++

    = ⎥
⎦

⎤
⎢
⎣

⎡

+−−−
+−−−−
)1()1)(1(

)1()](1)[1(

2
2

1
2
22

21122

φφφφ
φθφθφθφ

σ  
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⎦

⎤
⎢
⎣

⎡

+−−−
+−+−+

)1)(1(
)2(21

322

22
2

φβββφφ
φθθφβφθθσ  

 now minimise *
0γ  with respect to β: 

    ≡ ][min *
0γβ

⎥
⎦

⎤
⎢
⎣

⎡

+−−−
+−+−+

)1)(1(
)2(21min 322

22

φβββφφ
φθθφβφθθ

β
 

     ≡  ][min W
β

   
βd

dW  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

ββ d
dba

d
dabb 2  

     where a =  )2(21 22 φθθφβφθθ +−+−+

      b =  )1)(1( 322 φβββφφ +−−−

    =  2322 )]1)(1[( −+−−− φβββφφ

      )2)(1)(1[( 2322 φθθφφβββφφ +−+−−−

      )]32)(1))(2(21( 2222 φββφφφθθφβφθθ +−−−+−+−+−
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 set 
βd

dW  = 0 and solve following for β: 

    )2)(1( 232 φθθφφβββφ +−+−−

     = 0 )32))(2(21( 222 φββφφθθφβφθθ −++−+−++

 

1MSFEc  =  =  1GFESMc E eT[ ( )]2 1

 now e  =  T ( )1 TT yLy 1
1 )ˆ1(ˆ −
+ −+ ββ
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    =  1
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   =  132
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2 φθθφβ +−+× p
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 i.e. e  =  T+1 1
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      =  31
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5.4 An Invariant Non-Reversing Criterion 
 
 

The desire for a forecast ranking criterion which is invariant for all isomorphic 

representations of a system, combined with the highly undesirable behaviour of 

GFESM when ranking competing misspecifed models motivates analysis concerning 

alternative methods of obtaining an unambiguous ranking of competing forecasts 

where all 1-step- through h-steps-ahead forecasts are incorporated in a summary 

criterion. 

 

A stricter ranking criterion which has many of the GFESM advantages without the 

unwelcome reversals revealed in the previous section can be derived from the 

MSFEM measure proposed by Granger & Newbold (1986).  This new criterion is 

mentioned by Clements & Hendry (1993), and ranks forecasts on the basis of 

dominance. 

 

The MSFEM criterion selects the forecast which has the lowest value of  for 

all non-zero vectors d, where V  is as defined in (5.2).  This criterion can be 

generalised to apply to the stacked forecast error second moment matrix 

′d V dh

h

hφ , as 

defined in (5.8), i.e. selecting the forecast associated with the lowest dd hφ′  for all 

non-zero d.  Note that   in a univariate setting and thus purely considers 

the h-steps-ahead forecast, whereas 

hhV MSFE=

hφ  includes information on all step-ahead 

forecasts up to and including h-steps-ahead.  Denoting this new criterion GMSFEM 

(generalised MSFEM), analysis proceeds by considering the choice between two 

competing forecasts.  Forecast 1 is chosen in preference to forecast 2 by the 
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GMSFEM criterion if it is dominant in terms of forecast performance.  More 

formally, forecast 1 is preferred when: 

 
 dd h1φ′  ≤ dd h2φ′  ∀ d ≠ 0  (5.34) 

 
where the inequality is strict for at least one vector d.  This can be rearranged to 

give: 

 dddd hh 21 φφ ′−′  ≤ 0 ∀ d ≠ 0  

  dd hh )( 21 φφ −′   ≤ 0 ∀ d ≠ 0  (5.35) 

 
again where for at least one vector d, the inequality is strict.  Given that the left hand 

side of (5.35) is a quadratic form, it follows that, by the GMSFEM criterion, forecast 

1 dominates and is preferred to forecast 2 if )( 21 hh φφ −  is negative semi-definite.  

From here it is clear that all the criterion requires is that the eigenvalues of 

)( 21 hh φφ −  be less than or equal to zero, with at least one eigenvalue being non-zero.  

