
 

 

 

 

Recognizing Faces --- An Approach Based on Gabor 

Wavelets 

 
 
 
 
 
 
 
 
 
 
 

By LinLin Shen, BSc, MSc 
 
 
 
 
 
 
 
 
 

Thesis submitted to the University of Nottingham  
for the degree of Doctor of Philosophy 

 
July 2005 



Abstract 

i 

Abstract 

 
As a hot research topic over the last 25 years, face recognition still seems to be a 

difficult and largely problem. Distortions caused by variations in illumination, 

expression and pose are the main challenges to be dealt with by researchers in this field. 

Efficient recognition algorithms, robust against such distortions, are the main 

motivations of this research.  

Based on a detailed review on the background and wide applications of Gabor wavelet, 

this powerful and biologically driven mathematical tool is adopted to extract features 

for face recognition. The features contain important local frequency information and 

have been proven to be robust against commonly encountered distortions. To reduce the 

computation and memory cost caused by the large feature dimension, a novel boosting 

based algorithm is proposed and successfully applied to eliminate redundant features. 

The selected features are further enhanced by kernel subspace methods to handle the 

nonlinear face variations. The efficiency and robustness of the proposed algorithm is 

extensively tested using the ORL, FERET and BANCA databases.  

To normalize the scale and orientation of face images, a generalized symmetry measure 

based algorithm is proposed for automatic eye location. Without the requirement of a 

training process, the method is simple, fast and fully tested using thousands of images 

from the BioID and BANCA databases. 

An automatic user identification system, consisting of detection, recognition and user 

management modules, has been developed. The system can effectively detect faces 

from real video streams, identify them and retrieve corresponding user information 

from the application database. Different detection and recognition algorithms can also 

be easily integrated into the framework.  
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Chapter 1 Introduction 
 

The major concern of this thesis is to develop an automatic face recognition system, 

which is robust against variance in illumination, expression and pose. At the same time, 

the system has to take computation and memory cost into consideration for real time 

applications. This chapter will give a brief introduction to the background of this 

research and a summary of some potential applications. Following the description on 

how to evaluate the performance of different systems, motivations behind the research 

and the organization of the thesis will be introduced. 
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1.1  Automatic Person Identification 
With the advent of electronic banking, e-commerce, smartcards and an increased 

emphasis on the privacy and security of information stored in various databases, 

automatic personal identification has become a very important topic. Accurate 

automatic personal identification is now needed in a wide range of civilian applications 

involving the use of passports, cellular phones, automatic teller machines and driver 

license. Traditional knowledge-based (password or Personal Identification Number 

(PIN)) and token-based (passport, driver license, and ID card) identifications are prone 

to fraud because PINs may be forgotten or guessed by an impostor and the tokens may 

be lost or stolen. Therefore, traditional knowledge-based and token-based only 

approaches are unable to satisfy the security requirements of our electronically 

interconnected information society. A perfect identity authentication system will need a 

biometric component. 

1.2  Biometrics 
A biometric is a representation of a unique part or characteristic of an individual which 

has the potential capability to distinguish between an authorised person and an impostor. 

Since biometric characteristics are distinctive, cannot be forgotten or lost, and the 

person to be authenticated needs to be physically present at the point of identification, 

biometrics are inherently more reliable and more capable than traditional knowledge-

based and token-based techniques. Currently there are many biometric technologies 

used for personal authentication: face, fingerprint, hand geometry, iris, retina, signature, 

voice, etc. Despite the fact that other methods of identification (such as fingerprint, or 

iris scans) can be more accurate, face recognition has always remained a major focus of 

research because of its non-invasive nature and because it is human’s primary method 

of identification. The technology of face recognition can be widely applied in security 
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surveillance, authentication, access control and human computer interfaces. Since the 

late eighties there has been an explosive growth in research on face recognition because 

of the practical importance of the topic and theoretical interest from both cognitive 

scientists and computer vision and pattern recognition researchers.  

1.3 Face Identification and Verification 
A biometric system can be operated in two modes: verification mode and identification 

mode. In the verification mode, a biometric system either accepts or rejects a user’s 

claimed identity while a biometric system operating in the identification mode 

establishes the identity of the user without a claimed identity. Face identification is a 

more difficult problem than face verification because a huge number of comparisons 

need to be performed in order to complete identification. There are a number of 

potential civilian applications for a biometric system working in verification mode.  For 

example, an ATM system which verified a user’s face with a biometric upon each 

transaction would need only to match the current face image (acquired at point of 

transaction) with a single template stored on the ATM card.  A typical face verification 

system can be divided into two modules: enrolment and verification. The enrolment 

module scans the face of a person through a sensing device and then stores a 

representation (template) of the face in the database. The verification module is invoked 

during the operation phase. The same representation used in enrolment phase is 

extracted from the input face and matched against the template of the claimed identity 

to give a “yes/no” answer. On the other hand, an identification system matches the 

input face with a large number of faces in the database and as a result, algorithm 

efficiency is a critical issue in an identification system. 
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1.4  Performance Evaluation 

1.4.1  Identification System 
A face identification systems performance is usually evaluated by recognition rate, 

which is calculated by matching a set of test face images with those in the database. 

Different algorithms can be evaluated by matching each test face image. The matching 

attempts performed for each test usually consist of correct matches and incorrect 

matches. A matching is considered as correct if the two face images being matched are 

from the same person, and incorrect otherwise. Recognition rate is defined as the ratio 

between the number of correct matches and the number of test images.  

1.4.2  Verification System 
In a face verification system, system level performance evaluations are usually 

performed by cross matching the face images in the database. Different algorithms can 

be evaluated by matching each face image in the database with the rest of the images in 

the database. A threshold value is normally used such that a matching attempt is 

considered authentic when the matching score is equal or above the threshold value. 

Two metrics (FAR and FRR) are used to measure performance of the whole system. 

The false acceptance rate, or FAR, is the measure of the likelihood that the biometric 

security system will incorrectly accept an access attempt by an unauthorized user. A 

system’s FAR typically is stated as the ratio of the number of false acceptances divided 

by the number of impostor attempts. The false rejection rate, or FRR, is the measure of 

the likelihood that the biometric security system will incorrectly reject an access 

attempt by an authorized user. Analysis of the FAR shows how well the system can 

distinguish a correct match from an incorrect match and is usually related to the 

uniqueness of the features. On the other hand, FRR analysis focuses on the repeatability 
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of the features between different faces of the same person and is related to the reliability 

of the features.  

A system can be tuned for a particular application by varying the value of these two 

metrics. A low value for both metrics is often desirable.  Unfortunately, trying to 

minimise FAR or FRR requires a trade off between each of the metrics. The Receiver 

Operating Curve (ROC) plots FAR versus FRR (Jonsson, Kittler, Li, & Matas, 2002) for 

a system and can be used as a guide for the selection of an operating point for the 

system. The FAR is usually plotted on the horizontal axis as the independent variable 

and the FRR is plotted on the vertical axis as the dependent variable. The closer the 

ROC-curve to the x and y axes, the lower verification error and thus the more reliable 

the system. In reporting the performance, the values of FAR and FRR for the ROC-

curve are computed by varying the threshold value and using: 

a

re

u

ac

n
n

FRR
n
n

FAR ==      ;     (1.1) 

 

In Equation (1.1), an  is the number of access attempt by an authorized user and un  is 

the number of access attempt by an unauthorized user. For a given threshold value, acn  

is the number of acceptances and ren  is the number of rejections. From the ROC-curve, 

the Equal Error Rate (EER) is defined as the point where the value of FAR equals the 

value of FRR. The value of EER can now be used to determine the performance of the 

system. The lower is the value of EER, the more reliable the system. 

1.5 Motivation and Solutions 
As a hot research topic over the last 25 years, a large number of face recognition 

algorithms have been proposed in the literature. The next chapter contains a detailed 

survey of this research. With a number of different databases available, it is always very 

difficult to compare different face recognition algorithms. Even when the same database 
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is used, researchers may use different protocols for testing. Whilst many of the 

algorithms perform well on a certain database, they do not achieve good results on other 

databases. To make a fair comparison, FERET evaluation (Phillips, Moon, Rizvi, & 

Rauss, 2000) and the Face Authentication Test (Messer et al., 2004) have been designed 

to evaluate different face identification and verification algorithms. However, these 

tests are not concerned with the speed of the algorithms. Since only accuracy is 

accounted for, the applicability of the algorithms to real-time applications is not 

considered. However, the trade-off between accuracy and speed is very important. In 

summary, a face recognition system should not only be able to cope with variations in 

illumination, expression and pose, but also recognize a face in real-time. 

With in-plane face rotation, normalisation can be carried out using prominent facial 

features as a reference, e.g., the eyes. However, out-of plane rotation seems only to be 

solvable using 3D technologies. While the transformation of 3D data between different 

poses is trivial, 2D frontal view images can also be synthesized using a 3D model. The 

literature survey of 3D face model techniques in chapter 2 shows, however, that the 

process of synthesizing a frontal view image from an arbitrary pose using a 3D model is 

very slow. A number of approaches have also been proposed to use 3D data directly for 

recognition when such data is available. However, 3D scanners are still relatively 

expensive and there are still some significant limitations to be solved, e.g. the capture 

process is illumination sensitive, 3D depth resolution needs to be improved, etc. As a 

result, a 2D frontal view face recognition system is the main focus of this research. 

Though quite a tough task for a computer, face recognition seems to be much easier for 

human beings. The ability to recognize faces and understand the emotions they convey 

is one of the most important human abilities. It is very common that one can instantly 

recognize thousands of people. Even a baby is able to identify its mother’s face within 
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half an hour of birth. As with many perceptual abilities, the ease with which humans 

can recognize faces disguises the complexity of the task even when considering the 

many potential variations in such a dynamic real world object. An important outcome of 

research on artificial vision systems has shown that more than half of the cortex 

becomes more active during visual processing (Hallinan, Gordon, Yuille, Gibilin, & 

Mumford, 1999). The visual cortex thus plays a very important role in face recognition. 

