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Abstract 

 
This thesis is concerned with the development and application of visual tracking 

techniques to the domain of animal monitoring.  The development and evaluation 

of a system which uses image analysis to control the robotic placement of a sensor 

on the back of a feeding pig is presented first.  This single-target monitoring 

application is then followed by the evaluation of suitable techniques for tracking 

groups of animals, of which the most suitable existing technique is found to be a 

Markov chain Monte Carlo particle filtering algorithm with a Markov random 

field motion prior (MCMC MRF, Khan et al. 2004).  Finally, a new tracking 

technique is developed which uses social motion information present in groups of 

social targets to guide the tracking.   This is used in the new Motion Parameter 

Sharing (MPS) algorithm.   

 

MPS is designed to improve the tracking of groups of targets with coordinated 

motion by incorporating motion information from targets that have been moving 

in a similar way. Situations where coordinated motion information should 

improve tracking include animal flocking, people moving as a group or any 

situation where some targets are moving in a correlated fashion.   

 

This new method is tested on a variety of real and artificial data sequences, and its 

performance compared to that of the MCMC MRF algorithm.  The new MPS 

algorithm is found to outperform the MCMC MRF algorithm during a number of 

different types of sequences (including during occlusion events and noisy 

sequences) where correlated motion is present between targets.  This 

improvement is apparent both in the accuracy of target location and robustness of 

tracking, the latter of which is greatly improved. 
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Chapter 1: Introduction 

1.1. General Introduction 

1.1.1. Objective and aim 

This thesis presents the development and application of two novel visual tracking 

applications that are evaluated in real world monitoring situations.  The 

hypothesis is that visually tracking animals using image analysis can provide a 

foundation for further monitoring tasks.  These further tasks might require 

controlling some invasive sensing mechanism (Chapter 3) or analysing the motion 

of animals remotely allowing further monitoring of behaviour (Chapters 4 and 5).  

These areas are explored in this thesis by combining existing techniques in novel 

ways, and developing a new methodology for tracking groups of social targets.   

 

Monitoring in this thesis is defined as the act of gaining information about an 

animal from the physical characteristics it exhibits during its normal routine.  

Such monitoring may be non-invasive monitoring, such as observing how an 

animal moves, or invasive monitoring, such as taking a measurement from an 

animal with a device that needs to be held in contact with the animal.  In different 

situations, one method is normally more appropriate than the other.  Approaches 

from both sides will be presented in this work.   

 

It is the aim of this thesis, then, to develop image analysis techniques to be used as 

a basis for monitoring applications in the animal domain.  A novel image analysis-

controlled sensor placement system for locating a sensing position on a single 
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feeding pig is described first.  Attention then turns to the monitoring, and hence 

visual tracking, of multiple targets.  The strengths and weaknesses of two 

common tracking algorithms - Condensation (Isard and Blake 1998b) and Markov 

chain Monte Carlo (MCMC) particle filtering (Khan et al. 2004) - are 

demonstrated in the domain of multiple target tracking.  A novel way of using 

social information to improve such tracking is then presented, in the form of the 

Motion Parameter Sharing (MPS) algorithm.  Both the single and multiple animal 

tracking methods are implemented and tested in distinct real world environments.  

The potential of the new tracking stretches beyond the animal monitoring domain 

into any area where groups of targets need to be robustly tracked.  

 

1.1.2. Motivation for the research  

Much work exists which involves using CCTV-style surveillance setups to 

monitor pedestrians or cars in public areas (see Chapter 2 for a review of literature 

in this area).  Animals are less commonly used as the subject of such monitoring 

in image analysis-based systems.  This may be because people are more readily 

abundant subjects, and perhaps because it is easier to understand and predict the 

kind of motions that people exhibit (although this is still a major challenge, it is 

feasible to think that it is easier to understand someone’s movements when you 

can ask them to explain their actions).  Another reason is the special requirements 

that animals demand of the experimenter.  Examples of such special requirements 

include the construction of specialist research areas (arenas in which to monitor 

the animals) and the obvious requirement to maintain the health of the animals 

being studied (feeding and cleaning).  However, there are many reasons why it is 

important to be able to monitor animals; in fact there are perhaps more immediate 

uses for farm animal monitoring than for the monitoring of people.  Unlike 

people, animals cannot verbally communicate their feelings, and so any 

information about their well-being must be gathered by observations or 

measurements.  Access to this information can help improve the animals’ welfare 

and increase the stockmen’s profit.   Taking these measurements or making 

observations is a very time-consuming and highly skilled operation; therefore, it 

has a substantial economic cost.  Monitoring that could glean potentially valuable 
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information from animals is often carried out too infrequently to be of most use.  

Research in this field has then two justified and realistic goals: to save the animal 

husbandry industry money and to increase animal welfare quality. 

 

Additionally, animals provide a tough test for the evaluation of image analysis 

algorithms.  Animals are difficult targets to track using conventional image 

analysis techniques because of their inter-target similarity and hard-to-predict 

dynamics. This is compounded by an operating environment that can never be 

fully constrained.  Though the same could be said of human targets, with animals 

these problems are intrinsic, whereas with people they are the exception to the 

rule: for example, people are often dressed differently and situations in which they 

are indistinguishable are comparatively less common.   The environment in which 

people are tracked can often be manipulated to a greater extent than that of 

animals.  Animal houses are the subject of numerous welfare laws and the 

economic constraints of the farmer, which together constrain the possible 

variations in factors such as lighting and background material properties.  

 

One complex aspect which animal and human motion shares is the social aspect 

of interactions and social grouping: something which us as humans may not be 

aware of but which can be a driving force in movement.  Consider a group of 

people walking to lunch together, or a group of friends waiting at a station, or 

confronting groups at a riot.  These actions have social grouping components, 

which can be seen perhaps in a purer form in the animal kingdom with the likes of 

aggregations of animals hunting food, or the tight flocking effects present when a 

predator approaches.  Therefore, once the challenges have been overcome in the 

animal domain, the techniques should be easy to convert to a more mainstream 

domain such as people tracking.  Overcoming these challenges with animals 

opens the way to powerful and interesting new techniques for monitoring which, 

although developed for animals, could be adapted for use in many other areas, 

including the automated surveillance of human activities. 



Chapter 1 

 17 

 

1.1.3. Overview of thesis 

This thesis is organised as follows: 

Chapter 2: A review of visual monitoring techniques and applications 

Some common image analysis techniques are presented.  A background to 

tracking and surveillance is given.  Individual chapters have their own 

more specific literature reviews.   

Chapter 3: Monitoring an animal by visual tracking: Automatic sensor 

positioning over the back of a feeding pig. 

Describes the development of a system in which a single animal is to be 

monitored using a robotic sensor positioned by image analysis: a system is 

developed to locate a feeding pig, identify and locate feature points on the 

animal and direct a sensing robot arm to a specified point in relation to the 

feature points.  

Chapter 4:  Monitoring multiple animals by visual tracking: Video tracking of 

ducks in an outside arena 

The performance of two powerful tracking algorithms is evaluated, along 

with an analysis of their shortcomings.  The addition of an interaction-

modelling motion model is shown to improve tracking, and multiple 

independent trackers are found to be unsatisfactory. 

Chapter 5:  Using social information to improve tracking performance for groups 

The development of a new Motion Parameter Sharing technique that 

incorporates information about group behaviour into a tracking algorithm 

is described. This method allows correlated targets to be more accurately 

and robustly tracked in a variety of situations, compared to the most 

successful algorithm found in Chapter 4. 

Chapter 6: General discussion and future work 

Conclusions are drawn about the success of the tracking work and the 

achievements of this thesis, and a list of some possible future work and 

applications is presented 

The potential of the new Motion Parameter Sharing technique is explored. 
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1.2. Main Contributions 

There are two main contributions from this thesis.  This first is the production of a 

novel system which is able to direct a robot arm to the P2 position on the back of 

a pig as it feeds.  This is achieved by combining and tuning existing computer 

vision techniques to produce a novel application tested in a real-world domain. 

 

The second contribution is the development of a novel, multiple-target tracking 

algorithm that can make use of the social motion information about the targets to 

help guide the tracking.   This algorithm works by sharing motion parameters 

between targets that have been exhibiting coordinated motion; hence it is named 

the Motion Parameter Sharing algorithm.  

 

The rest of this thesis describes how these contributions were achieved. 
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Chapter 2: A review of visual monitoring 

techniques and applications 

2.1. Introduction 

This chapter presents a general background review of some image analysis 

techniques that would typically be required for automated monitoring problems.  

This is followed by some of their example applications from the tracking 

literature.  Specific literature related to particular chapters is reviewed in the 

chapters themselves; this chapter is intended as a background survey of the area 

and techniques in general, and to introduce the reader to relevant work in related 

fields.  Therefore, the literature specifically relevant to monitoring an animal 

using image analysis to guide a sensing robot is presented in Chapter 3, and 

literature concerned with tracking and monitoring groups is presented in    

Chapter 4.  The social tracking chapter (Chapter 5) reviews relevant background 

work regarding social effects in groups. 

2.2. General literature review 

2.2.1. Image analysis 

Image analysis is the “process of discovering, identifying and understanding 

patterns that are relevant to the performance of an image-based task” (Gonzalez 

and Woods 1992).   In other words, it is extracting useful information from image 

data, be it from a still image, stored video sequence or live camera source.  

Teaching a computer to ‘see’ is the ultimate goal.  In layman’s (or Aristotle’s!) 
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terms, to see is to “know what is where by looking”, and allowing a computer to 

make such judgements is a difficult and expansive task.  Image analysis has been 

applied to a large number of problems in a diverse range of fields, from guiding 

machinery (Tillett and Hague 1999), controlling robots (Vaughan et al. 1998), 

industrial automation (Chin and Dyer 1986), medical imaging (McInerney and 

Terzopoulos 1996), and wildlife detection in aerial images (Sidle and Ziewitz 

1990) to analysing social behaviour in nursing homes (Chen et al. 2004), and 

much more in between.  All of the applications are a form of sensing, as to use a 

camera is to take measurements from a sensor that measures light.  Image analysis 

as a foundation for monitoring interprets the measurements and infers knowledge 

about the location and motion of target objects (animals, in this case).  This 

information can be further processed to identify higher-level events (Buxton 

2003).  Image analysis is a tool particularly suited to monitoring applications, as 

has been demonstrated in previous work.  It allows non-invasive, remote sensing 

of targets, using equipment akin to that already existing in a vast and expanding 

CCTV network.  Cameras are relatively cheap and extremely versatile, and can 

sense a wide area.  Once in place, they can be used for a variety of software-

driven tasks, e.g. detection of suspicious objects (Beynon et al. 2003) or tracking 

of pedestrian motion (Uchida et al. 2000).  This non-invasive and adaptable nature 

makes image analysis very attractive for animal monitoring work. 

 

2.2.2. Common image analysis techniques  

An image analysis-driven monitoring system must perform a number of stages of 

processing, the essentials of which will now be presented.  Depending on the 

quality of the captured image and the accuracies required, sensor noise might need 

to be attenuated, and lens distortion effects removed.  The two major types of 

noise are impulsive noise (“salt and pepper noise”) and Gaussian noise (Sonka et 

al. 1993).  Gaussian noise may be removed by Gaussian smoothing, a specific 

instance of an averaging filter.  The downside of this kind of filtering is blurring 

of the image (signal frequencies shared with the noise are lost) leading to poor 

feature localization; also it cannot effectively remove salt and pepper noise. 

Impulsive noise, caused perhaps by damaged CCD elements, can be removed by 
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median filtering.  Median filtering is a non-linear technique in which each pixel 

value is replaced by the median value of all the pixels in the specified 

neighbourhood.  Median filtering can completely suppress impulsive noise, and 

blurs contours less than averaging filters (Trucco and Verri 1998).   As well as 

noise, image distortion can corrupt image data.  There are two main components 

to image distortion caused by the capturing equipment.  Radial or barrel distortion 

is the tendency of wider-angle lenses to pull points to the optical centre.  

Decentering distortions are caused by the non-orthogonality of lens components 

with respect to the optical axis, due typically to manufacturing inaccuracies 

(Conrady 1919).  There exist a variety of methods to remove such effects: using 

known calibration points in space to recover distortion parameters (Tsai 1986), 

estimating parameters in order to map curved image lines back to straight lines 

(Swaminathan and Nayar 1998; Devernay and Faugeras 2001) and even with no 

straight lines or calibration information at all, by estimating distortion by looking 

for high-order correlations in the frequency domain (Farid and Popescu 2001). 

 

The next stage after cleaning up the image is to locate the areas, features or 

objects of interest in the image, and this location is typically initiated using one or 

more of a series of low-level image processing operations.  Thresholding is an 

image processing technique that selects all the pixels in an image that are above a 

certain intensity. Variations on it include thresholding with hysteresis, which 

selects all pixels above a certain value, and all pixels above a lower threshold that 

neighbour a higher-threshold point.  Hysteresis thresholding is commonly used to 

detect lines from the output of an edge detector.  Thresholding at its simplest can 

be used as the sole means of identifying targets in images, such as in bird 

censusing studies where the intensity difference between bird and background is 

large enough to warrant using this technique alone (Allen and Thorpe 1991).  It is 

more typically used in conjunction with or to initialise other techniques, for 

example to help identify the boundary of a pig (Marchant and Schofield 1992; 

Marchant et al. 1999).  Such boundaries are examples of features in images.  

Other features can include lines, edges, textures or in fact any part of the image 

with some special property.  Feature detectors form the basis of many vision 

systems.  One of the most fundamental features that is often required is the edge: a 
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step change in intensity.  These are found at significant boundaries in the image, 

often between the foreground object of interest and the background.  Once noise 

has been removed, there are two main steps in edge detection.  First, a filter must 

be designed to give a large response at elements of the image where an edge 

exists, and a low response elsewhere.  Second, from the output of the filter the 

edges must be located and noise suppressed.  Some common early edge detectors 

include Sobel (Gonzalez and Woods 1992) and Robert’s Cross (Roberts 1965).  

These are both based on gradient (first order derivative) measurements from the 

image, where a high response indicates an edge.   It is also possible to find edges 

at zero crossings of second order derivatives; the Marr-Hildreth (Marr 1982) 

operator implements this approach.  Using zero crossings always gives closed 

contours; though because a second derivative is calculated the operator is quite 

susceptible to noise.  One of the most used edge detectors is the Canny edge 

detector (Canny 1986).  This detector is optimal against certain specified criteria.  

The algorithm itself has a number of modules.  First, the image is smoothed.  

Then a simple edge detector is applied to the image.  It then tracks with hysterisis 

thresholding along the output ‘ridges’, setting to zero any pixels which are non-

maximal.  This gives 1-pixel wide lines as an output. 

 

All the detectors above aim to locate edges or boundaries in images.  An example 

of a more refined and statistically robust boundary locating technique is a ‘Snake’  

(Kass et al. 1988), which is a form of active contour model.  Contour models 

impose constraints on the shapes contours can adopt.  With snakes, high-level 

constraints are imposed on the boundary geometry, balancing the attractive forces 

of apparent edges in the images, and the physical properties of the hypothesised 

contour itself.  Snakes are useful for identifying boundaries that are easy for a 

human to detect, but would otherwise be difficult to detect using just low-level 

image processing techniques.  They have been put to successful use in many 

situations, including traffic monitoring systems (e.g. Tai et al. 2004) and as a basis 

for dynamic contours (Blake and Isard 1998) used for tracking many different 

types of target. 
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As well as boundary detecting techniques, there are other methods that can be 

used to separate the area of interest from the background.    Colour information is 

one common way of discriminating targets from background in surveillance and 

monitoring.  The expected colour of a target area can be used as a measurement 

for a tracking algorithm (Nummiaro et al. 2003).  A model of the target’s colour is 

created from examples, and then a measure of the distance from this model 

describes how well a target’s colour matches the target model.  Segmentation is 

another method where areas of the image within certain colour parameters are 

identified in an image.  Segmentation methods range from simple clustering of 

coloured pixels (for example using  K-means clustering), through region and edge 

based methods (e.g. the Watershed algorithm (Vincent and Soille 1991) ) to 

probabilistic methods using the EM Algorithm (Forsyth and Ponce 2003).  Such 

segmentation techniques have been used for many applications, including aerial 

surveillance of wildlife (Sidle and Ziewitz 1990) and identifying football players 

(Vendenbroucke et al. 1998).   

 

If a sequence of images is available, information in the time domain can be used 

to identify moving areas of the image.  One example of this is optical flow, which 

uses the apparent flow of brightness features in the sequence to segment regions 

of motion from the background (Horn and Schunck 1981; Barron et al. 1994).  

Background subtraction is another method that can be used with sequences of 

images.  This method builds a model of the background scene, which can then be 

subtracted from subsequent images of the same scene, leaving only the foreground 

objects of interest.  Typically this needs an initial image of the scene containing 

no targets, but a background image can also be built up if all the foreground 

objects are moving and they cover each part of the background for a suitably 

small amount of time; for example median filtering requires that the background 

pixels be obscured for less than half of the number of frames.  This background 

subtraction method has been used successfully in activity monitoring systems that 

track people (Grimson et al. 1998). 
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2.2.3. Review of major tracking techniques 

One of the most famous tracking algorithms is the Kalman Filter (Kalman 1960).  

This algorithm is optimal in that it can incorporate all data available and give a 

best estimate (minimizing the error variance) as long as three criteria are met.  

These are: the system must be linear, and the measurement noise must be white 

and Gaussian (Welch and Bishop 2001).  Although this algorithm has proved very 

popular, it has its disadvantages.  One such restriction is that it is limited to 

unimodal Gaussian densities and so cannot represent multiple alternative 

hypotheses.  This problem is resolved by another group of algorithms called 

particle filters.  Particle filtering methods represent the state probability space as a 

set of particles.  An example of one of these is Condensation (Isard and Blake 

1998b).  The Condensation method approximates a probability distribution with a 

set of samples using a method known as factored sampling.  This kind of 

representation allows multi-modal, non-Gaussian state probability densities, the 

kind of which is common when clutter (competing, false measurements) is present 

in an image.     

 

Tracking multiple targets is a specialised problem.  Early major work in this area 

includes the Multiple Hypothesis Tracker (Reid 1979), which forms multiple 

target-data association hypotheses and calculates their probabilities.  The Joint 

Probabilistic Data Association Filter or JPDAF (Bar-Shalom et al. 1980) is an 

extension of the Probabilistic Data Association Filter (PDAF) which handles the 

problem of associating an arbitrary number of measurements to an arbitrary 

number of targets.  The literature on Condensation and multiple target tracking 

will be considered more fully in Chapter 4. 

 

Once tracking has been carried out, it may be necessary to convert the tracked 

path in the image plane into a ground plane path for further processing.  This is 

because the image plane is rarely parallel to the ground plane, and so some 

transformation of coordinates must be made.  This is particularly important in a 

multi-camera system, as the ground plane is common across all cameras (Makris 

and Ellis 2002).  Methods include recovering the ground plane by tracking 
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moving objects in the scene (Bose and Grimson 2003), and also from known 

lengths and angles of structures in the image (Liebowitz and Zisserman 1998). 

 

2.2.4. Tracking as a method for surveillance of human activities 

Monitoring and surveillance can be thought of as accomplishing the same task but 

for different reasons.  Monitoring can be thought of as observing or estimating 

some internal properties of the targets, whereas surveillance is typically observing 

the target’s potential effect on the environment.  Monitoring exists in both 

invasive and non-invasive forms, the latter of these may involve some remote 

observation method, which in this case is visual tracking.  For the purpose of this 

thesis, this non-invasive form of monitoring and surveillance can be thought of as 

interchangeable concepts.   

 

A background on human surveillance will be presented first, as this is possibly the 

most studied incarnation of visual tracking of targets through a scene.  

Surveillance can be seen as two distinct and challenging phases: first, the tracking 

of the object through the scene, and second the description of the activities taking 

place.  Monitoring breaks down in a similar fashion.  Typically, image processing 

techniques like those described in Section 2.2.2 are combined with some tracking 

methods such as those described above to provide trajectories of the objects of 

interest.  This is followed by some higher-level interpretation of the tracking 

results.  Clearly, the first part of the surveillance problem requires accurate 

tracking techniques to be used as a foundation for all further processing. 

 

The eventual aim for the surveillance of people is typically the automatic 

identification of certain activity types: typically suspicious or unusual behaviour.  

As humans, we find it easy to notice when someone is behaving in a fashion 

which is suspicious; noticing when someone is lurking in a car park, for example, 

or when someone seems to be following you.  Progress is being made in 

automatically recognising similar behaviours from CCTV-style surveillance 

systems, but this is a challenging problem.  Systems exist to generate models of 

pedestrian pathways in a scene and potentially identify suspicious or unusual 
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paths (Johnson and Hogg 1996), and other systems can label the behaviour 

associated with these trajectories (Makris and Ellis 2002).  Surveillance work 

today characteristically consists of one or more static cameras overlooking a 

public space.  Work developed at Leeds to track both pedestrians and vehicles 

(Remagnino et al. 1997) uses a single camera overlooking a car park.  Using 

multiple cameras allows more ground to be monitored simultaneously (Grimson et 

al. 1998), as well as allowing cameras to be self-calibrated by tracking objects in 

overlapping images.   More ambitious surveillance projects employ multiple 

overlapping sensors to try and track targets (Collins et al. 2000).  Additionally, 

Collins et al. attempted to integrate several different types of cameras, from 

mounted CCTV cameras to thermal cameras, airborne cameras and very wide 

angle sensors.  The system is essentially an amalgamation of different algorithms, 

each significant in their own right.  How well they function when combined, 

however, is not clear.  The system is tested by observing the quality of function in 

a real world situation, but no quantitative results are presented.  The system 

appears successful to some degree, although the milestones achieved are presented 

as disparate sections rather than as a complete surveillance system – the difficulty 

with such systems is normally with the integration of techniques. 

 

As extensions to just observing targets, further processing can lead to judgements 

about activities taking place in a scene.  Behaviour detection systems can identify 

multiple agent interaction, for example people being dropped off from cars 

(Ivanov and Bobick 1999), or queuing for a bus (Grimson et al. 1998).  Path 

detection systems can identify suspicious routing behaviour (Makris and Ellis 

2002).  A system for detecting abandoned packages in realistic situations has been 

developed by Beynon et al. (2003).   

 

What this automated surveillance work demonstrates is that motion tracking 

through a scene can provide a wealth of information to higher-level processes, be 

they activity monitoring, behaviour labelling, common path detection, or 

calibration.  Just as for humans, it is the visual observation of the motion of 

subjects that allows higher cognitive processes to determine whether the motion 

exhibited is normal or unusual; this is also true for automated systems.  Despite 
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some successes, however, the development of a fully automatic, robust and 

accurate surveillance system is still held back by major technical challenges, both 

in the tracking and event analysis stages and in the setup of equipment (Dick and 

Brooks 2003).  Progress continues to be made in this flourishing field, and the 

high demand for such a system ensures plenty of interest is maintained in the 

research community.   

2.2.5. Animal monitoring 

It has been seen that there exists a large body of research involved in the 

monitoring and surveillance of human activities.  The main literature in the animal 

monitoring world shall now be discussed.  The idea of looking for outlier 

behaviour in human activity has parallels in the animal world.  Unusual behaviour 

amongst animals can suggest injury or disease, or other conditions such as oestrus 

(readiness to mate) or parturition (childbirth) (Frost et al. 1997).  Within-animal 

motion differences can be detected, for example to tell a healthy cow from a lame 

cow by its gait (Magee and Boyle 2002).  Magee and Boyle used two models of 

motion: a healthy model and a lame one, and the model that best represents the 

data is propagated, and can therefore be used to apply a label of lame or healthy to 

the animal in question. 

 

A variety of animals have been the subject of research in the tracking and 

monitoring domain.  Broiler chickens have been tracked (Sergeant et al. 1998; 

Bulpitt et al. 2000) with the aim of overcoming the subjective, invasive and 

tedious nature of human-observer experiments.  Work over several years has used 

image analysis to automatically estimate the weight of pigs (Schofield and 

Marchant 1990; Marchant et al. 1999), and a system  has been developed to track 

lab rodents (Branson et al. 2003; Westphal 2004).  The rodent tracker, although 

only tested on a 30 second sequence, appears to work well, but the environment 

and lighting are quite tightly constrained. Work has been carried out building 3-D 

models of live pigs (Wu et al. 2004) with a view to using these models for further 

conformation analysis.  3-D information can convey information 2-D images 

cannot, such as allowing judgements to be made about the ‘squareness’ of certain 

muscles, which can be an indicator of lean muscle mass.  All these systems 
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provide quantitative measurements of parameters (e.g. conformation and location) 

that are otherwise difficult to measure automatically.  These systems are also 

completely non-invasive and so incur as little stress as possible on the animals 

being monitored.  This is important both for the well-being of the animal and to 

prevent stress affecting the quality of the measurements.   

 

The robotic sheepdog project (Vaughan et al. 1998; Vaughan et al. 2000) is an 

interesting example of the crossover between the monitoring of and interaction 

with a group of animals.  A robotic ‘sheepdog’(Vaughan 1999) was used to herd 

ducks to a defined goal, controlled by image analysis software (Sumpter 1999) 

monitoring the flock from an overhead camera. 

 

One of the major commercial systems in tracking, monitoring and behaviour 

analysis is the EthoVision system (Noldus et al. 2001).  Billed as a video tracking, 

movement analysis and behaviour recognition system, it is designed as an aid 

during behavioural experiments with subjects of the experimenter’s choice.  For 

example, it can be used to track and identify behaviours in insects (Noldus et al. 

2002).  Although the system has been used in many behavioural studies, it is more 

of a tool than a fully automated system.  EthoVision can only automatically record 

a limited number of ‘behaviours’: whether an animal is moving and its movement 

parameters (such as location, path shape, proximity to others), and whether a 

rodent is ‘rearing’ (standing vertical) as decided by viewable surface area.  The 

user of the system must enter any other behaviour observed manually via the 

keyboard or mouse.  This is tedious, as the sequence must be watched by a 

manual operator to pick out other behaviours, and must be prone to operator error.  

Clearly this is not ideal for long sequences of video, but at the moment this is the 

state of the art for animal observation experiments.  As for tracking, the system 

can track up to 16 unique (different coloured) targets in the scene, but the authors 

admit that the tracking of crowded targets is beyond the scope of EthoVision as it 

stands (Noldus et al. 2001; Noldus et al. 2002).  Also, the quality of the tracking is 

not defined.  The example studies listed in these papers suggest that EthoVision is 

a very useful experimental tool, but it requires a high degree of user interaction, 

be it physically colouring the animals or insects to distinguish them from each 



Chapter 2 

 29 

other (Noldus et al. 2001) or having to manually key in behaviour types as 

someone watches the camera feed or video.  A more automated system would be 

beneficial in many situations. 

 

More insect monitoring work has been carried out on the tracking of ant colonies 

in an arena consisting of nests and food sources (Balch et al. 2001).  This work is 

later extended by Khan et al. (Khan et al. 2003; Khan et al. 2004) to take into 

account social interactions to enable more robust tracking in the presence of 

similar interacting targets.  Khan et al.’s work will be fully reviewed in Chapters 4 

and 5. 

 

The motivations behind the remote monitoring of animals are plentiful.  The 

earlier the signs of disease or lameness or the presence of a predator are detected, 

the earlier the issue can be resolved, with the combined effect of both increasing 

the quality of welfare of the animals and ultimately saving the farmer money.  For 

example, with the pig conformation work mentioned previously (Schofield and 

Marchant 1990; Marchant et al. 1999), an animal growing abnormally could be 

detected early, and examined by a skilled human to perhaps reveal and treat the 

cause of the abnormality, saving the animal’s life if possible.  This means less 

suffering for the animal and more healthy animals to sell for the stockman.  Also, 

current observation experiments require many man-hours of manual observation 

and data entry.  Automating this process frees researchers for other work, and also 

provides an objective reasoning about actions, whilst eliminating errors brought 

about by repetitive human observation.  Where automated tracking and 

monitoring excels is the ability to extract objective, quantitative measurements 

from potentially huge amounts of visual data.  Financially, it is generally cheap 

and easy to install an imaging system compared to the alternative sensing 

arrangements, especially when multiple measurements can be taken (for example, 

size, weight, location and conformation) from a single camera.  Vision systems 

are typically more adaptable too, with the possibility of developing new software 

with the same hardware setup to measure different parameters in the future. 
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2.2.6. Summary 

This research highlights some examples and possible uses and benefits of animal 

and human monitoring, but there are always constraints and limitations involved.  

Systems are usually specialised – either tracking routes or detecting unattended 

baggage, for example, but not both.  Although attempts have been made to 

integrate different types of surveillance systems (Collins et al. 2000), a truly 

stand-alone, automated surveillance system is still to be achieved.  The current 

state of the art does have practical uses though:  one human observer can only 

watch so many screens before attention is lost and information is missed, and 

subjective human judgements can be made objective by automating the 

monitoring process.  Also, automated labelling of behaviour can lead to fast 

retrieval of significant events (video mining), which is of clear use to post-

analysis of recorded video; especially when there is a large amount of video from 

many cameras dotted around a city, for example.  For animal monitoring, tracking 

can provide a strong foundation for the development of further processing 

techniques.  Such animal monitoring systems can save the industry money and 

improve the welfare of the animals, both of which are significant goals.  Increased 

production intensity on farms requires that processes be automated, as there are 

not enough skilled operatives to do the job in the time available.  The monitoring 

and controlling of the production process directly affects the quality of the final 

product, giving financial rewards to initial investment into these stages, opening 

the way to the introduction of monitoring technology onto farms. 
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Chapter 3: Monitoring an animal by visual 

tracking: Automatic sensor positioning 

over the back of a feeding pig 

3.1. Motivation 

As described in the previous chapter, automated monitoring systems can allow for 

an increased number of measurements to be taken compared to manual methods.  

This in turn can lead to faster detection of abnormal conditions in animals and 

their environment, and to an improved product and hence increased financial 

reward for the stockman.  Backfat thickness is a particularly important metric for 

pigs because it allows the leanness of the animal to be estimated.  This in turn has 

a direct bearing on the price at slaughter, and therefore the profit for the stockman.  

Knowing the conformation or physical characteristics of the animal, such as that 

indicated by the thickness of backfat, allows the stockman to maintain careful 

control over the development of the stock. The feed can be tailored to individual 

animals’ needs to maximise their leanness and health, or suitable animals can 

selectively be chosen for breeding stock.  The only way to directly measure this 

backfat is to bring a sensor – optical or, more typically, ultrasound - into contact 

with the animal.  This must be done at a specified location on the pig’s back, to 

ensure that measurements are consistent across animals, as backfat depth varies 

with location.  The manual measuring of backfat depth is a time consuming and 

skilled operation, and currently takes place much less frequently than is ideal.  

Developing an automated system is therefore a sensible solution, which would 

allow more frequent measurements and provide the stockman with more valuable 
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data than is currently possible.  This data can then be used to optimise the pig’s 

growth leading to increased quality of life for the animal and increased profits for 

the stockman. 

3.2. Aim 

This work will extend existing non-invasive pig monitoring work to create a 

system that is capable of locating a sensor over the back of a feeding pig.  In 

particular, it is concerned with the accurate location of the sensor rather than 

actually taking a reading or interpreting a backfat measurement.  Therefore, no 

actual sensor reading will take place.  Instead, a laser pointer on the end of the 

robot arm will be used to measure how accurately a sensor would be positioned in 

the horizontal plane in a real world situation. 

 

The hypothesis of this research is two-fold.  First, that a sensor can be 

automatically positioned on the back of a feeding pig with accuracy equivalent to 

a skilled human operator.  Second, that the automated system would allow 

readings to be taken more frequently that would be expected on a typical working 

farm. 

3.3. Previous work 

Complete systems for automatically monitoring animals (Frost et al. 1997) now 

provide the stockman with more data about the animals than has been possible 

before.  This information can be used to manage the stock with greater efficiency 

and success, allowing for higher quality animal welfare and increased profits for 

the stockman.  Pigs are a good subject for monitoring because they are farmed on 

a large scale, and the quality of the carcass has a dramatic effect on price.  For 

example, there is a range of nearly 30 pence per kilo depending on weight and 

backfat thickness (Stotfold/MLC 2001).  Previous work on using image analysis 

to monitor pigs includes using the pig’s plan view area to estimate their weight 

(Marchant et al. 1999).  This is a completely non-invasive method using a camera 

mounted above the feeder.  Once manually calibrated at 75 days old, a pig’s 

weight can be predicted to within 1kg at 125 days old, using its plan view area.  

This accuracy is comparable to that of the weighing machines used during the 

trials, but of course has the advantage of requiring little manual labour from the 
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farm’s often limited workforce.  Additionally, attempts have been made to 

measure conformation by examining 3D images of pigs (Wu et al. 2004; Tillett et 

al. 2004).  Landmarks were placed on curvature features generated from 3D 

models of the animals.  These 3D models were in turn generated from three 

stereo-pair images of the animal, from orthogonal directions.  Such landmarks 

may in the future be used to estimate features such as the P2 point (see Section 

3.3.1, below) and muscle specifications, though at infrequent intervals due to the 

large processing time required to build the 3D model. 

 

The information that can be gained from visual data alone is limited.  Certain 

measurements can only be obtained by placing a sensor directly into contact with 

the animal; for example, heart and respiration sensors, temperature sensors - 

although estimates can be made using infrared images (Best 1981) - and body 

composition sensors.  A logical extension of a non-invasive system would be to 

make a system capable of taking invasive, contact measurements, guided by 

image analysis using the same camera configuration as for the non-invasive 

measures.  Therefore the original non-invasive system could still be run with the 

same hardware set up.  This is the reasoning behind this work.  The system will 

take the form of a robot arm bringing a sensor into contact with a pig’s back while 

it feeds, guided by image analysis software that tracks the pig from an overhead 

camera above a standard-specification feeder. 

3.3.1. Body composition monitoring: Backfat and the P2 position 

The price of an animal at slaughter is directly related to how lean the animal is.  

With an ideal weight animal, a difference in backfat thickness of 6mm can change 

the price of an animal at slaughter by 6 pence per kilogram (Stotfold/MLC 2001).  

This can be a change of about £4 per animal at slaughter for an average weight of 

about 70kg (Meat and Livestock Commission 2004).  Clearly then, optimising this 

fat level is something every pig farmer should be concerned with. 

 

This work will build an image analysis system to control a sensor placement robot 

and move it to the P2 point, over the back of a feeding pig.  This point is an 

industry standard position for taking backfat readings on a pig using ultrasound 
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sensors.  The P2 point is located at the last rib on the pigs back, 65mm from the 

dorsal mid-line (Frost et al. 2000; Youssao et al. 2002). Backfat measurements 

from this point enable an estimate of the leanness of an animal to be determined, 

and thus price at the time of market for the animal can be estimated, and its diet 

tailored to improve the leanness if necessary.  An example of the manual 

operation required to take a measurement can be seen in Figure 3.1. 