Three possibilities can then be conceived: 

 
 1. ALL EIGENVALUES OF )( 21 hh φφ −  ≤ 0, AT LEAST ONE EIGENVALUE ≠ 0: 

  implies forecast 1 dominant and preferred to forecast 2 

 2. ALL EIGENVALUES OF )( 21 hh φφ −  ≥ 0, AT LEAST ONE EIGENVALUE ≠ 0: 

  implies forecast 2 dominant and preferred to forecast 1 

 3. SOME EIGENVALUES OF )( 21 hh φφ −  ≤ 0, SOME ≥ 0; OR BOTH = 0:  

  implies neither forecast dominant and conclusion indeterminate 

  i.e. the GMSFEM criterion does not return a ranking 

 
The GMSFEM criterion therefore allows simple evaluation of the two competing 

forecasts, resulting in one of the above inferences. 
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The major advantage of the GMSFEM criterion over the GFESM measure is that it 

cannot reverse when different maximum forecast horizons, h, are considered.  

Forecast preference according to GMSFEM for a given maximum forecast horizon, 

h, involves dominance for all d.  Now use of the criterion with a maximum horizon 

k < h must return the same ranking since all the linear combinations of forecast 

errors included in  are a subset of those for  as dominance 

for all vectors d must be satisfied. It is not therefore possible theoretically for 

GMSFEM to find forecast 1 dominant at one horizon and forecast 2 dominant at a 

different horizon.  This abolition of possible switching in forecast rankings instantly 

overcomes the GFESM criticisms in this area disucssed in section 5.3, and appears 

very attractive. 

kGMSFEM hGMSFEM

 

It is also useful to note that GMSFEM dominance is sufficient, but not necessary, 

for GFESM preference of a forecast.  This follows because for a positive definite 

matrix X, and a positive semi-definite matrix Y, X Y+  ≥ X .  Letting X = h1φ  

(positive definite) and Y = hh 12 φφ −  (positive semi-definite if GMSFEM dominance 

of forecast 1 holds), the rule yields h2φ  ≥ h1φ  which implies GFESM preference of 

forecast 1. 

 

Another useful relation is that  dominance is sufficient, but not 

necessary, for MSFE dominance at any horizon k ≤ h, since the MSFE measure is 

one of the linear combinations considered by GMSFEM (  

when d has k’th element one and all other elements zero). 

hGMSFEM

hk GMSFEMMSFE =

The GMSFEM criterion can now be examined by application to the three model 
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study of sub-section 5.3.2.  The matrices hφ  for each model and forecast horizon are 

then: 

 
 true model A: 1aφ  =   (5.36) 2σ

   2aφ  =  (5.37) ⎥
⎦

⎤
⎢
⎣

⎡
−+−
−

2
2

)(1)(
)(1
θφθφ
θφ

σ

 
 model B: 1bφ     (5.38) p⎯ →⎯ ]1[ 2

1
21

2
2 pp θσ −+

   2bφ    (5.39) p⎯ →⎯ ⎥
⎦

⎤
⎢
⎣

⎡

+
++

−

−−

5
2
1

21
21

2
1

21
21

2
1

21
22 1

pppp
ppppp

φθ
φθθ

σ

   where p  =   5
2
12

1
4

22
3

2
1

2
2

2 1)( pppppp ++− −−φ

     )](2 2
3

2
1

2
2

222 ppp−−−+ φφθθφ

 

 model C: 1cφ  = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−−

+−+

)ˆˆˆ1(
)2(ˆ

32
4

2
22

φββφβ
φθθφβ

σ
p
p  (5.40) 

   2cφ  = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−+−−

+−+

4

2

4

31

4

31
32

4

2
2

2

)ˆ1(

)ˆ1()ˆˆˆ1(
)2(ˆ

p
p

p
pp

p
pp

p
p

φβ

φβφββφβ
φθθφβ

σ  (5.41) 

 
where  (i = 1,...,4) are as defined in section 5.3.  The six comparisons and criteria 

now become: 

ip

 
 (i) AR(1) vs. ARMA(1,1):  = 1GMSFEM dd ba )( 11 φφ −′  

 (ii) AR(1) vs. ARMA(1,1):  = 2GMSFEM dd ba )( 22 φφ −′  

 (iii) MA(1) vs. ARMA(1,1):  = 1GMSFEM dd ca )( 11 φφ −′  

 (iv) MA(1) vs. ARMA(1,1):  = 2GMSFEM dd ca )( 22 φφ −′  
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1GMSFEM dd bc )( 11 (v)  AR(1) vs. MA(1):   = 

For 1-step-ahead comparisons (table 5.13), the GMSFEM is merely comparing the 

models’ ; consequently the conclusions are identical to those gleaned from 

table 5.5 (i.e. model AR(1) preferred in some cases, model MA(1) preferred in 

others).  The new contribution of GMSFEM comes in when 2-steps-ahead forecasts 

are included (table 5.14).  The criterion cannot, by definition, reverse, and 

comparison of  with  shows that the rankings do not change 

when the maximum forecast horizon is increased.  The peculiar cases associated 

with the GFESM criterion (again highlighted and boxed in the table) are now found 

to give an indeterminate conclusion rather than a switch in model preferences.  