Simple cells in the visual cortex are known to be selective for four coordinates, each 

cell having an x, y location in visual space, a preferred orientation and a preferred 

spatial frequency (Daugman, 1985). Based on this observation, a number of researches 

have actually shown that the various 2D receptive-field profiles encountered in 

populations of simple cells are well described by a family of 2D Gabor wavelets, which 

were first proposed by Gabor (1946) for simultaneous time and frequency analysis. In 

addition to this biological motivation, it is also widely believed that local texture 

features in face images, extracted by a spatial-frequency wavelet analysis, are basically 

more robust against distortions caused by various illumination, expression and pose 

(Zhao, Chellapa, Rosenfield, & Phillips, 2000). In particular, among various wavelet 

bases with good characteristics of space-frequency localization, the Gabor function 

provides the optimal resolution in both spatial and frequency domain (Gabor, 1946; 

Daugman, 1985). As a result, this research will apply 2D Gabor wavelets to extract 

features for face recognition. Since the simple cells of human visual cortex are well 

modelled and the local features in space and frequency domain are simultaneously 

extracted with optimal resolution, the system thus developed might be able to mimic a 

human’s recognition ability and be more robust against the variation of illumination, 

expression and limited out of plane face rotation. 
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The motivation of this research is to develop both an accurate and a fast frontal view 

face recognition algorithm, which should be robust against variations in illumination, 

expression and limited out of plane face rotation. At the same time, the system will be 

efficient and applicable to real-time applications. When the recognition algorithm has 

been comprehensively tested against a number of different databases and its 

performance maximised, it will be implemented as a component of a fully automatic 

face recognition system, complete with face detection module. 

1.6 Major Contributions of The Thesis 
The major contributions of the thesis can be summarized as below: 

• An overview on the background and applications of Gabor wavelet has been 

presented, which shows that this biologically driven mathematical tool can achieve 

the optimal resolution when performing joint time frequency analysis on the signal. 

The survey of applications of such wavelet to face recognition also provides some 

guidance for researchers in this area. 

• A face recognition algorithm robust against variations of illumination, expression 

and limited out of plane rotations has been developed. Once Gabor features are 

extracted using a set of Gabor wavelets, kernel subspace methods are then applied 

to enhance classification accuracy. The algorithm is successfully applied to 

identification tasks and tested using public databases and protocols. The results 

verified the robustness of the extracted features against the nonlinear distortions 

caused by facial variations.  

• Based on the successful application of Gabor features and kernel subspace methods 

to face identification, the method combining Generalized Discriminant Analysis 

(GDA) and Gabor features has also been successfully applied to verification. The 
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experimental results show that the algorithm is among the top performers in the 

Face Verification Competition 2004. 

• A novel feature selection scheme, MutualBoost, has been proposed to learn the 

most important Gabor features for face recognition. The requirement of Gabor 

feature based methods for computation and memory can be substantially reduced 

when the selected features are used. The results show that MutualBoost selected 

Gabor features are more discriminative than those learned by the AdaBoost 

algorithm. The selected informative Gabor features are further combined with GDA 

(MutualGabor + GDA) for recognition and the method has been fully tested using 

the FERET database according to the evaluation protocol. The results show that 

MutualGabor + GDA achieves better performance than the top performer in the 

FERET evaluation, but with much higher efficiency. 

• A novel symmetry based eye location method is presented in this research. By 

integrating the robust Gabor + GDA algorithm with the eye location method, a 

fully automatic verification system has been developed. When competing with 12 

participants from around the world, the system ranked the 3rd in the Face 

Verification Competition (FVC2004). 

• We have developed an automatic user identification system, which can effectively 

detect faces from a real time video stream, identify them and retrieve their 

registered personal information such as name etc. The system is expandable and 

fully integratable with other face detection and recognition algorithms. 

1.7 Organization of the Thesis 
The remaining chapters of this thesis are organized in the following way: 

Chapter 2 introduces in detail the mathematical technologies used in the thesis. While 

Gabor wavelets are used for robust feature extraction, subspace analysis and support 
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vector machines are used for feature enhancement and classification. The AdaBoost 

algorithm and information theory are also described. 

Chapter 3 reviews state of the art face recognition algorithms, both 2D based and 3D 

based approaches are included. Particularly, the major concern of the thesis, i.e., Gabor 

wavelet based methods are explored in detail. 

Chapter 4 and 5 presents the proposed Gabor + GDA method for identification and 

verification, respectively. Both methodology and experimental results are given. 

Chapter 6 describes a novel feature selection scheme and its application to select Gabor 

features for face recognition. The results show that the system using the selected Gabor 

features can significantly increase efficiency without deteriorating performance. In 

contrast, the face recognition system using the selected Gabor features has shown to be 

more robust against changes in illumination, pose and expression. 

Chapter 7 proposes a generalized symmetry transform based eye location algorithm, 

which is tested using thousands of face images. The eye location module has also been 

integrated into an automatic verification algorithm and top performance on accuracy is 

observed when compared with other algorithms. 

Chapter 8 presents an automatic user identification system developed in the research. 

Both system designs and function modules are explained. 

Finally, chapter 9 gives conclusions and some comments for future research work on 

face recognition. 
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Chapter 2 Mathematical Techniques Used in This Thesis 
 
 
 
This chapter is mainly concerned with the main mathematical techniques used in this 

thesis, which are listed as below: 

• Gabor wavelets 

• Linear Subspace Analysis 

• Non-linear Kernel Subspace Analysis 

• AdaBoost Learning Algorithm 

• Support Vector Machine 

• Entropy and Mutual Information 

 

 

 



Mathematical Techniques Used in This Thesis 

12 

2.1 Joint Time Frequency Analysis and Gabor Wavelets 

2.1.1  Joint Time Frequency Analysis and Gabor Function 
For the past few decades the Fourier transform has been the most commonly used tool 

for signal frequency analysis (Ronald, 1978). It is, however, hard to tell where within a 

signal, certain frequencies occur, i.e., the information about the time domain is lost. 

Given the fact that the frequency content of the majority of signals in the real world 

change with time, it is far more useful to be able to characterize a signal in both the 

time and frequency domains simultaneously.  

Instead of comparing the signal to complex sinusoidal functions, a natural way of 

representing a signal in time and frequency simultaneously is to compare the signal 

with elementary functions that are concentrated in both the time and frequency domains 

(Qian & Chen, 1996). Let )(τs and )(τϕ be the signal and elementary function with 

centre frequency f , the joint time and frequency representation of the signal can thus 

be written as ττϕτ dts )()( −∫ , which is an inner product between the signal )(τs  and the 

shifted elementary function )(τϕ . By moving the short time duration window function 

)(τϕ , one could obtain information on how the signals frequency contents evolve over 

time. Suppose that the time duration and frequency bandwidth of )(τϕ are t∆  and 

f∆ respectively, then ττϕτ dts )()( −∫ denotes signal information in the range of 

×∆+∆− ],[ tttt  ],[ ffff ∆+∆− . 

To achieve an exact measure of a signal at a particular time and frequency, t∆  and f∆  

should be as narrow as possible. Unfortunately, the values of t∆  and f∆ are dependent 

on each other; they are related via the Fourier transform. It is well known that when the 

time duration increases, the frequency bandwidth must be smaller and vice versa 

(Ronald, 1978) thus there is always inherent uncertainty in the time and frequency 
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resolution of )(tϕ . Several different methods are available to calculate the time duration 

and frequency bandwidth of a signal. The most common are the standard deviation, or 

root mean square (r.m.s.), this is a concept used in statistical theory (Qian et al., 1996; 

Daugman, 1985). The time duration t∆ is defined as: 

∫
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By calculating the frequency uncertainty of f∆ using a similar definition, it has been 

shown that there is a connection between the two uncertainties: 

2
1 ≥∆∆ ft        (2.1.2) 

Gabor (1946) derived the function that minimizes this uncertainty, i.e., turns the 

inequality into equalites such that 
2
1 =∆∆ ft . He found that the function is a Gaussian 

modulated by a sinusoidal signal: 

)2exp()exp()( 0
22 tfjtt παϕ −−=      (2.1.3) 

where α is the sharpness of the Gaussian, and 0f  is the centre frequency of the 

sinusoidal signal. See Figure 2-1 for the Gabor elementary function with different 

frequencies. The function has a Fourier transform:  









−−=Φ 2

02

2

2
)(exp)( fff

α
π

α
π     (2.1.4) 

As shown in Figure 2-1 (a), the shape of Gabor functions is decided by the Gaussian 

sharpness, which is invariant to the variance of the frequency. To make the time 

duration of function )(tϕ  dependent on the central frequency 0f  (Daubechies, 1990; 

Kyrki, Kamarainen, & Kalviainen, 2004), a constant ratio 
α

γ 0f
=  is defined such that 

the function, when applied to different frequencies, behaves as a scaled version of each 
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other. Figure 2-1 (b) shows the Gabor functions with varied shape ( 2=γ ). Both the 

time duration and frequency bandwidth of the Gabor function are now related with the 

central frequency: the higher the frequency becomes, the smaller the time duration. This 

makes sense since high frequency signals change faster. The variations of time duration 

and frequency bandwidth in both domains are shown in Figure 2-2, which demonstrates 

the similarities between Gabor functions and other wavelets. 