 

Figure 3.1 Manual ultrasound measurement of backfat thickness at the P2 position, taken 
at the same time as weighing the animal 

 

Some ultrasound probes produce a 2D ultrasound image for the operator to 

interpret (ECM 2005) – these would be hard to analyse automatically, and would 

require further processing of the images to estimate backfat thickness.  Other 

commercial probes are available that can quantify backfat using ultrasound when 

placed at the P2 position (Renco Corp. 2004).  The placement system in this work 

is well suited to future adaptation to actually take backfat readings using this type 

of instrument.  Automated backfat measurements are also possible from carcasses 

using machines such as the AutoFOM (Brøndum et al. 1998), which pulls a 

carcass across an array of ultrasound transducers and analyses the resulting 3D 

image to determine fat level.  Such machines can grade carcasses at a rate of 1150 
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per hour, but of course this type of manipulation is not possible with live animals.  

More details on carcass inspection and backfat measuring techniques, as well as 

many statistics about animal weight and price, are summarised in the MLC Pig 

Yearbook, released annually (Meat and Livestock Commission 2004).   

3.3.2. Robotics 

The advantages of automating tasks by using robots can be seen in a wide array of 

fields.  Robots are well suited to tasks which are repetitive (e.g. packing items), 

involve heavy manual work (e.g. automotive manufacturing industry) or in 

hazardous situations (e.g. inspection of nuclear power plants).  In a sense, 

stockmen are sometimes faced with all three of these scenarios: having to work 

with many animals at frequent intervals, each of which is heavy and capable of 

causing injury or spreading disease, and also working in an environment which 

may be uncomfortable.  Robotics have been put to use in agriculture typically to 

do a job that is time consuming to a skilled operator, for example cow milking 

(Frost et al. 1993b) or sheep shearing (Trevelyan 1989).   

 

The environments in which an agricultural robot must work are often demanding.  

The type of power used to operate them must be chosen carefully.  There are three 

main ways of providing power to a robot’s actuators: hydraulic, pneumatic and 

electrical: 

• Hydraulic: powered by the pumping of hydraulic fluid through valves and 

into the activators, hydraulic robots provide the greatest amount of power.  

They are also very accurate.  On the downside, the hydraulic fluid is often 

toxic and so leaks can become a safety hazard, especially if operating in an 

environment with animals.  Being powered by non-compressible fluid, the 

joints have no give and so are more likely to cause injury than other power 

types.  This is also typically the most expensive option, being about twice 

as expensive as pneumatic or electric actuation (Frost et al. 2004). 

• Pneumatic:  similar to hydraulic, but with air instead of fluid being used to 

operate the actuators.  The actuators typically have a ‘spongy’ feel to them 

because of the compressibility of air, so the robot can do less damage than 

if powered by fluid.  Also, being supplied with compressed air, a leak is 
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not a safety issue.  Accuracy issues include friction on the actuators 

causing ‘sticky’ joints, and oscillation caused by overcorrection. 

• Electric:  a compressed air or hydraulic fluid supply is not required.  

However, electrical components in some operating environments may 

present a risk of electric shock.  This is especially true in agriculture where 

the environment may be damp and many animals are present. 

 

3.3.3. Image analysis for tracking pigs 

Pigs and indeed any animals present a challenge to automated tracking systems.  

Their shape is deformable, and their appearance liable to alter due to lighting 

changes and the build up of dirt on the animal.  Previous work exists for tracking 

animals in certain situations, including cows (Magee and Boyle 1999; Tsutsumi 

and Kita 2002), duck flocks (Sumpter et al. 1997), tracking mice in cages 

(Branson et al. 2003; Westphal 2004) and tracking poultry (Sergeant et al. 1998).  

Some work already exists for tracking live pigs from an overhead camera.  

Complete contours of pigs have been tracked from an overhead camera (Marchant 

et al. 1999),  and point distribution models (Cootes et al. 1992) have been used to 

track animal movements (Marchant and Onyango 1995; Tillett et al. 1997).  

Particularly of note is the Snake algorithm (Kass et al. 1988) which has been used 

successfully to locate the boundaries of pig outlines from an overhead camera 

(Marchant and Schofield 1992).  Snakes are a type of deformable model (also 

called Active Contour Models).  These models are very versatile, and have been 

used to good effect in a variety of fields, including animal tracking, medical 

image analysis (McInerney and Terzopoulos 1996), hand and gesture tracking 

(Heap 1995; Blake and Isard 1998) etc.  Snakes will be described in detail in 

section 3.5.2. 
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3.4. System specification 

3.4.1. Accuracy 

The effectiveness of the sensor placement will be measured by comparison to pre-

determined accuracy limits.  Tillett et al. (Tillett et al. 2002) suggest limits of 

25mm longitudinally and 10mm laterally in order to measure a backfat depth to 

within 5% of the actual value.  This actual value is at a local minimum in backfat 

depth and so repeated measures can be taken and the minimum of these used as an 

estimate of back fat depth.  The working limit of a human operator has been 

estimated to be within about 20mm from the P2 position (Frost et al. 2000).  

Therefore, the robot can be considered an improvement on human sensor 

placement if it achieves more readings per day of or above equivalent human 

accuracy i.e. the laser spot is within 20mm of the P2 position.  It was felt that 

comparing to human accuracy would allow a fair comparison of the new robotic 

method to existing manual methods.  In a real-world system, the actual P2 backfat 

depth could then be identified from multiple readings by identifying the minimum 

value.   
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3.4.2. Overview 

Figure 3.2 provides an overview of the system.  The physical arrangement of the 

system components was based on a similar arrangement that had been previously 

used to estimate the weight of pigs (Marchant and Schofield 1992; Marchant et al. 

1999).  More streamlined software was written for locating the P2 point, which is 

real-time critical, and so the weight estimation software was left unmodified by 

this work.  However, with the current hardware configuration the original 

software could be run at the same time, thus providing weight and backfat 

estimates from one hardware installation. 

 

Figure 3.2 Diagram illustrating the components and connectivity of the system 
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3.5. Image Analysis and Locating the P2 point 

3.5.1. Aim 

The aim of the image analysis component is to determine the P2 location from 

features in images of the animal taken from an overhead camera, and 

communicate these coordinates to the robot control system when the pig is 

considered sufficiently stationary. 

3.5.2. Image processing steps 

The P2 position itself cannot be directly identified, as it has no visible features.  

When manually located, it is normally found by an expert palpating the back of 

the animal.  It will be located in images by modelling the position of the P2 point 

from the location of certain physical features of the pig which are observable.  To 

model the P2 position, previous work (Frost et al. 2000; Tillett et al. 2002) has 

shown that tracking certain visible feature points on the boundary of an animal 

can produce a sufficiently accurate estimate of P2.  These curvature features that 

will be required for this work are the ‘kink points’ on the boundary of the animal.  

These occur on the boundary between the rump and the abdomen, and between 

the abdomen and the shoulder as shown in Figure 3.3.   

 

Figure 3.3 Arrows indicate the ‘kink points’ on the pig’s boundary. 
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More details on these features and the P2 model (section 3.5.4) will be presented 

shortly, but from an image processing point of view it is only necessary to know 

that these kinks are features that can be detected visually, and their location will 

be used as input to a model of P2 position. The steps required to locate these kink 

points will now be presented. 

 

The first step in any system such as this is to identify when there is any action 

taking place in the frame.  In this scenario, most of the time the feeder is likely to 

be empty, and identifying when an animal enters the feeder is necessary.  In the 

image frame, the presence of a pig can be determined by looking for an increase 

in intensity at a spot where the pig is definitely going to be when feeding.  A 

suitable location for this ‘hot spot’ (Marchant et al. 1999) is at the area the 

shoulder of the pig would occupy if it had its head in the feeding trough.  Once a 

pig is present, it is possible to begin locating the P2 point.   

 

A pig in the feeder presents a slightly curved surface to the camera.  As there is a 

light directly under the camera, this surface becomes increasingly illuminated the 

closer to the camera it gets.  Knowing this fact, thresholding is used to locate the 

brightest section of this curved surface, and because of the known geometry of the 

animal we can use this bright section as an estimate of a central region in the rump 

half of the pig’s boundary.  Such a threshold leads to an output as indicated in 

Figure 3.4: 

 

Figure 3.4 Example of area selected (in black) after thresholding with a limit of 230. 

 

Once the highlight has been found, it is straightforward to detect the extreme 

bounds of this thresholded region in both the x- and y-directions, and these anchor 
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points within the boundary can be used to initialise the further image analysis 

procedures. 

 

The value used to threshold this region could either be set manually, or it could be 

determined as the animal enters the feeder.  To determine it on the fly, an estimate 

of the average grey-level of an animal is required.  One method of estimating such 

an average is to use background subtraction to isolate the foreground pig pixels.  

A background image was taken of an empty feeder, and then this was subtracted 

from a new image when a pig was detected in the feeder, giving a result such as 

Figure 3.5: 

 

Figure 3.5 Background subtraction-generated image. Note the missing foreground pixels 

As can be seen in Figure 3.5, this process by no means gives a reliable outline of 

an animal, and it does pick up some background clutter, but despite this most of 

the pixels do originate from the animal.  Working out the average value of these 

pixels gives an estimate of the average intensity value of the pig, and from this a 

suitable threshold to select the rear region can be calculated.  However, in 

practice, as illumination remained constant and the animals could be treated as 

being uniform in colour and reflectance, a constant threshold was found to work 

well.  If the algorithm were to be implemented in a real-world system, certainly 

one where the ambient illumination is likely to change significantly, then such an 
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active, real-time approach would be beneficial as it would allow for long term 

illumination changes and varying reflectivity of the pig’s surface. 

 

For the P2 model, only the positions of the kink points are required as parameters.  

Therefore, tracking the whole boundary of the animal was not thought to be 

necessary.  In the interests of performance, complete-boundary tracking 

algorithms as used for surface area calculation in previous work (Marchant et al. 

1999) were not implemented.  Instead, it was only necessary to locate particular 

sections of the boundary to identify the required features in each frame.  Previous 

work (Frost et al. 2000; Tillett et al. 2002) has used six feature points on the 

boundary. Four of these features were the ‘kink’ points on the boundary that occur 

in front of the hind legs and behind the forelegs.  The other two were at the base 

of the tail and an estimated point on the neck boundary.  It was hypothesised that 

processing speed could be decreased by only tracking the minimum necessary 

parts of the animal’s boundary (i.e. those around the feature points).  The sixth 

point at the neck was considered inaccurate as it occurred on a hypothetical 

boundary and so was dropped.  The point at the tail was also dropped as it was not 

considered to provide much more information than the kink features can give, and 

also its perceived position can change depending on the relative positions of the 

pig and the camera.  This leaves a set of four features, the boundary kink points, 

which bound the P2 position (Figure 3.6). 

.  

 

Figure 3.6 The four boundary kink detectors, and the predicted P2 point resting over a 
pre-marked P2 point for this test image. 

 

The accuracy of this new four-point model was compared with the old six-point 

model and found to be acceptable – refer to 3.5.4 for more details. Therefore, only 

the sections of boundary that contained these four points were located.  In order to 
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fit models to the side of the pig that trace the boundary around the kink points, a 

variation of a Snake (Kass et al. 1988) was initially used.  Snakes are deformable 

contours (a form of Active Contour Model) that have underlying geometrical or 

physical constraints, typically within a system of Lagrangian mechanics.  The 

snake has a measure of energy depending on its position and shape; this energy 

consists of an internal component, related to the geometry of the contour, and an 

external component that is related to the image, equation (1). The snake will seek 

to minimize the energy of the system by deforming appropriately.  The internal 

energy consists of a parameter controlling the curvature of the snake, and a 

stretching energy.  These parameters can be altered to suit the features of the 

intended target.  The external energy function is based upon appropriate features 

of the image, such as edges for locating boundaries.  The final shape of the snake 

is determined by a minimal energy state balancing all the functions. 

 

ExternalInternalSnake EEE +=  , where InternalE  = (bending+stretching) (1) 

 

Snakes have been used successfully to locate the boundaries of a number of 

‘rounded’ targets in images, including cell membranes (McInerney and 

Terzopoulos 1996), fruit (Kass et al. 1988), heart ventricles (Cohen 1991) and 

complete pig outlines (Marchant and Schofield 1992).  Extensions to snakes have 

allowed the localisation of more complex objects such as hands (Cootes and 

Taylor 1992), and addressed some of the problems associated with Snakes, such 

as looping when tracking irregular objects (Ji and Yan 2002).   For the specific 

purpose of locating the contour of a pig around the kink points, some adaptations 

to the original Snake active contour formulation are needed here.  First, the 

original Snake is a closed loop, fitting over image features like an elastic band.  

To detect the contour segments of a pig, only a model of a line is needed for each 

kink.  As can be seen in Figure 3.14 on page 53, these linear Snakes only detect a 

small portion of the whole contour.  The second change is that the snakes do not 

require a bending energy.  A consequence of having a limit to the amount of 

curvature allowed is that the snake tends towards a straight line (Perrin and Smith 

2001).  Knowing that the edge we are interested in detecting will contain a point 

of sharp curvature, having a model that prefers straight lines is not desirable.  
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Previous work using snakes to detect pig contours (Marchant and Schofield 1992) 

also disregarded the bending component for presumably similar reasons.  The 

stretching component is another function of snakes that is largely redundant in this 

application, particularly as lines are used rather than closed loops.  Stretching 

tends to contract the line, and as there is no corresponding force to ‘pull’ the line 

out again.  It also has the tendency to ‘iron out’ kinks in the line, which is very 

undesirable for this work.  Instead, a string of points which move as a rigid group 

longitudinally (constrained by rump location, explained below) but that can move 

independently laterally is used.  The traditional internal energy of the snake has 

then been effectively removed, as both bending and stretching can produce 

undesirable effects for this situation.  This new snake-like structure has evolved 

into a localised linear contour detector, which is exactly the role required of it for 

this work.  This contour detector is driven laterally outwards from the centre of 

the pig and positioned longitudinally according to the position of the rump: these 

properties could be considered as variants on the traditional internal energy 

components of a snake. 

 

The placement of these four contour detectors was initially dependant on the 

location of the rump-end of the thresholded bright area on the rear of the animal.  

However, it was desirable to have a more accurate location of the rump, as it was 

found that the left-most extreme of the thresholded region was subject to a lot of 

variablility; typically as the pig moves away from under the spotlight, and 

especially later on when the robot was present and forming shadows on the rear of 

the animal.  Therefore, an extra contour detector is used, and is initialised over the 

rump.  This is accomplished using the information about the thresholded highlight 

to determine the approximate longitudinal centre line of the pig, and then a snake 

is moved from the left edge of the image along this line, until it finds the rump 

contour and ‘adheres’ to it, as in Figure 3.7. 

 

Figure 3.7 Rump snake contour detector finds the rump contour in a variety of images. 
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Tracking the rump with a snake has an additional benefit.  When the robot moves 

over an animal to place a sensor, the robot arm obscures one or more of the kink 

points, as in Figure 3.8: 

 

Figure 3.8 Example of how the robot arm obscures some kink points, but leaves the rump 
clearly visible.  The rear kink features are often obscured as the robot moves. 

 

Because of this effect, the P2 point cannot be predicted when the robot has been 

activated because some of the model parameters cannot be supplied, which is why 

the robot cannot operate in a ‘constant tracking’ mode.  However, by tracking the 

rump alone when the robot has been activated, the system can make an estimate of 

how much the pig is moving longitudinally.  Longitudinal movement forms the 

greatest component of the overall motion as the animal is constrained laterally by 

the walls of the feeder.  Therefore, when some ‘movement threshold’ is exceeded 

longitudinally by the rump, the robot can be automatically reset.   

 

Once the rear end of the pig’s contour has been detected, an estimate of the rear 

end location is calculated by taking an average of the x-coordinates on this ‘rump 

detector’ (the vertical line in Figure 3.7).  This has the advantage of largely 

discounting the extrusion caused by the tail, the length and position of which can 

vary.  This position can then be used to place the four ‘kink detecting’ snakes.  

These kink-detectors are placed along the approximate centre line of the pig, 

longitudinally positioned using the rump snake as a reference point.  Once the 
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kink detectors are positioned longitudinally, they search towards the outside of the 

pig’s contour looking for the edge.  The external energy for the detectors is based 

on an edge detector filter response.  The main filter used is a Canny edge detector, 

and a typical repose is given in Figure 3.9: 

 

Figure 3.9 Edge detector response for a typical frame 

 

It was initially intended that the snakes would track the edges by maintaining their 

shape from one frame to the next, moving longitudinally depending on rump 

movement and then updating their shape by searching out the boundaries in the 

local neighbourhood.  Each point of the snake is effectively constrained in the x-

direction by the position at which the rump is detected.  However, each point can 

move independently in the y-direction.  Each point searches a small number of 

pixels in the y-direction looking for an edge.  Thus each point effectively becomes 

a one-dimensional edge detector.  A similar approach of searching along curve 

normals for edges has been used when fitting curves to objects (Blake and Isard 

1998).   

 

This rudimentary tracking approach worked well in general situations, but in some 

cases where particular background clutter existed, the detectors would become 

caught on an edge caused by clutter, and as they maintained their shape from 

frame to frame, they would be unable to reset their position on the correct 

boundary.  However, as the developed partial-boundary, simple-snake approach 

runs so fast, it is feasible to effectively re-initialise the detectors every frame.  

This was found to work very well in a real-world situation where reliable tracking 

was required. 
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Once the kink detectors are positioned on the boundary, it is possible to extract 

the actual ‘kink point’ from the line in a variety of ways.  One way is to examine 

the curvature of the line and see where the ‘knot’ is, or where the curvature 

inverts.  With smooth kinks containing noise, however, this approach was found 

to be unstable.  Another method that was tested was that of fitting circles onto the 

line and examining where they crossed: 

 

 

Figure 3.10 Example of using circles to successfully identify the kink point. 

 

Such an approach was found to be slow, and to prevent the circles fitting to noise 

an estimate of the initial location of the kink point was required (typically in the 

middle of the line), which was not always a valid assumption.  Both of these 

techniques would fail if the kink detector were slightly misplaced to the side of a 

kink, as they would be presented with a line with no kink point, as in Figure 3.11: 

 

 

Figure 3.11 Example of a slightly misplaced kink detector.  Using the circle-fitting or 
knot-finding methods would fail to find the closest point to the true kink point. 

 

One method that would be much more successful here, and one which is also very 

fast, is to treat the line as a graph and find the minimum point.  This can be 

practically found by looking for the minimum y-coordinate in the detector (or 

maximum, depending on the side of the animal).  This method was found to work 

very well and so was employed in this work. Once these points have been found, 

they can be used in the four-point P2 model (considered in section 3.5.4) to 

predict the P2 position, and from there direct the robot. 
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One possible extension to improve the location of the kink positions would be to 

incorporate any available symmetry information into their placement estimates.  

When observing the animals, there does appear on occasion to be an element of 

symmetry between the motion of two sides of the pigs.  This is to be expected to 

an extent as obviously the two sides of the animal are connected.  However, when 

a pig twists in the feeder, or during a step (which introduces a characteristic 

wobble into an animals motion), the symmetrical link between the lateral sets of 

kink points appears much weaker.  Therefore for this work it was not felt that 

adding a symmetrical component to the location algorithms would improve 

accuracy.  However, if in later work there was found to be a symmetric 

relationship between kink points under certain conditions, then this relationship 

could potentially be used to improve the accuracy of placement or estimate the 

locations of ambiguous kink points when these conditions hold. 

3.5.3. Detecting when the animal is in a motionless state 

It was desirable to instruct the robot to move when the pig was in a motionless 

state.  Previous motion graphs (Frost et al. 2000) and general experience with the 

animals has indicated that once a pig has started eating, it will remain eating, and 

therefore remain stationary, for a while.  A lack of motion from the animal is a 

good indicator that it has begun eating from the trough.  Identifying this state 

allows the robot to be activated and take a measurement at a time when the animal 

is most likely to remain still.  To do this, the motion of the predicted P2 point was 

recorded over a sliding window of about the previous four seconds.  If the 

variance of the motion within this window was below 40mm2, the robot was 

activated using the most current P2 estimate.  The values for the time-length of 

the window and the distance of the threshold were determined by practical 

experimentation, larger windows and lower thresholds giving rise to longer 

periods of suitably low motion being necessary to activate the robot.   Figure 3.12 

shows how using a sliding window of variance calculated over approximately the 

four seconds can be used as an estimate of when the animal is in a motionless 

state: 
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Figure 3.12 Graph showing the value of a variance window of P2 point movement 
calculated over approximately the last four seconds, and the corresponding pig movement 
values over time.  The solid lines represent pig movement data (the blue line is lateral 
movement across the feeder and the pink link is longitudinal movement along the feeder) 
from a 20 second sequence of a pig in a feeder.  Dotted lines are the variance (thick is 
lateral and thin is longitudinal). 

 

It can be seen from Figure 3.12 that the animal is considered motionless (i.e. 

variance is less than 40mm2) between approximately 10 and 15 seconds.  The 

robot would be activated at 10 seconds, allowing 5 seconds for the robot to 

position itself, and then take a reading.  In this example, it can be seen that 

variance of P2 movement over a four second window is a good indicator of the 

amount of motion the animal produces. 

3.5.4. Model of P2 position 

As the P2 point is determined by the internal structure of the animal and is not 

marked by visible features, it must be located by reference to other physical points 

on the pig.  A manual operator would find the point by a combination of palpation 

and prior knowledge.  While we cannot palpate, we can use a model of its location 

to determine where it is in relation to other parts of the pig’s anatomy.  Previous 

work has examined the feasibility of using features on the boundary of the pigs 

plan view to predict arbitrary points on the pigs back (Frost et al. 2000).   It was 

found that using six feature points on the boundary of the animal, nine spot 
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positions distributed across the back of the pig could be located.  This original 

model was based on six feature points: the four kink points and additionally a 

neck point and a rump point (Frost et al. 2000; Tillett et al. 2002).  The neck point 

is artificial, as it exists on an imaginary boundary; it does not correspond well 

with actual visual features.  The neck point is defined as where the major axis of 

the boundary area intercepts the boundary at the head end, and is thus a function 

of the boundary.  The tail point is where the centre of the tail intercepts the 

periphery, and is sensitive to the viewing angle of the pig and the location of the 

tail.  For these reasons, the model was tested without these two extra, less-reliable 

features; the coefficients were recalculated from just the four kink points on the 

7549 legacy training images that were used for the six-point model.  This new 

model was compared to the six-point model by computing RMS errors compared 

to a human marked groundtruth for a 450 frame sequence of pig motion in a 

feeder.  The new model was found to be more accurate laterally, though only by 

0.2 pixels (~0.4mm), and was approximately 1.3 pixels (~2.6mm) less accurate 

longitudinally.  It is suggested that the lateral location of the neck and tail features 

can vary independently to the motion of the pig, depending upon orientation, and 

so provides a slightly less accurate lateral position for P2 than if these features are 

excluded from the model.  However, the longitudinal positions of these extra 

points is less ambiguous and so does provide salient extra information to the 

model. 

 

For the purpose of the sensor placement system, using the four-point model has 

several advantages.  First, the whole boundary need not be tracked.  To locate the 

tail and neck points, tracking nearly the whole boundary of the pig is necessary, 

but to use only the four kink features, only these sections of the boundary need be 

located (see 3.5.2 for details).  This will save processing time, and work around 

the problem of the front area of the neck becoming obscured in the feeder, as 

occasionally happens.  Second, the longitudinal reduction in accuracy for using 

only four features is acceptable, especially considering there is actually an 

improvement in accuracy laterally.  
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The P2 position was modelled from the located kink features found from the 

image processing stage described in 3.5.2 above.  These four features were found 

in 7,549 frames from ground truth data used for previous work at Silsoe Research 

Institute (Tillett et al. 2002), together with a manually located P2 position located 

in each frame (as marked on these training pigs before image capture).  The model 

is a linear regression of the spot coordinates on the kink coordinates. 

The model used is of the form: 
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where (sx,sy) is the predicted coordinate of the P2 point, (kix, kiy) are the 

coordinates of kink point i, and a, bi, ci, d, ei, fi  are the model weights. 

  

This model is based on data used in building the six point version, applied 

successfully in previous work (Frost et al. 2000; Tillett et al. 2002), modified for 

use with four feature points. As was explained earlier, the rump of the animal was 

located by a detector after all, and so theoretically a 5-point model could be used, 

incorporating the location of the tail.  However, it was found that the rear contour 

detector is occasionally susceptible to tracking clutter on the floor of the feeder.  

While this does not greatly impact an estimation of the rump location, it would 

hamper any effort to determine the base of the tail.  Combined with the 

orientation-dependant view of the tail, the rump detector was not used to detect 

the fifth feature point.  Therefore for this work a 4-point model was implemented.    

 

The a and d offsets in equations (2) and (3) above are allowed to vary from animal 

to animal, as previous work (Tillett et al. 2002) has shown this to be the most 

accurate model.  This will be accomplished by setting these parameters manually 

for each animal, although in the future this need only be done once and then, by 

tagging the animals electronically, the parameter values could be recalled 

automatically when the animal enters the feeder. 
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3.5.5. User interface 

All the image processing is hidden from the user behind a graphical user interface, 

extended from a system called CamCap developed at the University of 

Nottingham1. 

 

Figure 3.13 Graphical user interface from the image analysis software.  The live video 
feed pops up in another window. 

 

The CamCap program employs Microsoft DirectShow technology to handle 

image display, and Intel’s Open CV library (Intel 2005) for some of the low level 

image processing algorithms. 

                                                      
1 CamCap video processing environment by Jonathan Green, Andrew French.  Other modules by 

other authors.  See (Green and French, 2006). 



Chapter 3 

 53 

3.5.6. Example of image processing results 

After the image processing stage and having located the P2 position using the 4-

point model, a typical frame now looks like: 

 

Figure 3.14 The four kink points located along the length of the linear snakes.  The P2 
point is marked by a circle on the back of the pig: note how it correctly falls over the 
actual P2 position, as indicated by the black tape on the back of the animal. 

 

The final system processes the frames at about 10 frames per second on a Pentium 

III 500 MHz machine.  Optimized for a modern machine, this could be expected 

to run at a full 25 frames per second. 

3.5.7. Image distortion correction 

The images from the overhead camera suffer from two main types of distortion.  

The first, radial distortion, is due to the wide-angle lens that is used, and secondly 

the more minor decentering distortions (Conrady 1919); see Figure 3.15 on page 

56.  Therefore, it was necessary to determine whether these distortions needed to 

be removed.  To estimate the error involved in predicting the P2 using a distorted 

image, the difference between the predicted position on both a distorted original 

image and an undistorted image was calculated for three test images.  Two of 
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these images represent extreme conditions, where the pig is at the far left and far 

right of the image (where radial distortion is the most prolific) and one 

represented a typical situation where sensor placement would be likely to occur. 

The images were undistorted using a blind distortion removal technique 

(Swaminathan and Nayar 1998).  ‘Blind’ means that the parameters of the internal 

camera optics need not be known, and no specific calibration target is required. 

More traditional calibration methods require a calibration target, such as Tsai’s 

popular work (Tsai 1986).  Taking into account the environment in which this 

system must operate it was decided that manual calibration methods should be 

avoided if possible, therefore existing geometry in the image should be used to 

guide calibration.  Known straight lines in the real world appear as curves in a 

radially-distorted image.  For example, the feeding rig walls are straight in the real 

world but are curved in the images in Figure 3.15 on page 56 (left hand column).  

Swaminathan and Nayar propose a method whereby such a curve is warped back 

to a straight line by estimating the parameters of the distortion.  Other distortion 

removal techniques were considered (Farid and Popescu 2001; Devernay and 

Faugeras 2001), but given the presence of straight lines in the image and the 

apparent success and simplicity of Swaminathan and Nayar’s method, this 

technique was chosen. To test the effects of distortion, the four kink points were 

marked by hand, and their coordinates used to calculate P2 as per the model.  The 

robot is sent an integer and so the values in Table 3.1 are as the robot would 

receive them. 

 

 Distorted P2 

coordinates 

Undistorted P2 

coordinates 

Error 

Pig x y x y x y 

1 114 169 111 170 3 1 

2 286 162 285 162 1 0 

3 162 160 161 160 1 0 

Table 3.1 Estimated coordinates and errors of predicted P2 position in pixels, calculated 
for both distorted and undistorted images.  One pixel ≈ 2mm.  Pigs 1 and 2 represent 
extreme cases of distortion (where the animal is towards the edge of the image) and pig 3 
represents a typical situation. 
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It can be seen from Table 3.1 that very little error is introduced as a result of radial 

distortion.  The maximal error encountered was about 6.3mm in the Pig 1 image, 

where the animal is entering the feeder.  The images of pigs in the expected 

sensing position (Pigs 2 and 3) produce only 2mm error.  For this reason, it was 

decided that it would not be necessary to remove the distortion from the images 

before processing.  Decreasing the time spent processing the frames was 

considered more important as this gives less time-lag in which the animal can 

move before the robot is activated.  Additionally, the model presented in 3.5.4 

was historically learnt from distorted images.  

 

It should be noted at this point that only radial distortion was removed, as this 

was by far the main component of the distortion.  Other smaller distortion effects 

may still be present..  However, it can be seen that most of the distortion is 

removed when radial effects are accounted for.  Therefore, radial is the largest 

component of distortion, and even so produces only small errors in the final P2 

predicted position.  Other small distortion components need not be of concern for 

the accuracy required of this work. 
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Figure 3.15. Distorted images (left) and with radial distortion removed (right) 

 Top: Pig 1.  Middle: Pig 2.  Bottom: Pig 3. 
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3.6. Robotics: specification and calibration 

3.6.1.  Specification 

The choice of power for the robot is constrained mainly by the operating 

environment. Electricity was not an option in such an environment where 

powerful animals and damp conditions will be present.  Hydraulic robots provide 

speed and accuracy, but the possibility of a leak of toxic fluid over an enclosure of 

animals whilst unattended is too great, plus the cost is prohibitive and there is a 

greater chance of impact injury.  Compressed air offers a non-toxic system that 

has the advantage of some give if animals (or people) get in the way of a moving 

arm, or if it goes out of control, or a component becomes damaged.  The 

automatic teatcup attaching robot (Frost et al. 1993b) employed pneumatics 

successfully; all four teatcups were successfully attached on 68% of trials (Frost et 

al. 1993a).  For these reasons, a pneumatic robot was a sensible choice for this 

work.  The compressibility of the air provides a cushion should the arm strike an 

operator or animal and should a leak occur, compressed air is harmless.  

Pneumatic robots do suffer from stiction (or ‘static friction’, an effect of friction 

which requires increased force to start moving two stationary surfaces in contact 

with each other.) in their actuators, and non-linearities due to the compressible 

nature of air, but offline tests (Frost et al. 2004) suggest the robot is capable of 

achieving the required accuracy. 

 

The robot is theoretically capable of continuous tracking of a target position.  

However, for this work, a non-tracking method was employed, whereby the robot 

is sent to one position, and it remains there until reset.  There are a number of 

reasons behind this decision.  First, the image analysis is unable to continually 

predict P2 position when the robot has activated because of the obscuration of one 

or more kink points that typically takes place.  Second, the robot was found to be 

insensitive to movements that were short (less than 2mm) or high frequency 

(above 2Hz) (Frost et al. 2004).  Previous work estimated that non-tracking 

placement would still generate sufficient readings per day (Frost et al. 2000). 
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Figure 3.16 Three views of the robot feeding rig out of situe.  Silsoe Research Institute. 

The robot was actually constructed in work previous to this thesis; however, it had 

never before been experimentally tested in a real environment or controlled by 

image analysis software.  The robot was of a two-axis SCARA (Selective 

Compliant Assembly Robot Arm) design.  The obvious alternative would have 

been a Cartesian arrangement.  However, it was thought the necessary rails would 

have been liable to dust accumulation, and would also have been untidy as the 

SCARA arrangement can retract to the side when not in use (Frost et al. 2004). 

 

 

Figure 3.17 Plan view of the arrangement of the actuators.  Actuator 1 has length of 
352mm when closed and a stroke of 200mm, actuator 2 has a closed length of 295mm 
and a stroke of 100mm. 

The control box for the robot was also constructed prior to this work, and was 

operated by sending coordinates in the robot frame using an RS-232 interface on 

the control PC. 

Actuator 1 
Actuator 2 
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3.6.2. Calibration and integration with image analysis system 

The coordinates calculated by the image analysis software are used to control the 

robot location.  These coordinates need to be converted to the frame of reference 

of the robot so that the control software for the actuators can interpret them 

correctly. 

 

The robot had previously been calibrated to move to locations on its horizontal 

plane of movement as specified by its internal control software. This pre-

calibration was integrated with the analysis software using a variation of the Table 

and Grid method (Trevelyan 2004), to map image coordinates to robot 

coordinates.  A horizontal grid was measured out on a horizontal plane and placed 

under the robot laser pointer on the end of the robot arm.  The robot was 

instructed to move to certain coordinates, and the corresponding error was 

measured between the resting position of the laser spot and the target position on 

the grid.  Effectively this problem was not one of calibrating the robot itself, but 

instead estimating the offsets and scaling factors to convert between robot co-

ordinates and image coordinates.  Full robot calibration is a complex task and one 

not explored by this work. 

 

 

 

Figure 3.18 The calibration grid positioned 
horizontally over the feeder (left) and the laser 
pointer fitted to the end of the robot arm 
(above). 
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The overhead camera has a coordinate system that is independent from that of the 

robot control system.  However, the plane of the image in the camera view is very 

nearly the same as the plane of operation of the robot, i.e. they can both be 

considered horizontal.  Therefore, the conversion from the image plane to the 

robot coordinate system can be approximated as a simple translation of the image 

coordinates, and a scaling of the axes. The robot was calibrated before being 

moved into place in the animal house.  After calibration, the lens settings and 

location of the camera were locked into place.  Once the robot rig was in its final 

position, a spot-board was used to check that the robot was behaving as expected 

– see Figure 3.19.  This was achieved by directing the robot to spots marked on a 

board placed in the feeder at a typical pig height.  The robot was directed to the 

spots by clicking on them in the image analysis system. 

   

Figure 3.19 Example of a spot board testing of the positional accuracy of the robot in its 
final position.  The spot board is placed at expected height of a pig and the user clicks on 
the white tape markers (20mm x 20mm) within the image analysis software.  The robot 
should move such that the laser falls within the tape outline.  The laser position has been 
highlighted for clarity.  Mounted on the end of the robot arm are the observation camera 
and dust cover, and the laser. 

 

It is important to know the number of real world units per pixel as height varies, 

so that error values in pixels may be converted to real world units.  This was 

calculated using a calibration board with known dimensions marked on it.  This 

board was placed at different heights in the pen, and then the number of pixels 

between the markings in the captured images from the boom camera was 

calculated using Photoshop. 
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Figure 3.20 Graph showing linear regression line (R2=0.99) of millimetres per pixel 
against height above ground in images taken from the boom camera.  Vertical lines 
indicate pig height limits of the animals in this work.  

3.7. Experiment: Determining system success  

3.7.1. Environment 

12 Duroc X Landrace X Large White females were available for the trials.  They 

were raised from 3 weeks in an animal house at Silsoe Research Institute.  

Experiments were carried out in the environment in which they lived.  The 

animals were approximately 13 weeks old at the time of the trials, and weighed 

56.3 kg on average.  Ambient daylight entered through a number of small, high 

windows, and was accompanied by a number of artificial lights on the ceiling. 