Tables 5.15 and 5.16 magnify the areas where the GFESM measure experienced 

 (vi) AR(1) vs. MA(1):   = d

 
In each of these six cases, the eigenvalues of the respective matrix are studied and 

one of the three conclusions described above is drawn.  It is clear that when 

comparing a misspecified model with the true model, the true model will be 

dominant, so results are not given for the cases (i)-(iv).  Tables 5.13 and 5.14 contain 

results of the comparisons of the misspecified models noted under (v) and (vi) 

above, with a zero value indicating indeterminacy, and the values 1 and 2 denoting 

model preference accordingly.  It is important to note that this analysis concerns 

asymptotic results, and account is not taken of errors which will arise from 

estimation of the population quantities comprising GMSFEM. 

 

1MSFE

1GMSFEM 2GMSFEM

2GMSFEM dbc )( 22

φφ −′  

φ −φ′  



Table 5.13 
 

AR(1) vs. MA(1) comparison:  1GMSFEM
 

 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99
φ = -0.99 2 2 2 2 2 2 2 2 2 2 2 
φ = -0.9 2 2 2 2 2 2 2 2 2 2 2 
φ = -0.8 2 2 2 2 2 2 2 2 2 2 2 
φ = -0.7 2 2 2 2 2 2 2 2 2 2 2 
φ = -0.6 2 2 2 2 2 2 2 2 1 1 1 
φ = -0.5 2 2 2 2 2 2 1 1 1 1 1 
φ = -0.4 2 2 2 2 2 1 1 1 1 1 1 
φ = -0.3 2 2 2 2 1 1 1 1 1 1 1 
φ = -0.2 2 2 2 1 1 1 1 1 1 1 1 
φ = -0.1 2 2 1 1 1 1 1 1 1 1 1 
φ = 0 0 1 1 1 1 1 1 1 1 1 1 
φ = 0.1 2 0 1 1 1 1 1 1 1 1 1 
φ = 0.2 2 2 0 1 1 1 1 1 1 1 1 
φ = 0.3 2 2 2 0 1 1 1 1 1 1 1 
φ = 0.4 2 2 2 2 0 1 1 1 1 1 1 
φ = 0.5 2 2 2 2 2 0 1 1 1 1 1 
φ = 0.6 2 2 2 2 2 2 0 1 1 1 1 
φ = 0.7 2 2 2 2 2 2 2 0 1 1 1 
φ = 0.8 2 2 2 2 2 2 2 2 0 1 1 
φ = 0.9 2 2 2 2 2 2 2 2 2 0 1 
φ = 0.99 2 2 2 2 2 2 2 2 2 2 0 

 

 Note:- 0 denotes indeterminate, 1 denotes MA(1) preferred, and 2 denotes AR(1) preferred 
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Table 5.14 
 

AR(1) vs. MA(1) comparison:  2GMSFEM
 

 θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.99
φ = -0.99 2 2 2 2 2 2 2 2 2 2 0 
φ = -0.9 2 2 2 2 2 2 2 2 0 0 0 
φ = -0.8 2 2 2 2 2 2 0 0 0 0 0 
φ = -0.7 2 2 2 2 2 2 0 0 0 0 0 
φ = -0.6 2 2 2 2 2 0 0 0 0 0 0 
φ = -0.5 2 2 2 2 0 0 0 0 0 0 0 
φ = -0.4 2 2 2 0 0 0 0 0 0 0 0 
φ = -0.3 2 2 2 0 0 0 1 1 1 1 1 
φ = -0.2 2 2 0 1 1 1 1 1 1 1 1 
φ = -0.1 2 0 1 1 1 1 1 1 1 1 1 
φ = 0 0 1 1 1 1 1 1 1 1 1 1 
φ = 0.1 2 0 1 1 1 1 1 1 1 1 1 
φ = 0.2 2 2 0 1 1 1 1 1 1 1 1 
φ = 0.3 2 2 2 0 1 1 1 1 1 1 0 
φ = 0.4 2 2 2 2 0 1 1 1 0 0 0 
φ = 0.5 2 2 2 2 2 0 1 1 0 0 0 
φ = 0.6 2 2 2 2 2 2 0 0 0 0 0 
φ = 0.7 2 2 2 2 2 2 2 0 0 0 0 
φ = 0.8 2 2 2 2 2 2 2 0 0 0 0 
φ = 0.9 2 2 2 2 2 2 2 2 0 0 0 
φ = 0.99 2 2 2 2 2 2 2 2 2 0 0 