 

 

    

   (a)              (b) 
Figure 2-1  Gabor elementary functions with fixed shape (a); with varied 

shapes (b) 

 

 

Figure 2-2  Time duration and frequency bandwidth of Gabor functions 
(Kyrki et al., 2004) 
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The maximum response of the function in the frequency domain can also be normalized 

to one by multiplying its inverse 
π
α 2

. Consequently the normalized Gabor function is 

now defined as: 

)2exp()exp()( 0
2

2
00 tfjt

ff
t π

γπγ
ϕ −−=     (2.1.5) 

2.1.2  2D Gabor Wavelets 
The 2D counterpart of a Gabor elementary function was first introduced by Granlund 

(1978). It can be derived directly from (2.1.5) by replacing t  with spatial coordinates 

),( yx . Daugman (1985) showed a surprising equivalence between the 2D Gabor 

function and the organization and characteristics of the mammalian visual system. By 

generalizing the time frequency resolution uncertainty to the 2D domain, i.e., 

4
1

≥∆∆∆∆ vuyx , he also showed that the joint 2D resolution of Gabor wavelets actually 

achieves the theoretical limit regardless of the values of any of the parameters. From an 

information theoretic viewpoint, Okajima (1998) derived the Gabor functions as 

solutions for a certain mutual-information maximization problem. The work shows that 

the Gabor-type receptive field can extract the maximum information from local image 

regions. Setting the sharpness of the Gaussian in the y axis as β  and the ratio with the 

central frequency as 
β

η f
= , the 2D Gabor wavelet can now be defined as (Kyrki et al., 

2004): 

( ) ( )

θθθθ

πβα
πγη

ϕ

cossin,sincos

2exp)(exp),( 2222
2

yxyyxx

fxjyxfyx

rr

rrr

+−=+=

+−=    (2.1.6) 

where f is the frequency of the modulating sinusoidal plane wave and θ  is the 

orientation of the major axis of the elliptical Gaussian. The 2D Gabor wavelet as 

defined in (2.1.6) has the Fourier transform: 
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The plots for two Gabor wavelets in the spatial and frequency domains are shown in 

Figure 2-3.  

  
(a) 

  
(b)  

Figure 2-3  Example 2D Gabor wavelets in the spatial and the frequency 
domain (a) 2,4,0,4.0 ==== ηγθf , (b) 2,2,4/,2.0 ==== ηγπθf  

 

Note that the equation defined in (2.1.6) is different to the one normally used for face 

recognition (Lades et al., 1993; Wiskott, Fellous, Kruger, & von der Malsburg, 1997; 

Liu & Wechsler, 2002), however, this definition is more general. To find the 

relationship between different Gabor wavelet definitions, we firstly define a wave 

vector )exp(2 θπ jfk =
r

 to represent the central frequency components in the frequency 

domain. Note the assumption here is that the orientation of the wave vector is the same 
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as that of major axis of the elliptical Gaussian, which is fully supported by the models 

of receptive fields found in simple cells of the cat and macaque striate cortices 

(Daugman, 1985; Jones & Palmer, 1987). Setting 
π

σηγ
2

== , i.e. 
σ
πβα f2

== , the 

Gabor wavelet located at position ),( yxz =r can now be defined as: 
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The wavelet function used in (Lades et al., 1993; Wiskott et al., 1997; Liu et al., 2002) 

has thus been derived from equation (2.1.6), and can been seen as a special case with 

βα = . Similarly, the relationship between equation (2.1.6) and those defined in (Fasel, 

Barlett, & Movellan, 2002; Weldon, Higgins, & Dunn, 1996) could also be established, 

where the DC term could be deduced to make the wavelet DC free (Lades et al., 1993; 

Wiskott et al., 1997; Liu et al., 2002), similar effects can also be achieved by 

normalizing the image to be zero mean (Kruger & Sommer, 2000; Kruger & Sommer, 

2002a). 

2.2 Linear Subspace Analysis 

2.2.1  Principal Component Analysis (PCA) 
The aim of PCA is to identify a subspace spanned by the training images 

},,{ 21 Mi xxxx LL , which could decorrelate the variance of pixel values. This can be 

achieved by eigen analysis of the covariance matrix ∑
=

−−
−

=
M

i

T
ii xxxx

M 1

))((
1

1Σ : 

ΛΕΣΕ =       (2.2.1) 

where Ε , Λ  are the resultant eigenvectors, also referred to as eigenfaces, and eigen 

values respectively. The representation of a face image in the PCA subspace is then 
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obtained by projecting it to the coordinate system defined by the eigenfaces (Turk & 

Pentland, 1991). 

2.2.2  Linear Discriminant Analysis (LDA) 
While the projection of face images into PCA subspace achieves decorrelation and 

dimensionality reduction, LDA aims to find a projection matrix W  which maximizes 

the quotient of the determinants of bS  and wS  (Zhao, Krishnaswamy, Chellapa, Swets, 

& Weng, 1998),  

WSW

WSW
W

w
T

b
T

maxarg=      (2.2.2) 

where bS  and wS  are the between-class scatter and within-class scatter respectively. 

Consider a C  class problem and let cN  be the number of samples in class c , a set of 

M training patterns from the C  class can be defined as 
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where µ  is the mean of the whole training set, and cµ  is the mean for the class c. It was 

shown in (Fukunnaga, 1991) that the projection matrix W  can be computed from the 

eigenvectors of bw SS 1− . However, due to the high dimensionality of the feature vector, 

especially in face recognition applications, wS  is usually singular, i.e. the inverse of wS  

does not exist. As a result, a two-stage dimensionality reduction technique, named the 

Most Discrimiant Features (MFD), was proposed by (Swets & Weng, 1996). The 

original face vectors are first projected to a lower dimensional space by PCA, which is 

then subjected to LDA analysis. Let pcaW  be the projection matrix from the original 
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image space to the PCA subspace, the LDA projection matrix ldaW  is thus composed of 

the eigenvectors of )()( 1
pcab

T
pcapcaw

T
pca WSWWSW − . The final projection matrix mfdW  can 

thus be obtained by: 

ldapcamfd WWW ×=      (2.2.5) 
 

Note that the rank of 1−≤ CbS , while the rank of CMw −≤S . As a result, it is suggested 

that the dimension of the PCA subspace should be M-C (Swets et al., 1996). 

2.3 Non-linear Kernel Subspace Analysis 
As seen from last section, both PCA and LDA are linear methods. Since facial 

variations are mostly nonlinear, PCA and LDA projections could only provide 

suboptimal solutions for face recognition tasks (Gupta & Agrawal, 2002). Recently, 

kernel methods have been successfully applied to solve pattern recognition problems 

because of their capacity in handling nonlinear data. Support Vector Machines (SVMs) 

are typical kernel methods and have been successfully applied to face detection (Osuna, 

Freund, & Girosit, 1997), face recognition (Phillips, 1999) and gender classification 

(Moghaddam & Yang, 2000). By mapping sample data to a higher dimensional feature 

space, effectively a nonlinear problem defined in the original image space is turned into 

a linear problem in the feature space (Scholkopf et al., 1999). PCA or LDA can 

subsequently be performed in the feature space and thus Kernel Principal Component 

Analysis (KPCA) (Scholkopf, Smola, & Muller, 1998) and Generalized Discrimniant 

Analysis (GDA) (Baudat & Anouar, 2000). Experiments show that KPCA and GDA are 

able to extract nonlinear features and thus provide better recognition rates in 

applications such as character (Scholkopf et al., 1998) and face recognition (Kim, Jung, 

& Kim, 2002; Yang, 2002).  
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2.3.1  The Kernel Feature Space 
Algorithms in feature spaces make use of the following idea: via a nonlinear mapping 

)(
:

xx
FR N

φ
φ
→

→
      (2.3.1) 

the data },...,1,{ MkRx N
k =∈  is mapped into a potentially much higher dimensional 

feature space F . Classification may be much easier in this feature space since a simple 

linear classifier will be adequate. Intuitively, the idea can be understood from the 

simple example in Figure 2-4. While a complicated nonlinear decision surface is needed 

in the two dimensional space, a simple hyper-plane is enough in the mapped feature 

space to separate the classes: 
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Figure 2-4  A simple example (2D->3D) (Muller, Mika, Ratsch, Tsuda, & 
Scholkopf, 2001) 

 
 
In this example, the complexity of algorithms can be easily controlled due to the low 

dimension of feature space. However, when the dimension of feature space is huge, e.g. 

image related classification problems, it would be intractable to execute an algorithm in 

this space. Fortunately, there is a highly effective trick for computing dot products in 

feature spaces for certain mappings φ  and feature spaces F : kernel functions 

(Scholkopf et al., 1999) .  In the simple example, the dot product between two feature 

space vectors can be easily computed with a kernel function k as below: 
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There exists a feature space F  and mapping φ  such that ( ))()(),( yxyxk φφ ⋅= , if the 

function ),( yxk  satisfies Mercer’s condition (Scholkopf et al., 1999). The most widely 

used kernel functions are the Polynomial kernel ( )dyxyxk ⋅=),(  and the RBF kernel 
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2.3.2  Kernel Principal Component Analysis (KPCA) 
Suppose the training patterns in the input space NR are },...,1,{ Mkxk = . φ  is the non-

linear map defined from the input space to a high dimensional feature space: FR N →:φ .  

Each vector kx is now mapped to a higher dimension vector )( kxφ  in the feature space. 