3.7.2. Equipment 

The robotic feeding station was placed in the animal house so that the animals had 

continual free access to it.  The pigs were raised from 3 weeks of age with the 

feeder in the pen, and regular food being provided in both the robotic feeder and 

the conventional feeding troughs.  The feeding station was illuminated by a 

combination of ambient daylight and electric lights, and from a 60w bulb above 

the feeder itself.  The robot was only functional when an operator was present. 

Height above ground (cm) 
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Figure 3.21 Photo of the working environment, showing the robot rig and some pigs. 

3.7.3. Procedure 

The aim of a trial was to see how well the image analysis and robot placement 

systems performed while a pig was feeding in the rig.  In order to achieve results 

that were as natural as possible, the animals were not forced into the feeder.  

Trials were run when animals came to feed of their own free will.  The activations 

were recorded over two approximately one-hour windows for each of two days.  

Visits where a pig walked into the feeder and stayed only for a short period of 

time were discounted, as were incomplete visits (where a pig was already in the 

feeder, for example).  This left 7 complete ‘visit sessions’ to be analysed, each 

consisting of the time from when a pig enters the feeder to when it leaves, and all 

the activations of the robot as it fed.  As the pigs entered the feeder during the 

trials, the target P2 position was marked on their backs by manually placing a 

square of black tape measuring approximately 25mmx25mm at the correct 

location.  This location was determined using information in prior literature (see 

section 3.3.1 for more information), and the tape was placed in the presence of a 

skilled pig handler.  This mark was to enable the error between the predicted 
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position of the software and the actual P2 position as indicated by the marker tape 

to be later measured.  On some occasions, a pig may have entered the stall but 

only remained there for a few seconds.  These occasions were discounted from the 

trials, as the robot has no chance to activate.  If the robot were entirely 

autonomous, this situation would happen often and would not be a problem. 

Once a pig enters the stall to feed, the image analysis software begins tracking the 

animal (see 3.5.2).   The user can then manually set the a and d offset constants in 

the model - see equations (2) and (3).  These offsets vary from animal to animal, 

as described previously.  In the future, if the animals were tagged electronically 

these parameters could be calibrated once, and then recalled by retrieving 

information for particular pigs as a tagged animal enters the feeder.  For now, this 

is done manually, and is made as intuitive a process as possible in the software by 

allowing the user to click on the video display window to set the offsets.  The 

system then automatically detects when the animal has been stationary for a set 

length of time, and then activates the robot.  The robot is normally then reset 

when a pig is deemed to have moved, based on the motion of the rump.  However, 

for this work the threshold to detect animal movement was increased to make the 

system less sensitive to movement post-robot activation.  This was to allow the 

error in position to be recorded over a longer period of time. 

The observation camera mounted on the end of the robot arm next to the laser 

pointer is connected to a VCR and a recording is made of all activations.  These 

recordings are later used to measure the positional error between the laser spot and 

the real P2 position as marked by the tape. 
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3.8. Results 

The results of the sensor placement experiment are now presented.  Some related 

results have been published by the author at conferences and in journals (French 

et al. 2003; Frost et al. 2004). 

The flow of events that take place in a visit to a feeder is presented in Figure 3.22. 

 
1. Pigs outside feeder 

 
2. Pig entering feeder 

 
3. Pig eating 

 
4. Robot activates, normally several times 

 
5. Pig exits and robot resets  

 
 
 
 
Figure 3.22 Storyboard of an animal’s 
visit to the feeder.   

 

Graphs are presented to summarise results of the accuracy measures.  It was 

hypothesised that the sensor deployment mechanism would take about one second 

to deploy after robot arrival.  This is consistent with previous work (Frost et al. 



Chapter 3 

 65 

2000) which hypothesised a window of two seconds to take a reading, including 

robot deployment time.  The robot takes the order of a second to finish moving 

(depending on the air pressure delivered to the pneumatics and amount of stiction 

in the joints), and so allowing an extra second after this to deploy the sensor is 

reasonable.   Therefore, the error graphs represent the error that would be present 

in the placement if a reading was taken one second after the robot had finished 

moving (see Figure 3.23).   

 

 

Figure 3.23 Diagram to illustrate the timescales of the measurements.  The “Sensor 
contact time” marker is where the placement errors are measured. 

 

Seven visits to the feeder were analysed.  A visit consists of a pig entering the 

feeder, and the robot activating one or more times while the pig feeds, before 

finally the pig exits the rig.  These seven visit sessions ranged in time from one 

minute to eleven minutes.  The mean length of time spent in the feeder was 4 

minutes and 51 seconds.  Out of these seven visits, five different pigs entered the 

feeder; two of them were repeated visits by the same pig (one pig visited on both 

visits 1 and 3, and another pig on both 5 and 7).  With a total of 34 minutes of 

visits and 75 activations, it can be estimated that a robot activation can take place 

approximately every 30 seconds that a pig is in the feeder. 

 

Errors from the image analysis system and model are presented now, from frames 

saved when activation commands are sent to the robot.  Therefore, they represent 

the state of the tracking system and model P2 estimation when drive commands 

Seconds 
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are sent to the robotic control system, before any robot inaccuracies are 

introduced. 

 
 

Figure 3.24 Graph indicating the kink location RMS errors (grey) and the P2 prediction 
RMS errors (black) across the activations in each visit sequence.   

 

The kink location errors (grey bars, Figure 3.24) were calculated by measuring the 

error on each individual kink location manually, from the frame saved at the point 

of robot activation.  Examples of these images are the ‘Activation’ images that 

will be presented in the main results, Section 3.8.1.  The P2 prediction error (black 

bars, Figure 3.24) is RMS of the Euclidean distances between the model-predicted 

P2 point and the physical P2 marker on the animal, again at the point of robot 

activation. 

 

Notice that the P2 model errors in Figure 3.24 are sometimes less than the kink 

location errors for that sequence.  This may be for a number of reasons.  First, the 

errors may be on lower-weighted points of the model and so have less effect.  

Second, some of the errors may cancel out, for example the back kinks 

erroneously moving forward and the forward kink moving back together would 

locate the P2 point in a similar position than if no movement had occurred. 

     1                  2                   3                  4                   5                  6                   7 
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The P2 prediction error is the most important as far as the final system is 

concerned, as this is effectively the error on the input given to the robotic system.  

The mean P2 prediction error is ~15mm across the seven sessions.  This is more 

than the 6-8mm predicted (Tillett et al. 2002) when using a linear model with 

separate offsets.  This may be due to a number of factors.   The original model 

(Tillett et al. 2002) used six feature points versus the model used here which has 

four, and although the four-point model was shown to be of comparable accuracy 

with test data, perhaps in the actual experiments this new model did have a 

negative effect on accuracy.  Also the set of pigs used to train the model may in 

some way have a different geometry to the animals used in this work.  Some 

errors are bought in from the kink location errors (grey bars, Figure 3.24), and are 

then propagated through the P2 model to form a part of the error present in the 

final prediction.  However, the overall prediction accuracy of 15mm falls within 

the specified limit of 20mm error, leaving a 5mm buffer for robotic system errors.   

 

Knowing which kink points introduce the most error would allow the system to 

associate reliability scores with each kink coordinate.  This in turn might allow the 

model to be more robust to ambiguous kink location on frames where a clear kink 

feature is not visible.  It was considered that this would not be necessary for this 

initial system, but it is recognized that this may be one future method of reducing 

the error levels in the P2 prediction from the kink locations, if some of the kink 

points were found to be more reliable features than others. 

 

Section 3.8.1 will go on to consider the final error in the system, where the robotic 

placement is compared to a human-set marker point at the P2 position. 
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3.8.1. Graphs of robot position error (mm) from the target P2 position.   

Over the following pages, results will be presented from the real-life application 

of the sensor location system on feeding pigs.  For each of the seven different 

visits to the feeder that were analysed, three types of results will be presented.  

First, graphs of sensor location error will be presented.  These are the longitudinal, 

lateral and Euclidean distance errors present between the robot’s final position, as 

indicated by the laser spot, and the P2 point as manually marked on the animal.  

They are measured approximately one second after the robot has completed its 

movement as directed by the image analysis software. These errors represent the 

accuracy of the complete sensor location system, and from these the average 

placement error and the number of sufficiently accurate readings per day can be 

estimated. 

 

The second kind of results to be presented are example frames from the two 

overhead cameras.  An example frame from the image analysis software at the 

point of robot activation is presented first, followed by a frame from the boom 

camera taken at the corresponding point of robot arrival.  The first of these images 

allows the reader to see the state of the image analysis components and the model 

estimate of P2 position at the point of activation.  The boom image shows the 

locations of the actual P2 point compared to the robot position at the time the 

robot arrives at its final position.  The particular images were chosen because they 

are good examples of either representative or unusual situations. 

 

These images are then followed by some graphs which show some typical and 

atypical example activations during the animal’s visit to the feeder.  They are 

chosen because they are interesting or typical cases, and are accompanied by 

individual explanations. On these graphs, the robot is activated at zero seconds, 

and arrives at its final destination (i.e. the modelled P2 point) when the error 

plotting begins.  The movement of the rump is plotted from the point the robot 

activates. 
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Finally, Figure 3.46 presents summary results for the Euclidean distance between 

the laser spot and P2 marker for every activation analysed.  This is overlaid with 

an estimated ‘adjusted error’ which is theoretically possible to achieve by taking 

tracked rump information into account, basically by accounting for longitudinal 

rump movement in the longitudinal error of the placement.  By incorporating the 

rump motion that takes place up until the sensor is actually in place over the 

estimated P2 position, the longitudinal error present in the placement can often be 

reduced. 

 

A discussion of these results is presented in section 3.9. 
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VISIT 1 

 

Figure 3.25 Placement error graph, visit 1.  Errors between the robot sensor position as 
marked by the laser spot and the P2 mark on the pig’s back.  White = longitudinal error, 
grey = lateral error, black = Euclidean distance error.  

 

 

Activation image, 
activation 3.  Note 
how the image 
processing has 
correctly located the 
kink points, despite 
the angle of the pig.  
Note also that the P2 
model has accurately 
located the P2 point. 
 

 

Boom image at robot 
arrival, activation 3.  
The pig may have 
moved slightly since 
activation.  The laser 
point is about 19mm 
from the centre of the 
P2 marker. 

Figure 3.26 Example images.  (Top) Typical activation frame output by the image 
analysis software at the point of robot activation, and (bottom) a boom camera frame of 
the resulting position of the laser when the robot is in position for activation 3. 
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GRAPHS SHOWING P2 POSITION ERRORS AND RUMP MOVEMENTS FOR SOME ACTIVATIONS 

 

Activation 3 

Note how most of the error is 
lateral.  This is likely to be because 
the pig is leaning to one side, and 
therefore does not fit the built model 
well.  This can be seen in Figure 
3.26. 
 

 

Activation 1 

Most of the error is longitudinal, but 
the pigs rump does not move very 
far at all.  This error is likely to be 
caused by the pig hunching up, or 
stretching out, after the robot has 
been activated. 

 

Activation 4 
 
A good example of the system in a 
typical situation.  The errors are low 
for a few seconds, and then the pig 
backs out of the feeder.  The robot 
would have enough time to activate 
and take a reading before the error 
becomes too large (error on sensor 
contact is 11.9 mm) 

Figure 3.27 Graphs depicting a typical activation event and some atypical scenarios 
during visit 1.  The bold line is the Euclidean distance error between the laser and the 
marked P2 position.  The thin grey line is the lateral laser-P2 error and the thin black line 
is the longitudinal laser-P2 error.  The dotted line represents the longitudinal movement 
of the pig’s rump throughout the sequence.  The error lines are not plotted until the robot 
has reached its final destination.  The dashed horizontal line represents acceptable error. 
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VISIT 2 

 

Figure 3.28 Placement error graph, visit 2.  Errors between the robot sensor position as 
marked by the laser spot and the P2 mark on the pig’s back.  White = longitudinal error, 
grey = lateral error, black = Euclidean distance error.  The missing data is generated by 
immeasurably large errors – this is explained in the discussion. 

 

 

Activation image, 
activation 9.   
Good location of kink 
points and good P2 
location from model.  
Note the potential for the 
tail to change its 
perceived location. 

 

Boom image at robot 
arrival, activation 9 
Error of approximately 
10mm between the laser 
and the centre of the 
marker tape on robot 
arrival.  

Figure 3.29 Example images.  (Top) Typical activation frame output by the image 
analysis software at the point of robot activation, and (bottom) a boom camera frame of 
the resulting position of the laser when the robot is in position for activation 9. 
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GRAPHS SHOWING P2 POSITION ERRORS AND RUMP MOVEMENTS FOR SOME ACTIVATIONS 

 

 

Activation 9 

 

The error is within the 
20mm limit for the 
sequence, except at the end 
where the pig backs out, 
causing the robot to reset. 

 

Activation 1 

Here the pig moves out 
shortly after activation.  
There is still enough time 
for a sensor contact though 
(hence low contact errors in 
Figure 3.28)  
Note the lateral ‘wobble’ 
present on this graph as the 
pig backs out.  This is 
caused by the characteristic 
rocking motion of pigs.   

 

Activation 3. 

A situation caused by the 
pig exiting back directly 
after robot activation.  This 
could be caused by 
pneumatic noises of the 
robot. 

Figure 3.30 Graphs depicting a typical activation event and some atypical scenarios 
during visit 2.  The bold line is the Euclidean distance error between the laser and the 
marked P2 position.  The thin grey line is the lateral laser-P2 error and the thin black line 
is the longitudinal laser-P2 error.  The dotted line represents the longitudinal movement 
of the pig’s rump throughout the sequence.  The error lines are not plotted until the robot 
has reached its final destination.  The dashed horizontal line represents acceptable error. 
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VISIT 3 

 

Figure 3.31 Placement error graph, visit 3.  Errors between the robot sensor position as 
marked by the laser spot and the P2 mark on the pig’s back.  White = longitudinal error, 
grey = lateral error, black = Euclidean distance error. 

 

Activation image, 
activation 5.   
 
Note how the P2 
prediction is not perfect, 
despite accurate locations 
of kink points. 

 

Boom image at robot 
arrival, activation 5. 
 
The robots final position 
is further back than the 
goal position seen in the 
figure above. 
This is because the pig 
moves along the feeder 
between activation and 
arrival (as can be seen in 
Figure 3.33 below).   

Figure 3.32 Example images.  (Top) Typical activation frame output by the image 
analysis software at the point of robot activation, and (bottom) a boom camera frame of 
the resulting position of the laser when the robot is in position for activation 5. 

 

 

Er
ro

r (
m

m
) 

Activation 



Chapter 3 

 75 

 

GRAPH SHOWING P2 POSITION ERRORS AND RUMP MOVEMENTS FOR SOME ACTIVATIONS 

 

 
 

Figure 3.33 Activation 5 The bold line is the Euclidean distance error between the laser 
and the marked P2 position.  The thin grey line is the lateral laser-P2 error and the thin 
black line is the longitudinal laser-P2 error.  The dotted line represents the longitudinal 
movement of the pig’s rump throughout the sequence.  The error lines are not plotted 
until the robot has reached its final destination.  The dashed horizontal line represents 
acceptable error. 

 

This graph shows most of the error present being caused by longitudinal motion 

of the pig. Because of the error sometimes present in the model prediction of the 

P2 point, longitudinal offset of the pig from its activation position can actually 

lower the overall error: note how when the rump location moves at about 2.7 

seconds on Figure 3.33, the longitudinal and combined error actually falls.  This is 

because although the animal has moved, it has moved nearer to the target P2 

position.  However, note also that the errors for this sequence are low (within 

accuracy); this tends to be a small effect. 
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VISIT 4 

 

Figure 3.34 Placement error graph, visit 4.  Errors between the robot sensor position as 
marked by the laser spot and the P2 mark on the pig’s back.  White = longitudinal error, 
grey = lateral error, black = Euclidean distance error. 

 

Activation 
image, 
activation 1.   
Good P2 
prediction 
despite location 
of ambiguous 
front-right kink 
point 

 

Boom image at 
robot arrival, 
activation 1.   
 
The laser point 
is offset 
because the pig 
moved in the 
feeder as the 
robot activated 

Figure 3.35 Example images.  (Top) Typical activation frame output by the image 
analysis software at the point of robot activation, and (bottom) a boom camera frame of 
the resulting position of the laser when the robot is in position for activation 1. 
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GRAPHS SHOWING P2 POSITION ERRORS AND RUMP MOVEMENTS FOR SOME ACTIVATIONS 

 

Activation 1 
 
The error rises and falls as the pig 
shuffles forwards and backwards 
in the feeder.  Note that the error 
falls as time goes on.  A system 
that made use of repeated sensor 
applications could make use of 
this, assuming fat thickness falls 
as positional error falls. 
One reason the error is high 
initially is because the pig has 
moved during robot activation, as 
can be seen from the rump 
motion line (see Figure 3.35 for 
the consequence of this) 

 

 
Activation 3 

 
Example of small errors where a 
pig stands still and eats. 

 

Activation 7 
 
Longitudinal motion is 
accompanied by lateral ‘wiggle’.  
Note how rump movement is a 
good indication of overall error. 

Figure 3.36 Graphs depicting a typical activation event and some atypical scenarios 
during visit 4.  The bold line is the Euclidean distance error between the laser and the 
marked P2 position.  The thin grey line is the lateral laser-P2 error and the thin black line 
is the longitudinal laser-P2 error.  The dotted line represents the longitudinal movement 
of the pig’s rump throughout the sequence.  The error lines are not plotted until the robot 
has reached its final destination.  The dashed horizontal line represents acceptable error. 
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VISIT 5 

 

Figure 3.37  Placement error graph, visit 5. Errors between the robot sensor position as 
marked by the laser spot and the P2 mark on the pig’s back.  White = longitudinal error, 
grey = lateral error, black = Euclidean distance error. 

 

Activation image, 
activation 5.   
Good kink locations and 
P2 modelling, despite 
vague front-left kink. 

 

Boom image at robot 
arrival, activation 5.   
 
The animal has already 
moved back.  This can be 
seen in Figure 3.39. 

Figure 3.38 Example images.  (Top) Typical activation frame output by the image 
analysis software at the point of robot activation, and (bottom) a boom camera frame of 
the resulting position of the laser when the robot is in position for activation 5. 
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GRAPHS SHOWING P2 POSITION ERRORS AND RUMP MOVEMENTS FOR SOME ACTIVATIONS 

 

 

Figure 3.39 Activation 5. The bold line is the Euclidean distance error between the laser 
and the marked P2 position.  The thin grey line is the lateral laser-P2 error and the thin 
black line is the longitudinal laser-P2 error.  The dotted line represents the longitudinal 
movement of the pig’s rump throughout the sequence.  The errors lines are not plotted 
until the robot has reached its final destination.  The dashed horizontal line represents 
acceptable error. 

 

Figure 3.39 illustrate the large errors present when a pig takes a step back from 

the feeding trough, followed about 10 seconds later by a step forward again. 
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VISIT 6 

 

Figure 3.40  Placement error graph, visit 6.  Errors between the robot sensor position 
as marked by the laser spot and the P2 mark on the pig’s back.  White = longitudinal 
error, grey = lateral error, black = Euclidean distance error. 

 

Activation 
image, 
activation 8.   
Non-perfect 
rump location 
still allows the 
kink detectors 
to be placed 
satisfactorily.  

 

Boom image 
at robot 
arrival, 
activation 8.   

Figure 3.41 Example images.  (Top) Typical activation frame output by the image 
analysis software at the point of robot activation, and (bottom) a boom camera frame of 
the resulting position of the laser when the robot is in position for activation 8. 
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GRAPHS SHOWING P2 POSITION ERRORS AND RUMP MOVEMENTS FOR SOME ACTIVATIONS 

 

Activation 8 
 
Note the relatively 
high proportion of 
lateral movement 
(hence the lateral 
offset in positional 
error, visible in the 
boom camera in 
Figure 3.41.) 

 
 

Activation 4 
 
Reasonable error 
values despite the 
longitudinal motion, 
and the lateral 
‘wobble’ that 
accompanies this 
motion.  

 

Activation 11 
 
Example of tracking 
error of the front 
right boundary 
detector.  Note how 
the detector is stuck 
on clutter, and the 
resulting error in the 
P2 model prediction. 

Figure 3.42 (top) Graphs depicting some example scenarios during visit 6.  The bold line 
is the Euclidean distance error between the laser and the marked P2 position.  The thin 
grey line is the lateral laser-P2 error and the thin black line is the longitudinal laser-P2 
error.  The dotted line represents the longitudinal movement of the pig’s rump throughout 
the sequence.  The error lines are not plotted until the robot has reached its final 
destination.  The dashed horizontal line represents acceptable error. 
(bottom) The bottom figure is an example of tracking error, where the markings on the 
pig are incorrectly tracked as the boundary. 
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VISIT 7 

 

Figure 3.43 Placement error graph, visit 7.  Errors between the robot sensor position as 
marked by the laser spot and the P2 mark on the pig’s back.  White = longitudinal error, 
grey = lateral error, black = Euclidean distance error. 

 

Activation image, 
activation 3.   
 
Note correct kink 
location despite poor 
rump placement. 

 

Boom image at robot 
arrival, activation 3.   

Figure 3.44 Example images.  (Top) Typical activation frame output by the image 
analysis software at the point of robot activation, and (bottom) a boom camera frame of 
the resulting position of the laser when the robot is in position for activation 3. 

 

Er
ro

r (
m

m
) 

Activation 



Chapter 3 

 83 

 

GRAPHS SHOWING P2 POSITION ERRORS AND RUMP MOVEMENTS FOR SOME ACTIVATIONS 

 

Activation 3 
 
A restless pig can still 
produce an acceptable 
error level. 

 

Activation 8 
 
The pig has little motion 
for almost seven seconds, 
then extreme motion 
causes robot to reset 

 

Activation 2 
 
Pig moves as soon as 
robot activates.  This may 
be caused by the 
pneumatic hiss of the 
robot on activation.  
Normally the pigs are not 
affected by this, but 
sometimes it startles 
them. 
 

Figure 3.45 Graphs depicting a typical activation event and some atypical scenarios 
during visit 7.  The bold line is the Euclidean distance error between the laser and the 
marked P2 position.  The thin grey line is the lateral laser-P2 error and the thin black line 
is the longitudinal laser-P2 error.  The dotted line represents the longitudinal movement 
of the pig’s rump throughout the sequence.  The error lines are not plotted until the robot 
has reached its final destination.  The dashed horizontal line represents acceptable error.
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Figure 3.46 Graph to show Euclidean distance errors at sensor contact across different 
activations, grouped by 7 pig feeding sessions.  The bars show total error (black) and 

adjusted error (grey) Adjusted errors refer to errors where the movement of the rump has 
been taken into account, and removed from the longitudinal error term.  Dotted line 

indicates target accuracy of 20mm 
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Figure 3.46 shows the positional errors over the contact phases for seven sessions 

(two pigs are repeated).  Each group represents one pig’s feeding session, each bar 

indicates an activation by the robot.  The grey bars indicate the predicated 

reduction in error if the longitudinal movement of the animal is taken into 

account.  Note how accounting for the movement of the rump after the robot has 

been activated does improve the theoretical placement accuracy of most 

activations by a large amount.  This indicates that, as expected, most error comes 

from the longitudinal movement of the pig after robot activation.  For a small 

number of activations, the error is actually increased.  In these situations the rump 

motion would not be responsible for the error present, and therefore accounting 

for the rump motion actually has a negative effect. 

 

3.9. Discussion of results 

3.9.1. Success of the system 

As can be seen from the placement error graphs in section 3.8.1, 30 out of 75 

placements produced a Euclidean distance error of 20mm or less.  This suggests 

40% of placements could be expected to be of the required accuracy.  This is 

consistent with the 42% estimate found by preliminary analysis of these results 

(French et al. 2003).   On four activations out of the 75, there was no available 

data with which to record the errors, as the marker tape had moved out of the 

boom camera frame.  On three of these occasions, the animal backs out of the pen 

temporarily.  This may be because the pig is startled by the noise of the 

pneumatics.  An example of this situation can be seen in the bottom graph of 

Figure 3.30 on page 73.  The pig sometimes steps back so far that the marker tape 

is no longer visible on the boom camera image and so no error can be recorded.  

The fourth piece of missing data is caused again by the marker tape not appearing 

on the camera, this time because the animal is standing in the feeding trough.  

However, in these situations the error would clearly be very large and so this 

missing data can be considered as a failed sensor application, i.e. the placement 

error is greater than 20mm. 
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It can be seen from the placement error graphs in the previous section that as a 

general rule, there is more longitudinal error than lateral error in the sensor 

placement.  One reason for this is because the pig is constrained laterally by the 

sides of the feeder, but is free to move in and out longitudinally.  Notable 

exceptions occur where the overall error is low, for example during visits 1 

(activations 2,3,4 in Figure 3.25), 5 (activations 1,6,7,9 in Figure 3.37) and 6 

(activations 1,2,3,4,5,8 in Figure 3.40).  During these times, the pig is quite 

motionless longitudinally – it is probably happy eating – and so even though the 

lateral error is also small it is larger than the very small longitudinal error.  The 

key thing to note is that when large overall errors are present, the major 

component of the error is the in-out longitudinal motion of the animal. 

 

On the image analysis side, the average P2 prediction error is about 15mm.  At 

least one part of this error stems from inaccurately located kink points.  Some pigs 

present an outline that makes it hard for kinks to be located.  Pig number 3, which 

visited the feeder twice, in visits 5 and 7, had a body such that the front left kink 

was hard to locate because only a subtle kink was present.  This can be seen in the 

Activation images in Figure 3.38 and Figure 3.44.  Hence this pig has particularly 

high kink location errors (visits 5 and 7, Figure 3.24).   

 

If a pig is expected to visit the feeder for at least five minutes every day (Frost et 

al. 2000), and an activation occurs about every 30 seconds that a pig is in the 

feeder, it can be expected that there would be about 10 activations per pig per day.  

With 40% of activations being of sufficient accuracy, this would lead to 4 

measurements of backfat per animal per day of sufficient or greater accuracy than 

a skilled human could achieve.  However, casual observation during this work 

suggests pigs would spend more like 30 minutes each per day in the feeder, 

possibly as much as 50 minutes (Tillett et al. 2002).  With 50 minutes per day in 

the feeder, there would be about 100 activations leading to 40 sufficiently accurate 

measurements per animal per day.  As P2 is at a minimum in backfat thickness, of 

these measurements the true backfat could be taken as a minimum of these results 

(Tillett et al. 2002).  Therefore a reasonably accurate measure of backfat could 

easily be expected at least once per day.  As at present stockmen are likely to only 
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measure backfat about once per week, this is a great improvement.  It is also of 

sufficient frequency to allow the nutritional make-up and allowance of food to be 

determined on a day-to-day basis. 

 

There is a question of how to detect which are the accurate measurements and 

which are not.  Locally, the P2 point is a minimum of backfat thickness, but 

globally this may not be the case.  Therefore, for a fully implemented system it is 

necessary to detect when a measurement is a long way away from P2.  One way 

of doing this is using the rump tracker to provide an estimate for longitudinal 

movement.  As most of the error is longitudinal (as can be seen from the 

longitudinal and lateral component errors in the placement graphs of the previous 

section), having an estimate of this kind of error would allow the system to record 

backfat measurements accompanied by large rump motions as being unreliable. 

 

3.9.2. Improvements and future work  

As most of the movement and error is longitudinal, accounting for the rump 

motion and therefore providing a form of active tracking for the robot should 

produce a sizeable increase in accuracy (see Figure 3.46).   

 

Being able to set the model offsets using something like RFID tags to be able to 

identify individual animals would allow the system to automatically adjust its 

parameters for each animal.  This would also allow other data to be stored for 

each animal, e.g. its weight if such software was running (Schofield and Marchant 

1990; Marchant et al. 1999), and this in turn could be used to provide an estimate 

for the height of the pig.  Knowing the height is important for calculating the pixel 

to millimetre relationship on the pig’s back, and obviously this changes as the 

animals grow.  Such a system would also allow a conformation record to be 

automatically kept for each pig, providing, for example, daily weight and backfat 

measurements which the stockman (or future expert system) could use to tailor the 

animals diets or detect the onset of illness. 
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The idea of using the minimum of repeated backfat measures to provide an 

estimate for the backfat depth at the P2 point relies on the fact that P2 is at a 

minimum of backfat depth.  This is a local minimum, but previous work suggests 

the P2 point is a minimum within an area of at least 50mm from the true position 

(Tillett et al. 2002), giving quite a large margin for error, and assuming enough 

repetitions are available it would allow estimates to get close to the true value.  

Clearly, if this system were implemented for real, there would be no way of 

automatically telling where the true P2 point was.  If the robot positions the 

sensor a long way from the correct point, then the local minimum rule would not 

hold, and erratic values for P2 backfat thickness may be recorded.  This problem 

could be overcome by either developing an error detection mechanism that could 

detect when the predicted P2 point or final robot position was unreasonable (e.g. 

after large rump movements), or by assuming that enough placements will be 

within the valid local minimum area that a mean value (or other measure, 

dependant on the distribution of points) would be a sensible estimate of P2 

backfat thickness. 

 

It is possible that the backfat distribution around the P2 point is consistent enough 

across animals that its thickness at particular locations could be modelled.  This 

may allow estimated locations and readings using the robotic system to be fitted 

to the model.  In turn, this would allow multiple measurements to provide the 

ability to fit the modelled thickness map to a particular pig’s back.  This may 

perhaps allow a much more accurate location of the true P2 point in the presence 

of noisy data.  Additionally, if during a set of backfat readings the true minimum 

is in fact not located, the model could be used to identify the theoretical position 

of the minimum thickness of backfat using the available data.   

 

Some practical experimental considerations were raised by this work.  First, the 

boom mounted camera was on rare occasions unable to capture the laser point and 

marker point in the frame.  This was the cause of some missing data in some of 

the graphs (e.g.  sequences 10 and 12, Figure 3.40).  This could be rectified in the 

future by using a wider angle lens.   
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The image analysis system itself did prove generally reliable, although in testing 

the rump tracker did occasionally get caught on clutter introduced into the pen by 

the animals.  The best way to remedy this was to keep the area around the 

entrance to the robot clear of bedding material, which in turn allowed the floor of 

the feeder to be kept reasonably clean.  A future way of detecting when the rump 

tracker was caught on background clutter is to look for occasions when the rump 

tracker becomes completely motionless – this rarely if ever occurs when on the 

animals.  Testing for such an event would allow the system to know that clutter 

was present, and the image analysis could try reinitializing itself or alerting an 

operator to clean out the feeder. 

 

Another issue was raised about how accustomed the animals must be for them to 

accept the robot.  The animals used in these experiments were raised with the 

robot in the animal house, and they had access to it at all times.  However, some 

early tests with unaccustomed adult pigs suggested that the noise of the pneumatic 

system may cause unhabituated animals to be startled when the robot activates.  

This may cause them to back out the feeder completely, or at least be more jumpy 

as they are feeding, causing any prediction of the P2 to only be valid for a short 

period of time.  A remedy for this would be to silence the pneumatic system, or 

raise all animals with the robot present. 

 

The environment itself proved challenging, especially the levels of dust.  

Although this did not affect the equipment used in this work, any long term 

installation would need to be thoroughly dust-proofed. 
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Chapter 4: Monitoring Multiple Animals by Visual 

Tracking: Video Tracking of Ducks in 

an Outside Arena 

4.1. An extension of single animal monitoring 

The previous chapter presented a novel method of monitoring individual animals.  

This consisted of a computer vision system controlling a sensor placement robot.  

It was shown that this system provided enough readings per day of human 

accuracy or better to improve greatly on the current system of manual 

measurement by skilled operatives.  This previous work showed that useful 

information could be gathered from automated monitoring systems tracking 

individual animals.  An image analysis monitoring system for multiple animals 

will now be presented.    This and the following chapters detail the development 

of a system which can support remote visual sensing, i.e. non-contact and at a 

distance from the subjects, by tracking multiple animals. 

4.2. Introduction 

4.2.1. Aim 

It is the aim of this chapter to test existing tracking techniques in a novel 

application area.   The practical goal is to track a group of animals in an outside 

environment as they go about their activities, with a view to further monitoring 

applications.  The techniques will be tested on a group of ducks in an outside 

enclosure.  To support future monitoring applications, all animals in a scene 
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should be able to be located at each timestep.  Therefore, this work requires that 

multiple targets be tracked reliably.  The targets here are similar looking, often in 

close proximity and they sometimes interact with each other. This chapter will 

examine how suitable existing methods are for such tracking of groups of animals.  

The ability to extend to an actual monitoring system would require robust tracking 

over long periods of time, so this work is concerned mainly with the reliable and 

robust tracking of the animals. The ability of social motion information to aid 

tracking will be investigated in the next chapter where a new tracking method is 

developed. 

4.2.2. Multiple target versus single target monitoring 

The monitoring of one animal as presented in the previous chapter does not 

provide as many possibilities nor as many challenges for tracking algorithms as 

monitoring multiple animals does.  With only one target, the main distractions or 

occlusions the tracking system has to cope with are generated by background 

clutter and self-occlusion.  While this may in some situations be a significant 

challenge in itself, often the problems generated by the background can be 

minimised by careful planning.  In the case of the pig monitoring system, the 

robot feeding rig was coloured black to contrast against the pale pigs, and kept as 

clean as possible to minimise the amount of ambiguity between foreground and 

background.  Self-occlusion was not a problem as no parts of the pigs’ bodies 

were able to occlude the features being tracked.  Although the robot arm did 

occlude some of the features being tracked, this problem could be effectively 

worked around because the occlusion occurred at a predictable place and time.  

When multiple interacting animals are tracked it is no longer just the background 

that can be the cause of cluttered measurements, but the animals themselves.  This 

is especially true if the animals are similar in colour, as is the case with the ducks.  

With animals, this situation is common.  Groups of farmed animals typically all 

look very similar (e.g. white sheep, white ducks, lab rodents etc.)  Even animals 

that may start out with unique features may over time look similar after becoming 

muddied in an agricultural environment.  Additionally, depending on the camera 

angle, the animals may occlude each other to a varying extent when they interact 

in close proximity.  Multiple single target trackers easily get distracted in such 
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interactions, as will be shown.  Therefore, the problem of tracking multiple 

similar targets is one that needs to be addressed in this domain.  This problem is 

not unique to animals; similar targets in close proximity occur in many real world 

situations as well.  With people, clothing often allows targets to be uniquely 

identified, but some camera angles, such as top-down views, cannot differentiate 

so well between targets.  Some non-vision sensing systems such as sonar and 

radar often are unable to differentiate between similar targets as well as vision 

systems.   

 

Being able to track multiple targets is very important for automated surveillance 

systems.  By tracking multiple targets as opposed to individuals, or rather by 

tracking individuals but being aware of where other individuals are and how they 

are moving, much more information is available for further processing.  For 

example, someone looking for suspicious behaviour might look for groups of 

people moving about a scene in a suspicious way - a group here may be quite 

separated spatially but acting in a common fashion.  An animal behaviourist might 

be interested in how animals are moving as a group in response to certain stimuli 

(Henderson 1999).  They may also be interested in where individuals are within a 

group, as this may indicate a trade off between certain driving forces, e.g. the 

safety of the centre of the group versus the food availability of the periphery 

(Rayor and Uetz 1990).  Team sports analysis is also a growing field (Needham 

and Boyle 2001), and what makes certain teamplay strong or weak can be of 

interest to coaches.   As well as classifying the behaviour of the whole group, 

individuals within the group can be classified depending on how they are moving 

relative to the rest of the group.  For example, a lame animal may move with a 

group of other animals, but perhaps exhibiting an oscillation on its trajectory.  