 

  Note:- 0 denotes indeterminate, 1 denotes MA(1) preferred, and 2 denotes AR(1) preferred 
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Table 5.15 
 

AR(1) vs. MA(1) comparison:  (region magnified) 1GMSFEM
 

φ θ 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 
-0.84 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
-0.82 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
-0.8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
-0.78 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
-0.76 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
-0.74 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
-0.72 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
-0.7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
-0.68 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
-0.66 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 
-0.64 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 
-0.62 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 
-0.6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 
-0.58 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 
-0.56 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
-0.54 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
-0.52 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
-0.5 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
-0.48 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
-0.46 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

Note:- 0 denotes indeterminate, 1 denotes MA(1) preferred, and 2 denotes AR(1) preferred  
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Table 5.16 
 

AR(1) vs. MA(1) comparison:  (region magnified) 2GMSFEM
 

φ θ 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 
-0.84 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.82 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.8 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.78 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.76 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.74 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.72 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Note:- 0 denotes indeterminate, 1 denotes MA(1) preferred, and 2 denotes AR(1) preferred 

 



problems, and this pattern persists with an inference of indeterminacy in these 

unusual cases. 

 

A clear feature of the GMSFEM criterion is that a significant range of values for φ 

and θ exists for which no conclusive model ranking is returned, with neither model 

dominant over the other.  Much of this indeterminacy results from the potentially 

overly stringent requirement that dominance must hold for all vectors d, although in 

practice many such linear combinations of forecast errors are likely to be important.  

In one sense this indeterminacy can be viewed as a disadvantage since a ranking is 

not obtained.  This is especially true if one forecast is dominant for all vectors d of 

interest to the practitioner, with indeterminacy arising from lack of dominance for 

some other irrelevant d.  In these cases GMSFEM indeterminacy is a drawback and 

the cost of employing a reliable summary criterion.  In other circumstances however, 

remembering that many d are likely to be relevant, it can be argued that 

indeterminacy implies neither forecast is preferable overall and use of a summary 

measure to try and ‘force’ a ranking is inappropriate.  This feature of GMSFEM 

indeterminacy can also therefore be seen as a benefit, highlighting cases where an 

alternative to the summary approach, involving evaluation for the horizons, 

representations and loss functions of interest individually, would be better. 

 

The MSFE measure, then, does not include information from both forecast horizons 

simultaneously and is not invariant for all isomorphic representations of the system, 

and the GFESM criterion possesses disturbing characteristics (rank reversals and 

counter-intuitive rankings when compared with MSFE rankings at each horizon) 

when comparing two misspecified models’ forecasts.  The GMSFEM criterion, 
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however, exhibits the advantages of the GFESM measure, without the possibility of 

reversals or rankings which conflict with MSFE.  Where GFESM behaved 

problematically, GMSFEM gives an indeterminate ranking.  This new criterion 

consequently has significant value in the practice of ranking competing forecasts.   
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5.5 Forecast Encompassing for Linear 
Combinations of Forecasts 

 
 

The new criterion examined in section 5.4, the GMSFEM criterion, chooses the 

forecast which has the smallest dd hφ′  for all non-zero vectors d (if such an 

optimum exists).  This is identical to choosing the smallest MSFE for all non-zero d 

for the following linear combination of forecasts: 

 
  = f hcT ( ) d y d y d y hT T h T1 21 2$ ( ) $ ( ) ... $ ( )+ + +  (5.42) 

 
which has the forecast error: 

 
  = e hcT ( ) d e d e d e hT T h T1 21 2( ) ( ) ... ( )+ + +  (5.43) 

 
It is then trivial to show that: 

 
  = E e hcT[ ( )2 ] dd hφ′  (5.44) 