Here, we assume all the data mapped into the feature space are centred, i.e. 
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The covariance matrix of the training samples in the feature space is now: 
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Kernel PCA aims to find the eigenvalues 0≥λ and eigenvectors }0{\Fv∈ satisfying 

Cvv =λ       (2.3.6) 

All solutions v lie in the span of )( 1xφ , …, )( mxφ , and there exist coefficients kα  such 

that 
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1

)(φαv       (2.3.7) 

Take the inner-product with vector ),...,1)(( Mkxk =φ on both sides of (2.3.6): 

)()())(( kk xx φφλ ⋅=⋅ Cvv     (2.3.8) 
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By substituting (2.3.5) and (2.3.7) into (2.3.8) and defining a MM × matrix K  with: 

)()(),( jijiij xxxxk φφ ⋅==K     (2.3.9) 

the following can be obtained: 

KαααKKα =⇒= λλ MM 2     (2.3.10) 

where α  denotes a column vector with entries Mαα ,...,1 . The above derivation assumes 

that all the mapped data )( kxφ  is centred in feature space F . See section 2.3.4 for an 

approach to centre the data )( kxφ  in F .  

For a new pattern x, the projection of its image )(xφ in the feature space onto the 

eigenvector v  can now be computed as: 

∑∑
==

=⋅=⋅
M

k
kk

M

k
kk xxkxxx

11

),())()(()( αφφαφv     (2.3.11) 

If the first L  ( ML ≤≤1 ) significant eigenvectors are extracted to construct the eigen 

matrix: 

] ...  [ 21 LαααW =      (2.3.12) 

The projection of x  in the L-dimensional Kernel PCA space is given by:  

Wky x=       (2.3.13) 

where  

)],( ... ),( ),([ 21 Mxxkxxkxxk=xk    (2.3.14) 

2.3.3  Generalized Discriminant Analysis 
As a generalized version of Linear Discriminant Analysis (LDA), Generalized 

Discriminant Analysis (GDA) performs LDA on sample data in the high dimension 

feature space. Consider a C  class problem and let cN be the number of samples in class 

c , then the set of training patterns in class c  can be defined as 

},...,2,1;,...2,1,{ cck NkCcx == .  The total number of input vectors can be denoted as: 
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∑
=

=
C

c
cNM

1

. For a centred data set in feature space, the between-class scatter matrix bS  

and within-class scatter matrix wS  can be defined as: 

T
ck

C

c

N

k
ck

c
w xx

NC

c

)()(11
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=S     (2.3.15) 
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1 µµS      (2.3.16) 

where cµ  is the mean vector of class c : 

∑
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=
cN

k
ck

c
c x

N 1

)(1 φµ      (2.3.17) 

Similar to LDA, the purpose of GDA is to maximize the quotient between the inter-

class inertia and the intra-classes inertia. This maximization is equivalent to finding 

eigenvalues 0≥λ and eigenvectors }0{\F∈v satisfying 

vSvS bw =λ ,      (2.3.18) 

all solutions v  lie in the span of )( 11xφ , …, )( ckxφ , … and there exist coefficients ckα  

such that 

∑∑
= =

=
C

c

N

k
ckck

c

x
1 1

)(φαv      (2.3.19) 

Substitute (2.3.15), (2.3.16), (2.3.17) and (2.3.19) into (2.3.18): 
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Now take the inner-product with vector )( ckxφ  on both sides: 
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The dot product of a sample i from class p and the other sample j from class q in the 

feature space, denoted as ( )
pqijk , can be calculated by a kernel function, e.g., radial basis 

kernels as below: 

( ) r
xx

qjpiqjpipqij

qjpi

exxkxxk
2

),()()(
−

−==⋅= φφ   (2.3.22) 

Let K  be a MM × matrix defined on the class elements by (
Cq
Cppq

,...1
,...1)(

=
=K ), where pqK  is a 

matrix composed of dot products between vectors from class p and q in feature space: 

( )
q

p

Nj
Niijpq k

,...,1
,...,1

=
==K       (2.3.23) 

Also define a MM × block diagonal matrix: 

Ccc ,...,1)( == UU       (2.3.24) 

where cU  is cc NN × a matrix with terms all equal to 
cN

1 . 

The equation in (2.3.21) can now be represented as: 

KUKαKKα =λ       (2.3.25) 

where α denotes a column vector with M entries cck NkCc ,...,1,,...1, ==α . Different 

techniques can be used to solve the eigen problem given in (2.3.25), the algorithm 

proposed by (Baudat et al., 2000) was adopted in this thesis, which finds the eigen 

vector v  by first diagonalizing the matrix K . Once α  and the eigenvectors v  are 

decided upoon, the projection of a new sample x  in the GDA space can be easily 

calculated using equations (2.3.12)-(2.3.14). Details on eigenvalue resolutions of GDA 

can be found in Appendix A. 

2.3.4  Non-centred Data 
In the general case, data { } Mixi ,,2,1,)( L=φ is not centred in the feature space. The 

following method can be used make this datas mean zero: 
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The MM × kernel matrix K~  for the centred data can now be calculated as: 
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Which, represented in matrix form is as follows: 

MMMM MMM
K11K1K1KK 2

111~ +−−=   (2.3.28) 

Once the kernel matrix K~  for the centred data is calculated, the same procedures as 

used in previous sections can be used to compute the projection matrix W  for the 

KPCA, or GDA subspace. As given in Equation 2.3.13, the projection of a new pattern 

x  into the learned subspace can now be computed as: 

Wky x

~
=       (2.3.29) 
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Next we define a M×1 row vector 1  with all entries equal to 1, the equation can then be 

represented in matrix form: 

MM MMM
1K11k1Kkk xxx 2

111~
+−−=    (2.3.31) 

2.4 AdaBoost Learning Algorithm 
Introduced by Freud and Schapire (1999), AdaBoost has been successfully applied to 

object detection (Viola & Jones, 2001; Lienhart & Maydt, 2002) and face recognition 
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(Michael & Viola, 2003). The essence of AdaBoost is to learn a number of very simple 

weak classifiers, which are then linearly combined into a single strong classifier. Whilst 

the performance of weak classifiers could be just slightly better than random guessing, 

AdaBoost learning minimizes the upper bound on both training and generalization 

errors (Freund et al., 1999). Additionally AdaBoost has  been applied to select Haar-

like features (Lienhart et al., 2002) for face detection, recognition (Michael et al., 2003) 

and Gabor feature selection (Shen & Bai, 2004a) for classification. 

Given m training samples }1,1{,,,..,2,1),,( −∈∈= i
N

iii yRxmiyx   
Initialization: weights miw /1)(1 =  
For t=1, …, T 

1) Train weak learners using distribution tw  
2) Choose a weak hypothesis }1,1{: −→n

t Rh   
3) Choose Rt ∈α  

4) Update weights: ( )
t

ititt
t Z

xhyiwiw )(exp)()(1

α−
=+   

Final strong classifier: 






= ∑
=

T

t
tt xhsignxH

1

)()( α   

       

Figure 2-5  Details of AdaBoost algorithm (Freund et al., 1999) 

2.4.1  The Algorithm 
For two class problems, a set of m labelled training samples is given as miyx ii ,..,2,1),,( = , 

where { }1,1−∈iy  is the class label associated with sample n
i Rx ∈ . A large number of 

weak classifiers }1,1{: −→nRh  could be generated to form the classifier pool for learning. 

The weak classifier could be very simple, e.g., a threshold function on the kth  

coordinate of x  in the n-dimensional space. The algorithm focuses on the difficult 

training patterns, increasing their representation in successive training sets. Over a 

number of T rounds, T weak classifiers are selected to form the final strong classifier. In 

each of the iterations, the space of all possible weak classifiers is searched exhaustively 

to find the one with the lowest weighted classification error. The error is then used to 

update the weights such that the wrongly classified samples get their weights increased. 
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The resulting strong classifier is a weighted linear combination of all T selected weak 

classifiers. Figure 2-5 contains the listing of the AdaBoost algorithm.  

2.4.2  Training Error 

Letting ∑
=

=
T

t
tt xhxf

1

)()( α  and unravelling the weight update rule: 

( )

( )
∏

∏
∑

−
=








−
=

−
=+

t
t

ii

t
t

t
itit

T

ititT
T

Zm
xfy

Zm

xhy

Z
xhyiwiw

)(exp

)(exp

)(exp)()(1

α

α

   (2.4.1) 

Also let [ ]π  be an indicator variable which is 1 if the predicate π  is true and 0 otherwise. 

Moreover, if ii yxH ≠)(  then 0)( ≤ii xfy  implying that ( ) 1)(exp ≥− ii xfy . Thus,  

[ ] ( ))(exp)( iiii xfyyxH −≤≠    (2.4.2) 

Since the training error of H : ( )Htrε is simply the number of wrongly classified samples 

divided by m , the bound of the error can be easily found as below: 
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2.4.3  Choosing tα  and th  

To make 1+tw  be a distribution, the value of tZ  shall actually be the sum of )(1 iwt+ : 

( )∑∑ −== +
i

ititt
i

tt xhyiwiwZ )(exp)()(1 α   (2.4.4) 

To minimize the upper bound of training error: ∏
t

tZ , a greedy algorithm chooses tα  

and th  such that tZ  is minimized on each round of training. By using a linear upper 
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bound function )( tZ α  of tZ  and setting the derivative tddZ α/  to zero, the value of tα  to 

minimize tZ  is found to be (see appendix B for details): 
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where ∑=
i

ititt xhyiwr )()( . Since tZ  is now bounded by 21 tt rZ −≤ , the training error of 

H  is now at most ∏ −
t

tr
21 . The training error can be further minimized if th  is chosen 

such that tr  is maximized on each round of boosting. Since tr  is closely related with 

the prediction error tε  of th  as below (see appendix B for details): 
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=≠= ∑ε ,   (2.4.6) 

maximizing tr  is equivalent to minimizing error tε . In sum, th  with minimum 

prediction error tε  should be chosen on each round of boosting and tα  should be set as: 
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2.5 Support Vector Machine  
Originating from the hyperplane classifier proposed by (Boser, Guyon, & Vapnik, 

1992), the support vector machine (SVM) has been greatly developed and widely 

applied in machine learning, classification and pattern recognition ever since 

(Scholkopf et al., 1997; Cristianini Nello & Shawe-Taylor John, 2000; Moghaddam et 

al., 2000; Osuna et al., 1997).  