Other intra-group relationships might include someone being chased and their 

group of pursuers, or a group of thieves surrounding a victim.  None of these 

effects can be identified by observing only individual targets; the behaviour of the 

whole collection of targets must be considered. 

 

When considering multiple targets that have a degree of interaction with each 

other, there are interesting social effects which occur that can both hinder and 
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potentially aid tracking, such as how groups of targets move as a group, flock or 

herd.  Their effect on tracking will be seen in this chapter, and Chapter 5 will 

examine ways of using social effects to aid tracking. 

 

4.2.3. Why ducks? 

It is reasonable to ask why ducks were chosen as the animals with which to 

develop and test the tracking algorithms.  Ducks are social animals that 

demonstrate grouping and interactive behaviour.  Because of these properties, 

ducks are ideal subjects.  From an experimenter’s perspective, ducks are more 

easily managed than larger animals, such as sheep.  It is also possible to keep 

more ducks in a fixed arena size than larger livestock.  The ducks used were Pekin 

variety, which are a consistent white colour.  This challenges the tracker to 

distinguish similar targets which can present problems even to humans, and so is 

useful to investigate.  Ducks have been used successfully in previous flocking 

experiments (Henderson 1999; Sumpter 1999; Vaughan et al. 2000).  Once 

acclimatised to an arena, they can be filmed unobtrusively without concern about 

the ethics of people appearing in videos they might not want to appear in, as might 

be the case if ‘natural’ footage were acquired from a public space.  Using human 

‘actors’ would not be ideal because the subtle behaviours which would coincide 

with ‘group motion’ would not be able to be extracted; they would only exist if 

the actors were told to perform a certain action. 
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Figure 4.1 The experimental subjects; a group of Pekin ducks at the outside enclosure at 
Silsoe Research Institute, Beds., UK. 

 

Being able to track the ducks reliably would allow the development of a 

monitoring system which could for example identify lame animals moving 

differently to the group, animals eating or drinking too often or too infrequently, 

or startled animals flocking together away from a predator, in either case 

providing an early warning for the stockman.  Such a system would be useful 

because it would allow improved welfare for the animals, and hence improved 

quality and quantity of product and also financial reward for the farmer.   
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4.3. Literature review: Multiple target monitoring 

4.3.1. Applications for tracking multiple targets 

This work will look at the tracking of multiple ducks: however, such methods can 

be extended to tracking groups of people, other animals, insects or any other 

groups of multiple targets.  Many interesting possibilities arise if such targets 

within a scene could be tracked reliably.  Although the idea of a Big Brother 

society is currently as implausible as it is infamous, it is not hard to imagine 

situations where it is useful to be able to monitor the actions of many individuals 

that together make up a scene, without sinister Orwellian connotations.  In turn, 

the group motions, behaviours and interactions between the targets may be of 

interest to many different types of people or organisations.  The people interested 

in such monitoring may not be the obvious choices that first come to mind, such 

as the police forces, military, or other public order-related people.  In fact, 

monitoring people’s interactions with each other can be used in healthcare 

scenarios, such as looking at people’s social interactions in care homes (Chen et 

al. 2004).  In education, tracking many children at once can be used to provide an 

informative and (importantly) fun interactive social environment in which to learn 

(Stanton et al. 2001).  Such interactive social learning has become popular in 

recent years, for example, the Kidstory project (Swedish Institute of Computer 

Science 2005), or Kidsroom (Intille et al. 1997) and adding group tracking 

elements to these provides interesting research and educational possibilities. 

 

One typical example situation is in the team sport domain.   When people play 

team sports they are operating in a multi-person group with various goals.  

Analysing this kind of behaviour allows the labelling of sporting events.  For 

example in the world of American football, players motions have been analysed to 

label coordinated group play (Intille and Bobick 2001).  These formations exist as 

a pre-defined taxonomy and so identifying them is easier then recognising the 

more flexible formations of less structured situations, such as animal social 

activity or crowds of people.  The algorithm used performs well (21 out of 25 

plays correctly identified), though some plays are confused.  However, the rule-

based descriptions of the formations are quite specific and will not generalise to 
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more flexible systems.  For example, the system cannot identify a move that it has 

not yet been taught: it will try and classify as best as it can, producing false 

positives.  Additionally, every target in the sequences forms a part of a play: 

everything the targets do happens for a reason.  In ‘real world’ problems this 

assumption will not hold, as perhaps not everyone in the scene will have as clearly 

defined goals, or even no goals at all.  It should also be noted that the American 

football work (Intille and Bobick 2001) does not feature automated video 

tracking; positions are manually entered at high labour cost.  However, this 

analysis could be applied to the results of an accurate tracking system if a good 

enough system existed.  Other systems have attempted the team sports tracking 

problem.  Basketball players have been tracked whilst on court (Needham and 

Boyle 2001) using a hybrid Condensation/Kalman filter tracking system, which 

results in 56% of automatically produced trajectories falling within one metre of 

the groundtruth.  This is a complicated sequence as the targets often occlude each 

other; however, if 44% of the tracks were too inaccurate for behavioural analysis, 

the analysis of the whole team would not be possible. 

 

If targets’ motions can be robustly recorded, a map of which areas of an image are 

visited can be built up.  Previous work on individual or small numbers of targets 

has identified routes across public areas such as carparks (Makris and Ellis 2002).  

Typically in existing work on this subject, although the statistics are formed from 

many people’s paths through the scene, the people themselves are spread out 

temporally; the tracking would begin to fail where many targets are present at 

once.  Being able to perform such analysis in busy public areas would allow 

inferences to be made about the environment in which the crowds are moving, for 

example areas that are popular or avoided in shopping malls could be used to aid 

the design of future centres.  Some work exists which uses texture analysis to 

estimate the density of a crowd (Marana et al. 1998; Chow and Cho 2002), but 

being able to track the individuals that make up such crowds is an important step 

towards being able to make more informed judgments about the current and future 

behaviours of the crowd.  Identifying such behaviours might consist of crude 

judgements based on the velocity of the members of the crowd, to detect when 

they are panicking or rioting, for example.  The drawback of tracking individuals 
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is that at the moment technology limits the number of people that can be tracked: 

macro-scale movements are more feasibly tracked than individual level motions 

when the number of targets is large.  Therefore, it is necessary to consider smaller 

groups as opposed to larger crowds with current technology, but it is a first step. 

 

Monitoring applied specifically to multiple animals has clear advantages 

mentioned previously in the context of single animal monitoring: improved 

animal welfare, increased profits for the stockman etc.  Most monitoring takes the 

form of measuring a characteristic of an animal, such as its temperature, weight or 

conformity.  However, it is also possible to monitor using a visual tracking system 

alone.  For example, the distances animals travel can be indicative of their state of 

wellbeing (Brandl 2005).  Also, how animals react to each other can show 

something about their feelings: feather pecking in turkeys (Savory 1995) is one 

example of how animals’ attitudes towards each other can be directly observed.  

The group behaviour of multiple individual animals can also lend insight into 

their well being.  For example, pig group behaviour has been used as an indicator 

as to whether the temperature of the environment is correct (Wouters et al. 1990).  

Although Wouters’ system is very simple (using thresholding to identify sleeping 

areas of pigs), it demonstrates that it is possible to automatically control 

environment conditions using image analysis to extract group information from 

scenes.  Also, group behaviour can be used to identify the presence of a predator, 

as grouping characteristics change in the presence of a threat (Henderson 1999).  

Being able to track individual animals for work used to analyse group behaviour 

provides much more information than just looking at the movement of the group 

as a whole; such non-individual group tracking has been popular previously 

(Sumpter et al. 1997) presumably because it is faster, more reliable and provides 

sufficient information for the task at hand. 

4.3.2. Tracking: a review of relevant techniques and theory 

In order to monitor groups of animals, they must first be tracked reliably.  This 

means reliably locating targets in successive frames and maintaining their 

identities throughout time, to enable their position and motion to be quantified.  
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Existing work on various tracking methodologies and algorithms will now be 

described, with a view to selecting suitable algorithms for this work.   

 

The crudest way of being able to identify which targets in the successive frame 

correspond to the targets in the current frame is simply by seeing which target in 

the new frame is closest to the target’s old position in the previous frame.  

Typically a local search window will be placed in the new frame, centred on the 

old target position.  If only one target is found in this window, then it is assumed 

to be the required one.  If more than one is present, there may be a heuristic for 

choosing between them (e.g. based on an appearance model, or a distance metric), 

or one of the new target candidates may simply be randomly allocated the identity 

of the old target.  This method is only going to succeed where there are a small 

number of targets, unlikely to be located close to one another, and where the 

velocities of the targets are small enough to keep the targets within the search 

window between frames.  

 

A simple extension to this technique which makes this approach more powerful is 

to take account of the target’s velocities, and move the search window 

accordingly.  Therefore, a target with a fast motion will have it’s search window 

moved further ahead in the next frame than a target which is moving more slowly. 

A further improvement is to alter the size of the search window depending on how 

confident the prediction of the target’s new location is.  If the tracker is confident 

of the target’s predicted location (e.g. if all the previous recent predictions have 

been accurate) then the search window can be made smaller than if the tracker is 

not confident of the prediction.  A smaller search window provides less 

opportunity for a tracker to pick up on background clutter on incorrect targets.   

 

Figure 4.2 illustrates this principle. 

 



Chapter 4 

 99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Examples of tracking a target (‘x’) using a circular search window placed 
using the target’s velocity to estimate a new position and with a radius based on the 
confidence of the target being in that location.  The top frames represent a tracker 
confident of the target’s location (small search region) and the bottom frames show a less 
confident tracker (larger search region).  In the bottom t+1 frame the target is misplaced 
due to noise, but is still captured by the larger search window.  Note that in both 
situations a search window placed at the target’s old location (i.e. discounting velocity) 
would fail to locate the target. 

 

With a high confidence level, the window could be shrunk to both speed up the 

search for the target and to lower the chance of latching on to the wrong target.  

Integrating these two fundamental ideas into a tracker leads to the Kalman Filter.   

 

KALMAN FILTER 

One of the most widely used and powerful algorithms used in tracking is the 

Kalman Filter (Kalman 1960; Welch and Bishop 2001).  It has been in existence 

for over 40 years, and has recently seen resurgence with its use in computer vision 

tracking problems.  It is a linear predictor-corrector estimation algorithm, meaning 

that a prediction is made and then refined or corrected based on a measurement.  It 

is both simple and robust, and optimal in the sense of minimizing the covariance 

of the estimated error, and because it incorporates all available data.  It is robust 

Time t Time t+1 

Time t Time t+1 
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in that the filter demonstrably works very well in a variety of situations despite the 

conditions for optimality not being fulfilled.  It is also recursive, meaning that it is 

not necessary to store and reprocess all the preceding data every time a new 

measurement is taken.  The basis of the algorithm lies with Bayes’ rule, as is the 

case with many probabilistic trackers.  Bayes’ formula allows the calculation of 

probabilities using easier-to-implement causal (versus diagnostic) reasoning. 

 

)()|()|( xxzzx ppp η=  (4) 

 

where p( x | z ) is the posterior distribution, p( z | x ) is some reinforcing 

measurement, p( x ) is the prior distribution, and η is a constant. 

Thus it is possible to determine the diagnostic left-hand-side by evaluating the 

causal right-hand-side.  This is useful in tracking because it allows probabilistic 

rules to be inferred from observed data.  The Kalman filter makes use of this rule 

by combining a prior estimate and a measurement to compute the posterior state 

estimate. 

 

There are two major steps in Kalman filtering: predicting from the current state 

ahead in time, and adjusting this prediction using an actual measurement.  Both 

the current state and the error covariance estimates are projected forward in time.  

This allows the filter to estimate a location for the target, and a confidence of this 

location (the a priori estimate).  This confidence can be used to determine the size 

of the search area in a tracking algorithm.  Feedback about the quality of this 

estimate comes in the form of a measurement, which can correct the estimates of 

location and error to provide an a posteriori estimate. The motion process is 

modelled using a linear stochastic difference equation.  The error covariance is 

projected forward at the same time as the motion process is applied, and updated 

when a measurement has been made. 

 

For visual tracking purposes, the algorithm works by predicting the location of the 

target in the next frame and quantifying the variance of the estimate.  This allows 

a search window to be located in the new frame at a position based on the target’s 

previous motion, and with a size proportional to the noise in the estimate.  There 
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are two sources of this noise: process noise and measurement noise.   The location 

is then refined using a measurement of the target from the image, and new 

estimates of error and motion calculated.  This algorithm proves to be very good 

at tracking individual targets with Gaussian measurement noise, moving in a 

linear fashion.  Such a Gaussian distribution looks like: 

 

 

Figure 4.3 Gaussian normal distribution curve. 

In fact, the tracker can be extended to allow for non-linear dynamics.  The 

Extended Kalman filter is a way of applying the Kalman filter to non-linear 

processes by locally linearizing the system. 

 

Although the Kalman filter is optimal and successful in some situations, there are 

occasions where it cannot be used.  The algorithm makes three fundamental 

assumptions for optimality to hold.  First, the system must be considered linear.  

Although this is often not the case, this assumption can be justified because most 

processes can be approximated to be linear over short distances.  It is sometimes 

also possible to move around this assumption with the Extended Kalman filter.  

The second assumption is that the noise frequency values can be considered 

‘white’.   Whiteness implies that the noise cannot be correlated in time and that 

the noise has equal power at all frequencies.  In fact, this situation is impossible in 

reality as it would consist of the noise having infinite power.  However, because 

all physical systems have a bandpass of useful input, the white noise 

approximation can be applied between these bands.  White noise is a simpler 

model than actually modelling the bandpass noise, and so the white noise model is 

used.  Finally, all the noise amplitudes are assumed to be Gaussian.  It is this final 
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point that prevents the Kalman Filter from being used when multiple targets or 

significant background clutter are present.  Measurements taken in the presence of 

target distracters, i.e. similar background clutter or other similar-looking targets is 

likely to produce a measurement probability distribution which is non-Gaussian, 

as illustrated in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Measurement probability distributions for one target in no clutter (left) and a 
target in similar clutter (right).  Note that the left-hand distribution is normally 
distributed, and the right hand distribution is not.  Hence the left-hand distribution can be 
represented with a Gaussian distribution with the appropriate parameters.  The right-hand 
distribution, however, has no such simple, closed form representation. 

 

A problem inherent in multiple target tracking is confusing clutter, multiple 

‘correct’ measurements (i.e. many targets) and hence a potentially non-Gaussian 

probability distribution function.  A Kalman filter would not be able to represent 

this situation effectively.   

 

Kalman filtering has, despite this, been used as a component in multiple target 

tracking methods, for example the Multiple Hypothesis Tracker (Reid 1979).  

Here probabilities are used to assign measurements to targets, and then a Kalman 

filter is used to drive the state estimation from such hypotheses.  This method has 

a number of drawbacks though, not least of which is that it expects an inflow of 

new targets into the surveillance region, and can in fact initiate new target 

tracking from one measurement.  This is bad news for any scenes with 

background clutter, or for any scenarios where the number of targets is fixed.  The 

Joint Probabilistic Data Association Filter or JPDAF (Bar-Shalom et al. 1980) 

attempts to eliminate some of the problems of the Multiple Hypothesis Tracker.  
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This algorithm handles the association of an arbitrary number of measurements at 

a given time to an arbitrary number of established targets, i.e. no new targets are 

accounted for.  However, this algorithm itself has drawbacks, including its 

inability to handle occlusions well.  As image likelihoods are evaluated 

independently, tracking can break down when targets become close to one another 

or overlap, and no mechanism is given to overcome this problem. 

Therefore a more powerful approach is required, which can handle target tracking 

through heavy background clutter, with the potential to be extended to multiple 

target situations.  Such a solution is provided by the Condensation algorithm. 

 

CONDENSATION 

Condensation (Isard and Blake 1998b) was developed to cope with non-Gaussian 

distributions and hence the multiple hypotheses present when tracking with dense 

visual clutter or multiple targets (see Figure 4.5), exactly the situation that Kalman 

filtering cannot cope with and precisely the situation we are presented with when 

addressing the problem of tracking multiple similar targets.    

 

 

 

 

 

Kalman density propagation.  Left to right: the process of deterministic drift, followed 
by stochastic diffusion and lastly the reactive effect of an example measurement. 
 

 

 

 

Condensation density propagation.  Left to right: the process of deterministic drift, 
followed by stochastic diffusion and lastly the reactive effect of 2 example 
measurements. 
 

Figure 4.5 Density propagation: Kalman filtering vs Condensation.    

 

Condensation uses factored sampling, a method of stochastically representing a 

probability distribution.  The probability density function is approximated by a 

discrete set of ‘samples’ or ‘particles’, {Xt}.  Each sample, Xt, contains a 
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complete representation of the parameter vector of the target at time t and a 

weight, πt.  Samples are propagated forward based on how well they match the 

measurement; this match is quantified by weighting the samples appropriately by 

evaluating an observation density, typically but not necessarily, a Gaussian.  

Every iteration, samples are selected with a probability proportional to their 

weight.  This allows likely hypotheses to be propagated forward in time. 

 

 

Figure 4.6  One time step in the condensation algorithm.  Each box represents one 
sample, Xt , and each box holds a complete description of a target’s state.  The size of the 
circles represent the weights of the particles. 

 

There are several extensions to Condensation already in the literature.  These will 

be summarised in turn, as each provides a potentially useful enhancement to the 

basic framework.  The ability of each to aid tracking will be discussed. 

 

EXTENSIONS TO CONDENSATION 

A target moving in more than one distinct way can cause problems for traditional 

single-motion-model trackers.  A method of coping with more than one model of 

motion is introduced using mixed state Condensation tracking (Isard and Blake 
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1998a).  This work introduces an extra discrete variable to the particle state that 

flags which motion model to use.  The new extended state now looks like: 

 

X = (x, y), y Є {1, …, NS }  (x is the parameter vector, y is a state label) 

 

A matrix of model-state transition probabilities is supplied, and used to process 

the discrete state label y forward in time.  Using this model, transitions between 

states occur automatically, as each state transition with non-zero probability 

contributes samples to the distribution.  As one model predicts more accurately, 

more samples from this model will be propagated and this model will dominate. 

Being in a different state basically means using a different motion model to 

process the samples forward in time.  This mixed state, model-switching approach 

is used in the literature to successfully track a bouncing ball where traditional 

single-state Condensation fails.  It is also used to track a hand drawing a picture, 

and to assign one of three states to the hand (line drawing, stationary, scribbling).  

The tracking is successful, at the cost of running more slowly than single-state 

Condensation, due to more samples being needed as more models are used.  

Understanding the complexity of learning a mixed-state motion model is 

highlighted for possible future research.  Magee and Boyle (Magee and Boyle 

2002) use Hidden Markov Models to assign discrete states (lame and healthy) to 

their version of ‘re-sampling condensation’.  They successfully use condensation 

to track a walking gait and assign a discrete label to the motion, in a similar 

manner to mixed state Condensation. 

 

One feature of Condensation is that the discrete nature of the sample set means the 

samples cluster around areas of high probability and large areas of the state space 

contain no samples at all.  This allows high dimensional state spaces to be 

efficiently represented.  It also means, however, that to capture sudden unexpected 

changes in the motion or shape of the target, the noise level in the motion model 

must be set at a high level.  To prevent these new expanded clusters of samples 

from being too sparsely populated, the total number of samples, N, must be 

significantly increased.  This causes the system to run more slowly.  

ICondensation (Isard and Blake 1998c), or Condensation with Importance 
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sampling, has been developed to help counter these issues.  Auxiliary knowledge 

allows an importance function, g(X), to be constructed which describes the areas 

of state space that contain most information about the posterior.  Samples are then 

concentrated in these areas of g(X) rather than sampling from the prior, p(X).  The 

overall goal is to avoid samples with very low weights, as these provide only a 

negligible contribution to the posterior.  If the samples all have about the same 

weight (~1/N) then the estimated effective number of samples ≈ N, as can be seen 

from Doucet’s (Doucet 1998) estimated effective sample size formula, 
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However, if only one of the N weights is significant, the effective sample size 

tends to one.  So the aim is to reduce the number of ‘useless’ samples as these do 

not contribute to the effective sample size.   

 

In their example (Isard and Blake 1998c),  the importance function is derived 

from a measure of skin-colour in the image.  New samples are generated one of 

three ways: from an initialisation prior (to re-initialise lost tracking 

automatically), from the standard Condensation algorithm, or finally using the 

importance sampling method.  As g(X) is drawn from a simple 2d blob tracker, 

this is only used to set the translation components of the new state vector using 

Importance sampling.  Additional parameters (e.g. deformations) are drawn by 

sampling using traditional Condensation methods.  The new ‘importance sampled’ 

state vectors look like DEFORMnTRANSnn )()()( sss ⊕= , where s(n) is a sample processed 

by either the TRANS component from g(X), or the DEFORM component which is 

sampled from the prior distribution as per standard Condensation.  

 

What this all means in real terms is that when generating samples, some will be 

processed using traditional condensation, some will be positioned according to an 

initialisation prior (e.g. where the target is likely to appear in the scene – around a 

doorway for example) and some will be placed using some external probability 

function (in this case, near areas of skin colour).  The results suggest the tracker to 

be very robust over clutter for all the users who have tested it, and it runs in real 
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time (where N = 400).  The main advantage of ICondensation is the way in which 

it combines powerful but slow high level techniques (such as contour tracking 

where the shape of an object is tracked) with fast, low level ones such as blob 

tracking.   

 

‘Partitioned sampling’ is another, similar way of tackling the problem of 

improving particle set representation efficiency (MacCormick and Blake 2000).  

“Partitioning” refers to decomposing the dynamics into two stages (e.g. x and y 

directions), applied in sequence with weighted resampling in-between.  The stages 

of one time step of partitioned sampling are: 

1. Apply first partition of the dynamics to all particles (e.g. x direction) 

2. Weighted resampling with respect to an importance function 

3. Apply second partition of the dynamics to all particles (e.g. y direction) 

4. Weight particles using the likelihood  

Weighted resampling has a similar effect to importance sampling, though it is 

faster – to the order of O(n) versus O(n2) .  Partitioned sampling works 

effectively: results indicate that partitioned sampling can produce successful 

tracking when unpartitioned sampling fails, and with only a quarter as many 

particles. 

 

One characteristic of Condensation, and one particularly relevant to multiple 

target tracking, is that Condensation quickly latches onto the “best” target where 

multiple similar targets are present.  This is generally considered an advantage – 

the tracker will stay locked on an ideal target and will not be confused by similar 

(but not identical) clutter.  However, in the situation of tracking groups of ducks, 

initialising a tracker on each duck may lead to the trackers jumping onto ‘ideal’ 

ducks when they are near by.  The propagation of samples is so effective that after 

only a few frames of switching targets, the tracker has forgotten about the 

previous hypothesis and recovery is impossible.  A related problem is where one 

object occludes another and the trackers both lock onto the foreground target.  

One method of preventing this happening is using an observation density that 

exhibits a probabilistic exclusion principle (MacCormick and Blake 2000).  This 

is a way of preventing the presence of two targets to be inferred from the 
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measurements of only one.  The example presented is one of tracking contours 

around two similar shapes where one occludes the other.  Measurements are taken 

using a 1d feature detector along some normals on the curve to detect edges.  A 

generative model is developed whereby the number of detections on each line is 

predicted where there is no target (i.e. background clutter), one target, and two 

targets present.  The emphasis of this work lies with using these normal 

measurement lines, and transferring the ideas to tracking without using this 

specific method of measurement is not assessed for viability, other than to say it is 

hoped that it can be generalised successfully.  The underlying concept is that any 

single measurement should reinforce multiple hypotheses coherently.  It is not 

clear how well this technique will extend to tracking many targets 

(“implementation difficulties” are hinted at in the conclusion) or with using the 

colour measurement process to be used in this work.  However, it should be noted 

that following more development this might prove a useful technique with which 

to track multiple targets in the future. 

 

Some of the most promising work on tracking multiple similar targets is by Khan 

et al (Khan et al. 2003; Khan et al. 2004).  Their basic hypothesis is that multiple 

targets in close proximity can and do influence each other’s behaviour.  In the first 

of these papers, a Markov random field (MRF) motion model is used to model the 

interactions between targets.  The tracking of ants is very successful, however 

because the joint state space of all targets is required, the particle filter suffers 

from exponential complexity in the number of targets (Khan et al. 2003).  The 

second of these papers replaces the traditional sampling step of particle filters 

with a Markov chain Monte Carlo (MCMC) sampling step.  This allows a more 

efficient representation of the joint state space, and with the MRF interaction 

function produces good quality tracking of multiple insects. 
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4.4. Tracking of ducks: the algorithms that will be tested 

Following on from the previous summary of existing work, this section will 

describe the reasons for and against using particular algorithms to track multiple 

ducks. 

 

The simplest methods, such as the nearest neighbour methods already described 

will clearly be unsuitable because of the similarity and close proximity of the 

targets.  Not accounting for the targets’ motions would make tracking interacting 

similar targets something of a lottery.   The Kalman filter’s motion process would 

help to track the ducks by using their motion information, and the error covariance 

could minimize the search window, providing less opportunities for incorrect 

targets to be found within the search window.  However, with the multiple similar 

targets present, and an inability to represent a multi-modal probability 

distribution, the use of a Kaman filter was discounted.  The Multiple Hypothesis 

Tracker was felt unsuitable as it expects new targets to appear in the scene, and 

the JPDAF’s inability to handle occlusion and close proximity of targets was felt 

unsuitable for this work, and so these were not implemented. 

 

Many extensions to condensation exist; some relevant ones were presented in the 

previous section.  As this thesis will not employ a high level, high dimensional  

contour approach to tracking the ducks, ICondensation is not advantageous, as a 

bridge is not needed from any slower, higher-level tracking to the faster, lower-

level tracking methodologies. The probabilistic exclusion principle extension was 

not implemented as it was unclear how well it would extend to many targets, and 

because it was developed in its raw form for two wireframe targets using an edge-

based measurement model.  Extending to large groups of opaque targets using a 

colour measurement model was thought to be moving outside the scope of the 

method.  Partitioned sampling has been demonstrated to reduce the number of 

samples needed to represent the set, but it was thought that it would become 

confused in the presence of multiple similar targets as the importance function 

may latch on to measurements from nearby neighbours after applying the first 

stage of dynamics.  All other extensions have their limitations when applied to 
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tracking many similar targets.  It was considered that testing the original 

Condensation would provide an illustrative foundation of the degree of success 

offered by one of the most common tracking algorithms without any of the 

problem-specific bolt-on functionality offered by the extensions, and because of 

its ability to represent and process non-Gaussian probability densities it is suitable 

as a benchmark despite its limitations. 

 

The MCMC algorithm with the interaction function (Khan et al. 2004) will be 

tested as this algorithm seems very suited to this work.  Testing this algorithm 

should help quantify the failings of traditional Condensation, as well as providing 

state-of-the-art tracking results for groups of animals.  Together these results 

should provide useful success and failure information for developing further 

algorithms for tracking multiple animals.   
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4.5. Video sequence capture 

4.5.1. Pilot video: shot on location at a local farm 

Prototype video of ducks was captured during January 2003.  This footage was 

captured onto digital video from a camcorder on a static platform in the centre of a 

field of ducks on a farm site.  The camera angle was low compared to the ideal 

angle – ‘ideal’ would be overhead as far as possible as this would provide the 

least occlusion opportunities.  The practical lower angle was due to the limited 

height of the platform.  However, general behaviour of groups of interacting 

ducks was observed, and preliminary image analysis techniques could be 

explored.  This phase of the work also provided an estimate of the length of 

videos required.  It was seen that the animals spent a large portion of their time 

resting, motionless.  Most trackers will be able to maintain track of a stationary 

target over long periods of time as the dynamics of the target are not changing; it 

is in periods of action that tracking algorithms’ motion processes are challenged 

the most.  Therefore, using shorter, action-oriented sequences of ducks would 

typically provide the greatest challenge to the tracker.  This is thought to be more 

meaningful than tracking using a longer, less challenging sequence with all the 

ducks motionless a large part of the time, which might suggest a tracking 

algorithm is more successful than it really is. 

 

By both observing this video and by having first-hand experience with the animals 

for a substantial period of time, a number of different types of duck behaviour 

were found to reoccur often and thus be suitable for testing tracking algorithms.  

Some of these motions included: 

1. Ducks gathered together in close proximity, with a small or no velocity.  

This happens in such occasions as feeding. 

2. Ducks spread out with low or zero velocity.  When resting, the ducks can 

be spread out throughout the enclosure and obviously have a very low or 

typically zero velocity.  This situation happens a lot, but any tracker 

capable of handling more complex interactions should handle these 

occasions with ease, as there is little chance for tracking to fail. 
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3. When startled, the ducks can move in close proximity and with a high 

acceleration and final velocity. Such flocking can occur spontaneously, 

often from rest, and presents one of the hardest challenges to tracking. 

4. Another common situation is for multiple groups of ducks to just ‘amble’ 

around the arena at medium to low velocity, moving generally as a group 

but also changing places within the group. 

5. Another suitable test for a tracker is when two or more ducks move on 

different trajectories which cross, bringing the animals in close proximity 

for a short period of time.   

 

A monitoring system would have to cope satisfactorily with tracking under all the 

above conditions, therefore these types of sequences will be the basis of the real-

life test sequences used in the rest of this thesis. 

 

The pilot video capture was initially designed to provide some testing video for 

preliminary experimentation with tracking methods, as the possibility of having 

ducks at Silsoe Research Institute was delayed until the summer months.  

However, because of the occlusions caused by objects in the arena and the low 

camera angle, this video really only served as an initial chance to observe ducks, 

providing the list of typical duck motions listed above.  It is the aim of the final 

video capture to record such behaviours in a more controlled environment, with a 

higher camera than was available at the farm and with no occluding clutter 

between the camera and the animals. 

 

4.5.2. Experimental setup at Silsoe Research Institute 

In order to capture the required video for the experimentation, an outside 

enclosure was used on location at Silsoe Research Institute.  This measured 

approximately 15m x 12m, and was surrounded by a fence.  The ground cover 

was recently cut back to provide a short-grass type of covering with no 

potentially-occluding plants.  In one corner a pond was placed, and in another a 

shed with bedding material.  Also housed in the shed were the electrical points 

required to power any necessary equipment.  Towards the centre of this enclosure, 
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a feeder and water trough were placed, as well as some boards by the fences to 

provide shade for the animals.  A sprinkler was placed in the enclosure from time 

to time. 

 

 
 

Figure 4.7 Representation of the experimental enclosure at Silsoe Research Institute. 

As can be seen in Figure 4.7 and Figure 4.8, the camera was placed on a mast 

outside the enclosure.  It was decided to place the camera outside the arena in 

order to give the widest possible view of the enclosure without specialist, heavily 

distorting lenses. Access was only possible to this side of the arena, and so the 

camera position illustrated was chosen.  The camera was mounted on a telescopic 

mast approximately 6m high, and secured with guide ropes to prevent as much 

swaying motion as possible.  Power was drawn from the shed, and the video 

output was sent to a neighbouring building approximately 10m away.  S-Video 

cable was used to provide the greatest quality of output available with the given 

camera.  Initial trials indicated that running this video cable into the neighbouring 

building resulted in a noticeable loss of signal integrity.  Therefore, for the trials, a 

VCR was used as near to the mast as possible, resulting in much clearer images.  

The recordings were made to S-VHS tape, as with the available technology this 

Feeder Water 
troughs 

Shed 

Pond 

Camera 
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provided the highest quality images for the greatest lengths of time:  3 hour tapes 

could be used to capture as much activity as possible.  A Pulnix PEC3010 colour 

camera was mounted in a protective cover and used for all the trials. 

 

Figure 4.8 View from the animal enclosure showing the shed and camera mast 

4.6. Image plane to the world plane coordinates 

The detection of activities and recognition of events can take place in either the 

image plane or on a ground plane projection.  Using the image plane removes any 

errors inherent in the coordinate transformation process when back projecting 

onto the ground plane.  This is in line with previous work which has made the 

same assumptions (Johnson and Hogg 1996).  For this work, where automated 

monitoring is the goal, it is advantageous to be able to set the system up in the 

difficult environment that is inherent in agriculture with a minimum number of 

pre-calibration steps.  Although the enclosure used here has a certain known and 

visible geometry that could be approximated and used as a calibration guide itself 

(Liebowitz and Zisserman 1998), in other situations there may be no such features 

present.  Lens properties may need to be altered for each individual situation 

depending on the field of view required, and so standard calibration values would 

be of no use.  It is always possible to manually place calibration targets in the 

scene, but for this work it was considered unnecessary. Therefore, for as far as 

possible this work will use an uncalibrated image.   
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4.7. Determining the measurement model 

For any kind of tracking algorithm, some sort of measurement model must be 

used to identify potential targets.  These models tend to take the form of a 

function of an image-derived measure that is maximal when a target is present at 

the location being tested.  Both contour and non-contour based functions can be 

used.  A function which includes contour information can, like the snakes 

described in the previous chapter, impose some physical constraints on the 

geometry of the boundary, and include some sort of measure of the suitability of 

the boundary shape into the measure.  Non-contour based measures make use of 

other features of the image to determine the presence of a target.  Colour is one 

such feature that is commonly used (Nummiaro et al. 2003).  Colour information 

can be used to derive a measurement for a colour-model based tracker.  A 

maximal contrast is desired between the colour of the object to be tracked and the 

colour of the background over which the object passes.  A more effective 

discrimination between the foreground object and the background can be made by 

selecting a suitable colour space in which the parameters of the target object and 

background are highly separated.  There are several common colour spaces in 

existence, each of which has unique advantages and disadvantages.  Hand 

selecting a space for a particular task can increase the efficiency and success rate 

of classification in that particular task, but does conversely decrease the 

generalisability of the work.  It is the aim of this section to find a suitable type of 

observation measurement model, and then to determine a suitable colour space in 

which the model can most satisfactorily identify ducks against the background. 

4.7.1. The observation model 

An observational measurement model for this work is required to produce a 

maximal response when centred over a duck in an image.  A typical image is 

presented below: 
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Figure 4.9  An example frame in the captured sequences.  Notice how the contour 
changes depending on what state the duck is in: the marked ducks are likely to be 
preening, resting or feeding. 

 

From this example, it can be seen that the contour formed by the outline of the 

duck is highly variable, and is both related to orientation and to the behaviour of 

the duck at that particular moment.  Some of these ducks have ambiguous 

contours (Figure 4.9, arrowed) where some landmark features such as the head or 

tail are not visible.  Typically, when eating or preening this contour can change 

rapidly and in a way unrelated to orientation; the head, for example, will appear 

and disappear as the duck carries out its task.  Additionally, as the ducks are such 

small targets, the contour would not be able to identify many useful features to 

differentiate the ducks from each other.  For these reasons, tracking the contour 

was thought to not yield enough useful or reliable information to be viable.   