 
Given this notion of a linear combination of forecasts, the approach of which is 

implicitly suggested by the GMSFEM criterion, an interesting issue to analyse is 

that of forecast encompassing.  One forecast is said to encompass another if the 

inferior forecast has no valuable information with regard to prediction to contribute 

to the encompassing forecast.  Clements & Hendry note the value of forecast 

encompassing in the evaluation of single forecasts, and so the natural question arises 

as to whether it is possible to characterise the conditions for and test for forecast 

encompassing when two linear combinations of forecasts are being considered.  The 

issue then is whether one linear combination of forecasts encompasses another for 

all possible weightings of the composite forecasts.  More formally, the combined 
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forecasts can be written as: 

 
 actual value: y  = d yc T h, + d y d yT T h1 1 2 2+ + T h++ + +...  (5.45) 

 forecast 1: f  = d yhcT1 ( ) d y d y hT T h T1 1 2 1 11 2$ ( ) $ ( ) ... $ ( )+ + +  (5.46) 

 forecast 2: f  = hcT2 ( ) d y d y d y hT T h1 2 2 2 21 2$ ( ) $ ( ) ... $ ( )T+ + +  (5.47) 

 
and the consideration is whether  encompasses  for all non-zero 

vectors d (or vice-versa). 

f hcT1 ( ) f hcT2 ( )

 

Forecast encompassing is examined thoroughly in chapter 3; in this case the 

condition for forecast 1 encompassing forecast 2 is that the optimal value of λ in the 

following combined forecast is zero: 

 
  = f hcT

c ( ) )()()1( 21 hfhf cTcT λλ +−  (5.48) 

 
Manipulation of expression (5.48) yields the forecast encompassing regression: 

 
  = e hct1 ( ) tctct hehe ελ +− )]()([ 21  (5.49) 

 
and the condition for forecast 1 to encompass forecast 2 then revolves around λ.  

Now the population interpretation of λ is: 

 

  λ = 
E e h e h e h

E e h e h
ct ct ct

ct ct

{ ( )[ ( ) ( )]}
{[ ( ) ( )] }

1 1 2

1 2
2

−
−

 

 
and thus with a null of : λ = 0 (i.e. a null of forecast 1 encompassing forecast 2), 

the following forecast encompassing conditions result: 

0H

 : 0H E e h e h e hct ct ct{ ( )[ ( ) ( )]}1 1 2−  = 0 
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  now e  = dhict ( ) e d e d e hit it h it1 21 2( ) ( ) ... ( )+ + +  i = 1,2 

  = ′d eith  

  where ′d  = [ .  ..d d dh1 2 ]

   ′eith  = [ (  ) ( ) ... ( )e e e hit it it1 2 ]

 giving : E0H d e e d d e e dth th th th[ ]′ ′ − ′ ′1 1 1 2  = 0 ∀  d ≠ 0

   : 0H ′ ′ − ′d E e e e e dth th th th[ ]1 1 1 2  = 0 ∀  (5.50) d ≠ 0

 
By supposing appropriate hypothetical vectors d, it is simple to deduce that the 

diagonal terms of E e e e eth th th th[ 1 1 1 2′ − ]′  must be zero, and that symmetric pairs of off-

diagonal terms of E e e e eth th th th[ 1 1 1 2′ ]− ′  must sum to zero.  Under these conditions, 

forecast 1 will encompass forecast 2.  More formally, the encompassing conditions 

can be described as follows.  Let: 

 
 C = E e e e eth th th th[ ]1 1 1 2′ − ′  

 conditions: c  = 0 i = 1, ..., h (5.51) ii

   c cij ji+  = 0  i, j = 1, ..., h ; i ≠ j (5.52) 

 
This is proven by letting d be a vector with k’th element one, all other elements zero, 

for , giving conditions (5.51), then letting d be all possible vectors with 

two elements one, all other elements zero, giving conditions (5.52). 

k = 1,...,h

 

This can also be illustrated by an example, e.g. h = 2: 
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  = 0  ∀ ′d Cd d ≠ 0  

  = 0 ∀ [ ]d d c c
c c

d
d1 2

11 12

21 22

1

2

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

d ≠ 0  

 if  = [ , then c′d ]

]

]

]1

]2

]

1 0 11 = 0 

 if  = [ , then c′d 0 1 22 = 0 

 if  = [ , then c′d 1 1 12 + c21 = 0 

 
The conditions for forecast encompassing when two linear combinations of multi-

step-ahead forecasts are considered can therefore be characterised in this way. 

 

The next issue regards testing for forecast encompassing in such cases.  Returning to 

the example, the conditions for forecast 1 encompassing forecast 2 are: 

 
 (i) E e  = 0 (5.53) e et t t[ ( ) ( ) ( )1

2
1 21 1−

 (ii) E e  = 0 (5.54) e et t t[ ( ) ( ) ( )1
2

1 22 2−

 (iii) E e e e et t t t[ ( ) ( ) ( ) ( )1 1 1 21 2 1 2−   

  + −E e e e et t t t[ ( ) ( ) ( ) ( )]1 1 1 21 2 2 1 = 0 (5.55) 

   
The first two of these conditions, (5.53) and (5.54), amount to testing that the 

individual forecasts from forecast 1, i.e. , , encompass the 

corresponding individual forecasts from forecast 2, i.e. , , respectively.  