The SVM is basically a linear hyperplane classifier bxwxf += ,)(  aimed at solving the 

two class problem. As shown in Figure 2-6, the classifier can separate the data from two 

classes very well. Since there might be a number of such linear classifiers available, 

SVM chooses the one with the maximal margin, which is defined as the width that the 

boundary could be increased by before hitting a data point. The distance between the 
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two thin lines (boundary) in the figure thus defines the margin of the linear SVM with 

data points on the boundary known as support vectors. The linear classifier )(xf  with 

maximized margin can be found using quadratic programming (QP) optimisation 

techniques as below: 

( )bxxysignxf kkk += ∑ ,)( α    (2.5.1) 

where N
k Rx ∈  is the support vectors learned by SVM. 

 

Figure 2-6  A hyperplane classifier in 2-dimension feature space 

 

Figure 2-7  Map data into a feature space where they are linearly 
separable 

 

When the data is non-separable, by relaxing constraints and introducing extra error to 

the objective function, linear SVM can also be solved using QP techniques. For non-

linearly separable data, a nonlinear mapping function )(,: xxFR N φφ →→  is used to map 

them into a higher dimension feature space where the linear classifier can be applied. 

Figure 2-7 shows an example using the kernel method to learn non-linear SVM, which 
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is similar to the one shown in Figure 2-4. Using the same kernel trick as described in 

section 3, the non-linear SVM is now found to be: 

( )bxxkysignxf kkk += ∑ ),()( α    (2.5.2) 

where )( ,xxk k  is a kernel function, e.g., a polynomial kernel and a Gaussin kernel etc. 

Given a set of training samples }1,1{,),,(),...,,(),...,,( 11 +−∈∈ i
N

illii yRxyxyxyx , SVM not 

only achieved only small error on the training set, it also minimized the upper bound of 

the error on a test set, i.e. generalization error (Burges, 1998). It has been shown by 

researchers that, with probability 10,1 ≤≤− ηη , the following bound on the expected 

generalization error of the SVM holds: 

l
hlhRR emp

)4/log()1)/2(log( η−+
+<   (2.5.3) 

where ∑
=

−=
l

i
iiemp yxf

l
R

1

)(1  is the empirical risk as measured on the training set and h  is 

the Vapnik Chervonenkis (VC) dimension. The second term on the right hand side is 

called the VC confidence. The SVM minimises the upper bound by fixing the empirical 

risk to a small value and minimising the VC confidence.   

2.6 Entropy and Mutual Information 
As a basic concept in information theory, entropy )(XH  is used to measure the 

uncertainty of a random variable (r.v.) X . If X  is a discrete r.v., )(XH  can be defined 

as below: 

∑ ==−=
x

xXpxXpXH ))(lg()()(    (2.6.1) 

Mutual information );( XYI  is a measure of general interdependence between two 

random variables X and Y : 

),()()();( YXHYHXHXYI −+=    (2.6.2) 

Using Bayes rule on conditional probabilities, Eq. (2.6.2) can be rewritten as: 
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)|()()|()();( XYHYHYXHXHXYI −=−=   (2.6.3) 

Since )(YH  measures the priori uncertainty of Y and )|( XYH measures the conditional 

posterior uncertainty of Y after X is observed, the mutual information );( XYI  measures 

how much the uncertainty of Y  is reduced if X  has been observed. It can be easily 

shown that if X and Y  are independent, )()(),( YHXHYXH += , consequently their 

mutual information is zero.  

2.7 Notation Definitions 

2.7.1  Gabor Jet and Similarity Function 
The convolution of an image I and a 2D Gabor wavelet ϕ  can be defined as follows: 

),(),()( yxxxIxG =∗=
rrr

ϕ     (2.7.1) 

where )(xG
r  denote the convolution result with a wavelet at a position x

r
. Since the local 

frequency and orientation information is not available, a number of, e.g. 40, wavelets 

39,...,1,0, =jjϕ tuned to different frequencies and orientations are normally used for 

feature extraction. The convolution results at a position x
r
 thus consist of important 

local information, and can be concatenated to form a discriminative local feature, i.e. jet. 

A jet )(xJ
r  is defined as the set of 40 complex coefficients }39,...,1,0),({ =jxJ j

r obtained at 

one image point x
r , where )()( xIxJ jj

rr
ϕ∗= . The complex coefficient jJ  can also be 

written as )exp( jjj iaJ φ=  with magnitude ja  and phase jφ , which contains very 

important local texture information.  

Two functions )',( JJSm  and )',( JJS p  are defined to measure the similarity between two 

jets J  and 'J . While the first function mS uses the magnitude information only, the 

other function pS  takes phase information into consideration as well. The two similarity 

functions are defined as below: 
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where jk
v

 is the wave vector of the respective Gabor wavelet jϕ  and d
r

 is an estimated 

displacement that compensates for the rapid phase shifts (Wiskott et al., 1997). 

2.7.2  Eigenfaces and Fisherfaces 
When applying the linear subspace techniques, i.e. PCA and LDA, for face recognition, 

2D face images are usually converted to a 1D feature vector by concatenating their 

rows or columns. Once the projection bases are learned from a set of training faces, 

they can be converted back to 2D images. These base images are thus called Eigenfaces 

and Fisherfaces for PCA and LDA, respectively. 

2.7.3  The Difference Space 
Canonical algorithms treat face recognition as a multi-class problem, i.e. each 

individual is a class. Some researchers also proposed the difference space to simplify 

face recognition to a two class problem. Such representation models the dissimilarities 

between faces. Let },,{ 1 MIIT L=  be a training set of faces of K  individuals, with 

several images of each of the subject. Two classes can be generated from T . The first is 

the intra-personal differences set, which are the dissimilarities in facial images of the 

same person: 

{ }qpqp IIIICI ~−=  

The second is the extra-personal difference set, which are the dissimilarities among 

images of different person in the training set: 

{ }qpqp IIIICE ~/−=  
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The two sets thus define the difference space where face recognition can be represented 

as a two class problem. 

2.8 Summary 
A number of mathematical techniques have been introduced in this chapter, which will 

be applied in the following processes in the thesis: 

Feature extraction: the mathematical origins of Gabor wavelets show that they are 

very powerful tools when applied to measure local spatial frequency and image 

structure. As a special wavelet, the Gabor wavelet analyzes images with the optimal 

spatial and frequency resolution. Motivated by the similarity of the 2D Gabor wavelet 

and the receptive field of the simple cells of the mammalian visual system, the wavelet 

family will be applied to extract local features from face images for recognition. Such 

local features will be robust against distortions caused by various expression, pose and 

illumination changes. 

Feature enhancement and classification: once the robust feature set has been 

extracted by Gabor wavelets, a number of enhancement tools and classifiers can be 

further applied. While linear subspace techniques such as PCA and LDA have been 

shown to be able to enhance class separability, this chapter also gives theoretical 

evidence of further advantages of kernel methods. A number of techniques based on 

such methods (e.g. KPCA, GDA and SVM) have been introduced in this chapter and 

will be applied to enhance extracted Gabor features for recognition or classification in 

the following chapters. 

Feature selection: both the mutual information and AdaBoost algorithms introduced in 

this chapter will be applied to select the most discriminant Gabor features for face 

recognition. 
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Chapter 3 Literature Review 
 
 
 
This chapter gives a literature survey on state of the art face recognition algorithms, 

both 2D based and 3D based approaches are included. Particularly, the major concern 

of the thesis, i.e., Gabor wavelet based methods, are explored in detail. 
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3.1 2D Face Recognition Methods 
Various approaches for 2D face recognition have been proposed in the literature, which 

can be classified into three categories: analytic (feature based), holistic (global) and 

hybrid methods. While analytic approaches compare the salient facial features or 

components detected from the face, holistic approaches make use of the information 

derived from the whole face pattern. By combining both local and global features, 

hybrid methods attempt to produce a more complete representation of facial images. 

Literature surveys on face recognition approaches can be found in (Chellapa, Wilson, & 

Sirohey, 1995) and (Zhao et al., 2000). 

3.1.1  Analytic Methods 
For analytic approaches, distances and angles between feature points on the face, 

shapes of facial features, or local features, e.g. intensity values extracted from facial 

features or components are usually applied for face recognition. The main advantage of 

analytic approaches is to allow a flexible deformation at the key feature points so that 

pose changes can be compensated. In (Brunelli & Poggio, 1993), both template and 

geometrical feature based analytic methods are implemented and compared. For 

template based method, facial regions are matched with templates of eyes, nose and 

mouth respectively and the similarity scores of each facial feature are simply added into 

a global score for face recognition. For geometrical feature based methods, eyes, mouth 

and nose facial features are firstly detected. The nose width and length, mouth position 

and chin shape features are then input to a Bayes classifier for identification. Figure 3-1 

shows how these geometry features are measured, e.g. the chin shape is represented by 

the distance between the edge of the chin and the centre of the mouth. However, the 

experimental results favour the template matching approach.  
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Figure 3-1  Geometric features used for face recognition (Brunelli et al., 
1993) 

 
 
A graph structure, called Dynamic Link Architecture (DLA), is proposed by Lades et al. 