Using colour as an alternative measurement model was thought viable due to the 

consistency in appearance of the ducks. 
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Previous work (Nummiaro et al. 2003) used pixel colours within an ellipse to 

successfully track various different classes of objects, from faces to cars to 

footballers.  It was decided to implement a circular shape for the measurement 

model. Although an ellipse might more fully capture the body shape of some 

ducks, ellipses were not used in this work for simplicity and to maintain a 

common suitable model across all targets.  Using a circle automatically crops the 

features (such as the head, neck and tail) that are subject to change depending on 

the orientation of the duck or its current actions, e.g. Figure 4.10: 

 

Figure 4.10 Circles provide a good fit to the body of a duck.  Some duck bodies, e.g. the 
lower left duck, would be more suited to an ellipse model of shape.  However, this would 
over-specialize the target model, and it would not fit other targets well, e.g. the rightmost 
duck. 

 

An ellipse would be a more accurate way to model a duck shape viewed directly 

from above.  However, from the camera angle used in this work, the silhouette of 

the ducks varies depending on the location of the duck and the duck’s orientation 

relative to the camera.  Therefore, it was considered that a circle would allow a 

more general posture- and viewpoint-independent measure to be made, and would 

also allow the dimensionality of the sample set to be reduced as the increased 

number of parameters required to describe a rotating ellipse would not be 

necessary.  Increased dimensionality means increased sample numbers are 

required to represent the state space in algorithms such as Condensation.  

However, one advantage of using an ellipse would be to allow the orientation of 

the duck to be estimated: this could be used in future work with a fully overhead 

camera, where the duck outline is more predictable. 
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The pixels in the centre of the measuring circle were given more weight than the 

pixels towards the circumference as the further the pixels extend from the centre, 

the more likely they are to not represent the object being measured.  Essentially, 

the pixels in the centre of the circle are more likely to stem from the target itself, 

as the radius may be over-estimated or some of the background may be visible on 

the periphery through an irregular duck contour.  The pixels’ weights in the 

measurement (how much they contribute to the colour measure) decrease in 

proportion to their squared distance from the circle centre (Nummiaro et al. 2003), 

as illustrated below: 

 

Figure 4.11 Graph to show how weight of pixels (Z-axis in the left image, intensity in the 
right image) varies across the target measurement circle (XY-axes) 

 

The effectiveness of this method of measuring a weighted average colour is 

illustrated below using an example duck target from a test image. 

 

 

Figure 4.12 An example measurement circle of radius 5.  The effective pixels, which 
have a non-zero weight, are bounded by the red line.   This image is taken from a duck in 
a typical sequence. 
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Using a weighted circle for this measurement is preferable to point sampling a 

pixel as the best measurements occur when the circle is centred over the brightest 

pixels, whereas many individual pixels within the duck’s boundary would give a 

good measurement if point-sampled.  Using the circular model reduces the 

number of viable measurement positions generated by a target, and should 

position the tracker more reliably over the centre of the target. 

 

Weighting towards the centre also prevents the measurement from being skewed 

by the occasional background pixel on the perimeter of the circle.  For example, 

the circle in Figure 4.12 produces a weighted mean intensity of 233.  A standard, 

un-weighted mean would give a measure of 199 – a value which has been dragged 

down by the dark background.  If the measurement circle is made smaller to a 

radius of four, using the same data a weighted mean of 249 is produced, versus an 

un-weighted average of 243 that again has been lowered by darker background or 

shadowed edge pixels.  There is less of a change with the smaller circle as less 

background pixels are erroneously captured.  Weighting towards the centre allows 

for a more stable measurement across various postures, radii and different 

animals. 

 

4.7.2. Determining Target Radius 

As the image plane is not parallel to the ground plane, the radius of the circle used 

to take the colour measures has to vary as the size of the duck varies on the image 

plane.  This is because targets further from the camera appear smaller than targets 

nearer to the camera.  Initially, the radius was added into the state space of the 

samples, and was allowed to vary each timestep.  This was found to be 

unsatisfactory.  With no further constraints, the circles tended to reduce in size as 

there was no measurement benefit to filling the whole duck shape.  A force was 

added to try to increase the size of the circles to prevent them from shrinking, 

similar to the inflating force used for some active contour models (Cohen 1991).  

However, this was found to be very difficult to balance, with the circle either 

expanding past the boundary of the target or continuing to shrink to a point.  

Excessive extension was a particular problem when two ducks were close to each 
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other.  A measurement circle for a particular target would tend to expand to cover 

both targets, see Figure 4.13:  

 

Figure 4.13 An unrestricted circle model can expand to cover the largest available white 
area, in this case two ducks instead of one 

 

A different approach was adopted.  As the radius varies in a largely deterministic 

manner across the image plane, a model could be used to set the size of the radius 

based on the image coordinates of the target.  Although this method is dependant 

on the viewpoint, it is assumed that if the system were deployed for real, a similar 

camera setup would be used – therefore the technique described in this section, 

although specific to this type of camera rig, is general enough to cover expected 

real world equipment configurations.  Assuming the same lens, mast height and 

camera angle were to be used, and the ground was flat as in the arena used here, 

the model for radius change can be used without modification.  To calibrate for a 

setup where these parameters have changed, duck sizes across the image would 

have to be measured manually once more, perhaps using a custom calibration tool, 

and the model parameters re-calculated. 

 

The short-radius (across the body) of 50 ducks at different locations in the camera 

image was measured.  The image x-coordinate data did not on inspection correlate 

well with the radius size (see Figure 4.14).  Image y-coordinate location followed 

what appeared to be a linear relationship with the radius size. This correlation was 

expected as the size of the target varies with distance from the camera, and 

therefore should be most apparent in the y-direction as distance increases at the 

highest rate per pixel in this direction, directly away from the camera.  Therefore, 

a linear model was fitted to the image y-coordinate data to try and predict radius 

size from the y-coordinate (see Figure 4.15).   
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Figure 4.14  Image x-coordinate (x-axis, pixels) plotted against duck short-radius (y-axis, 
pixels).  There is no apparent relationship between the two variables. 

 

Figure 4.15  Image y-coordinate (x-axis, pixels) plotted against duck short-radius (y-axis, 
pixels). Equation of the line: y=0.011x+2.7, r2=0.89. 
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The linear model of the radius derived from the y-coordinate accounts for a good 

amount of variation in the data (r2 = 0.89).  This model was then used in the 

measurement phase, to determine the radius of the measurement circle from the 

position of the duck in the image.  Using a pre-determined target radius for each 

point in the image has the advantage that at any point it should only allow one 

target to fit underneath it: it will not expand to cover two targets as the state-space 

radius method did.  This model is also advantageous to converting the image 

plane features to the ground plane, as no calibration features in the image are 

required other than the ducks themselves.  In fact, using the targets themselves to 

calculate a ground plane conversion is a possible future extension of this work 

(Bose and Grimson 2003). 

 

4.7.3. Colour space determination 

When captured, the images are in the red-green-blue (RGB) colour space.  Hue, 

Saturation and Value (HSV) space was examined as objects can be segmented 

using just hue and saturation – discarding value (intensity) makes the colour space 

more illumination invariant than RGB space.  Following a similar argument, 

segmentation in chromaticity coordinates was considered.  This is a normalised 

pure-colour space – again, intensity is effectively discarded and so the system is 

less susceptible to illumination change. 

 

A comparison of the colour spaces was conducted to enable one to be selected that 

satisfies the following criteria: 

 

1. It should be easy to differentiate the ducks from the background 

2. The space should be fast to compute from the initial RGB space 

 

The three spaces chosen to be compared are RGB (because it has no computation 

time and is widely used), HSV and Chromaticity (because they are more 

illumination invariant than RGB space).  For each space, the level of distinction 

between the ducks and clutter is measured. 
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Chromaticity coordinates were assessed first.  Tristimulus space (RGB in this 

case) is normalised to chromaticity coordinates using the following equations 

(Wyszecki and Stiles 1982): 

 

BGR
Rr
++

=   
BGR

Gg
++

=   
BGR

Bb
++

=  (6) 

It follows from (6) that r + g + b = 1, and hence that only two coordinates are 

needed to specify the entire space.  At the expense of this, information on 

luminance has been lost.  For example, take the RGB triples for an identically 

coloured object under different brightness levels, (10, 40, 15) and (20, 80, 30).  

When converted to chromaticity values, these would produce the same 

coordinates, (0.15, 0.62, 0.23).  This can be used as a method of removing the 

issue of varying illumination levels: an object should have the same chromaticity 

coordinates no matter how brightly it is illuminated by a particular light. 

 

Typical values of duck pixels in RGB space tend to (255, 255, 255) – the ducks 

are white and brightly illuminated and so tend to be recorded as a maximal signal 

on the camera sensor.  Inspection of typical frames (see Table 4.1) reveals that the 

surrounding background (muddy grass) has a relatively wide range of values in 

RGB space but with one common attribute: the levels of each of the three RGB 

channels are very similar for a particular sample.  This suggests that the chromatic 

value of the background does not drift far from the grey line in the RGB cube.  

The consequence of this is that when converted to chromaticity coordinates, the 

ducks and background appear very similar, and so it is not sensible to represent 

the images in this way. 

 

In HSV space, similar problems are encountered.  The hues of the background are 

not very saturated and so do not present much difference from the ducks.  The 

lack of any high saturation levels (ducks and background are typically less than 

10%) suggest that there is little useful colour information in the images.  HSV 

space also requires more complex computation than chromaticity.  However, HSV 

space can be made less sensitive to lighting conditions by placing less emphasis 

on the V value. 
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In RGB space, the objects represented are brightness dependent.  As the level of 

light falling on the objects changes, so does the values of the red, green and blue 

channels.  In all the test videos, the weather is such that the illumination 

conditions change slowly, as the sky is either clear or overcast.  Under such 

conditions, an adaptive colour model could be used to keep the model up to date 

with slowly evolving illumination conditions (Nummiaro et al. 2003).  This 

removes much of the need for illumination invariance.  Additionally, the targets 

tend to largely saturate the sensor anyway and so the pixel values do not change 

with subtle weather effects. 

 

Table 4.1 below presents summary colour information taken from typical frames 

in captured duck sequences.  It can be seen that the ducks appear much brighter 

than their surroundings in RGB space because of the white appearance of their 

feathers. 

 

 Mean RGB RGB Range  Mean S,V (%) HSV range 

Ducks 253, 255, 255 33, 7, 0 1, 100 193, 13, 0 

Background 119, 119, 116 118, 96, 122 8, 48 312, 13, 46 

Table 4.1  Figures represent averages and ranges taken from 20 sample locations 
extracted from typical video frames.  Note the very low saturation values for the ducks 
and the high brightness of the ducks compared to the background.  No mean value for 
Hue is presented due to the non-linearity of the scale. 

 

One physical effect worth mentioning here is when shadows are cast on the ducks.  

Occasionally clutter in the arena, such as the shed, produces shadows which the 

ducks sometimes walk through.   
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Figure 4.16 The effect of a shadow on a duck.  In the sun, the duck’s RGB values are 
(255, 255, 255).  When it walks into the shadow, a typical pixel is  (168,220,255).  Note 
how the red channel has the largest decrease in value. 

 

Such an effect tends to reduce the value of the red channel, though the blue and 

green channels tend to remain high.  This process can be handled by increasing 

the standard deviation of the expected measures in the red channel, to account for 

the increased variability.  

 

It has been shown that neither using HSV space nor using chromaticity 

coordinates provides an especially useful environment for segmenting and 

locating ducks.  Both of these spaces also require calculation time to convert from 

the original RGB image.  RGB provides a good separation between the ducks and 

the background, based largely on intensity because the ducks appear very bright 

compared to the background.  Although the HSV and chromaticity spaces provide 

a more illumination independent framework, RGB values of the ducks do not 

change enough to warrant the processing overhead of such a system.  Using RGB 

it should always be possible to satisfactorily discriminate the ducks from the 

background. 

4.7.4. Building the colour model 

A three-channel RGB colour model was therefore used as a way of determining 

how similar a measurement was to an ideal.  The colour model was built by 

measuring the colour of ducks in a number of sample frames.  The RGB values of 

100 duck images from seven different sequences was measured, this time using 

the weighted circle measurement model.  These measurement circles were 

manually centred on the estimated centre of the ducks, and the radius of the circles 
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was automatically determined according to the location on the image, as used in 

the program itself (see section 4.7.2, above).  The mean of these 100 RGB duck 

colour values was used as the ideal values of a duck for each channel of the duck 

measurement model.  The mean duck colour measurements were found to be: 

 

Red 247.5 

Green 250.8 

Blue 252.0 

 

The measured values were then normalised so that they fall between zero and one, 

zero representing no value on a channel and one representing a saturated value of 

255.  This was done for ease of possible future extensions, where measurements 

may not fall between 0 and 255.  The standard deviations of these values were 

used to estimate the parameters for the Gaussian observation model.  These 

standard deviations were found to be 0.039, 0.034 and 0.027 respectively for the 

three RGB channels.  However, using these values, initial experiments showed 

tracking performance to be poor.  With some sequences, these values did not 

account for the level of variation in the data, and measurements were too low with 

the ducks in some lighting conditions, for example the differences in weather 

conditions produce some variability.  This caused the tracker to fail more often, 

typically by drifting off the target.  Further investigation showed that the standard 

deviation within certain sequences, even those included in the 100 measurement 

sample set, was actually greater than the values calculated for the complete set of 

100 measurements. It was therefore necessary to increase the standard deviation to 

account for the extra variability inherent in individual sequences.  The standard 

deviation ranges for individual sequences was between 0.0098 and 0.089 for the 

red channel, 0.0025 and 0.077 for the green channel and 0.0018 and 0.065 for 

blue.  Therefore the standard deviations for the sequences were increased more in 

line with the maximums of these ranges, plus some extra amount determined by 

trial and error to account for further variability in the actual data.  Values of 0.12, 

0.10 and 0.08 for the red, green and blue channels respectively were found to 

work well in practice.   
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It is noted that this method of determining the colour model is rather ad-hoc; 

however, this is the procedure that was used and so is described here for 

completeness.  Given the opportunity to perform the model development again, a 

number of things would be taken into consideration.  First, whether the data 

actually is Gaussian; given that the ducks can saturate the sensor on occasions, 

this assumption may not hold throughout all the sequences and so should be 

investigated.  Second, more atypical examples would be added to the training set, 

as it is just these kinds of situations which cause the tracking to be lost when the 

standard deviations of the colour model are set too low.  Considering these 

additional factors should provide a more robust method of determining the 

standard deviations, which should in turn produce more reliable tracking without 

having to adjust these parameters by trail and error. 

 

One additional problem is what happens to the colour measurement when the 

duck is in shadow.  In such a situation, the measurement from the red channel 

differs greatly from a similar type of measurement in direct sunlight.  It is the red 

channel that is most affected because hues from the cooler end of the spectrum 

(i.e. blues and greens) are diffused from the blue sky and are less affected by the 

shadow, whereas the direct red frequencies from the sun are blocked out by the 

shadow-inducing obstruction.  Scaling the red channel’s standard deviation by a 

larger amount allows for this extra variability in the red channel incurred by 

shadows (Figure 4.16 on page 125).  The exact amount is hard to quantify as it 

depends on the number of shadows in the scene, which varies depending on the 

time of day and the strength of the sunlight.  However, scaling this channel by a 

further factor of three has been found to produce very good tracking results.  For 

future work, it may be possible to refine and justify this parameter by looking at 

existing literature on shadow detection and elimination, but currently this estimate 

seems to work satisfactorily.  It is also noted that this large rescaling may not be 

necessary in future work if the colour model parameters were to be determined 

more theoretically, as described in the previous paragraph.  For simplicity and 

processing speed, rather than evaluate a 3D measurement density in RGB space 

the final density is simply constructed as the product of the 3 independent 

densities for each of the three colour channels (Blake and Isard 1998).  
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4.8. Tracking ducks using the Condensation algorithm 

4.8.1. Introduction and problem 

It is the purpose of this experiment to determine how well standard Condensation 

can track multiple ducks in an outside arena, in order to provide a benchmark for 

subsequent experiments.  Condensation (Isard and Blake 1996; Isard and Blake 

1998b) is an established way of tracking objects when high levels of clutter are 

present.  For all the reasons given in the introduction to this chapter, such as its 

ability to handle tracking in clutter, Condensation was considered as an 

appropriate candidate algorithm to evaluate.  Condensation tracking has been used 

in past work to track targets using colour models (Nummiaro et al. 2003), and this 

work will implement a colour observation model as specified in section 4.7. 

 

This experiment will use multiple independent Condensation trackers, one for 

each target.  Maintaining each target’s parameters inside one joint state space 

leads to very high sample numbers being required, which in turn leads to very 

slow processing times.  This is because of the dimensionality problem of 

importance sampling.  The joint space can be approximated by using multiple 

independent trackers (Khan et al. 2003), and although it is recognised that this 

may not perform as well as an optimal joint state space tracker, it will serve to 

quantify and illustrate the problems of multiple independent trackers.  The joint 

state space is introduced along with more efficient Markov chain Monte Carlo 

sampling in section 4.9. 
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4.8.2. Implementing the algorithm 

The algorithm is presented below, and an explanation follows. 

 

Algorithm 4.1 Condensation algorithm (Isard and Blake 1998b)  

The following sample statespace was used: 

π),,,,( vuyxX =  

where x and y are the location coordinates of the target, u and v are the velocities 

of the target, and π is the weight of the sample.   

 

Each time-step is a self-contained iteration of factored sampling, hence the output 

at each timestep is a weighted sample set. The prior at each time step is the 

measurement-weighted sampleset from the previous timestep.  This is a 

potentially multi-modal distribution.  The distribution represented by this set is 

processed forward in time to provide a prediction using the motion model.  This 

model has two elements: a drift based on the previous motion of the particle and a 

random diffusion element.  This new, unweighted sample set is then weighted by 

taking measurements for each of the samples using the observation model, and 

weighting them accordingly.  This process is repeated, using a fixed number of 

samples at each timestep. 
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PARAMETER CHOICE 

A number of parameters control the functionality of the Condensation algorithm: 

the process noise, measurement model parameters and the initial values in the 

statespace.  Measurement model details have already been presented; the 

following section details the choice of process noise parameters and the initial 

conditions. 

 

Process noise is applied to the state parameters of the tracker to allow them to 

change over time.  One of these parameters is position, which in turn allows the 

movement of the target to be modelled.  Translation of the target in the (x,y)-plane 

differs from that predicted by the velocity due to three main factors: the ‘wobble’ 

due to the duck’s gait, the wind blowing the camera and the acceleration of the 

duck.  Acceleration is covered separately as noise on the (u,v) parameters (i.e. 

change in velocity); see below.  

  

The (x,y) noise must account, then,  mainly for the wind effects on the capturing 

equipment and random effects on the duck’s motion gait (as velocity is handled 

by separate parameters, explained below).  As this positional error is the result of 

multiple independent error effects, its distribution can be assumed Gaussian.  This 

effect can be observed to produce approximately 1 pixel of error every second or 

so.  This value is hard to measure reliably and so is based on manual observation 

and familiarity with the sequences.   Per frame, this error works out to be 0.04 

pixels.  To keep 95% of noise within this range, the value for the (x,y)-noise 

standard deviation should be 0.04/1.96 ≈0.02 (as 1.96 standard deviations from 

the mean of a Gaussian curve contain 95% of data).  This value is considered 

reasonable, as then nearly all of the noise is constrained to within observed values, 

with 5% of the noise falling outside this range, allowing for occasional extreme 

values. 

 

The noise on the velocity (u,v) parameters is effectively the rate of change of 

velocity, or the acceleration.  Measuring empirically the typical acceleration 

values of a duck is a challenging prospect. After much trial and error varying this 

parameter, a standard deviation of 0.15 pixels per frame was used.  This means 
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95% of  velocity noise falls between 0 and  7.5 pixels / second2.  From manual 

observation and testing, this is found to be adequate for most situations.  It is 

noted that strictly this parameter should vary in relation to a duck’s position on the 

image plane, as a duck further away from the camera on the ground plane will 

appear to have a lower pixel acceleration than a closer companion.  However, as 

long as the maximum acceleration expected is covered by this noise, then this 

simplification is considered acceptable. 

 

With Condensation, the number of samples used to represent the system can be 

varied.  Higher numbers of samples lead typically to increased tracking 

performance but also to increased processing time.  To enable a comparison 

between algorithms and sequences, the number of samples will be kept constant 

per target in the image; 300 samples per target was found to produce a good 

tracking result in the challenging real-world environment. 

 

INITIAL STATE VALUES 

For each sequence, the initial positions of the targets are measured by hand.  The 

coordinates of the centre of the ducks are measured from an image manipulation 

program.  Initial samples are automatically spread around this location, with an 

(x,y)-noise standard deviation of 5 pixels.  Therefore, 95% of samples should be 

placed within about 10 pixels of the manually entered positions.  This is to 

account for any manual inaccuracy in measuring the starting locations.  On a real 

world system this initialisation could take the form of a user clicking a live video 

stream of the ducks to provide the locations of the targets.  As the (x,y) locations 

of the targets are entered into the program, the tracking could begin on the next 

frame of the video feed. 

 

The initial velocities are set to zero, with a distribution equal to the standard 

deviation of the process noise on the velocities, 0.15 pixels per frame.  In some 

situations where targets are already in motion, it is advantageous to set the initial 

velocity to represent this, though unless explicitly mentioned, it should be 

assumed the initial velocity is zero. 

The colour measure parameters remain the same on each sequence. 
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4.8.3. Measuring success 

In different situations, various different methods of measuring the success of a 

tracker may be applicable.  A summary of various methods will be presented, 

followed by which methods were chosen for this work. 

 

One of the most common ways to measure how well a tracker performs is to 

measure the error between the tracking output and some known truth, called a 

ground truth.  This error is often presented as a root mean square (RMS) error for 

the sequence, a larger error indicating that the tracking output was further from 

the ground truth positions, and so can be considered less accurate.  Measuring 

RMS errors would be a logical choice of success criteria where accuracy over the 

whole tracking sequence is important, perhaps for industrial applications where 

feature locations are required to be consistently very accurate.  RMS errors are, 

however, a sensible measure only where the tracker never loses the target 

completely.  If it does lose the target, the error becomes harder to interpret.  The 

error will be much greater if it is lost near the beginning of the sequence than if it 

is lost towards the end.  Also, RMS errors will penalise a tracker that loses a target 

for a small period of time, even though it does eventually regain tracking of the 

target.  These kinds of errors may not be of interest if our main consideration is 

whether the identities of the targets are maintained throughout the sequence, 

rather than the actual accuracy of placement.  Additionally, when the tracker has 

lost the target, the RMS error will be different depending how far off the tracker 

is: in reality does it matter if it is misplaced on clutter close to the target or on 

clutter on the other side of the image?  In some situations this may matter, but 

when any loss of target identity has serious consequences, such as for monitoring 

purposes, how far wrong the tracking estimate is is less important to know than 

simply the fact it has misplaced the target.   

 

Because of these effects, it is important to understand what is happening in the 

tracking results as well as just quoting an RMS error.  Perhaps the best way to 

determine what is happening in the sequence is manual observation.  Simply 
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watching what is happening to a tracker throughout a sequence can reveal details 

that other methods cannot.  The main reason for qualitative observation of a 

sequence of results is to see what causes a tracker to fail.  RMS errors, for 

example, do not offer an explanation as to which situations are most likely to 

cause tracking to be lost.  The method of manual observation is applicable, 

therefore, to situations where the cause of error is important, perhaps to look for 

ways of improving a tracking system, by changing the algorithm or altering the 

domain in which the tracker works. 

 

A third measurement of tracking success is to record the ability of the tracking 

system to maintain a target’s identity throughout a sequence.  This measure might 

simply be to see if a tracker finishes the test sequence on the correct target.  This 

method is not concerned with the accuracy of the tracking placement over the 

target, or with the ability of the tracker to identify the target on every frame.  

Instead, what is important is that the tracker can maintain tracking of a target over 

a substantial period of time.  Such measures become useful in domains where 

temporally lengthy sequences are to be analysed, where there are plenty of 

opportunities for the tracker to lose its target completely such as tracking an 

individual walking through a crowd.  Disadvantages of this method include the 

inability to say whether tracking was temporarily lost at some point in the 

sequence, hence why this method must be combined with manual observation of 

the tracking results. 

 

The final method considered here is related to RMS: measuring the residuals 

between the tracking result and the ground truth at each frame.   RMS errors 

provide one value that summarises the tracking success over a sequence, whereas 

examining the residuals provides a measure of success on a frame-by-frame basis.  

Residuals can be used to determine where in a sequence a tracker went wrong, and 

also to see how consistent the tracking accuracy was.  It can also be used to see if 

a tracker temporally loses and regains a target. 

 

In this thesis, a combination of the above methods is used.  A groundtruth for the 

sequence in question is created for the sequences under test.  A combination of 



Chapter 4 

 134 

residuals and qualitative manual observation is then used.  Residual graphs are 

plotted, displaying the difference between the groundtruth and the tracking results 

each frame.  Interesting events on this plot, such as increases in residual value 

(temporary or permanent) are then related to the action taking place in the relevant 

frames of the video.  This allows an understanding of why the tracking went 

wrong.  In monitoring groups of animals for this work, fine positional accuracy is 

less important than maintaining a target’s identity throughout a sequence.  The 

ability to trace a duck’s approximate movements for a long period of time is 

considered more useful than very accurately locating its position for a short 

period.  Therefore RMS errors are only used with this caveat, and only on tracking 

results where the target is successfully tracked through the sequence of interest, as 

measuring RMS errors where the tracker losses its target is meaningless for this 

work.  The ability of a tracker to maintain an identity through to the last frame in a 

sequence is the most important criterion for success in this thesis.  

 

CREATING THE GROUNDTRUTHS 

Groundtruths for the particular test sequences were created manually using 

custom software.  The user is prompted to click on particular targets in each 

frame, and this position is recorded to a log file.  Due to time limitations and the 

time-consuming nature of this technique, this process was only completed once by 

one individual, rather than the ideal situation of generating multiple sequences by 

multiple people to prevent subjectivity effects.  With any manually generated 

sequence, there are human errors which must be taken into account.  Macro-scale 

errors were picked up by parsing the data for large changes in position from frame 

to frame, and flagging such events to the user for approval.   

 

The operator must click the centre of the duck on the frame.  Obviously to a 

degree this is a subjective operation and might vary from user to user and time to 

time.  The groundtruth for a sequence of four targets over 50 frames was repeated 

three times with the same human operator to produce an estimate of the quality of 

the groundtruths.  Variation in the placement accuracy of the groundtruths 

produced a standard deviation of 0.95 pixels.  Therefore, most locations (68%) are 



Chapter 4 

 135 

within about one pixel of their true value, and nearly every location (99% of 

them) within 3 pixels.  

4.8.4. Results of tracking sequences 

The Condensation algorithm was tested on 4 common situations that occur with 

groups of social targets.  These situations can be seen by observing a video 

sequence of the ducks, and were initially observed when recording the pilot video 

(see section 4.5.1).  They do not represent an exhaustive list of events, merely a 

representative example set that is challenging to a tracking algorithm: 

1. Multiple targets with no obvious goal (“ambling”)   

2. High velocity, close proximity 

3. Targets moving in different directions with crossing paths 

4. Low velocity, close proximity 

 

With the ducks, these general scenarios can be represented by the following 

specific instances of actions: 

1. Ducks moving around slowly in a small group (sequence 1) 

2. Ducks exhibiting flocking behaviour (sequence 2) 

3. Ducks heading in different directions with crossing paths (sequence 3) 

4. Duck eating from a common food source (sequence 4) 

 

 

Sequences were found that exemplify these scenarios.  Opening frames from these 

sequences are presented in Figure 4.17, overleaf. 
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Figure 4.17 Opening frames from the four sequences, relating to scenarios 1-4 (from top 
left.)  Ducks uninvolved (i.e. a suitable distance from and uninvolved with) the targets 
were not tracked during this experiment. 

 

Results of standard condensation tracking these four sequences shall now be 

presented.  Unless otherwise stated, the Condensation tracker uses 300 samples 

per target.  

 

Sample locations are presented as dots, and on this Condensation experiment the 

samples are shaded from black (low weight) to the tracker colour (high weight). 

The best estimate location calculated for these samples is represented as a circle, 

calculated as a weighted mean. 
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4.8.5. Sequence 1 results using Condensation 

 

Figure 4.18 Groundtruth paths for sequence 1 

 

Figure 4.19 Result paths for sequence 1 
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Figure 4.20 Residuals of groundtruth and actual data for sequence 1, with interesting 
frames marked with vertical bars.  These bars represent (left to right): (1) blue migrates to 
green’s target, (2) yellow is temporarily lost off the back end of the target (3) red and 
green split between 2 targets  (4) red confused and temporarily misplaced. 

 

  

  

Figure 4.21 Output frames relating to the time markers in Figure 4.20.  From top left, 
clockwise: (1) blue migrates to green’s target, (2) yellow is temporarily lost off the 
trailing end of the target (3) red and green split between 2 targets  (4) red confused and 
temporarily misplaced.   Note how in (3) and (4) particularly, the samples are spread 
across multiple targets. 
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The groundtruth for the sequence can be seen in Figure 4.18.  This is a 

complicated sequence to track because the ducks are moving close to each other, 

and occasionally their paths interleave.  It can be seen from the resultant paths in 

Figure 4.19 that 3 of the trackers – red, green and blue – all finish up following 

the same duck (the red target), which must provide the highest measurement 

response.  Therefore, the green and blue trackers end up misplaced.  The yellow 

target is tracked successfully, despite almost losing track at one point, possibly 

due to another target being close, or because of the motion of the animal (see (2) 

in Figure 4.20 and Figure 4.21).  The blue tracker loses its correct target early on, 

after only about two seconds when it migrates onto the green tracker’s target (see 

(1) in Figure 4.20 and Figure 4.21).  Despite some confusion at one point in the 

sequence (see (4) in Figure 4.20 and Figure 4.21) the red target’s identity is 

successfully maintained after 20 seconds.  The green tracker ends up in a similar 

situation to the red tracker (see (3) and (4) in Figure 4.20 and Figure 4.21), caught 

between two targets, but is unable to recover.  Given the baseline noise, the 

successfully tracked targets (yellow and red) are tracked quite accurately 

throughout the sequence (Figure 4.20).  This is apparent in the RMS error for the 

red tracker (4.6 pixels) and the yellow tracker (3.8 pixels). 
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4.8.6. Sequence 2 results using Condensation 

 

Figure 4.22 Groundtruth paths for sequence 2 

 

Figure 4.23 Result paths for sequence 2 
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Figure 4.24 Residuals of groundtruth and actual data for sequence 2, with interesting 
frames marked with vertical bars.  These bars represent (left to right): (1) Yellow attains 
incorrect target duck, and dark pink is left behind after rapid acceleration. (2) Yellow, 
black and blue trackers are now a long way off their intended targets.  

 

  

Figure 4.25 Output frames relating to the time markers in Figure 4.24.  From left to right: 
(1) The yellow tracker migrates onto the wrong target. Note that the dark pink tracker is 
left behind at the edge of the target due to the rapid acceleration of the target. (2) Yellow 
black and blue targets have been lost.  Note that the dark pink tracker has regained the 
correct target (top-right of the frame) 

The groundtruth for this sequence can be seen in Figure 4.22.  The ducks make a 

fast flocking motion away from the water troughs, as if startled by something.  

This fast motion from near stationary initial positions makes this a hard sequence 

to track.  Sometimes the tracker can cope with these rapid accelerations.  
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Following the pink tracker for example, at about 0.5 seconds the tracker is almost 

off the target due to the acceleration: this can be seen in Figure 4.25 (1).  Because 

of the lack of clutter near the tracker, tracking is able to be resumed, as can be 

seen from the temporary peak in the pink residual line in Figure 4.24 (1). 

 

Using residuals as a guide to tell how accurate a tracker is does have some 

limitations.  For example, if two targets are close together and the trackers get the 

two targets confused, this is not always obvious when examining the residuals 

because of the proximity of the two targets.  An example of this can be seen in 

Figure 4.24 (2) where the light pink line is off target, but because it is confused 

with a nearby target the residual line is not very high. 
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4.8.7. Sequence 3 results using Condensation 

 

Figure 4.26 Groundtruth for sequence 3 

 

Figure 4.27 Result paths for sequence 3 
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Figure 4.28 Residuals of groundtruth and actual data for sequence 3, with interesting 
frames marked with vertical bars.  These bars represent (left to right) : (1) Yellow tracker 
is temporarily confused with the green and red targets, but because of the velocity 
differential tracking is easily resumed when the yellow target passes by. (2) The red and 
green trackers have switched targets (red tracker on green target and vice versa) and 
continue to remain ambiguous for a number of seconds until... (3) ...red samples gradually 
migrate irrecoverably to the higher quality green target. 
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Figure 4.29 Output frames relating to the time markers in Figure 4.28.  Top (1):  The 
yellow target passes by two other ducks, and the tracker is temporarily attracted to them.  
However, as the yellow target is moving much faster than the two other ducks and in a 
different direction, correct tracking is resumed after a short while. Left (2): red and green 
trackers have swapped targets due to the proximity and similarity of the targets.  Note that 
some green samples remain centred on the red target.  This situation continues for about 5 
seconds, during which the green tracker regains tracking but the red tracker migrates onto 
the green target (right, (3)). 

 

Figure 4.28 shows that the Condensation algorithm during this sequence produces 

target estimations that are generally quite accurate.  The red and green trackers do 

swap targets and sometimes double up on a target (Figure 4.29).  This is because 

the trackers are not aware of the action of other trackers, hence they can share 

measurements.  In fact, the tracking of the red and green targets remains ambigous 

between the (2) and (3) markers in Figure 4.28.  However, because the ducks are 

sometimes in very close proximity, these errors are not always obvious from the 

residual graph.  This is one problem with using this technique to detect errors, and 

is why this method should be used alongside qualitative observation. 

 

The blue track is correctly maintained throughout the sequence (RMS of 2.5 

pixels), although this duck has the least interaction with the others, offering fewer 

occasions for the tracker to be attracted to other targets.  Overall though, the 

tracking can be considered a success for 3 of the targets; at the end of the 

sequence, 3 out of the 4 ducks are successfully located and identified. 
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4.8.8. Sequence 4 results using Condensation 

This sequence consists of 400 frames in which a group of 11 ducks are around a 

water source.  There is very little motion in the image, and this sequence test the 

tracker’s ability to maintain the correct target when multiple similar targets are 

very close by.  The best analysis for this sequence is qualitative observation, as 

due to there being almost zero motion the test is for the tracker to maintain target 

identity rather than path accuracy. 

  

  

 

Figure 4.30 Output images, starting with 
the initial frame and then every 100 frames 
throughout the sequence. 

 

 

It can be seen from Figure 4.30 that having multiple independent trackers unaware 

of each other’s presence quickly leads to the trackers coalescing on the targets 

producing the best measurement response.  The light green tracker (bottom left in 

the last three images) is spread across two targets.  This is because the samples are 

divided between two targets and the estimation of target location is therefore in 

the middle of the sample cloud.   
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4.9. Tracking ducks using a joint state and interaction model 

4.9.1. Introduction and problem 

It has been shown that the tracking of multiple similar targets is a difficult task.  