This is necessary, but not sufficient, for encompassing, and the third condition 

(5.55) is also required to ensure forecast encompassing for all linear combinations of 

the next two predictions. 

$ ( )y T1 1 $ ( )y T1 2

$ ( )y T2 1 $ ( )y T2 2

 

Testing of these conditions individually can easily be performed using the modified 
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Diebold-Mariano approach test (following Diebold & Mariano, 1995).  Application 

of Bonferroni bounds (following Dunn, 1961; see Campbell & Ghysels, 1995 for an 

example) allows the combined tests to have the desired level of significance.  The 

problem is that for moderate and large values of h, the number of conditions to be 

tested will be , thus the large number of individual tests required to 

test for encompassing will most likely lead to a test with low power, unless the 

number of available observations is very large compared with h. 

h h h+ −( ) /1 2

 

Altogether, it is useful, following forecast comparisons by a summary criterion such 

as GMSFEM, to characterise the conditions needed for the related issue of forecast 

encompassing for linear combinations of forecasts.  The conditions can be easily 

written down, and a formal test devised using modified Diebold-Mariano approach 

tests with Bonferroni bounds.  Problems may also arise, however, with regard to the 

power of the test in practical applications. 
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5.6 Conclusion 
 
 

In conclusion, this chapter has sought to examine a number of criteria which may be 

used to rank competing forecasts.  The common MSFE-based approach has many 

advantages, employing simple measures with intuitive interpretations in terms of 

economic loss.  Clements & Hendry (1993) criticise such an approach due to the 

lack of MSFE invariance across all isomorphic representations of the system 

concerned.  Several discussants to the Clements & Hendry paper counter this 

criticism with compelling arguments for why MSFE criteria are appropriate, with 

the lack of invariance expected (because misspecified models are the norm) and 

even desirable, with different representations being utilised by different users 

according to their purposes and preferences. 

 

Clements & Hendry insist on the need for an invariant criterion and propose the 

GFESM measure.  This criterion overcomes the basic lack of invariance exhibited 

by many of the currently applied measures and provides a single ranking of 

competing multi-step-ahead forecasts, but exhibits significant drawbacks.  Its 

justification stems from a predictive likelihood approach to forecast ranking in a 

world where estimation of the criterion is performed using repeated independent 

simulations of the system.  This justification can only be maintained by appealing to 

a thought experiment when the criterion is estimated using consecutive starting 

points in a time series, and only applies in certain circumstances.  The value and 

reliability of the criterion are more dramatically called into question by the analysis 

showing that when comparing misspecified models, GFESM can yield rank 

reversals when the maximum forecast horizon considered is changed.  The rankings 
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obtained can also totally conflict with the more intuitive MSFE conclusions for the 

individual forecast horizons evaluated separately.  Further criticisms are added by 

other discussants to the Clements & Hendry paper, such as the implicit focus on 1-

step-ahead forecasts, and the lack of GFESM correspondence to established intuition 

as regards minimising expected economic loss. 

 

A second invariant criterion, GMSFEM, is considered, which cannot by definition 

reverse when different maximum forecast horizons are used.  The measure is based 

on forecast dominance and retains many of the advantages of the GFESM criterion - 

in particular providing a summary criterion incorporating all steps-ahead forecasts 

which is invariant to isomorphic transformations of the system - whilst overcoming 

the undesirable behaviour of GFESM when misspecified models are compared.  

Cases do exist where GMSFEM yields an indeterminate conclusion and fails to rank 

the forecasts; this can be seen as an indication of when an approach other than this 

summary technique might be more suitable since neither forecast is dominant 

overall, although in some situations indeterminacy will arise from overly stringent 

dominance conditions not being met, in which case this failure to rank is 

disadvantageous, and the cost of using a reliable summary criterion.  The predictive 

likelihood justification which can be argued in favour of GFESM also supports this 

new criterion since a forecast preferred by GFESM cannot have its competitor 

preferred by GMSFEM. 

 

Following analysis of the GMSFEM criterion, the related issue of forecast 

encompassing for linear combinations of forecasts is examined.  The necessary and 

sufficient conditions for such encompassing can be characterised for a given 

 260



maximum forecast horizon, and tested for using an approach following Diebold & 

Mariano (1995), albeit with some practical problems. 