(1993) to represent face images in. In this system, an elastic graph matching process is 

used to learn the representing graph of face images. Once faces are represented by 

appropriate graphs, Gabor features extracted from graph nodes, named Gabor jets, are 

then used for face recognition. Figure 3-2 shows two example face images overlaid with 

the representative graph (Lades et al., 1993). Later on, Wiskott et al (1997) extend DLA 

to Elastic Bunch Graph Matching (EBGM), where graph nodes are located at a number 

of selected facial landmarks. The EBGM has shown very competitive performance and 

been ranked as the top method in the FERET evaluation (Phillips et al., 2000). Details 

of Gabor wavelet based methods will be presented in section 2. 

 

Figure 3-2  Face images represented by graphs (Lades et al., 1993) 
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The Hidden Markov Model (HMM), widely used to learn the state and transitional 

probabilities between a number of hidden states, has also been applied to face 

recognition. HMMs are normally trained from examples that are represented by a 

sequence of observations. The parameters of the HMM are firstly initialized and then 

adjusted to maximize the probability of the observation of the given training samples. 

The observation of test samples can then be input to the trained HMMs for 

classification according to the output probabilities given different HMMs. Samaria and 

Young (1994) first proposed a HMM architecture for face recognition. A face pattern is 

divided into several regions such as forehead, eyes, nose, mouth and chin. These 

regions occur in the natural order from top to bottom and they are used to form the 

hidden states of 1D or pseudo 2D HMMs. To train a HMM, each face image is 

represented by a sequence of observation vectors, which are constructed from the pixels 

of a sub window. Nefian and Hayes (1999) proposed the embedded 2D HMM, which 

consists of a set of super states with each super state being associated with a set of 

embedded states. Super states represent primary facial regions whilst embedded states 

within each super state describe in more detail the facial regions. As shown in Figure 

3-3, transitions between embedded states in different super states are not allowed. 

Instead of using pixel intensities directly, the Discrete Cosine Transform (DCT) 

coefficients are used to form the observation vectors. Compared to 1D and pseudo 2D 

HMM, the system can perform more efficiently. Based on this work, Bai and Shen 

replaced DCT with the Discrete Wavelet Transform (DWT) for observation vector 

extraction (Bai & Shen, 2003a), the results show the performance improvement 

achieved. However, HMM based systems require lots of images for training, and are 

only capable of operating on small databases. The performance drops dramatically as 

the size of database is scaled up. As observed in our experiments, the accuracy of 
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Nefian and Hayes’s method drops from 97.5% to 32.5% when the number of subjects 

rises from 40 to 200. 

 

Figure 3-3  2D embedded HMM structure (Nefian et al., 1999) 

 

As a hyper plane classifier, Support Vector Machines (SVM) have also been 

successfully applied to face recognition. A set of SVM classifiers is applied to extract 

different facial components and the grey values of each component are then combined 

into a single feature vector (Heisele, Ho, & Poggio, 2001). The component based 

method has been compared with a SVM classification based global method and the 

results show its robustness against variance of pose and illumination. However, the 

database consists of images from 5 subjects only and a large number of images are 

required to train those SVMs. Their later work (Huang & Heisele, 2003) used a 3D 

morphable model to generate synthesized images with different illumination and pose 

for training. As a result, only 3 training images of each person are required. However, 

the results are based on a database from 6 persons only. How the performance scales 

with the number of subjects in the database remains unknown. 

3.1.2  Holistic Methods 
Based on principal components analysis (PCA), Kirby and Sirovich (1990) first 

developed the well known Eigenface method for both face representation and 
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recognition. In this method, the whole face pattern is transformed to a feature vector 

and a set of training samples are used to compute Eigenfaces (Turk et al., 1991). PCA 

can achieve the optimal representation in the sense of maximizing the overall data 

variance. However, the difference between faces from the same person due to 

illumination and pose (within-class scatter) seems to be larger than that due to facial 

identity (between-class scatter). Based on this observation, Linear discriminant analysis 

(LDA) is applied for Fisher face methods (Belhumeur, Hespanha, & Kriegman, 1997). 

LDA defines a projection that makes the within-class scatter small and the between-

class scatter large. This projection has shown to be able to improve classification 

performance over PCA. However, it requires a large training sample set for good 

generalization, which is usually not available for face recognition applications. To 

address such Small Sample Size (SSS) problems, Zhao et al (1998) perform PCA to 

reduce feature dimension before LDA projection, see Figure 3-4 for the different bases 

of LDA, PCA + LDA, and PCA projection. By using higher order statistical analysis, 

Independent Component Analysis (ICA) was first adopted by (Bartlett, Movellan, & 

Sejnowski, 2002) for face recognition, the work showed that ICA outperformed PCA. 

However, other researchers (Draper, Baek, Bartlett, & Beveridge, 2003) observed that 

when the right distance metric is used, PCA significantly outperforms ICA on the 

FERET database. Recently, kernel methods have been successfully applied to solve 

pattern recognition problems because of their capacity to handle nonlinear data. By 

mapping sample data to a higher dimensional feature space, effectively a nonlinear 

problem defined in the original image space is turned into a linear problem in the 

feature space (Scholkopf et al., 1999). PCA or LDA can subsequently be performed in 

the feature space and are thus called Kernel Principal Component Analysis (KPCA) and 

Generalized Discriminant Analysis (GDA) (Baudat et al., 2000). Experiments show that 
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KPCA and GDA are able to extract nonlinear features and thus provide better 

recognition rates in applications such as face recognition (Kim et al., 2002; Yang, 

Frangi, & Yang, 2004; Shen & Bai, 2004b).  

 

Figure 3-4  Different bases of linear projections: LDA, PCA + LDA and PCA 
bases are shown on the first, second and third row respectively (Zhao et 

al., 1998) 

 

 

Figure 3-5  The diagram for a RBF based face recognition system (Er, Wu, 
Lu, & Toh, 2002) 

 

Neural networks (Fleming & Conttrell, 1990; Er et al., 2002; Liu, 2004b) have also 

been used to classify global facial features. When face images were treated as 1D 

signals and wavelet analysis was used for feature extraction (Liu, 2004b), the Radial 

Basis Function (RBF) network was applied to the projection of face images to 

Fisherfaces for classification (Er et al., 2002). The diagram for Er’s method is plotted in 
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Figure 3-5. While PCA + LDA were first used to decrease the feature dimension of face 

patterns, sample information was adopted to determine the structure and initial 

parameters of the RBF network. 

 

Figure 3-6  Binary SVM tree (Guo, Li, & Chan, 2001) 

 

Since SVM is a binary classifier, (Phillips, 1999) turned the face recognition problem 

into a two class problem by introducing the difference space. Two classes, the 

dissimilarities between faces of the same person and dissimilarities between faces of 

different people, are designed in the difference space. A single SVM is trained to 

classify the intra-person and inter-person difference classes. The results on a difficult 

image set from the FERET database showed that SVMs outperformed the Eigenface 

method significantly. A binary tree system was adopted by (Guo et al., 2001) to use 

SVMs for the multi-class face recognition problem. The results on the ORL database 

and a larger face collection from several databases showed that SVMs achieve higher 

accuracy than Eigenface approach. In (Jonsson et al., 2002) each person is associated 

with a SVM that was trained to discriminate the face images from the same people and 

those from others. Both PCA and LDA were used for feature extraction and tested on a 

verification application. By applying different illumination normalization techniques, 

the results show that SVMs are robust and relatively insensitive to the feature space and 

pre-processing methods. However, when the representation feature already captures and 

emphasises the discriminatory information, e.g., features extracted using LDA or SVMs 
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lose their superiority in comparison with the simplest Euclidean distance + nearest 

neighbour classifier. 

Global techniques work well for frontal view face images, but they are sensitive to 

translation, rotation and pose changes (Heisele et al., 2001). Usually normalization is an 

important and inevitable process for these methods. A small number of prominent 

points in the face such as eyes, nostrils or centre of the mouth are required to resize and 

rotate the input face image. After normalization, the input face image can be aligned 

with the model face and recognition can be performed thereafter.   

3.1.3  Hybrid Methods 
Hybrid methods utilize both local and global features for recognition. One of the early 

works is Pentland’s modular Eigenfaces (Pentland, Moghaddam, & Starner, 1994). In 

this work, the eigenface technique is extended to the description and encoding of facial 

features, yielding eigenfeatures such as eigeneyes, eigennoses and eigenmouths. The 

experimental results show that the eigenfeatures outperform the eigenface method, the 

performance was further improved by using the combined representation of 

eigenfeatures and eigenfaces. 

Another famous work is the Active Shape Model (ASM) and Active Appearance Model 

(AAM) proposed by (Lanitis, Taylor, & Cootes, 1997). In this work, Cootes’ group use 

ASM and AAM to model the variance of shape and appearance respectively. Both ASM 

and AAM are learned from a large number of training images, which are then used to 

model test images. To recognize a face image, both ASM and AAM are adjusted to fit 

the new image, which generates a number of shape and texture parameters. Those 

parameters, together with the local profiles at model points, are used for face 

recognition. When 300 images (10 images per individual) are used as training images, 

the method achieves 92% accuracy for 300 test images. Figure 3-7 shows the landmarks 
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used to train the ASM, and the effects of varying the first two parameters of shape and 

appearance models. 

      
   (a)         (b)       (c) 

Figure 3-7  Landmarks of ASM (a); variance of the facial shape (b); and 
appearance (c) (Lanitis et al., 1997) 

 

3.2 Gabor Wavelet Based 2D Methods 
Despite remarkable progress so far, the general task of face recognition remains a 

challenging problem due to complex distortions caused by various variations in 

illumination, facial expression and pose. It is widely believed that local features in face 

images are more robust against such distortions and a spatial-frequency analysis is often 

desirable to extract such features (Zhao et al., 2000; Scholkopf et al., 1997). With good 

characteristics of space-frequency localization, wavelet analysis seems to be the right 

choice for this purpose (Qian et al., 1996; Daubechies, 1990). In particular, among 

various wavelet bases Gabor functions provide the optimized resolution in both the 

spatial and frequency domains (Gabor, 1946; Daugman, 1985).  