The previous section’s work using Condensation suggested that a model of 

interactions might be required to keep the trackers on target when the targets are 

in close proximity; having independent trackers with no knowledge about each 

other leads to the trackers coalescing on the best target measurement.  The most 

promising existing algorithm for these scenarios in existing literature uses a 

Markov chain Monte Carlo method to represent the joint state of all targets, and 

uses an interaction function to model close proximity interactions (Khan et al. 

2004).   This algorithm will first be presented and then tested with the same 

sequences used to test Condensation, above.  

 

Algorithm 4.2 Steps of the Markov chain Monte Carlo tracking algorithm presented in 
previous work (Khan et al. 2004). 

MARKOV CHAIN MONTE CARLO ALGORITHM 

1. State of targets at t-1 represented by a set of samples N
r

r
tX 1

)(
1}{ =− .  Each 

sample contains information on the complete joint state 
2. Initialize the MCMC sampler at time t by drawing Xt from the standard 

(interaction-free) predictive density ∑ ∏ −r i
r
tiit XXP )|( )(

)1(  
3. Metropolis-Hastings iterations.  Obtain M samples from the posterior.  

Discard the first B samples for sampler burn in.  In detail: 
a. Proposal: 

i. Randomly select a joint sample )(
1

r
tX −  from the unweighted 

samples from t-1. 
ii. Randomly select target i from the n targets in the joint state.  

This is the target to move this iteration. 
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itX  . 
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c. If as = 1 then accept the proposed sample '
itX , i.e. set the ith target in 

Xt to '
itX .  Else if as<1 we accept the proposed sample with 

probability as.  If rejected, leave ith target in Xt unchanged. 
 
d. Add a copy of Xt to the new sample set. 

4. M
s

s
tX 1

)( }{ =  represents the estimated joint posterior. 
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Xt  is effectively the current best-estimate sample.  Therefore, as the number of 

iterations increases the quality of sample added to the new set should generally 

improve – hence the burn in phase which rejects typically the first 25% of samples 

(the poorest quality ones) before adding samples to the new set.  The final set 

differs from Condensation in that it is unweighted – the distribution is represented 

by the frequency of samples rather than weights. 

4.9.2. Coping with interactions 

When tracking multiple non-interacting targets, running a single-target Bayesian 

filter for each target allows us to approximate a complete Bayes filter in a way 

that is computationally tractable.  However this approach breaks down when 

targets start interacting.  Typically, the trackers will all jump onto the target with 

the highest score.  This has been observed with insect tracking (Khan et al. 2004), 

and with duck tracking in the previous experimental section with multiple 

independent Condensation trackers. 

  

Figure 4.31 Left: two ducks come to feed.  Right:  approximately one second later, one of 
the targets has been ‘hijacked’ by one of the trackers.  This problem occurs with multiple 
independent trackers where one target produces a higher quality measurement than the 
other. 

Khan et al. overcome this problem by incorporating a Markov Random Field 

interaction factor into the motion model for the particle filter.  This is added into a 

joint state filter, considering the states of all n targets .  In order to represent the 

joint state efficiently, a different sampling approach is used: Markov chain Monte 

Carlo sampling (Khan et al. 2004). 

 

The practical effect of the interaction model is an additional factor in the 

observation model for the particles; as well as being evaluated by a measurement 

from the image, the particles are also affected by the value of the interaction term, 

as in equation (7). 
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∏ ∈ ),()|( jtitEjitit XXXZP
i
ψ  (7) 

where Ei is the set of Markov random field graph edges connected to target i (i.e. 

targets with which an interaction can occur), and ψ is the interaction function.  

This interaction function takes the form of a Markov random field-based motion 

model, which produces a low probability score if targets are within a certain 

distance of each other.  This prevents the tracker from allowing targets to occupy 

the same location, preventing the ‘target hijacking’ effects that multiple 

independent Condensation trackers produced. 

 

As well as this interaction and the representation of a joint state, this algorithm’s 

main difference from Condensation is the use of Markov chain Monte Carlo 

(MCMC) sampling.  MCMC replaces the less-efficient importance sampling step 

as used in Condensation.  This more efficient step generates a sequence of states 

which represent the target distribution.  A Markov chain is defined such that the 

stationary distribution of the chain is exactly the target distribution.  This 

sampling can be done using the Metropolis-Hastings algorithm, where new states 

are chosen based on a likelihood ratio between a proposed state and the previous 

state.  The set of states therefore evolves in a manner similar to using a genetic 

algorithm, and proposed states are evaluated against a likelihood more than once 

per frame (unlike Condensation).  It is this efficient sampling step that allows a 

joint state to be represented without the exponential overheads introduced with 

algorithms such as Condensation, where to represent a joint state so many samples 

must be used that the tracking is painfully slow.  For ease of reference, this 

Markov chain Monte Carlo algorithm with the Markov random field interaction 

function will be referred to herein as the MCMC MRF algorithm 

Image 

measurement 
Interaction metric 
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4.10. Results of tracking sequences 

The algorithm was tested on the same sequences as used to test Condensation in 

Section 4.8.  Unless otherwise stated, the same parameters will be used in this 

section, with the exception of the number of particles.  For the number of samples, 

the number to represent the joint state will be kept equal to the total number for all 

the targets that Condensation used for a particular sequence.  In other words the 

total number of samples in the system will be kept constant for each number of 

targets.  This should keep the time to run approximately equal for the two 

algorithms.   As with Condensation, coloured dots represent tracking estimates of 

target locations.  Shading is not possible on the Markov chain Monte Carlo 

samples as they have no associated weight. The circles represent the mean 

location of the particles’ estimates. 
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4.10.1. Sequence 1 results using MCMC MRF 

 

Figure 4.32 Groundtruth paths for sequence 1 

 

Figure 4.33 Results paths for sequence 1 

 



Chapter 4 

 152 

 

Figure 4.34  Residuals of groundtruth and actual data for sequence 1, with interesting 
frames marked with vertical bars.  The bars represent (left to right): (1) Blue loses target 
(2) Green jostled off position when blue hijacks target. 

 

  

 

Figure 4.35 Output frames relating to the time markers in Figure 4.34. Clockwise from 
top left:  (1) Blue loses target (2) Green jostled off position when blue hijacks target.  The 
final image represents the final state of the tracking on the last frame, with only the blue 
tracker off-target. 

It can be seen from Figure 4.32 and Figure 4.33 that the resultant tracks quite 

closely match the groundtruth, with the exception of the blue tracker which 
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moved onto the green target (Figure 4.35).  This occurs in approximately the same 

place that the tracking of the blue target failed using the Condensation algorithm 

(Figure 4.20 shows the Condensation residuals and Figure 4.34 show the MCMC 

with interaction residuals.)  Three targets have their identities maintained 

throughout the sequence, compared with two for Condensation.  Additionally, the 

two that did have their identities maintained using Condensation did in fact lose 

tracking temporarily for a section of this previous sequence (see points (2) and (4) 

on Figure 4.20.)  This did not happen with the MCMC MRF algorithm. 

 

The RMS errors for the red, green and yellow tracking estimates are 3.3, 4.2 and 

3.6 pixels respectively.  These values are below their equivalents for 

Condensation during this sequence (for which red produced and RMS of 4.6 

pixels and yellow 3.8 pixels) suggesting this MCMC algorithm may be more 

accurate, though the increase in accuracy is only slight. 
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4.10.2. Sequence 2 results using MCMC MRF 

 

Figure 4.36 Groundtruth paths for sequence 2 

 

Figure 4.37 Result paths for sequence 2 
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Figure 4.38 Residuals of groundtruth and actual data for sequence 2, with interesting 
frames marked with vertical bars.  The bars represent (left to right): (1), the pink tracker 
has temporarily lost the target due to the rapid acceleration of the target.  After a number 
of frames on the fringe of successful tracking, at (1) the pink target is lost irrecoverably. 

  
Figure 4.39 Output frames relating to the time markers in Figure 4.38. From left to right:  
(1) Pink beginning to lose target (2) Pink has lost the target irrecoverably. 

 
From the residuals graph (Figure 4.38) tracking seems comparable to 

condensation (Figure 4.24): 4 targets are lost throughout the sequence.  However, 

note that with the targets for which tracking is not lost, the residual errors appear 

lower and more stable.  The reason for the high number of targets being lost using 

both algorithms may be that the sequence involves large accelerations which push 

the dynamic models of both tracking algorithms to the limit.  Indeed the 4 targets 

for which tracking fails are lost when the fast flocking motion starts: this motion 
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is as if the ducks have been startled by something, and is impulsive in nature, as 

the velocity rapidly rises from near-zero to a maximal speed for the ducks. 

 

Note how the dark pink tracker temporarily loses tracking at 0.5 seconds (marker 

1, Figure 4.38).  This is due to the rapid acceleration of the animal and is a repeat 

of the situation that occurs using Condensation (see Figure 4.24).  The tracker is 

unable to completely regain the target and loses it irrecoverably at about 1.3 

seconds (marker 2). 
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4.10.3. Sequence 3 results using MCMC MRF 

 

Figure 4.40 Groundtruth paths for sequence 3 

 

Figure 4.41 Result paths for sequence 3 
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Figure 4.42 Residuals of groundtruth and actual data for sequence 3, with interesting 
frames marked with vertical bars.  This bar (1) represents a point at which the 
Condensation trackers produced ambiguous estimates of the red, green and yellow 
targets, but MCMC MRF produces much more accurate results. 

 

 

Figure 4.43 Output frame relating to marker (1) in Figure 4.42.  Compared to the results 
of the Condensation algorithm at the same point in this sequence Figure 4.29 (top frame), 
all the targets are well placed and unambiguous (the samples are not split across multiple 
targets). 

 

As can be seen both from the residuals in Figure 4.42 and from manual 

observation, this tracker performs very well on this sequence of two pairs of ducks 

approaching each other and crossing paths.  The interaction function performs 
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well at preventing the tracking becoming confused when targets are in close 

proximity (Figure 4.43), producing a very good tracking result.   

 

The RMS values for the four tracking estimates are 2.5, 2.5, 2.7 and 3.3 pixels 

respectively, which, given a baseline noise of about 1 pixel for the groundtruth, is 

a very good result: all the errors are well within the bounds of a duck.  The blue 

track RMS is slightly less accurate than was recorded for Condensation (2.7 pixels 

versus 2.5 pixels), though this is only a small difference. 

 

 



Chapter 4 

 160 

4.10.4. Sequence 4 results using MCMC MRF 

Again, the feeding sequence was tested, this time with the MCMC MRF 

algorithm. 

  

  

 

Figure 4.44 Output images, starting with 
the initial frame and then every 100 frames 
throughout the sequence. 

 

 

Note how target identity is maintained, despite the targets being very close to each 

other throughout the whole sequence.  This clearly demonstrates the power of the 

interaction-handling motion model in preventing the tracking estimates from 

moving to targets which are already being tracked. 
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4.11. Discussion 

Using residual graphs as a measure of success for the tracking proved a useful 

visual aid, however it was found that they must be used alongside qualitative 

manual observation of the sequences.  If a tracker jumps onto a target which stays 

in close proximity to the original target, then the RMS may remain low even 

though there is clearly a tracking error present.  This problem is illustrated in 

section 4.8.6. 

 

The image of the green and blue tracking estimates sharing a common target 

(Figure 4.35 (2)) suggests that the circle model for measurements may not be the 

most appropriate.  If the model fitted more closely the target’s geometry, this kind 

of target-sharing should not happen, as there should be fewer viable locations for 

the tracker per target. 

 

One further note on the experiments themselves is regarding the number of 

samples used.  The sample count was kept constant across the algorithms on a per 

sequence basis.  However, due to its consideration of the complete joint state in 

each sample, the MCMC MRF algorithm should perhaps have its sample count 

increased proportionately to account for this.  However, tracking was still 

improved over Condensation despite this, and the processing time would have 

been unnecessarily increased (perhaps to much greater than that necessary for 

real-time) by using increased numbers of samples.  The sample count was initially 

kept constant per number of targets in the theory that the algorithms would run in 

comparable time.  However, the multiple independent Condensation trackers were 

found to run generally faster (about 0.03 seconds per frame) than the MCMC 

MRF algorithm (ranging from 0.08 to 0.7 seconds per frame depending on 

number of targets).  This increase in processing time for the MCMC MRF 

algorithm may be due to differences between the algorithms, such as the need to 

compute the interaction function.  It should be noted that these times were 

recorded on a 1.4GHz P4, and no special effort was made with regard to 

optimization.  On modern equipment, optimized to process from a live camera 
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stream, it is feasible that both algorithms could run in real time (0.04 seconds per 

frame) for all the target numbers used in this work. 

 

4.11.1. Conclusions 

As a comparison between the Condensation and Markov chain Monte Carlo MRF 

algorithms, these experiments highlight a number of key conclusions.  It is clear 

that using multiple independent Condensation algorithms is not a successful 

solution to the problem of tracking multiple similar targets.  The resulting ‘best 

target hijacking’ problem is illustrated in all the Condensation experiments, but is 

particularly noticeable in sections 4.8.5, 4.8.7 and 4.8.8.  Despite the sequences 

not being subject to any exceptionally complex dynamics, the tracking estimates 

still jump across to the targets providing the best measurement responses.  

Conversely, the MCMC MRF algorithm is much more capable of overcoming 

these problems thanks to its use of the interaction model.  The success of this 

model is particularly apparent in sections 4.10.3 and 4.10.4, where complete 

tracking is maintained throughout the sequences. 

 

In terms of accuracy, the MCMC MRF algorithm performs better than 

Condensation some of the time (e.g. Condensation’s 4.2 pixels average RMS error 

versus MCMC MRF’s 3.7 pixel average RMS error across successfully tracked 

targets for sequence 1), and slightly worse some of the time (e.g. Condensation’s 

2.5 pixel RMS error versus MCMC MRF’s 2.7 pixel RMS error for the blue 

tracker in sequence 3).  Neither of these differences are large, and may be 

attributable to noise.  One possible explanation for the decrease in accuracy of the 

MCMC MRF algorithm is that when two targets are within the interaction 

function distance, the particles may suffer from a ‘repelling’ effect, causing 

samples slightly off target centre and away form the opposing target to be 

accepted with perhaps higher probability than samples dead centre but nearer the 

other target.  Any increase in accuracy could be due to the MCMC sampling 

process allowing the state space to be more efficiently represented, providing in 

turn better accuracy estimates of location.  This effect might be more noticeable 

when fewer samples are available to represent the space.  Both these effects 



Chapter 4 

 163 

should be explored in future research into the accuracy of the MCMC MRF 

algorithm; however, both effects also appear to be small and so will not be further 

investigated for this thesis, which is more concerned with robust tracking than 

precise tracking accuracy. 

 

The power of tracking techniques which allow for multiple hypotheses is 

illustrated in 4.8.7.  The yellow tracker is temporarily distracted by a proximate 

target, but regains tracking after a short while as the velocity differential between 

the two targets helps to discriminate them, and the more viable, correct hypothesis 

is allowed to dominate.  A single hypothesis tracker (such as Kalman filtering) 

would most likely lose track irrecoverably at this point.  Condensation is often 

able to maintain tracking in such situations where the velocity differential is such 

that the targets can be disambiguated using this information, e.g. two targets 

moving in different directions, as can be seen in 4.8.7: the irrecoverable target 

hijacking error only occurs in the latter section of the video, where the ducks are 

nearly stationary.  

 

Sequence 2, which featured fast flocking motions emanating from an initially 

stationary group of ducks proved a very hard sequence to track for both tracking 

methods.  This appeared to be because of the large acceleration changes of the 

animals.  There are two solutions which should improve tracking in this situation.  

The first is to tune the parameters to allow the trackers to be more likely to 

maintain tracking through the accelerations.  Second is to use global motion 

information about the group’s movement to help keep the tracking estimates on 

target, as the targets move in a similar fashion to each other throughout the fast 

motions, and so may be able to keep each other on track.  The second of these is 

particularly interesting as it suggests that an algorithm which could somehow 

make use of social motion information may be able to help tracking. This theory 

will be tested in Chapter 5.  

 

Overall, the MCMC MRF algorithm can be considered an improvement on 

traditional Condensation trackers, especially when the targets are moving slowly 

and in close proximity.  This is certainly true of the robustness of the tracking, and 
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sometimes true of the accuracy, though the accuracy does also decrease by a small 

amount sometimes.  The ability to maintain tracking of individuals in close 

proximity is due to the use of a joint state space, where inter-target interactions 

can be taken into account.  The MCMC MRF algorithm, then, will be used as the 

benchmark from which to develop and test a new socially-aware algorithm, 

presented in Chapter 5. 
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Chapter 5: Using social information to improve 

tracking performance of groups 

5.1. Aim 

It has been shown in the previous chapter that the MCMC joint state tracker with 

an interaction function is a suitable tracking algorithm for multiple targets, but 

still does not produce perfect tracking in all situations.  This chapter will examine 

the hypothesis that social motion information can be incorporated into a particle 

filtering tracking framework to make the tracking of groups of targets moving in a 

related way more robust and accurate. 

 

5.2. Motivation 

Multiple animals together often means more than just a collection of individuals.  

Often groups form within the collection of individuals; such groups may be 

concerned with mating, foraging, protection or some other task or behaviour.  

How a group is defined can be a subjective judgment in itself, often dependant on 

the tracking domain.  Often, spatially close targets are considered a group 

(McKenna et al. 2000a; McKenna et al. 2000b; Cupillard et al. 2001), although 

this is not necessarily a good choice generally.  This thesis will test another 

method based on similarity of motion as a measure of group identity. 

 

Individuals may perform joint actions, such as walking to a food source and eating 

together, which add a social aspect to the motion of the group.  Two animals 
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might follow one another around preparing to mate or looking for food.  Insect 

swarming and fish schooling are examples of social events which contain 

hundreds or thousands of individuals.  The behaviour of such large-scale groups 

has been modelled, typically using physical forces between the individuals in the 

models (Okubo 1986; Reynolds 1987).  Similarly, crowds of people in public 

places contain many individuals with some global motion imposed upon them.  

The actual social effects causing these motions and joint behaviour are difficult to 

quantify, and often it is only the resulting ‘look’ of a group behaviour that is 

modelled; the reason why the flocks behave as they do is unexplained.  The flock 

or school is driven by potentially complex interactions which can only be 

hypothesised.  The level of complexity of these rules is still under debate (Viscido 

et al. 2002).  Group motion models are still being hypothesised and theories are 

still being formed about how the motion of a group of animals is determined 

when, for example, no one member knows which individuals have the most 

salient direction information (Couzin et al. 2005).  The ongoing and varied work 

on group motion models means that any new method developed in this work 

would benefit from being general in nature and not tied to any one particular 

method – there is no agreement yet on one high-level group behaviour model, so 

to use one particular method might over-specialise the model.   

 

To understand what social events actually are, it is necessary to understand the 

targets being tracked.  Tracking ‘live’ targets, such as animals or people, is 

typically a harder task than tracking inanimate targets, as their motions are the 

result of a hidden layer of internal reasoning.  Inanimate objects however are 

governed by external forces.  Snooker balls for example, follow clearly defined 

rules of physics and these predictive models can be incorporated into tracking 

algorithms to increase robustness.  For example, if a ball is dropped, using a 

constant acceleration model such as is imposed by gravity is sensible (Isard and 

Blake 1998a).  With targets that are alive, such physical models are still 

applicable (a person free-falling will be accelerated by gravity) but the target may 

impose their own unpredictable constraints on their motion (opening a parachute, 

for example).  With more than one such target, this effect is compounded.  When 

multiple, living targets are present they are able to interact with each other, their 
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motions changing based on the state of their colleagues.  Such interactions 

interfere with the predictions made by standard linear motion models:  one minute 

a duck is happily walking along a straight trajectory, the next he decides to take a 

detour to walk up to another duck.  They may circle around each other or even 

mate – such interactions are very difficult to model because two similar targets are 

moving in close proximity along complex trajectories determined by internal 

goals.  Similarly hard problems are encountered when tracking multiple people.  

They may move about seemingly at random, stopping to chat with one person and 

trying to avoid several others.   

 

However, despite their differences, both types of targets may produce what can be 

considered as coordinated behaviour.  Dropping a handful of snooker balls off a 

tall building (not that this author would recommend such an action) produces a 

group of targets whose motion is such that they maintain their coherence as a 

‘group’.  If one target becomes obscured, this ball’s position and motion can still 

be predicted using information about how the other balls move.  The same is true 

of a group of animals or people who, rather than being driven by the laws of 

physics are driven by a set of social motion rules, such as escaping a predator or 

looking for food.  Obviously, subtle divisions of social rules probably exist, but 

determining what they are can be problematic. The point of this is that the motion 

of groups of targets, be they social or otherwise, are often governed by higher 

level rules which, although not necessarily explicitly known, do govern the global 

behaviour in a predictable way.  Using this theory it is conceivable that an 

algorithm could be developed which uses knowledge about social motion to guide 

the tracking of a group of targets, no matter what the targets are, as long as they 

exhibit some sort of coordinated motion.   
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5.3. The problem of tracking social groups 

Most, if not all existing group tracking algorithms decouple the tracking itself 

from the social aspect of the grouping, flocking or herding motion (depending on 

the type of target!).  Even if the final aim of an algorithm is to be able to label the 

behaviour of the observed targets, such as antisocial behaviour (Cupillard et al. 

2001) or events in a car park (Ivanov and Bobick 1999) etc., the final ‘behaviour 

labelling’ is rarely used to actually guide the tracking itself.  One algorithm which 

does combine behaviour labelling with the motion model in use is mixed-state 

particle filtering (Isard and Blake 1998a).  Here the labelling of the motion 

happens implicitly based on the dominating motion model; an example use is the 

recognition of temporal gesture trajectories (Black and Jepson 1998).  Variations 

on this technique include using multiple cyclic hidden Markov models to model 

healthy or lame motions for particles used to track a cow, both to apply a suitable 

tracking model and assign a behavioural label to the target (Magee and Boyle 

2002).  The dominant model that best fits the data will lead to more samples being 

associated to this model over time.  A simple classification can then be made by 

observing the number of samples that represent each model 

 

It has been shown in the previous chapter that social interactions between targets 

can degrade the performance of tracking algorithms.  Most data association 

methods make the assumption of target independence; that is, when two targets’ 

paths cross, their motion continues just as before they came together.  With social 

animals and people, this requirement is often not met: animals meet up and 

interact for some unpredictable amount of time, and then continue, maybe on the 

same trajectory as previously and maybe not.  It was shown in Chapter 4 how 

simple spatial interaction models can be used to improve tracking in these 

situations (Khan et al. 2004).  These spatial models, however, make no 

assumptions about how the targets are moving, simply what to do then they are 

close to one another.  Existing tracking algorithms should be able to track the 

members of a group as long as: 
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1. The dynamics of the group fall within the dynamics covered by the tracker 

2. Members of the group are not fully occluded 

 

Problems arise, however, were these conditions are breached.  With the first case 

above, increasing the process noise of the tracker might allow it to capture more 

extreme motions, but it may also lead to increased chance of the capture of similar 

looking clutter – a problem compounded by the similar targets present in group 

situations. It would therefore be advantageous to track the group with the smallest 

amount of process noise possible.   

 

With the second case, when targets become completely occluded, it is all the 

tracking algorithm can do to continue the prediction of position based on the last 

known dynamics of the target.  How long this ‘ghosting’ continues for and 

whether it gets caught on clutter during this stage depends on the implementation 

of the algorithm and the properties of the occluding clutter - whether it is 

camouflage (producing uniform measurements) or distracting (producing 

measurement peaks) in nature.  On occasion, the obscuring clutter so closely fits 

the colour model of the desired target that the momentum of the recently hidden 

target’s tracker is maintained via positive feedback from the clutter measurements.  

Therefore, the tracker continues on its set course, and is likely to be in the correct 

place to recapture the occluded target when it emerges on the other side (assuming 

the target continues its trajectory).   If the clutter is largely different in colour from 

the target, the algorithm receives few positive measurement scores.  If there is a 

small area of the clutter that scores more highly than the rest, this area will act as a 

magnet to the floundering particles.  Particles falling over this area will be likely 

to be propagated to the next time step, causing the velocity to tend towards zero 

(if the clutter is stationary), and the tracking of the target to be lost, as in Figure 

5.1. 
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Figure 5.1 Illustration of how clutter colour can affect whether a target (white circle) is 
successfully tracked.  Black circles represent approximate particle cloud location.  In the 
left scenario, the colour properties of the clutter are similar to that of the target; the 
momentum of the particles is upheld by high scoring measurements and the particles meet 
the target upon leaving the clutter.  In the right scenario, the clutter does not match the 
colour model of the target.  Therefore, relatively high scoring patches within the clutter 
become very attractive to the particles, and tracking is lost. 

 

If the target is occluded by something which produces a uniform measurement 

response (camouflage), then the area of the state space explored by the tracker 

increases. This can happen when the confidence level falls when using a Kalman 

filter or when a particle filter is presented with a situation in which all particles 

have equally scoring observation measures, and an example of this situation with 

a particle filter is presented in Figure 5.2 : 

 

 

Figure 5.2 Example of particle spread when no target observations exist for a particle 
filter.  Note how constrained the particles are when measurements exist that fit the 
observation model (top left) and how the particle area increases over a few frames when 
no reinforcing measurements exist. 
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Although this may manage to capture the target when it reappears, it only does so 

by ‘shooting in the dark’ – it is just as likely to settle upon background clutter that 

generates a high enough measurement for one of the particles.  Certainly, if the 

target changes velocity during occlusion, the tracker has little hope of recapturing 

the target. 

 

Despite their interaction function, Khan et al.’s MCMC MRF algorithm still falls 

foul to the above effects (again, as in the previous chapter, MCMC MRF refers to 

Khan et al.’s Markov chain Monte Carlo particle filter with the Markov random 

field interaction function (Khan et al. 2004)). 

5.3.1. A general solution to these problems using social knowledge 

The key to overcoming these problems is doing what a human observer might do: 

incorporating more information.  When concentrating on one target, by definition 

all information about its motion disappears when the target is occluded from view, 

or camouflaged.  However, when a group of social targets are studied together, 

often patterns can be seen in group movement.  These patterns could be used to 

aid predictions of their motions. 

 

This work tests the hypothesis that group social motion effects can be used to aid 

tracking by allowing the motion model of one target to use information about how 

one or more previously coordinated targets are moving.  For example, knowing 

that two targets are behaving in a similar way may allow us to hypothesise the 

motion of one occluded target based on the motion of the visible target.  Imagine a 

group of people walking through a park, and after a time a small number of 

members of the group are obscured by trees and bushes in the foreground.  It is 

possible to make judgements about where they are and where they will re-appear 

by looking at the position and motion of the visible members of the group.  

Indeed, we as people are likely to make such judgements without conscious effort.  

It is logical to use a similar technique to improve the tracking of groups of targets 

exhibiting such behaviour.  These temporal social interactions are a completely 

different social event to that of the spatial interactions modelled by Khan et al., 

but can and should exist alongside such a method of keeping multiple tracking 
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estimates from all following one target.  It is sensible to include this previous 

work in the final algorithm, as it helps resolve the target-hijacking problem that is 

common with interacting targets, whereas the new social motion algorithm will 

also model dynamics using the motion of coordinated targets as a guide.  

However, the new temporal social interactions work is independent of these 

spatial interactions, and so the spatial interaction model of Khan et al. can be 

omitted if required. 

 

Using temporal social interactions should improve upon results for the first 

problem listed in section 5.3, where the dynamics of the tracker’s motion model 

are on the verge of losing the targets. Using global group motion should improve 

the tracking of difficult sequences where the dynamics of the tracker are stretched 

to the limit (such as Sequence 2 in Chapter 4) with lower process noise than 

traditional methods which do not include social motion components.  If, as in this 

example, a group of ducks suddenly exhibits a fast moving flocking motion, if any 

of the tracking estimations falls behind and loses the target (such as the pink 

tracker in experiment 4.10.2 in the previous chapter), then it is hypothesised that 

using information about how the other members of the flock are moving will help 

to keep the tracker on target.  

 

The occlusion problem could be rectified using information about how the whole 

social group is moving to predict the motion of the occluded target belonging to 

this group.  This would help prevent the tracker getting stuck on relatively high-

scoring clutter, and even guide the tracker through an occluded target’s velocity 

change if this was reflected in the motion of the other members of the group.  It 

will also prevent the particles from spreading out excessively in the absence of a 

reinforcing measurement.  

 

In addition, the general accuracy of tracking may be improved as well. Target 

location noise often arises because of short term deviations in the target’s motion 

as compared to that modelled by the tracking algorithm.  Such deviations may 

cause the algorithm to alter its estimation for the next timestep, thus compounding 

the error.  Taking into account group motion when tracking individuals leads to 
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such erratic motions being filtered out in a way consistent with the motion of the 

group as a whole.  This should in turn help alleviate some of the problems of 

localised, independent noise on the targets, and so increase the general accuracy 

of the algorithm. 

 

By improving tracking results for these problematic occasions, a new, powerful 

technique for tracking multiple social targets should emerge. This new technique 

can make use of the mixed-state particle filter, using social group motion metrics 

to assign motion states, social or otherwise, to the tracker.  Therefore, this work 

introduces a novel method to improve the tracking of groups of social targets, by 

incorporating social motion information into a mixed-state-derived particle 

filtering algorithm.  

5.4. Algorithm development 

The success of Khan et al.’s methods (Khan et al. 2004) lies in the ability of the 

tracker to be aware of where the targets are in relation to each other.  When the 

targets are close to one another, the motion model is able to suppress particles that 

drift too close to nearby targets.  Thus the problem of best-target hijacking is 

overcome.  Khan et al.’s algorithm, however, does not make use of any 

information about how the targets are moving in relation to each other.  It models 

social effects in space (i.e. proximity to other targets), but not time (how the 

targets are moving together). It is hypothesised that an extension incorporating 

time-based social information into the process density, when tracking groups of 

targets moving in any sort of coordinated fashion, would increase the robustness 

and accuracy of the tracking.  Using motion history information for individual 

targets (Magee and Boyle 2000) has been shown to improve speed and robustness 

in the past, and so it is reasonable to assume that including group motion history 

information will yield similar benefits. The description of the development of 

such a technique shall be presented next, followed by the experimental evaluation. 

5.4.1. A socially aware process density 

The new Motion Parameter Sharing (MPS) algorithm needs to have two basic 

components to its motion model: an ‘internal’ motion representing the target’s 

motion in the absence of social factors, and a ‘social’ component which is affected 
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by the motion of the other targets in the same social group.  The foundation of the 

new MPS algorithm was drawn from two important but disparate existing 

algorithms.  As was seen in the last chapter, the MCMC MRF algorithm (Khan et 

al. 2004) allowed interacting behaviour between targets to be modelled and this 

helped prevent the target hijacking problem that was common when animals and 

insects interact.  This was a spatial model which essentially suppressed 

measurement values as targets became nearer to each other.   As it does not 

depend on the previous state, this interaction term, ψ, can be used to simply 

modify the acceptance ratio of the MCMC algorithm: 
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(8) 

 

where Zt is the measurement at time t, i is the target being moved, j represents the 

other targets in the group, Xt is a sample statespace for time t and X’t is a proposed 

new sample statespace. 

 

Note that this leaves the motion model itself, )|( )1(
'

−tiit XXP  unchanged.  So, this 

algorithm has the advantage of a spatial interaction model which incorporates 

knowledge about a target’s neighbours, but the actual dynamical model does not 

take advantage of this knowledge: the samples are affected by the interaction after 

movement. 

 

The second algorithm, mixed-state Condensation (Isard and Blake 1998a), does 

not implement a joint tracker and hence it has no awareness of what other targets 

might be doing.  What it does offer, however, is the ability to automatically select 

between multiple available motion models by means of an extended state, X: 

 

),( yxX =  (9) 

 

where x is a statespace describing the target’s parameters, and y is a discrete 

variable labelling the current motion model in use.  The process density then 

becomes: 
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)|(),|()|( 111 −−− = ttttttt XyPXyxPXXP  (10) 

 

The transition between motion model states is modelled as follows: 

 

)(),|(:)|( 1111 −−−− === tijttttt xTiyxjyPXyP  (11) 

 

i.e. the evolution of y is governed by a state transition probability matrix, Tij, 

where i and j are states in y. 

 

It is proposed that the new MPS algorithm will have to use an MCMC sampling 

methodology because of the necessity to include a joint statespace.  Additionally, 

as the targets are interacting, it is sensible to include the spatial interaction 

function of the MCMC MRF algorithm.  The motion model will then be extended 

to incorporate the mixed state model (from equation (10)) to allow for different 

motion parameters to include social motion information when present.  This social 

motion information will be in the form of motion parameters shared from socially 

coordinated targets.  However, instead of using a pre-determined matrix of 

transition probabilities to determine the state (equation (11)), it is proposed that 

the motion of the targets themselves can be used to determine whether the state 

should relate to individual motion or social motion.  This will be done by looking 

at how well the targets’ motions are correlated over time, thereby introducing a 

new temporal, socially-aware element to the process density. 

5.4.2. Defining the groups 

The motion parameters should only be shared to targets belonging to the same 

‘social’ group i.e. targets which are likely to move in the same way.  There are 

many possible ways of defining such groups.  Proximity is one measure which has 

been used before to model social interactions (Khan et al. 2003), but being in 

close proximity does not mean the targets are necessarily moving in the same 

way.  This behaviour was noted in one of the duck videos, where the motion of 

two ducks was found to be highly correlated (see Figure 5.3) over a period of over 
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2 minutes (3,800 frames), despite them becoming separated at various times 

throughout the sequence, sometimes by a large distance. 

 

 

Figure 5.3 Speeds of ducks t5 and t6 (r2=0.58) 

  

This example illustrates that although distance is sometimes used as a metric to 

divide targets into groups, this is not the best strategy for this work.  A better 

measure of allocating targets to groups is to use how the targets move in relation 

to each other.  To quantise such a parameter, correlations can be calculated over 

the targets’ motions over time.  For example, the targets’ velocities, speeds, path 

curvature, path noise etc. could be correlated over time, with targets behaving in a 

similar way (as determined by this parameter) being classed as a ‘social group’.   

Targets with a higher correlation value are more likely to be moving in the same 

way over the parameter for which correlation was calculated. 

 

For this work, speed was chosen as the parameter on which to calculate 

correlations.  Figure 5.3 shows that speed should be a meaningful correlation 

metric.  Correlating velocity has advantages and disadvantages over speed, the 

main difference being targets would have to be moving in the same direction to be 
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considered a group.  The consequences of this will be examined in future work, 

but initially speed was used as this was thought to allow for more generic social 

situations, and has been shown to be a parameter over which social pairs of ducks 

are correlated.  A distance measure was omitted from this work as the social pair 

of ducks in Figure 5.3 were sometimes separated by large distances.  It should be 

noted though that the parameters used to determine the groups can be different 

depending on the situation under study, and can also be different from the 

parameters shared in the motion stage of the algorithm. 