 

Altogether, then, MSFE-based measures have shortcomings in the area of invariance 

which is overcome by use of the GFESM criterion.  However, GFESM faces 

immense criticism on a number of grounds.  Invariance is a desirable property for 

ranking criteria, but the price of employing the GFESM measure is too high; where 

invariance is essential, the GMSFEM criterion provides a more reliable alternative.  

Two sensible approaches for ranking contending forecasts are recommended - one is 

to evaluate according to a criterion which best represents the economic loss of the 

decision being made, using the forecast horizon(s) and model representation of 

interest alone (e.g. MSFE); the other is to employ a summary criterion which has the 

property of invariance to isomorphic transformations and includes information on all 

horizons up to a chosen maximum (e.g. GMSFEM).  The best overall approach in 

the practice of ranking competing forecasts therefore seems to be one which centres 

around the user’s purpose, taking account of a variety of available criteria, and 

maintaining careful awareness of the limitations of each. 

 

 261



 
 
 
 
 

Chapter 6 
 
 
 
 

Conclusion 
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6.1 Summary 
 
 

This thesis has studied the issue of economic forecast evaluation with the aim of 

developing statistical procedures to enable reliable comparison of competing 

forecasts.  Three key subjects are analysed which have wide application and 

comprise some of the most important forecast evaluation techniques - testing for 

equal forecast accuracy and testing for forecast encompassing, and ranking forecasts 

according to a pre-determined criterion. 

 

With regard to testing the companion hypotheses of equal accuracy and 

encompassing, the qualities of a ‘good’ test are explained.  These features are an 

approximately correct test size in all sample sizes (not just in the limit), robustness 

to likely forecast error properties (particularly contemporaneous correlation, 

autocorrelation, non-normality and ARCH), and relatively good power performance 

(relative to rival procedures). 

 

The recommended tests for the two hypotheses which best meet these criteria are the 

modified Diebold-Mariano approach tests developed in this thesis.  The original 

Diebold-Mariano test for equal forecast accuracy is shown to display robustness to 

the aforementioned error properties (with the exception of ARCH), and takes a very 

general loss function specification.  The limitation of the test in terms of finite 

sample oversizing is greatly reduced by the modifications of chapter 2, and a variant 

of this modified Diebold-Mariano test is developed in chapter 3 to provide a 

similarly attractive test for forecast encompassing. 

Other extant tests (regression-based) for equal accuracy and encompassing are 
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shown to lack robustness to non-normal forecast errors due to the resulting 

conditional heteroscedasticity in the regression errors, and corrections attaining 

robustness have mixed success, in general being eclipsed by the superior size and 

power performance of the modified Diebold-Mariano approach tests.  One exception 

is the newly proposed rank correlation approach for each hypothesis, where power 

gains can be achieved when one-step-ahead forecasts are the sole concern and there 

is a strong suspicion of error non-normality.  However, the rank correlation tests’ 

advantages are restricted to this special case, and the lack of extension to multi-step 

predictions leads to the inference that the modified Diebold-Mariano approach tests 

are the best available tests for the respective evaluation hypotheses in general. 

 

When ARCH is a suspected characteristic of the forecast errors, further extensions 

to the tests are required to maintain robustness.  Two new tests proposed in chapter 

4 adapt the respective modified Diebold-Mariano approach tests to again provide 

reliable, robust, well-behaved procedures for testing the equal forecast accuracy and 

forecast encompassing hypotheses. 

 

The remaining issue studied - criteria for ranking competing forecasts - is more 

contentious.  When evaluating multi-step forecasts, two approaches are possible and 

debate surrounds which should be employed in practice.  One approach makes use 

of the MSFE-type criteria which represent economic loss and are specific to the 

forecast horizon(s) and model representation of interest.  The other approach utilises 

a summary criterion which attempts to provide a unique ranking of the contending 

forecasts for all horizons and representations using information at every horizon of 

interest simultaneously. 
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The Clements & Hendry GFESM criterion performs the task of a summary criterion, 

but has faced much criticism by advocates of the former approach.  Analysis in 

chapter 5 finds GFESM to have weaknesses in its theoretical justification and to 

possess disturbing characteristics when ranking two misspecified models - namely 

rank reversals when the maximum horizon considered is changed, and results that 

directly conflict with the more intuitive MSFE rankings for each horizon evaluated 

separately.  A more reliable criterion, GMSFEM, is proposed for this ‘summary’ 

approach to ranking which maintains the advantages of GFESM and overcomes its 

undesirable characteristics, allowing for the possibility of an indeterminate ranking 

when neither forecast is dominant overall. 