The Gabor wavelet was originally contributed by Gabor (1946) when he proposed to 

represent signals as a combination of elementary functions. The 2D counterpart of the 

Gabor elementary function was then introduced by (Granlund, 1978). Daugman (1985) 

reviewed the 2D Gabor wavelet family and presented evidence that the family can well 

model the 2D receptive-field profiles of simple cells in the mammalian visual cortex, 

and thus such visual neurons could optimize the general uncertainty relations for 

resolution in space, spatial frequency and orientation. From an information theoretic 
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viewpoint, (Okajima, 1998) derived the Gabor function as solutions for a certain 

mutual-information maximization problem. The work shows that the Gabor-type 

receptive field can extract the maximum information from local image regions. Due to 

the useful characteristics of Gabor functions, they have been widely and successfully 

applied for texture segmentation (Jain & Farrokhnia, 1991; Weldon et al., 1996), 

handwritten numerals recognition (Hamamoto et al., 1998), fingerprint recognition (Lee 

& Wang, 1999) and face recognition (Lades et al., 1993; Shen et al., 2004b; Wiskott et 

al., 1997; Liu et al., 2002). The wide application of Gabor functions has also resulted in 

different terminologies, which may be quite confusing for researchers. Some examples 

are Gabor wavelet, Gabor filter, Gabor expansion, Gaobr transform and Gabor function 

etc. Based on the fact that this study starts from joint time frequency analysis of signals, 

the terminology of Gabor wavelet is used in this thesis. While Gabor features are used 

to represent the features extracted by a set of Gabor wavelets, they are usually called 

jets when the wavelet family is applied at a certain facial feature point. A detailed 

survey on Gabor wavelet based face recognition methods, both analytic and holistic, 

will follow in the next section. 

3.2.1  Analytic Methods 
Analytic methods utilize the Gabor features, named Gabor jets, extracted from pre-

defined feature points, on the face images for recognition. Different approaches mainly 

vary in the way to locate feature points for Gabor jet extraction, which can be classified 

into two categories: elastic graph matching based methods and non graph matching 

based methods. For elastic graph based analytic methods, a graph is first placed at an 

initial location and deformed using jets to optimize its similarity with a model graph. 

Non-graph based methods locate feature points manually or by colour or edge etc. 
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information. Once the location process is completed, recognition can then be performed 

using Gabor jets extracted from those feature points. 

3.2.1.1  Elastic Graph Matching Based Feature Points Location 
Dynamic Link Architecture (DLA) (Lades et al., 1993) and Elastic Bunch Graph 

Matching (EBGM) (Wiskott et al., 1997) are two famous Gabor jet based methods 

using elastic graph matching for face representation. Graph matching based methods 

normally require two stages to build the representing graph Ig  for a face image I . 

During the 1st stage, a model graph Mg  is shifted within the input image while keeping 

its form rigid. The rigid graph is initialized at an arbitrary position in the input image. A 

cost function ),( MI ggS  is defined (see Eq. 3.2) and the position is updated until a 

minimum value of the function is reached. The global move procedure is then followed 

by individual vertices diffusion during the 2nd stage. The vertices of the model graph 

are visited in a random order and are shifted by a random vector d
r

 within a topological 

constraint T
r

 to encode the local distortions due to rotations in depth or expression 

variations. It is actually the deformation of the vertices that makes the graph matching 

processing elastic. 

  
    (a)             (b) 

Figure 3-8  Face adapted graphs for different poses (a) and an example 
face bunch graph (b) (Wiskott et al., 1997) 

 
 
In DLA (Lades et al., 1993), a model graph is built for each individual face in the 

gallery and the graph matching process is required to learn the representing graph for a 

new face image. The model graph in DLA is a rectangular graph, with each node 
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labeled by Gabor jets. Two sample face images with overlaid representation graphs are 

shown in Figure 3-2. The graph shown in (b) is built by applying the 2 stage graph 

matching process using (a) as the model graph. Based on DLA, Wiskott et al. (1997) 

further developed a more appropriate graph structure, called EBGM, to represent faces. 

Compared with the rectangle graph used in (Lades et al., 1993), the new method 

employs object adapted graphs and each node refers to specific facial landmark. Figure 

3-8a shows the adapted graph grids for faces with different poses, one can observe that 

such structure is more suitable for face images. Since matching with each individual 

model graph is very computationally expensive for large galleries, they also developed 

a technique called the Face Bunch Graph (FBG, shown in Figure 3-8b) to avoid such a 

process. A bunch is a set of jets taken from the same node from different model graphs. 

This requires a set of aligned model graphs, such that a given node always refers to the 

same facial features. 80 manually built model graphs are used in (Wiskott et al., 1997) 

to build the FBG, which is then used as the only model graph to build the representing 

graph for an input face image using the 2 stage graph matching process.  

Since the representing graph of a face image is normally associated with a set of 

corresponding Gabor jets, jet similarity plays a very important role in the definition of 

the cost function ),( MI ggS  to match two graphs. Two different functions can be used to 

compare jets (Wiskott et al., 1997). The first one, )',( JJSm , using magnitude 

information only, generates more smooth output when a fixed )(' zJ r  is compared with 

jets )( dzJ
rr

+  located at varied positions with displacement d
r

. The other one, )',( JJS p , 

takes phase into consideration, is more sensitive to displacements and potentially more 

discriminative since jets with the same magnitudes but different phase can be 

distinguished. For a labeled graph with nodes { }Nzzz rrr ...21  and edges ,jie zzz rrr
−=∆  
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,,...,2,1 Ee =  NjNi ,...,2,1,,...2,1 == , the similarity of a model graph Mg  and a variable 

graph Ig  is evaluated by a cost function in DLA as (Lades et al., 1993): 
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where λ  determines the relative importance of jet similarities and the topography term. 

nJ  is the jet at node n and ex
r

∆  is the distance vector to label edge e. This function does 

not take the phase of jets into consideration. Similarly, the quality of matching between 

an image graph I and the FBG B is evaluated by (Wiskott et al., 1997): 
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where mB denotes the mth  model graph of the bunch graph B . The cost functions thus 

defined takes the similarity of both jets and graph geometry into consideration. Other 

definitions of the cost function can also be found in (Rong, Su, & Lin, 2002). In the 2nd 

stage of graph matching, the graph nodes are also shifted within a topographical 

constraint T
r

 to model the local face distortions. Wiskott (1999) used a simple 

rectangular graph model to investigate the role of topographical constraints for face 

recognition. The primitive graph models with different strengths of topographical 

constraints are compared with a more sophisticated system using bunch graphs. The 

results show that the constraints are quite useful when the variations in illumination, 

scale and background are small. His work also compared different jet similarity 

measure functions and the results suggest that the function with phase yields better 

matching results than the one without phase when drastically changing illumination is 

not available. 

Based on the elastic graph matching framework, a number of varitions have been 

proposed in the literature. Mu and Hassoun (2003) proposed a group shift/deformation 

algorithm. The algorithm clustered rectangular graph nodes into groups (eyes, mouth 
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and nose etc.) according to their locations. All the graph nodes in the same group move 

together in the rigid matching stage, while local deformation is allowed in the 2nd step, 

see Figure 3-9 for details. The results on two databases show that the proposed group 

shift algorithm achieved better performance than the standard elastic graph matching 

algorithm. Elastic graph matching has also been applied to face authentication by Duc 

et al. (Duc, Fischer, & Bigun, 1999). The importance of the rectangular graph nodes is 

measured by a criterion specially designed for acceptance and rejection of the candidate. 

The criterion is small when the candidate is the right person, and large in case of an 

impostor. The Fisher discrimination criterion turns out to be the right one. They show 

that a feature consisting of only Gabor jets extracted from those important nodes not 

only reduces the feature dimension, but also improves the recognition performance 

significantly. Since the elastic graph matching process is very computationally 

expensive, they also tested the significance of the elastic steps by simply dropping them, 

which is equivalent to setting ∞=λ  in the graph similarity function. The comparison of 

performance obtained with and without the deform step shows that the elastic matching 

slightly increases the performance, but has less influence than weighting of the graph 

nodes. 

 

Figure 3-9  The group shifting/deformation algorithm (Mu et al., 2003) 
 

Liao and Li (2000) reduced the nodes of the bunch graph to only 17 facial feature points, 

all of which have clear meanings and exact positions. A collection of 70 face images 

with manual marks at correct facial feature points are used to construct the bunch graph. 
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Once the FBG is determined, the facial feature points can be detected automatically for 

the new input image by the elastic graph matching process. Since some feature points 

may be located at the wrong places, a graph adjusting stage is proposed to correct the 

wrongly positioned points. Figure 3-10 shows the results of automatic facial feature 

point detection. The three misplaced feature points marked by black circles (Figure 

3-10a) are corrected by the graph adjusting process (Figure 3-10b). Instead of using the 

rigid matching step, Jiao et al. (Jiao, Gao, Chen, Cui, & Shan, 2002) used face structure 

knowledge and grey intensity information to locate the facial features, e.g. eyes and 

mouth. Once the features are located, the position of the bunch graph is initialized and 

the elastic deformation step is then used for feature position refining and adjusting. 