 

5.4.3. The MPS algorithm 

The first part of the algorithm needs to incorporate a joint motion history in the 

form of correlated speeds, as follows.  Every time step, a correlation matrix 

between all the targets’ speeds is calculated using Pearson product-moment 

correlation coefficients across a sliding window of the past N frames.  The value 

N should reflect the scale of the motions.  This is a complicated issue and deciding 

on N requires future investigation, but for this work a value in the order of a 

second was used.  This matrix will therefore store how well the targets’ motions 

are correlated over the previous time window.  

 

To be correct, each individual particle should calculate the correlation matrix 

based on its own internal joint motion history for the past N frames.  However, 

this is computationally expensive for two reasons: first, each particle must 

maintain a joint history of the past N frames, which produces a large particle size 

(the temporal Markov chain constraint introduced by e.g. (Isard and Blake 1998b) 

was to prevent the need for this). Second, the processing time for calculating the 

correlations within each particle would be large.  Therefore, a practical 

approximation is necessary to make the algorithm run with limited resources.  To 

do this, one set of correlations is calculated each timestep across the past N frames 

using the best-estimate speeds of all the targets.  The speeds are smoothed over a 

small window (about 1/6th second) to eliminate erratic changes prior to correlation 

calculation. These speeds can be adjusted for position on the ground plane using a 

similar method to the radius setting model in Chapter 4. 
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When a target’s statespace is propagated forward, the motion model can either use 

the target’s own parameters or it can use the motion parameters of a correlated 

target.  For each particle, a random third-party target is selected.  The motion 

parameters from the third-party target may be used for the current particle with a 

probability proportional to the correlation coefficient between the two, with a 

practical lower threshold set to eliminate noise called the correlation threshold.  

This correlation threshold determines how tightly animals’ motions must be 

correlated in order to be considered a ‘social group’.  If the correlation coefficient 

is low, the particle is likely to use its own internal parameters.  So, for each target 

a pairwise relationship is assessed with a randomly chosen target.  The first 

target’s tracking representation may or may not use this other target’s motion 

parameters with a probability related to their level of correlation.  Across the 

complete set of particles, this collection of pairwise relationships represents a 

prediction of motion taking into account the whole group (or groups) of socially 

coordinated targets. 

 

The motion model parameters used are therefore determined by the level of 

correlation between the targets’ speeds over an elapsed time window.  The 

process density is then a modified form of that used in mixed state Condensation 

(Isard and Blake 1998a): 

 

)|(),|()|( 111 −−− = ttttttt yPyxPXP χχχ  (12) 

 
 

where Xt is the state at time t including y, xt is the state at time t excluding y, and yt 

is a discrete variable labelling which target’s motion history should be used to 

process the target’s state forward at time t, ie. using its own motion parameters, or 

those shared from another target.  χ represents the complete history of all 

information stored in X.  This is a modified form of equation (10)  incorporating 

the complete state histories required to determine which targets have been moving 

in similar ways.  Isard and Blake (Isard and Blake 1998a; Isard and Blake 1998b) 
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make the assumption that this can be approximated by a temporal Markov chain, 

simplifying the process density to that in equation (13). 

  

)|(),|()|( 111 −−− ≈ ttttttt XyPXyxPXP χ  (13) 

 

 

The Motion Parameter Sharing algorithm also makes the Markovian assumption 

for the motion at time t, as in the mixed-state tracker (Isard and Blake 1998a), but 

the state label yt remains dependant on χ, i.e. it is dependant on state information 

with a history reaching further back than just the previous timestep, as is required 

to incorporate correlation information. In practice, χ is approximated by a limited 

history χ’ (the correlation window) to alleviate some processing requirements.  

This leads to a process density of the form: 

  

)'|(),|()|( 111 −−− ≈ ttttttt yPXyxPXP χχ  (14) 

 

This allows the use of a motion model dependant only on the last time step, and a 

discrete motion parameter label variable yt dependant on some history function – 

in this case correlation over a time window.  The actual probability of target A 

borrowing motion parameters from target B in the processing forward of one 

sample, in a scene with N  targets, can be practically calculated as follows: 
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where P(rAB) is the probability that the two ducks have been exhibiting correlated 

motion – for this work, this is considered equal to the correlation coefficient 

between targets A and B calculated over the sliding time window.  For practical 

purposes, if P(rAB) is below a fixed noise threshold, then P(rAB) = 0; i.e. if there is 

only a weak correlation between the targets, they are considered to be not 

correlated at all. 
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The actual probability of a target using its own motion parameters in a sample 

process can be calculated using equation (16). 
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Together these probabilities form the equivalent of the transition matrix Tij in 

equation (11). 

 

One problem with the MCMC algorithm is that the acceptance of samples into the 

new set is calculated by selecting the relatively best scoring measurement out of 

two alternatives (steps 3b and 3c in Algorithm 5.1 below).  This means that in the 

complete absence of a target, such as during occlusion, the tracker can quickly 

become attracted to relatively high scoring areas of clutter (see Figure 5.1 for 

more details), even though when measured absolutely these areas produce low 

scoring measurements.  In the absence of any further guiding information, this is a 

common problem for such a tracker.  However, with social information available 

we can use this new knowledge to guide the tracker instead.  To overcome this 

issue, an additional acceptance condition was added to step 3c, whereby if the 

measurements are both below a practical threshold Tm (i.e. there is definitely no 

target present), and a correlated motion model has been used for this sample, then 

accept the sample anyway.  This means that if a tracker is following an occluded 

target using motion information from coordinated colleagues, it will use this 

method to add samples to the new set, rather than allowing relatively high scoring, 

but ultimately poor, clutter measurements to disrupt the tracking.  In practice, this 

step has little effect on the original algorithm during normal tracking.  For 

example, after multiple tests on sequence 2 from Chapter 4, it was found that this 

acceptance method was only invoked 0.4% of the time versus the other acceptance 

methods, probably due to the lack of occlusion in this sequence.  This special 

threshold is therefore only employed during the described occlusion-type event, 

and should not affect tracking where the target produces a measurement. 
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The main MPS-extension is presented in steps 3a(iii) and 3c below, using the 

semi-Markovian equation (equation (14)) for the process density, modified from 

Isard and Blake’s mixed-state particle filter. 

 
 MOTION PARAMETER SHARING ALGORITHM 

1. State of targets at t-1 represented by a set of samples N
r

r
tX 1

)(
1}{ =− .  Each sample contains 

information on the complete joint state 
2. Initialize the MCMC sampler at time t by drawing Xt from the predictive density  
3. Metropolis-Hastings iterations.  Obtain M samples from the posterior.  Discard the first 

B samples for sampler burn in.  In detail: 
a. Proposal: 

i.  Randomly select a joint sample )(
1

r
tX −  from the unweighted samples at t-1. 

ii. Randomly select target i from the n targets in this sample.  This is the target to 

move. 

iii. Test whether to take motion parameters from a random other target, 

dependant on how well the targets are correlated.  If this fails, use own motion 

parameters.  Apply motion model to this target to obtain '
itX  . 

b. Calculate acceptance ratio: 

            













=

∏
∏

≠

≠

ijj jtititit

ijj jtititit
s XXXZP

XXXZP
a

,

,
''

),()|(

),()|(
,1min

ψ

ψ
 

c. If as = 1 then accept the proposed sample '
itX , i.e. set the ith target in Xt to '

itX .  
Else if as<1 we accept the proposed sample with probability as.  If rejected, leave 

ith target in Xt unchanged.  Also, accept '
itX if the motion parameters have been 

shared from another target, and the measurement response is below a threshold, 

Tm. 

d. Add a copy of Xt to the new sample set. 
4. M

s
s

tX 1
)( }{ =  represents the estimated joint posterior. 

 

Algorithm 5.1.  The MPS steps incorporated into a Markov chain Monte Carlo particle 
filter, with an additional interaction function (Khan et al. 2004). 
 

So, using this new algorithm correlated targets are able to guide each other 

through clutter, occlusion and other problematic events.  The algorithm will be 

tested in the following sections on various kinds of artificial and real life target 

sequences. 
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5.5. Experiments with path perturbation and occlusion  

5.5.1. Introduction 

The aim of these experiments is to assess the performance of the new MPS 

algorithm compared to the previous existing best as determined by the previous 

chapter of this thesis, i.e. the MCMC MRF algorithm.  Some general problem 

areas where tracking was likely to fail using traditional techniques are: 

1. During full occlusion, where the tracker becomes attracted to ‘best’ clutter 

in the absence of a target measurement 

2. During path perturbation, i.e. high noise on a target’s path 

 

It is hypothesised that if the targets are exhibiting correlated motion, tracking 

accuracy should be improved in these situations.  The first tests for the new MPS 

algorithm will assess its effectiveness in the above scenarios, as well as 

demonstrating the effect of the algorithm on sequences where neither of these 

special events occur, to enable a direct comparison between this MPS algorithm 

and the existing MCMC MRF tracker. 

 

 

Figure 5.4 Diagram showing the paths of the four targets in the artificially generated test 
sequences.  Note the perturbations on the pink path (used in Experiment 2).  The crosses 
on the yellow path delineate the simulated occlusion phase for Experiment 3.  The colours 
in these images have been inverted for clarity. 
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For these artificial sequences, the targets were white circles, and the measurement 

model favoured such an object.  The parameters of the tracker were kept the same 

as for duck tracking in the previous chapter.  Gaussian image noise (σ = 4.0) was 

added independently to each frame.  Also present was distracting similar 

background clutter (see Figure 5.4).  A correlation window, N, of 50 frames (two 

seconds) was used.  The advantage of using artificial sequences is that the 

experimenter has control over the targets (not so with animals!) and also a true 

ground truth is known.  Both tracking algorithms used the same number of 

particles unless otherwise stated.  RMS errors were calculated across all four 

targets.  RMS is not presented for runs where at least one target’s tracking is lost 

entirely, as this is an unrecoverable tracking situation worthy of special note. 

5.5.2. Experiment 1: Group motion along simple paths 

In this experiment using an artificial sequence, a group of targets move together 

along a simple path which contains no occlusions or perturbations.  This test is 

intended to provide a direct comparison of accuracy between the MCMC MRF 

algorithm and the MPS algorithm.  Each algorithm was run five times on the 

sequence, with the same initialisation, and the results compared to the 

groundtruth.  On every run both algorithms maintained tracking of the targets 

throughout the sequence. 

RESULTS 

The results of the tracking are presented in the following table of RMS errors. 

Run number MCMC MRF algorithm 
(pixels) 

MPS algorithm 
(pixels) 

1 0.69 0.57 

2 0.71 0.63 

3 0.67 0.62 

4 0.61 0.68 

5 0.69 0.62 

Table 5.1 Table of RMS errors in the comparison between the MCMC MRF and MPS 

algorithms on the simple paths test sequence.   
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The means of RMS error from Table 5.1 above show that the MCMC MRF 

algorithm had an average error of 0.67 pixels and the MPS algorithm an average 

of 0.62 pixels.  This reveals a slight increase in accuracy for the MPS algorithm 

(t(8)=-2.04, p=0.08).  Run 4, however, did produce a small decrease in accuracy 

for the MPS algorithm.  Closer inspection of this sequence does reveal, however, 

that these errors occur early in the sequence, before parameter sharing begins, 

while the correlation window is still being built.  Therefore this error is not caused 

by the MPS algorithm, and could equally occur with the MCMC MRF tracker.   

 

The processing time for the two algorithms is comparable, with both taking 

around 20ms per frame on an average specification PC (1.4GHz P4). Both 

algorithms are fast enough for real time application 

 

DISCUSSION 

The MPS algorithm has comparable, and usually slightly improved, accuracy 

compared to the MCMC MRF tracker in this social scenario.  One reason for this 

improvement may be due to the way the estimated locations of the targets are 

calculated.  The estimated location of a given target is given by the average of all 

the particle locations for that target, i.e. a best estimate of the probability density 

function.  With MPS, the drift of each individual’s probability density is 

constrained further by the common (and shared) group motion. Error across the 

whole particle set is therefore reduced, allowing more accurate prediction. 

 

It should perhaps be noted than in a non-social scenario, the correlations would 

fall below the threshold and tracking would revert to standard MCMC MRF 

methods.  It follows that the error in a non-social scenario would therefore be the 

same as for the MCMC MRF algorithm. 

5.5.3. Experiment 2: Path perturbation 

This experiment is designed to test the situation where one member of the group 

has to make a sudden and short-lived detour from its previous trajectory because, 

perhaps, of some obstruction in its path.  The group of targets move together 

throughout the sequence, with the exception of the one target which undergoes the 
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path perturbation.  Such a perturbation is essentially an example of localised but 

severe noise, and may distract traditional tracking methods by ‘sling-shotting’ the 

tracker off course, or by the tracker becoming attracted to clutter as it maintains 

the trajectory in the absence of target measures.  In many situations it is desirable 

to not track the target throughout the perturbation, but to recapture the target when 

it rejoins its original path.  This eliminates the perturbation ‘noise’ on the path. 

The implemented perturbation can be seen on the pink path in Figure 5.4 

 

The following table shows the results of 10 runs of both trackers on this sequence 

with the path perturbation. 

 

 MCMC MRF MPS 
 

Correct runs 2 10 
 

Average RMS error for 
correct runs (pixels) 

2.60 0.772 

Table 5.2.  Correct runs and RMS errors of correct runs (compared to the unperturbed 
groundtruth) for the perturbation sequence. 

 

A ‘correct run’ is defined as one where the tracker maintains the identity of all the 

targets throughout the sequence i.e. at the end of the sequence they are positioned 

on the correct target.  This is determined by manual observation.  The RMS errors 

are only meaningful in situations where a run is correct, for reasons discussed in 

the previous chapter.  Therefore, RMS errors are presented as an average across 

only the correct runs.  As Table 5.2 shows, the new MPS algorithm was very 

successful, producing 10 correct runs out of 10.  The MCMC MRF tracker was 

markedly less successful, managing to maintain tracking on only 2 runs out of 10 

for the same sequence.  There is a high level of difference in this robustness 

performance from the two algorithms, χ2 (1, N=20)=13.3, p=0.0003.  Even when 

the MCMC MRF algorithm did succeed, the average RMS error was much greater 

than the error for the MPS tracker; although this error could only be measured 

across the 2 available correct runs, and so should perhaps be interpreted with 

caution (the low significance of the accuracy difference reflects this caution, t(1)= 

1.28, p=0.42) .  What is certain is that the MCMC MRF algorithm irrecoverably 

lost at least one target on 8 of the 10 runs. 
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DISCUSSION 

Loss of tracking during perturbations is caused by the sharp and sudden change of 

direction, and the effect is compounded by clutter causing the tracker to become 

distracted in the absence of a target measure.  In the absence of clutter, traditional 

MCMC MRF tracking or even condensation would produce a satisfactory result 

on this sequence, by maintaining their original trajectories until the target rejoined 

its original path, and then recapturing this target.   

 

Note that the RMS error for the MPS tracker is not much worse than that 

measured in the simple sequence of Experiment 1. 

 

The success of the MPS algorithm for this sequence is likely to be because the 

global group motion keeps most of the particles largely on track during the 

perturbation phase, allowing them to rejoin the target when it returns to its 

original path. 

  

Figure 5.5 Khan et al.’s MCMC MRF algorithm (left) and the MPS algorithm (right).  
This frame is taken just as the perturbed target returns to its original trajectory.  Note how 
the MPS estimation of position is correct, and how MCMC MRF has failed to recapture 
the target (the arrow is pointing to the actual target; the MCMC MRF prediction can be 
seen to be off the target in the left image).  The green lines indicate the calculated 
correlations are greater than the correlation threshold, so the targets are grouped and 
considered able to share motion parameters. 

 

5.5.4. Experiment 3: Occlusion 

This sequence places one of the targets in the group in a simulated occlusion 

event.  This in real life might represent a person or animal walking behind an 

occluding object.  In the simulation, the third target is removed from the sequence 
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for 30 frames.  This ‘occlusion’ period is marked by crosses in Figure 5.4.  The 

results of this experiment are presented in Table 5.3. 

 

 

 MCMC MRF MPS 

Correct runs 0 

 

10 

Average RMS error for 

correct runs (pixels) 

- 0.767 

Table 5.3.  Table of tracking successes and RMS errors of successful runs (compared to 
the un-occluded ground truth) for the occlusion sequence 

These results show that the MCMC MRF algorithm is very poor at maintaining 

tracking during occlusion where similar clutter is present.  Conversely, the new 

MPS algorithm succeeded in maintaining tracking on every run, and with a low 

RMS error which was almost the same as in Experiment 2.  There is a very high 

statistical significance in the robustness (‘Correct runs’) performances of the two 

algorithms (χ2 (1, N=20) = 20, p<0.00001).  RMS error was not calculated for the 

MCMC MRF algorithm as at least one target was irrecoverably lost on every run. 

 

DISCUSSION 

The MPS algorithm has good results because it keeps the estimation on track in 

the absence of reinforcing measurements from the image because the global 

motion parameters from the correlated targets prevent the peak in the probability 

distribution from spreading too far.  This diffusion effect in standard particle 

filtering makes reacquisition of the occluded target somewhat hit and miss, and 

increases the likelihood the background clutter will be adopted instead.  The 

effectiveness of MPS can be seen in Figure 5.6, where the arrowed target is 

occluded and its corresponding particles are not spread out as it is part of a group 

whose motion is very tightly coordinated.   

 

As the dynamics of the occluded target are shared from the correlated targets, this 

mechanism will cope with the group turning corners as well as travelling in a 

straight line, as long as the relative velocities of the members remains the same.  
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This means the occluded target can still be tracked no matter what the dynamics 

of its motion sharing-colleagues, as long as their dynamics are representative of 

the motion exhibited by the occluded target.  Even if the dynamics of the group 

change during the occlusion event, this theory still holds.  Any algorithm which 

considers only individual motion will be sure to fail at such an occurrence. 

 

Note again that the RMS error for the MPS tracker is similar to that measured in 

the simple sequence of Experiment 1, when no occlusion took place. 

 

Figure 5.6.  Frame taken from the output of the MPS tracker.  The arrowed ‘target’ is in 
fact occluded at this time; the position is estimated based on the motion parameters 
shared from the correlated targets (these targets indicated by the lines).   

 

5.5.5. Summary 

From Experiment 1 it can be seen that the MPS algorithm is able to track the 

targets as accurately, if not more accurately, than its MCMC MRF counterpart.  It 

performs very well during perturbation and occlusion events as has been shown in 

Experiments 2 and 3.  Conversely, the previous best group tracking algorithm  

(MCMC MRF, as determined in Chapter 4) performed very poorly in such 

scenarios.  These results suggest the MPS algorithm has the potential to cope with 

problematic scenarios that other algorithms that do not make use of social motion 

cannot cope with.  A next logical test of the algorithm is to examine its 

performance under different measurement noise levels, as occlusion and certainly 

perturbation can be considered as special cases of such noise.  This, therefore, will 

be the subject of the following group of experiments, followed in turn by some 

experiments on real world sequences. 
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5.6. Experiments with positional noise 

It is the aim of these experiments to determine how well the MPS algorithm 

performs under varying positional measurement noise levels for all targets 

(experiment 1), and also where just one target in the group is suffering particularly 

heavy noise (experiment 2).  The hypothesis is that when the targets’ motions are 

correlated, the MPS algorithm’s prediction will be less affected by noise.  This is 

because the noise on the targets is independent and so noise on one target will 

tend to ‘cancel out’ noise on other targets.  With one target under heavy noise, the 

situation is similar to the perturbation experiment in section 5.5.3. 

 

Test sequences for this section were artificial, and were generated in a similar way 

to those used in the previous group of experiments (see section 5.5.1).   

 

  

Figure 5.7  Paths and typical clutter used in the experiment for Sequence 1 (left) and 
Sequence 2  (right). 

 

They again consist of a ‘group’ of target circles moving across a background of 

similar-looking clutter.  Noise levels were applied to the motion of the circles in 

the form of normal (x,y)-displacement noise, to simulate positional measurement 

errors.  Noise was applied independently to each target.  The standard deviation of 

the noise was varied to test the algorithms under varying conditions. The 

background has Gaussian image noise (σ=4.0) added each frame.  Two paths for 

the group were used.  Sequence 1 consists of a smoothed ziz-zag across the image 

plane.    The path for Sequence 2 is a curve.  Sequence 1 consists of 265 frames, 

and Sequence 2 has 130. The paths that the targets follow are illustrated in Figure 

5.7, along with some typical background clutter.  These sequences simulate the 



Chapter 5 

 190 

real-life scenario of bodies moving through a space in a gregarious manner, such 

as a group of friends moving through a crowd or animals foraging for food.  400 

samples were used to represent the joint space for each tracker.   

5.6.1. Experiment 1:  All targets affected by the same level of noise 

In this experiment all the targets are tested under the same levels of positional 

noise.  This represents, for example, a noisy sensor taking the measurements.  

The results of this experiment are presented below. 

 

  
 Figure 5.8 RMS errors between the MPS (solid) and MCMC MRF (dashed) tracking 
algorithm results and the groundtruth data for Sequence 1 (a) and Sequence 2 (b).  Noise 
levels for the group increase along the x-axis. The MCMC MRF algorithm in Sequence 1 
could not produce meaningful RMS results for displacement noise of σ=1.5, as tracking 
of the target was completely lost.   Once tracking is lost, RMS errors can lose their 
meaning, hence why this data was not plotted in graph (a). 

 

DISCUSSION 

Figure 5.8 shows that at lower noise levels, the two algorithms are comparable.  

As noise levels increase, the errors on the MPS algorithm remain low, as the 

targets’ motions are kept on track by using information from fellow targets in the 

group.  This result demonstrates the effectiveness of this algorithm in the presence 

of measurement noise. 

5.6.2. Experiment 2: One target affected by more noise than the others 

It was shown in the previous experiment that when all targets are affected by 

noise, the MPS algorithm is robust to this noise as the motion of the group as a 

whole is used to partially cancel out some of the noise.  In this experiment, the 

effect of the algorithm will be tested where one target is affected by more 
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positional noise than the other targets in the group, across varying base noise 

levels for the group.  This is to simulate the real world situation where one target 

in a group is forced to follow a more erratic path than the others, or where one 

target looks more similar to the local background clutter.  The experiment has 

three stages.  At each stage, a different, fixed level of noise will be applied to 

three of the four targets, and an increasing amount of noise will be applied to the 

fourth target – called the ‘test target’.  At each step, the performance of the MPS 

algorithm will be compared to the MCMC MRF algorithm.  The groundtruth used 

represents the case where no noise is present; therefore, an ideal tracking 

algorithm with zero RMS error would effectively be filtering out all the noise. 

 

 
 

(a) σ=0 on other members 

 
 

 
(c) σ =1 on other members 

 

Figure 5.9: Sequence 1 RMS error results.  The three graphs correspond to 3 
different noise levels on the non-Test targets. 
Thick (MCMC MRF): dotted = Test Target, solid = Median of other 3 targets  
Thin (MPS): dotted = Test Target, solid = Median of other 3 targets 
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(a) σ=0 on other members 

 

 
 

 
 
 

Figure 5.10: Sequence 2 RMS error results.  The three graphs correspond to 3 
different noise levels on the non-Test targets. 
Thick (MCMC MRF): dotted = Test Target, solid = Median of other 3 targets  
Thin (MPS): dotted = Test Target, solid = Median of other 3 targets 

 

It can be seen from Figure 5.9 and Figure 5.10 that tracking is particularly poor 

for the test target when not using MPS.  This is to be expected, as this is the 

noisiest target.  Conversely, the test target under MPS tracking is generally 

(except in Figure 5.9(c)) located with only a small increase in error over the other 

3 targets in the group.  In fact the high MPS Test Target error in Figure 5.9(c) for 

σ =1.5 was caused by the tracker failing to catch the target at the beginning of the 

sequence, before MPS is functioning fully (while the correlation window is still 

being built).  Therefore this error could not have been corrected by MPS. 

 

The tracking performance of the remaining 3 targets in the group across the 

sequences shows that the MPS algorithm tracks more accurately than without 

MPS even with one target with extra noise.  This is to be expected following from 

the results presented in Figure 5.8. 
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5.7. Experiments with real sequences of social animals 

It is important to show how the algorithm performs with collections of real life, 

social targets.  Therefore, the algorithm was tested on a number of sequences 

involving ducks, including three sequences used in the experiments of the 

previous chapter for comparison.  The sequence numbers correspond to the 

sequence numbers in Chapter 4. 

5.7.1. A simple sequence, sequence 3 

This sequence was tested with the MCMC MRF algorithm in section 4.10.3 in the 

previous chapter, which was found to successfully maintain track of all the ducks 

in the sequence with low RMS errors.  For comparison sake, the same sequence 

will be tested with the MPS algorithm with the same initialisation parameters. 

 

Once again, the tracking was found to be robust and accurate, as can be seen in 

the residual graphs in Figure 5.11: 

 

Figure 5.11 Residuals between groundtruth and actual data for Sequence 3 for the MPS 
algorithm. 
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As all targets were tracked successfully, comparing RMS errors between MPS and 

MCMC MRF becomes a meaningful test.  The errors for the two algorithms are 

presented below: 

 

Algorithm Red RMS 

(pixels) 

Green RMS 

(pixels) 

Blue RMS 

(pixels) 

Yellow RMS 

(pixels) 

MCMC MRF 2.5 2.5 2.7 3.3 

MPS 2.4 2.4 2.6 3.4 

Table 5.4  RMS errors for the two algorithms for this sequence 

These results show that the MPS tracker is marginally more accurate on three out 

of the four runs, although it cannot be said that it is much of an increase 

(t(6)=0.16, p=0.87).  However, it is important to note that it performs no worse 

than the comparison algorithm, an important property of any new tracking 

methodology.  This is consistent with the experiments using artificial data (see 

sections 5.5.2 and 5.6.1) which suggested that the MPS algorithm was slightly 

more accurate than the MCMC MRF algorithm when tracking coordinated groups 

of targets. 

 

It is interesting to note here that by correlating motion based on speed, oncoming 

targets can be considered to be part of the same group (see Figure 5.12).  This can 

be both an advantage and a disadvantage.  If the targets join up and move together 

when they become close to each other, then sharing the particles’ motion 

parameters between all the ducks should aid the tracking as their motion becomes 

more similar.  If, however, they pass by one another then this may hinder tracking 

as some of the particles will want to travel in the direction of the members which 

are moving in the opposite direction.  However, this latter case is the situation in 

this test, but the results in Table 5.4 show that it has no real impact on the tracking 

accuracy.  In fact, MPS is generally more accurate then MCMC MRF, although as 

seen in Table 5.4, not by a great amount.  This slight increase in accuracy may be 

from the particles whose motion is derived from the targets which are moving in 

the same direction.  It can be seen that the yellow tracker performs the worst for 

MPS in Table 5.4; this may be because it is not always a member of a group (see 
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Figure 5.13 for example) and so does not always have a coordinated fellow target 

to share motion information with. 

 

 

Figure 5.12 Example output frame from the MPS tracker.  Although the ducks are 
moving in opposite directions, their speeds are correlated and so are considered part of 
the same ‘motion group’. 

 

Figure 5.13 Example output frame from the MPS tracker.  Three of the four targets’ 
movements are correlated above the threshold level, and hence three of the targets are 
grouped together as indicated by the lines – this is an example of automatic grouping as a 
consequence of the algorithm.   

 

As can be seen in Figure 5.13, one consequence of implicitly detecting when 

animals are moving in a coordinated fashion is the automatic division of the 

targets into groups based on how correlated their motion parameters have been.  

The fact that the yellow target in Figure 5.13 is not a part of the group is nothing 

to do with distance, and is solely based on how correlated the targets’ movements 

have been over the sliding time window.  This kind of effect allows groups to be 

automatically determined that are not obvious from the sequences (see section 
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5.4.2 for an example of how two ducks were found to be moving in a very similar 

way by using this correlation mechanism).  Of course, the kind of group that is 

determined is a function solely of the metrics you use to define a ‘group’ – this 

grouping is based on correlated speed metrics and may deduce groups that are not 

the same as those that would be selected by a human, for example.  The issue of 

what defines a group is an over-arching one and can only currently be answered 

by simplifying the definition to a set of measurable parameters.  

 

In the MPS algorithm, motion information is only shared with targets in the same 

group, so the joint state of the tracker can represent several sub groups, each 

moving independently, and the algorithm will automatically decide which targets 

the motion parameters should be shared between. 

 

5.7.2. A typical duck monitoring example, Sequence 1  

The MPS algorithm was also tested on Sequence 1 from Chapter 4. This sequence 

was tested in the previous chapter with MCMC MRF in section 4.10.1, but for this 

experiment the effect of different sample sizes will be examined.   

 

The sequence showed a group of ducks being herded through an outdoor 

environment; see Figure 5.14 for some example frames.  

 

  
Figure 5.14.  Example details of  frame 180 from the duck sequence.  Left, the MCMC MRF 
tracker fails to track correctly. Right, all four targets correctly located using the MPS algorithm.  
Lines indicate correlated motion. 
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The sequence is challenging because the ducks move in a complex way, moving 

close to each other and other ducks at times, making loss of tracking on clutter or 

similar targets a potential danger.   

 

The RMS errors in Table 5.5 and Table 5.6 were calculated by comparing the 

tracking results against a ground truth every 10 frames for the sequence.  This 

experiment was repeated 10 times for each of the MPS and MCMC MRF 

versions, and for both 600 and 500 samples representing the joint state space.  The 

number of tracking estimations located off the correct target in the last frame was 

also recorded for each of the repetitions, and the totals presented in the last 

column in the tables above.  A median of RMS values is used as the data is not 

normally distributed due to high tracking errors when a target is completely lost. 

 

Algorithm Target 1 

RMS (pix) 

Target 2 

RMS 

(pix) 

Target 3 

RMS 

(pix) 

Target 4 

RMS 

(pix) 

Misplaced 

tracking 

estimates 

MPS 2.25 1.9 2.3 1.8 6 

MCMC MRF 2.1 32.5 2.45 1.9 12 

Table 5.5.  600 samples.  Median (over 10 repetitions) RMS errors when compared to a 
ground truth, and the total number of trackers misplaced for all repetitions 

 

Algorithm Target 1 

RMS (pix) 

Target 2 

RMS 

(pix) 

Target 3 

RMS 

(pix) 

Target 4 

RMS 

(pix) 

Misplaced 

tracking 

estimates 

MPS 2.2 1.95 2.45 1.9 4 

MCMC MRF 2.1 33.15 2.6 1.95 11 

Table 5.6:  500 samples.  Median (over 10 repetitions) RMS errors when compared to a 
ground truth, and the total number of trackers misplaced for all repetitions 

 

The results indicate that the addition of the MPS algorithm makes the tracking 

more robust (for misplaced tracking across the two algorithms, χ2 (1, N=80)=2.58, 

p=0.1 for 600 samples, and χ2 (1, N=80)=4.02, p=0.04 for 500 samples) and 

slightly more accurate as measured across the targets which did not lose tracking 
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completely, targets 1, 3, and 4 (t(57)=0.30, p=0.77 for 500 samples, t(48)=0.22, 

p=0.83 for 600 samples).  This increase in accuracy, however, is not a statistically 

significant amount, but again it can be said the MPS algorithm is performing no 

worse than the MCMC MRF method. 

 

Although the MCMC MRF algorithm does have a mechanism for handling similar 

target interactions, it can be seen from the results (Table 5.5 and Table 5.6, 

MCMC MRF rows) that this alone does not guarantee success, as the errors for 

target 2 are high.   

 

It can be seen that the new MPS algorithm is in most cases more accurate, though 

by a small amount.  The most significant result is that maintaining target identity 

(robustness) throughout the sequences is much better with MPS; in other words, 

the ability to say where a duck from the first frame ends up in the last frame is 

much improved.  This type of ‘robust’ result is important for behavioural studies, 

where maintaining the identity of the target throughout a sequence is often more 

important that having a high positional accuracy, as targets will typically have to 

be tracked for long periods of time.  In a group situation it can be easy for tracking 

location estimates to swap targets, and this is the main error that causes the loss of 

identity.   MPS tracking helps avoid such errors by helping the tracker stay 

located over the correct target. 

 

With 500 samples (Table 5.6) as opposed to 600 samples (Table 5.5) the RMS 

errors generally increase, as might be expected (although with low statistical 

significance: discounting target 2 again, for MPS across the sample levels 

t(58)=0.35, p=0.7 and for MCMC t(52)=0.34, p=0.7).  Any increase in error may 

be because fewer samples mean a less accurate representation of the probability 

space.  Note however that the MPS algorithm still manages to have fewer 

misplaced tracking estimates at the end of the sequences than the MCMC MRF 

algorithm.  In this example, both algorithms misplace targets slightly less 

frequently with fewer samples.  This is likely to be due to smaller numbers of 

particles meaning less of the state space is explored, making particles less likely to 

fall on and start tracking incorrect similar targets.  Of course, decreasing the 
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number of particles can cause complete loss of tracking if too few are used.  

However, when in group situations with fewer particles, MPS sharing more 

efficiently represents the state space as the particle distribution is partially guided 

by social effects. 

 

Interestingly the RMS accuracy for this experiment is better generally than for the 

MCMC MRF result in 4.10.1.  This may be for a number of reasons. The ground 

truth used for this sequence was an early version where only every tenth frame’s 

data was captured; perhaps the manual generation of this data was more accurate 

and had a lower base level of noise?  This could contribute to the apparent 

increased accuracy here.   

 

The average processing speed per frame for the MPS algorithm was 0.06s with 

600 samples and 0.05s with 500 samples.  With the MCMC MRF algorithm, the 

processing time was 0.05s with 600 samples, and again 0.05s with 500 samples. 

5.7.3. A complex flocking situation, Sequence 2 

During the algorithm tests in the previous chapter, Sequence 2 proved challenging 

to track (see 4.8.6 for Condensation’s example results and 4.10.2 for the MCMC 

MRF example results).  There are multiple reasons for this, including: 

1. The ducks accelerate rapidly from being motionless to full speed  

2. The ducks occlude one another at times 

3. The animals move close to one another 

 

Results from the previous chapter suggest that MCMC MRF and Condensation 

performed about as poorly as each other, although over many repetitions MCMC 

MRF could be expected to perform better due to its interaction-handling motion 

model. 

 

This sequence represents a highly social behaviour:  the ducks appear to be 

startled by something and exhibit a group flocking motion heading towards the 

right of the enclosure, presumably away from whatever startled them.  It is 

predicted that the MPS algorithm, with its ability to make use of the motion of 
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other members of the startled flock, will outperform the MCMC algorithm.  This 

test will not look at accuracy of tracking, but simply robustness.  The previous 

chapter demonstrated how much of a challenging sequence this is to track, and so 

ending the sequence on the correct target will be considered as a success for the 

tracker.  12 targets will be tracked, and as the sequence was found to be so 

challenging in the previous chapter, the initial parameters will be tuned by hand: 

the velocity process noise is increased from 0.15 to 0.3 to help capture the rapid 

acceleration, and the targets that provided the MCMC MRF algorithm with the 

greatest challenge before – pink, black, yellow and blue targets – were manually 

given an initial velocity appropriate to their observed behaviour.  The window 

over which correlations were calculated was decreased to 10 frames (~0.4 

seconds) as the action is so fast paced.  Also, the correlation threshold was raised 

to 0.9: as all the ducks are moving in roughly the same manner, a higher number 

was needed to differentiate those more highly coordinated in order to improve the 

automatic grouping capabilities. 