 

The related issue of forecast encompassing for linear combinations of forecasts is 

also discussed and a method for testing such a hypothesis is proposed. 

 

Altogether, the main contributions of this thesis are the development of robust well-

behaved tests for equal forecast accuracy and forecast encompassing, and the 

advancement of techniques for ranking competing multi-step forecasts.  With regard 

to the former, the modified Diebold-Mariano approach tests proposed in this study 

are recommended as the best available tests for the companion evaluation 

hypotheses of equal accuracy and encompassing, with the respective variants of the 

tests to be employed when ARCH is suspected in the forecast errors.  Turning to the 

latter issue, the most sensible recommendation appears to be for an approach which 

is user-centred and combines the two methods of ranking discussed above, using 

both MSFE-type criteria and GMSFEM as a summary criterion, remaining alert to 
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the limitations of the different criteria employed. 
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6.2 Directions for Future Research 
 
 

There are a number of areas following the analysis conducted in this thesis which 

provide potential ideas for future research.  Firstly, this study has focused on 

theoretical developments of forecast evaluation procedures, and it would be most 

interesting to perform a variety of applied studies.  The tests for equal forecast 

accuracy and forecast encompassing could be applied to data on the past 

performance of a number of competing forecasters, for example predictions of UK 

macroeconomic time series by leading forecasters such as Her Majesty’s Treasury, 

the London Business School, the National Institute of Economic and Social 

Research, etc.. Such a study would be useful not only to compare the forecasts from 

the respective forecast producers using the recommended tests of this thesis, but also 

to evaluate the relative performances of all the evaluation tests considered in 

chapters 2-4.  Furthermore, the various ranking criteria analysed in chapter 5 could 

be applied, yielding greater understanding of the behaviour of each criterion, their 

relative advantages and disadvantages, and the extent to which the GFESM 

problems of reversals and the GMSFEM drawback of indeterminacy occur in 

practice.  Tests for forecast encompassing for a linear combination of forecasts 

could also be executed, bearing in mind the limitations of the procedure discussed in 

chapter 5. 

 

A second important issue for further research concerns the properties of economic 

forecast errors.  The likely properties examined in the context of the forecast 

evaluation tests are contemporaneous correlation, autocorrelation, non-normality 

and ARCH.  Given sufficiently long time series data on past runs of forecasts and 
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actuals, the presence of these error properties could be tested for and the extent of 

each determined for practical applications.  Information gleaned from such research 

would be invaluable, providing detail on the expected behaviour of tests for both 

equal accuracy and encompassing. 

 

Another application of the forecast evaluation tests and ranking criteria is in model 

building.  If a number of observations are kept back as a ‘hold-out’ sample, then 

different model specifications can be evaluated according to how well they forecast 

the hold-out data.  In line with this, Clark (1996a, 1996b) provides simulation 

studies evaluating the behaviour of equal accuracy and encompassing tests when 

applied to out-of-sample forecasts from a bivariate vector autoregression.  The tests 

and criteria can therefore be used as a diagnostic tool, as mentioned in chapter 1.  

This area generates two avenues for possible research.  One is to employ the newly 

proposed tests and criteria in applied model building.  The other is to examine the 

question of how large the hold-out sample should be, trading off information for 

model specification with data for forecast evaluation. 

 

Returning to more theoretical concerns, one observation from the simulation results 

of this thesis is that the asymptotic test sizes are approached extremely slowly 

empirically, with very large samples required to come close to the theoretical 

limiting sizes.  Research into why this occurs would be interesting. 

 

Finally, useful research could be conducted into some generalisations of the 

problems considered in this study.  Firstly, the situation where several forecasts are 

being considered is of interest, where for example the equal accuracy tests would be 
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for a null hypothesis that all forecasts have equal accuracy, with the t-tests employed 

in chapter 2 requiring extension to F-tests.  Secondly, analysis of the extant 

evaluation tests highlighted the problems associated with testing hypotheses based 

on parameters in a regression where the variables follow a bivariate Student’s t 

distribution (causing conditional heteroscedasticity in the regression errors) and 

when the variables follow ARCH processes (causing autocorrelation in the loss 

differential).  It would consequently be interesting to study other situations where 

these problems arise - both from the perspective of other forecast error features 

generating similar effects (e.g. error properties other than non-normal which cause 

regression error conditional heteroscedasticity) and the angle of examining whether 

other economic problems exhibit these same difficulties, outside the sphere of 

forecast evaluation studied in this thesis. 
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