 

The MPS and MCMC MRF algorithms were tested on this sequence with the 

same initialisation parameters with 300 samples per target (3600 therefore in 

total) – this produced very good tracking results in both cases.  Previous 

experiments suggested that the MPS algorithm would outperform the MCMC 

MRF algorithm using smaller numbers of samples, therefore the total number was 

decreased to 3000.  This made the tracker more unstable producing less than 

perfect results, and the comparison was therefore run at this level to simulate only 

just having enough samples to track the targets – i.e. to maximise speed.  Both 

algorithms attempted to track the sequence 10 times, and the results are presented 

in Table 5.7 below. 

 

 MPS MCMC MRF 
 

Number of runs where at 
least one target was 
tracked unsuccessfully 

3 10 

Time per frame (seconds) 0.2 0.2 
 
 

Table 5.7 Comparison of the MPS and MCMC MRF algorithms for sequence 2  
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The results show that in this complex sequence the MPS algorithm far out-

performed the MCMC MRF algorithm, with only 3 failures out of 10 runs 

compared to complete failure for the MCMC MRF runs ( χ2(1, N=20)=10.8, 

p=0.001).  Both algorithms ran at the same frame rate, which was quite low as so 

many samples were needed due to it being a complex sequence with 12 targets. 

 

The correlation threshold value was found to be quite significant, as was the 

correlation window size, and both had to be tuned to the particular action taking 

place:  a small time window for the fast action, and high correlation threshold to 

better split the targets into groups as they were moving in approximately the same 

way.  As well as the number of samples, these parameters seem crucial to the 

success of the MPS algorithm and warrant further investigation in future work. 

 

5.7.4. Alternative flocking example  

A group of eight flocking ducks were tracked through a short but fast sequence of 

30 frames as they made their way across a closed arena. This is a different kind of 

sequence (see Figure 5.15) from that used before (being from video captured 

during the pilot session of video capture), but no special effort was made with 

regard to determining a new measurement model or initial parameters in order to 

see how the algorithm coped with adaptation to new scenarios. Ducks were 

modelled as white circles, using the methods employed in the previous 

experiments. This makes an already complex sequence involving fast motion and 

some occlusion even more challenging for both trackers.   

 

Figure 5.15 shows the final frames from the two algorithms. Note how the MPS-

extension leaves the target estimations accurately placed in the final frame, as was 

the case throughout the sequence. There are clear errors in the output of the 

MCMC MRF algorithm. These are likely caused by local variations in the 

animals’ velocities (introduced by their characteristic gait), which shake off the 

tracker.  
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Previous experience shows the performance of MCMC MRF can be expected to 

increase with the number of samples used, though Motion Parameter Sharing 

provides greater robustness at sample numbers for which MCMC MRF fails (in 

this sequence both trackers used 1000 samples and only the MPS tracking can be 

considered successful).  The ability to track successfully using fewer samples 

means that tracking can be accomplished more quickly and/or more targets can be 

tracked with the same computational resource. 
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Figure 5.15 Final frame using the MCMC MRF algorithm (top) and the MPS algorithm (bottom).  
Note that the estimated positions (circles) are centered over the targets in the MPS version but with 
MCMC MRF there are clear errors (indicated by arrows). 

Direction of motion 
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5.8. Using the MPS algorithm to improve tracking of pig data 

The kink features which were tracked in Chapter 3 in order to locate the P2 

position on the back of a pig can be thought of as behaving as a group.  Their 

motion has to be coordinated in some way as they are attached to each other via 

the pig’s body.  While this is not a rigid structure, it can only change its shape in a 

fixed, if large, number of ways.  Some tracking methods can make use of the fact 

the object is semi-rigid (Tsutsumi and Kita 2002), but treating the features as a 

social group is advantageous because it pre-supposes no specific geometric shape 

on the animal: the kink points could be in any configuration and the MPS 

algorithm would still recognise them as moving as a group.  It is hypothesised that 

the occlusion event caused by the robot arm obscuring one of the kink feature 

points should present less of a problem to the MPS algorithm than to the MCMC 

MRF algorithm.  This is because motion information from the three features 

which remain visible can be used to guide tracking of the fourth, occluded feature.  

The practical advantage of this is that an estimate of P2 position might still be 

able to be calculated during occlusion, and after occlusion there is an increased 

likelihood that the tracker will begin tracking the correct feature again. 

 

The test sequence itself replaced the kink points with circle targets at the positions 

the kink features appeared at, to enable the existing measurement model to be 

used to track the targets.  In this respect, the sequences resembled those of the 

artificial sequences described earlier in this chapter, with the exception that the 

targets move according to motion information taken from a real sequence of a pig 

in a feeding stall.  Gaussian image noise was added to the images as before, but no 

similar target clutter was used, as in the real sequence the kinks are relatively easy 

targets to detect on the boundary with no similar clutter on the background or 

foreground. 

 

During this sequence, the green target was removed from the images between 

frames 100 and 200, simulating a four second window in which the robot arm is 
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activated and completely obscuring the kink point while taking a P2 ultrasound 

reading (refer back to Chapter 3 for details). 

 

The following section presents residual error graphs for the four kink targets as 

measured throughout the 265 frame sequence.  10 repetitions of the tracking were 

performed for each of the MCMC MRF and MPS algorithms.  When one of the 

target estimates leaves the image, tracking is cancelled as in real life this would 

mean a completely unpredictable prediction of the P2 point, which uses all four 

kink point locations in its model.  This situation is represented by the bold vertical 

line at the end of the graph.  1000 samples were used to represent the statespace in 

both algorithms. 
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RESULTS 

  

  

  

  

  

Figure 5.16 Graphs of residual errors in pixels (against time in seconds) for the MCMC 
MRF algorithm compared to the groundtruth when tracking data representing kink feature 
positions of a feeding pig.    The graphs show 10 repetitions.  The green target is occluded 
between 4 and 8 seconds, representing a robot activation event where the robot arm 
obscures a kink point.  Vertical bars represent the points where tracking was cancelled 
due to an estimated kink position leaving the image, i.e. an unrecoverable error. 
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Figure 5.17 Graphs of residual errors in pixels (against time in seconds) for the MPS 
algorithm compared to the groundtruth when tracking data representing kink feature 
positions of a feeding pig.  The graphs show 10 repetitions.  The green target is occluded 
between 4 and 8 seconds, representing a robot activation event where the robot arm 
obscures a kink point.  Vertical bars represent the points where tracking was cancelled 
due to an estimated kink position leaving the image, i.e. an unrecoverable error. 
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DISCUSSION 

From these results, it can first be seen that the MCMC MRF algorithm rarely 

manages to track all four targets much beyond 4 seconds: this is just after when 

the occlusion simulation phase starts.  The MPS algorithm typically manages to 

track the sequence for much longer, only having to cancel tracking on two of the 

ten trials (though for at least one more the final residual values were very high).  

For three of the trials, the MPS tracker has managed to keep all the location 

predictions on the targets at the end of the sequence.  Even these results for the 

MPS algorithm, however, have quite large residual errors for one or more of the 

targets, typically during occlusion.   This was caused by a number of things, 

including the tracker swapping the targets’ identities, or simply wandering off-

target but being held quite close to formation by using the correlated motion of the 

others as a guide.  Another issue may be that the motion of the kink points is not 

being correctly predicted by the motion sharing algorithm, perhaps because the 

front end of the pig can move in ways unrelated to the back end, for example.  

This large error would propagate through to the P2 location estimate in practice, 

and so would be likely to cause errors for the sensor placement. 

 

By ‘socially constraining’ the location of the occluded green target during 

occlusion, the MPS algorithm has the potential to maintain a prediction of the P2 

location whilst the robot is activated, albeit with a relatively high positional error.  

This would allow an updated estimated of P2 position to be sent to the robot 

during the activation phase, effectively enabling online tracking: a scenario that 

was not possible with the methods used in Chapter 3.  These results suggest the 

MPS algorithm may produce increased tracking performance over MCMC MRF, 

allowing a tracker the chance of recovery after occlusion by the robot, and 

possible continuous P2 prediction during the occlusion phase.   However, the 

MPS tracking can still produce large RMS errors, mainly during the occlusion 

phase.  This algorithm, although offering theoretical improvement in robustness 

over algorithms such as MCMC MRF, is likely to be too inaccurate (as indicated 

by the high errors) to enable practical implementation in the sensor placement 

system at this time.  Further work would be required to ascertain whether the 

algorithm could be successfully implemented in this scenario. 
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5.9. Discussion of the performance of the MPS algorithm 

This chapter has described a new algorithm which combines mixed state particle 

filters and a Markov chain Monte Carlo sampling mechanism which allows the 

motion model to use parameters from correlated targets which have been moving 

in a similar fashion.  This was incorporated with a spatial interaction model to 

prevent target estimations coalescing on the best target measurements during 

interactions. 

 

The MPS algorithm performs as well as, if not slightly better than the MCMC 

MRF algorithm when tracking along simple paths (section 5.5.2) and when all the 

targets undergo the same positional noise levels (section 5.6.1).  Performance 

during a serious path perturbation (section 5.5.3) suggests the MPS algorithm out- 

performs the MCMC MRF algorithm with both a small increase in accuracy and a 

large improvement in robustness.  The same can be said for sequences where an 

occlusion event occurs (section 5.5.4). 

 

Section 5.6.2 demonstrated the positive effect the MPS algorithm can have on 

tracking quality with groups where one targets is experiencing more displacement 

noise than the other members of the group.  This would be useful for tracking 

groups where one target moves in an erratic fashion, but still with the group, such 

as a lame animal in a group, or where one target more closely resembles the 

background clutter than the other targets, producing more erratic measurements.  

Additionally, the particular target suffering from the additional noise need not be 

fixed: the noise could affect all the targets in turn.  Such a situation might occur 

with a group of pedestrians walking down a street, with a number of obstacles in 

each of their paths.  The results suggest the MPS tracking could use the motion of 

the less noisy paths to guide the motion of the more noisy ones for any period of 

time. 

 

The results from the experiments that use real-life sequences of ducks illustrate 

that the MPS algorithm can offer a slight improvement in accuracy over MCMC 

MRF tracking, although this is not very significant statistically.  At worst, the 
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MPS algorithm can be considered comparable to the MCMC MRF algorithm in 

terms of accuracy.  Where the MPS algorithm does stand out is robustness, 

managing to maintain the identity of the targets throughout the sequence much 

more frequently than the MCMC MRF algorithm (e.g. Table 5.5, Table 5.6, and 

Table 5.7), often with high statistical significance.   

 

One interesting side-effect that can be noted with these real life sequences is the 

ability of the algorithm to provide automatic grouping of similarly-moving 

animals.  This is very obvious from viewing the videos, but can also be seen in 

Figure 5.13, where the drinking yellow duck is motionless and so not grouped 

with the other three, which are moving.  Such grouping is represented by the lines 

in the images, which form graph-like structures of the groups.  This grouping 

happens automatically and at no extra cost, as a natural consequence of the MPS 

algorithm.  Of course, collections of objects can be ‘grouped’ in many different 

ways, and this particular method uses a measure of how well the animals’ speeds 

have been correlated to effectively assign group membership.  This could easily 

be changed if the algorithm were to correlate over any other parameter, and a 

distance metric could be incorporated if the more traditional method of grouping 

neighbours within a certain distance was required. 

 

The final real-life duck sequence demonstrates the potential generalisability of the 

algorithm to other domains with different kinds of motion and camera angles.  

The pig-kink work suggests the MPS algorithm does offer potential in other less 

obvious domains, though the algorithm still struggled with the tracking, producing 

high errors at times. 

 

Although all the results are generally promising, the algorithm is not without its 

limitations.  During occlusion, for example, a tracker’s motion model for a target 

can only be as good as the other targets’ motions in the group, which may at any 

point be no longer representative of the occluded target’s motion.  If the occluded 

target begins moving in a different way to the other targets, then the MPS 

algorithm is stuck.  This is why the algorithm needs sequences featuring social 

action in order for the best advantage to be made of the motion of the other 
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members of the group.  Generally, if the motion of the occluded target becomes 

uncorrelated during occlusion, then the MPS algorithm will lose track; but then so 

will the MCMC MRF algorithm and any other tracking methodology that relies 

on direct observation of the targets.   

 

One  situation in which the MCMC MRF algorithm may track more successfully 

during occlusion is when the all the targets have been moving as a group 

beforehand, but then during occlusion the occluded target moves straight through 

the occlusion, maintaining its original trajectory, whilst the other targets move in a 

different direction.  This is illustrated in Figure 5.18: 

 

 

 

Figure 5.18 Diagram to illustrate a case where MCMC MRF would succeed and MPS 
would fail.  As the motion of the group and the occluded target become different during 
occlusion (at t+1), MCMC MRF’s best estimate of last known motion would be a better 
strategy than MPS’s sharing of the group motion parameters. 

 

This problematic case, however, can be remedied by tuning the split between the 

number of particles which share motion parameters from another target, and the 

number that use their own motion.  Essentially, this is done by changing the 

probability that a correlated motion model is accepted for each particle: if it is not, 

then the particles’ own internal motion is used.  Particles that use their own 

internal motion parameters move in essentially the same way as those in the 

MCMC MRF algorithm.  This would produce two clouds of particles: one 

following the internal motion of the occluded target, and one following the motion 

of the previously-correlated group.  Tracking should be resumed when one of the 

clouds receives a target-quality measurement again.  So the MPS algorithm can 

t t+1 t+2 
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overcome the stated problem this way, although future work is needed to 

determine the optimal probabilities involved, and this may in turn depend on the 

degree of gregariousness of the targets in the sequence.  Determining the true 

level of gregariousness is clearly a key issue, and indeed this may be a very subtle 

effect which is not easily quantised. 

 

One downside of this approach, however, is that having a more dispersed particle 

set produces more chances of one of the samples fixating on target-similar 

background clutter.  One advantage of the MPS algorithm is that the particles’ 

motion was more constrained and so the effect seen in Figure 5.2 was lessened.  

Allowing more particle clouds to follow different motion models for longer 

periods of time begins to enter this over-diffusion territory again, but at least each 

of the clouds is guided by a feasible motion model this time, rather than random 

motion with drift. 

 

If there is one criticism of the MPS algorithm it might be that it potentially has an 

averaging effect on the motion of the individuals within the group.  Consider a 

group of five targets, all exhibiting correlated motion and hence considered a 

group.  If large enough, a number of samples in the sample set will produce 

estimated locations using motions for each of the targets from each of the 

correlated targets.  The exact number of such ‘socially derived’ particles depends 

on how well the relevant targets are correlated.  If each target is correlated with 

every other target r=0.6, then from equation (15) there is a ((1/4 x 0.6) x 4) = 0.6 

chance that as each sample is propagated forward, the target processed forward 

will use a correlated fellow-target’s motion parameters.  Therefore, it can be 

expected that 60% of the final sample set will be generated using correlated 

knowledge, and 40% using internal motion information.  Such a collection of 

particles represents all likely movements of any target, taking into account the 

motion of all targets it has been correlated with in proportion to the strength of 

this correlation.  Therefore, this is not so much an averaging function as a way of 

shaping the exploration of the state space guided by social knowledge heuristics.  

An averaging method would shape the statespace exploration only in the direction 

of the average group motion, rather than taking into account the movements of all 



Chapter 5 

 213 

correlated targets.  It is this powerful, guided exploration that explains the success 

of the algorithm with fewer sample numbers than are required with the MCMC 

MRF algorithm. 

 

An experimental issue was raised when deciding on what to consider a successful 

tracking of a perturbation.  It was considered in Section 5.5.3 that the perturbation 

should be considered as noise on the path, and so the tracker should not follow the 

target through the event, but should recapture the target after the event has 

finished.  In some situations, this perturbation may be a known and required 

feature that is needed to be tracked.  However, in such a situation, the motion of 

the group cannot be considered as social, and so social motion algorithms like 

MPS should either not be used or a more appropriate correlation parameter should 

be chosen. 

 

One implementation issue is with the way the correlations are calculated.  As a 

sliding window is used, and within this an iteratively updated mean is calculated, 

there is an error accumulation in this mean calculation.  This may in turn affect 

the accuracy of the correlation calculation over time.   Future work is required to 

determine the size of this effect.  Using speed as a parameter over which to 

correlate produced good results in the experiments.  However, it is not without its 

problems.  Firstly, as no directional information is provided, targets moving 

towards or away from each other will be considered correlated in the same way if 

there speeds vary by the same amount.  However, this is not necessarily bad 

depending on the domain; if targets tend to come together and then move together 

or repel each other, then there may be a benefit to them sharing each others 

motion parameters.  This was illustrated in section 5.7.1. 

 

One effect of correlating speeds, or any parameter for that matter, is that the 

parameter must vary over the calculation window in order for a reliable 

correlation value to be determined, as illustrated in Figure 5.19. 
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Figure 5.19 Example graphs of hypothetical speeds for target 1 (s1) and target 2 (s2).  In 
the left graph, the targets are correlated and speeds have varied over time.  Correlation is 
a measure of error from the best fit line.  On the right, the targets are again correlated,  
but the targets have moved with an approximately constant speed.  Here the correlation 
measure is unstable as the line of best fit can change rapidly, as the targets are all centred 
around a point. 

 

The correlation coefficient is more unstable on the right image in Figure 5.19 as 

the line of best fit is likely to change drastically over time.  However, this is not as 

large a problem as it first seems, as the correlation coefficient should still be large 

even if the line of best fit does change, as each data point should still be close to 

this line wherever it is drawn through these points.  This, though, does beg the 

question of whether correlation is the correct statistical measure to use in this 

work.  One alternative might be Mutual Information, which can measure the 

general dependencies between two variables and so may offer a more general 

solution.  However, future work is required to assess the suitability of such 

alternatives, and for this work correlation, despite its limitations, was found to 

produce a metric which allowed a meaningful estimation of coordinated 

movement. 

 

The speed of execution of each iteration of the MPS algorithm is comparable with 

the MCMC MRF algorithm, for the same number of samples (e.g. both algorithms 

run at approximately 0.05 seconds per frame for a 600 and 500 sample test in 

section 5.7.2, and at 0.2 seconds per frame with 3000 samples in section 5.7.3).  

Given that the MPS algorithm seems to perform better than the MCMC MRF 

algorithm with limited numbers of samples when social motion is present (as seen 

in sections 5.7.3 and 5.7.4), this suggests that the new algorithm may be able to 

run faster than MCMC MRF by using fewer samples to represent the state space.  

s1 

s2 

s1 

s2 
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However, as when no correlated social motions are present the MPS algorithm 

defaults to MCMC MRF tracking, the number of samples present should be equal 

to the number required for MCMC MRF tracking. 

 

 

So, it has been seen that the MPS algorithm can greatly improve how robust 

tracking is for a comparable level of accuracy compared to MCMC MRF tracking, 

using social motion information to guide tracking. 
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Chapter 6: General Discussion and Future Work 

6.1. Main Contributions 

 

This thesis has produced two distinct and novel contributions: 

 

• The combination of existing vision techniques to produce a novel system 

which is able to direct a robotic arm to the P2 point over a pig’s back as it 

feeds. 

• The development of a novel tracking algorithm, the Motion Parameter 

Sharing algorithm, which builds on the MCMC MRF and mixed-state 

particle filters to make use of the motion information present in a 

collection of targets exhibiting coordinated motion. 

 

While distinct in their own right, these two components have both been 

empirically tested in the domain of animal monitoring.  The second contribution 

has potential to feed back into the first, as seen in section 5.8.  The MPS 

algorithm, although applied to animals, can be essentially applied in any domain 

where groups of targets need tracking, and if coordinated motion is present it will 

use this information to help guide the tracker.  It also has the implicit ability to 

automatically group the targets which have been moving in a similar fashion. 

 

The main achievements, limitations and possible extensions of this work are 

discussed in this chapter. 
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6.2. Achievements 

The first part of the thesis produced the basis for a single animal monitoring 

system, in the process testing an implementation of a pig backfat sensing robot, 

tested in a real-world environment with live animals.  This provides a proof of 

concept for using image analysis, robotics and an ultrasound sensor to measure 

pig backfat levels.  From this work, it can be concluded that the robot can produce 

human-equivalent accuracy or better on 40% of sensor placements.  This would 

allow at least 4 and potentially 40 placements of at least human accuracy per day, 

taking into account the number of times the pigs visit the feeder.  For automatic 

monitoring, the sensor placement result suggests a sensing system to 

automatically measure pig backfat thickness is a viable alternative to the manual 

method in use at present.   

 

The thesis then examined the tracking of multiple, similar animals.  An 

examination of two major existing tracking algorithms for tracking multiple 

similar targets, and a description of the kinds of problems inherent in such work 

were then presented, concluding that the MCMC MRF algorithm outperformed 

Condensation, particularly in terms of robustness at maintaining individual 

identities throughout a sequence. For tracking multiple individual animals, then, it 

can be concluded that using particle filtering tracking with a joint state space and 

awareness of interactions produces a level of success suitable for tracking 

multiple individuals, though it still did not produce 100% robust or accurate 

tracking.   

 

It was hypothesised that using social knowledge about how targets are moving 

might be able to increase the robustness of tracking further.  The idea of using 

social motion to guide tracking was inspired by observing how the ducks flocked 

as a group when startled, and moved around the arena together in pairs on 

occasion in a highly correlated manner.  Developing a tracking methodology to 

share social motion information between coordinated targets using the MPS 

algorithm was found to greatly increase the robustness of the tracking, especially 

in situations where one target in the group is completely occluded or follows a 
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perturbed path.  It can also increase the accuracy of the tracking when the targets 

are exhibiting correlated motion and noise is present on the paths, though this 

increase is small.  In summary, this suggests that in any situation where there is a 

social element to the motion, this extra knowledge can be exploited and lead to 

improved tracking robustness and similar or slightly better accuracy than the 

MCMC MRF algorithm.  This suggests the MPS algorithm should generally 

improve the quality of tracking of multiple social targets. 

 

The multiple tracking results suggests the MPS algorithm could be used for 

tracking multiple similar targets and be able to maintain their identities over 

longer periods of time than the MCMC MRF algorithm, which is an important 

result if it were to be used as the basis for an automatic monitoring system.  Such 

a system would likely be required to track animals for long sessions, and perform 

analysis such as looking at outlier motion patterns:  for this, individual identities 

must be maintained for as long as possible. 

 

Together, the individual and multiple animal tracking systems provide a 

foundation for the potential development of automatic monitoring technology. 
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6.3. Future Work 

6.3.1. Automatic backfat monitoring system 

There are three main areas for development for the sensor placement system: two 

of which refer to locating the P2 point and one to the sensor deployment 

mechanism.  When locating the P2 position, it was shown in section 5.8 that there 

is some potential to improve the system by being able to estimate P2 location 

when the robot is occluding one of the kink features – being able to do this would 

allow the robot to actively track to the current estimate P2 location after it had 

been activated.  It was also shown that neither tracking algorithm tested in the 

multiple target tracking work sections of this thesis was really up to the job.  More 

work would be needed to design a suitable tracking algorithm to make use of the 

information in all available kink locations that can predict missing data from an 

obscured kink point.  The MPS algorithm showed potential here, but there are 

issues as to whether the kink points are acting as a coordinated group or not, and 

potentially issues of what parameters to correlate to allow them to be grouped 

accurately.  This was beyond the scope of the illustrative example in section 5.8. 

 

The second body of work required for predicting the P2 point is how to determine 

what the actual location is from the collection of P2 estimations collected per 

animal per day.  As was seen in Chapter 3, the P2 point is a local minimum of fat 

thickness and so using the P2 location that produces the minimum fat thickness 

would be a good starting point (as long as placement errors were not too extreme).  

However, to test the validity of this, fat thickness readings would be required at 

each estimated point, which was again beyond scope of this work.  This does 

however lead on to the third clear choice for future work: how to actually deploy a 

sensor and take a backfat reading.  The sensor itself could be pushed vertically 

down with collision-forgiving pneumatics onto the pigs back, and mounted on a 

ball joint to allow the best alignment allowing for the contours on the surface of 

the pig.  As was seen in Chapter 3, ultrasonic sensing systems exist which could 

provide a numerical reading using this method, and so one of these commercial 
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sensors would provide a suitable starting point, and readings could be manually 

corroborated by an operator standing by with equivalent kit. 

6.3.2. Improvements to the current MPS social tracking scheme 

PARAMETERS AND SCALE OF CORRELATIONS 

The aim of the MPS algorithm is to allow targets that have been moving in some 

coordinated way over a period up until timestep t to then potentially ‘share’ from 

each others motion parameters during the processing of dynamics at time t. This 

is, however, a general framework and though specific decisions were made on 

what to correlate and over what time to correlate to enable experiments to be run 

during this work, much future work could be involved in determining the benefits 

and drawbacks of computing correlations across different parameters and 

timescales.  What this means in real terms is deciding what defines a group of 

targets as ‘moving together in a coordinated way’, and how long should they 

move in such a way for before they can be considered to be moving together. 

 

Correlating different parameters means that different types of motion will be used 

to assess whether the targets are moving as a coordinated group.  In this work 

speed was used; therefore targets moving at a similar speed are considered to be 

moving in a similar way.  Using velocity would produce a similar grouping to 

speed, except that the targets would have to be moving in the same direction as 

well.  Other parameters which could be correlated include curvature (targets 

turning at the same rate are grouped), distance (targets that maintain the same 

distance from each other are grouped) etc., or combinations of these. 

 

The size of the sliding window over which to calculate the correlation matrix is 

dependant on the time scale of the actions taking place.  If something very slow is 

being tracked, the time window will likely have to be larger than if the targets are 

moving very fast.  Also, the types of behaviour that can be captured vary with 

time scale.  Targets might be correlated based on the current action they are 

executing, e.g. turning a corner, or over their entire route over the past number of 

minutes. This is also the difference between correlating two targets over their last 

action, e.g. a jump, or their last sequence of actions, e.g. a dance move. 
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Other mathematical alternatives to calculating correlations exist.  One such 

alternative is Mutual Information, which can measure general dependencies as 

opposed to correlation’s linear dependencies between two variables.  Future work 

is required to determine the effects of using different methods to calculate the 

level of similarity on the targets’ motion. 

 

The actual implementation of the algorithm could be improved in a number of 

ways: 

1. Optimization.  The program, as implemented, runs in real time up to a 

point, depending on the number of samples used.  Tracking many targets 

often leads the processing time to inflate, perhaps dropping to the 

equivalent of about 2 frames per second in serious cases.  However, the 

algorithms were implemented with testing and accessibility in mind, rather 

than optimization.  Implementing more efficient methods and data 

structures would be certain to drop the processing time down to allow real-

time tracking of sizeable groups of targets with the MPS algorithm.  To 

improve the efficiency of further algorithm development, future work 

should include the analysis of the complexity of the algorithm. 

2. Measurement model.  Using a circle for the geometry of the measurement 

model, although found to be adequate, did sometimes cause problems 

where two circles were allowed to fit on one target, thus producing two 

measurements from a single target.  Designing a more specific model of 

shape might allow fewer high measurement responses to be inferred per 

target, but is also more orientation dependant.  The problem of handling 

multiple measurements from single targets (and single measurements of 

multiple targets) is currently the subject of research in the multi-target 

literature (Khan et al. 2005b). 

3. Dynamics.  The dynamics of the animals modelled in the algorithms was 

based on observations and measurements from image sequences.  There 

are much higher-quality ways of determining the model of target 

dynamics.  One such method is to build a rough tracker to follow the 

motions in a simple training set, then using the learned dynamics of this 
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tracker to build a more competent tracker either to re-track the original 

training set more accurately or to track a more challenging training set.  

This cycle is repeated until suitably general motions have been learnt 

(Blake and Isard 1998). 

 

 

FURTHER EXPERIMENTATION 

Future experimentation should demonstrate the ability of the algorithm to 

maintain the tracking of an occluded target where the group dynamics change 

during this occlusion event.  The effect of the MPS algorithm on non-social 

sequences should perhaps be examined more closely; although intuitively, if there 

are no correlations detected then the algorithm defaults to the MCMC MRF 

algorithm, so tracking quality of these algorithms should be equivalent in this 

situation.  Similarly, the effect of non-coordinated targets becoming coordinated 

as the sequence progresses needs to be examined.  Again, instinctively, as the 

levels of correlation increase between the targets, the algorithm should share 

motion between them more regularly.  A demonstration should confirm that the 

algorithm can seamlessly handle such changes in how well coordinated the 

targets’ motions are.  The reverse effect should also be tested, where coordinated 

targets become uncoordinated: this may be a more challenging situation as the 

tracking has to ‘break out’ of sharing motion parameters.  Work in this thesis has 

indicated that it should not present a problem, however. (e.g. in Figure 5.13 the 

yellow target leaves the coordinated group, and is still tracked successfully, albeit 

with a very small amount of increased error).  The length of time the ‘ghosting’ 

effect occurs for during occlusions needs to be examined.  In other words, this 

would look at how long an occluded target’s estimation will be propagated for in 

the absence of a reinforcing measurement.  Intuitively, the answer is forever: 

using only motion from coordinated targets will mean the level of correlation with 

those targets can only increase.  Once these smaller experiments have been 

conducted, attention must be turned to the capability of the algorithm to track 

longer sequences as might be required by monitoring applications.  However, this 

is only sensible to test once the targets in the shorter sequences can be tracked 

very reliably, and success in these shorter sequences of challenging scenarios 
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suggests the tracking will be successful over longer periods anyway, where most 

of the tracking is non-demanding. 

 

Further experimentation should evidence the use the tracker makes of social 

motion.  It should be possible to quantify how many predictions are made using 

social motion and how many are made using internal motion for various events in 

the video sequences.  This would allow the effects of variations of the algorithm 

to be seen more clearly.  It is perhaps worth considering new visualisation options 

for presenting this kind of data as well, so that these values are immediately 

accessible when viewing the output video. 

 

It would be interesting to test the algorithm with flocking models, such as the 

Boids model (Reynolds 1987).   Such models, if powerful enough, would allow 

the dynamics of the group to be carefully set and the effect of the algorithm 

carefully tested.  However, this is limited entirely by the power and the accuracy 

of the models, which may not actually exhibit the behaviour one expects them too, 

especially as any true behavioural flocking rules are still out of our grasp. 

 

Finally, it would be interesting to see if targets could be tracked accurately enough 

to be able to calculate the ground plane automatically, as previously work has 

suggested this to be possible (Bose and Grimson 2003). 

 

A NOTE ON STATISTICAL TESTS 

It is recognised that chi-square tests have been used throughout Chapter 5 where 

the observed raw frequencies are often low.  There is a school of thought which 

suggests that observed raw frequencies must be 5 or more, and if this assumption 

is not met Yates’ correction must be applied.  This produces a more conservative 

estimate of statistical significance.  However, in this thesis all the chi-square 

results which would require this correction are all highly significant, so much so 

that the highest p-value after correcting the necessary tests is present in Section 

5.7.3, where χ2 falls from 10.8 to 7.9, raising the p-value from p=0.001 to 

p=0.005.  This is still highly significant and demonstrates the robustness effects 
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are so strong that Yates’ correction is not really required as the chi-square 

statistical tests are so significant anyway. 

 

6.3.3. Extending the MPS social tracking scheme 

EXTENSION TO LARGER AND VARYING NUMBERS OF ANIMALS 

The group tracking work described here is designed to track the size of group as 

was used in the experiment, i.e. anywhere up to about 15 or 20 animals.  

Conceivably this work, given suitable processing power, could be used to track 

any number of targets as long as they have enough ‘on image definition’ i.e. can 

given suitable means be differentiated from background clutter, and are 

adequately separated from their co-targets.  The MPS algorithm itself, however, is 

quite capable of running with any number of targets, given enough processing 

time as of course the number of samples must be increased with the number of 

targets. 

 

Extending the algorithm to varying numbers of animals would allow animals to 

come and go in the scene.  Although this did not happen with the video captured 

for this work, it could conceivably happen in other scenarios where the animals 

move in and out of a shelter, or in and out of the field of view of a camera in a 

multiple camera setup.  Recent work (Khan et al. 2005a) has extended the MCMC 

MRF algorithm to be able to cope with varying numbers of targets, using 

Reversible Jump Markov chain Monte Carlo sampling which permits variable 

dimensional state spaces.   

 

EXTENDING TO RECOGNISING GROUP MOTION EFFECTS 

Once large numbers of targets can be reliably tracked over suitably long periods 

of time, then further processing can be used to perform some labelling or 

behaviour inference techniques in a variety of situation.  There are two main 

flavours to the kinds of classifying that can be done.  First, there is classifying the 

behaviour of a group as a whole, and second, classifying particular behaviours 

within a group.  Group-scale behaviours which might be able to be recognised 

include suspicious groups, rioting groups etc., or in the case of ducks, the 
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categorisation of events into the kinds of categories listed on page 111.  Clearly, 

the exact types of group behaviour that could be recognised depend on the domain 

and need further work to categorise these behaviours in a meaningful way.  

Recognising intra-group behaviours provide some more interesting scenarios.  

Targets moving in a different way to the majority of other targets being tracked 

might indicate someone acting suspiciously at a train station, a lame animal, or 

people stopping to look at something interesting in a shopping centre (perhaps a 

catchy window display).  Being able to spot group motion effects would open the 

door to more interesting behaviour labelling – a group of people might be rushing 

towards one other person because they have fallen down, for example.  

 

Recognising group behaviours is not restricted to groups of people or animals.  

There are plenty of examples where the targets may exhibit correlated motion but 

their domain’s may not be obvious choices for application of the algorithm.  What 

causes multiple targets to move in a correlated way could be some social aspect 

arising from their behaviour, or it could be the way in which the environment 

forces them to move.  This latter condition is interesting because it forces 

correlated motion onto otherwise uncorrelated targets.  This is how tracking 

targets such as vehicles (constrained by the road and other traffic) and blood cells 

(constrained by the blood vessels) can benefit from using an algorithm such as 

MPS, which should identify and make use of the information in such coordinated 

motions implicitly. 
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6.4. A final summary  

As has been seen, the ability to monitor animals automatically, and hence reap the 

welfare and economic rewards that in turn can bring is a realistic goal with the 

current state of hardware technology and target tracking methods.  Perhaps we are 

not at the stage yet where we can monitor multiple interacting targets with low or 

zero error rates for long periods, but the kind of success rates found in the tracking 

experiments for the MPS algorithm (Chapter 5) suggest the current state of the art 

could be a useful tool to aid the manual ‘tracking’ process often required in 

behavioural experiments.  Chapter 3 illustrates that visual tracking technology can 

allow the automatic placements of sensors onto animals; however, the real cost of 

implementing this system is currently an unknown, and unless this kind of 

technology can be guaranteed to improve profits or is enforced by legislation, few 

stockman would be likely to adopt it.  

 

Visual tracking, though, is a fast moving field which is offering more robust and 

competent algorithms each year.  The MPS algorithm is one such contribution 

which offers a general framework in which coordinated motions can be used to 

guide tracking.  Such developments bring the exciting goal of accurate, robust 

tracking of many targets closer to reality. 
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