  
       (a)         (b) 

Figure 3-10  17 facial feature points and the results of graph adjustng 
(Liao et al., 2000) 

 

3.2.1.2 Non-graph Matching Based Feature Points Location 
Due to the computational complexity of the elastic graph matching process, a number of 

works have also proposed other techniques for feature point location. Some works 

locate the feature points manually (Escobar & Ruiz-del-Solar, 2002; Gokberk, Irfanoglu, 

Akarun, & Alpaydin, 2003; Wang & Qi, 2002; Chung, Kee, & Kim, 1999) and Gabor 

jets extracted at those points are then subjected to a sophisticated classification system 

for recognition. Escobar et al (2002) proposes to use Log-Polar images for Gabor 

feature extraction. The face image is Log-Polar transformed before it is convolved with 

Gabor wavelets. This technique is supposed to be more robust against the variance of 
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scale and rotation. In this system, facial feature points are located manually and the 

coordinates are Log-Polar transformed as well. 

Wu et al. (Wu, Yoshida Y., & Shioyama, 2002) used both colour and edge information 

to extract facial organ regions, feature points are then detected by applying the SUSAN 

corner detector. 12 Gabor wavelets with tuned parameters are designed and used for 

both feature point location and feature extraction. Face structure and intensity were also 

used by Jiao et al. (2002) to locate facial features, e.g. eyes and mouth. 

 

Figure 3-11  Flowchart of variable feature points location (Kepenekci, 
2001) 

 
 
Instead of using the pre-defined facial features such as eyes, nose and mouth, some 

researchers have proposed to locate feature points in the face images which contain 

interesting information (Kepenekci, 2001; Hjelmas, 2000). These points are not 

necessarily specific feature points, but they are usually positioned around facial features. 

Hjelmas applied a family of 24 Gabor wavelets to the face image and the magnitudes of 

the convolution results at each location in the image are summed to result in the filtered 

image. The centre area of the face is emphasized by Gaussian weighting and a maxima 
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selecting algorithm is used to locate the feature points with useful information. Similar 

to the method in (Hjelmas, 2000), points with high-energized Gabor wavelet response 

are found by searching the pixels in a sliding window (Kepenekci, 2001). 40 Gabor 

wavelets are convolved with the face image and the searching process is applied to each 

of the 40 resultant images. The number of feature points and their locations vary for 

different face images. 

3.2.1.3 Face Similarity Measures and Recognition 
Once a face has been represented by a set of Gabor jets extracted from located feature 

points, face recognition is a trivial step. For graph matching based methods, the identity 

of a test image is determined by the statistics of graph similarity values between test 

graphs and all model graphs in (Lades et al., 1993). The similarity function of two facial 

images is simply an average over the similarities between pairs of corresponding jets in 

(Wiskott et al., 1997) and (Liao et al., 2000). After comparing two strategies for 

combining local jet similarities, (Mu et al., 2003) suggests that a voting strategy should 

be used. The set of Gabor jets extracted at different feature points could also be 

combined into a long feature vector and a simple distance measure could be applied for 

classification (Duc et al., 1999; Wang et al., 2002; Jiao et al., 2002). Three different 

distance measures are tested in (Jiao et al., 2002) and the results suggest that the city 

block distance metric achieves better performance than cosine methods. More 

sophisticated classifiers have also been applied to the combined feature vector for 

recognition, e.g., a Bayesian classifier is adopted in (Wang & Tang, 2003) and 

improvements have been achieved over the system using direct correlation of Gabor 

features for classification. Chung et al. (1999) applied PCA to the extracted Gabor 

response at predefined facial feature points such that local variations can be included to 

overcome the shortcoming of PCA. 
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Both methods, whether the feature points are located by edge detector (Wu et al., 2002) 

or manually (Escobar et al., 2002), use the average of the jet’s similarity as a measure 

of face graphs. The jet similarity function without taking phase into account is used. 

Since the correspondences of jets between two facial images are unknown, only jets 

with similarity above a preset threshold are taken into consideration (Kepenekci, 2001). 

The image similarity of two facial images is calculated as the mean of the similarities of 

the selected jets. To include information of topological similarity, the number of similar 

jets could also be taken into the similarity function. In this case, the overall similarity of 

a test image and a reference image is a weighted sum of the image similarity and the 

number of similar jets.  

3.2.2  Holistic Methods 
While analytic methods utilize the Gabor jets extracted from prominent feature points 

for recognition, holistic methods normally extract features from the whole face image. 

An augmented Gabor feature vector (Liu et al., 2002) can be derived by concatenating 

the Gabor jets at all pixel locations. Since the feature vector consists of all useful 

information extracted from different frequencies, orientations and locations, this 

representation can produce discriminant features for recognition. Similar to typical 

holistic face recognition methods, faces need to be detected and normalized in size and 

orientation prior to recognition. Various works have shown that such Gabor features are 

much more robust than grey-level intensity values against the mis-alignment caused by 

the normalization procedure (Shan, Gao, Chang, Cao, & Yang, 2004).  

A number of researchers have developed different recognition systems based on this 

feature vector. In Liu’s early work (Liu et al., 2002), he applied the Enhanced Fisher 

linear discriminant Model (EFM) on the Gabor feature vector for face recognition, 

results show that the novel Gabor-Fisher Classifier outperformed both PCA and LDA. 
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Since the 40 Gabor filtered images are concatenated together to form a feature vector 

(see Figure 3-12), the dimension is huge, e.g., 163,840 for images with size 64×64. As a 

result, downsampling is first used to reduce the dimension to manageable size. He also 

applied Independent Component Analysis (ICA) (Liu & Wechsler, 2003) on the 

augmented feature vector and developed a so-called Independent Gabor Feature (IGF) 

for recognition. The results show that ICA performs significantly better than eigenfaces. 

One of his recent work (Liu, 2004a) utilized Kernel PCA with fractional power 

polynomial kernel to reduce the dimension of the extracted Gabor feature vector and 

enhance the discriminative power at the same time. However, no direct comparison 

among those proposed approaches is presented. Shen and Bai (Shen et al., 2004b; Shen 

& Bai, 2004c) mapped the augmented Gabor features to kernel space, i.e., the extracted 

Gabor feature is analyzed by Generalized Discriminant Analysis (GDA), or Kernel 

Direct Discriminant Analysis (KDDA) for further feature enhancement. Experimental 

results show that kernel methods achieve much better results than linear methods such 

as PCA and LDA. The work of both Liu (Liu et al., 2002) and Shen (Shen et al., 2004b) 

have shown that Gabor feature based methods can achieve significant improvement 

over those using raw pixels, which proved the discrimination ability of Gabor feature. 

Similar work can also be found in (Fan, Wang, Liu, & Tan, 2004), which applies Null 

LDA (NLDA) to the augmented Gabor feature vector for recognition.  

Once the dimension of extracted feature vector has been reduced and discrimination 

ability enhanced by a certain subspace analysis, simple nearest neighbour classifier and 

Euclidean distance measure can be applied for classification. When the simple 

Euclidean distance measure seems to be enough, research results do suggest that 

different distance measures may affect the performance of system and an appropriate 

distance measure has to be chosen for different subspace analysis approaches (Liu et al., 
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2002; Shen et al., 2004b). More complex classifiers, e.g. Support Vector Machine (Chi, 

Dai, & Zhang, 2004) and Nearest Feature Space (Zhu, Vai, & Mak, 2004), could also 

be applied to the enhanced features for possible improvement of accuracy. However, 

such kinds of system are more complex and the improvement is not guaranteed. 

 

 

 

Figure 3-12  Convolution results of a face image with 40 Gabor wavelets 

 

A quite different method proposed by Ayinde and Yang uses rank correlation of Gabor-

filtered images for face recognition (Ayinde & Yang, 2002). Instead of concatenating 

all of the filtered images together, their method compares the filtered images separately. 

Three Gabor filtered images with selected orientation and kernels, together with the 

original face image and the neighborhood averaging of two filtered images, are used to 

represent the faces. Rank correlation values derived from the six representing images 

are then weighted together to yield the overall matching score of two face images. A 

face is matched to the subject that produces the highest similarity score computed from 

the six rank correlation values. Since the weighting parameters need to be decided from 

the training images, the optimisation process is very length. It is reported in this paper 

that the process takes 35 minutes to complete a run for parameter determination using 

200 training images.  
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3.2.3  Gabor Wavelet Network 
Whilst most of the works in the literature use Gabor wavelets for feature extraction, the 

characteristics and compression ability of wavelets have not been fully explored. 

Reconstruction of the signal from compressed wavelet coefficients is actually one of the 

main reasons that lead to the wide application of wavelets in the real world (Strang & 

Nguyen, 1996; Mallet & Zhong, 1992). Due to the nonorthogonality of Gabor wavelets, 

application of Gabor wavelets in signal reconstruction is very limited. Credits must be 

given to Krueger, who proposed the use of Gabor Wavelet Networks (GWN) for object 

representation and face processing (Kruger et al., 2000; Kruger & Sommer, 2002b; 

Kruger et al., 2002a). Originating from the idea of wavelet networks (Zhang & 

Benveniste, 1992) and the fact that Gabor functions have been widely applied to feature 

extraction, Krueger proposed to use a set of Gabor wavelets T
N ),( 21 ϕϕϕ L=Ψ  with 

associated weights T
Nwww ),( 21 L=W  to represent a face image. The set of Gabor 

wavelets and weights are obtained through optimizing the objective functional of 

reconstruction error 
2

min ∑−=
i

iiwIE ϕ . The two vectors T
N ),( 21 ϕϕϕ L=Ψ  and 

T
Nwww ),( 21 L=W  now define the GWN for representing image I . Given the optimal 

GWN of an image I , it can be reconstructed by a linear combination of the weighted 

wavelets: ΨWT

i
iiwI ==∑ ϕ . The quality of the reconstruction of course depends on the 

number of wavelets used and can be varied to reach desired precision. Figure 3-13 

shows the images reconstructed with 16, 52, 116 and 216 Gabor wavelets (left to right). 

 

Figure 3-13  Original image and the reconstructed image with different 
number of wavelets (Kruger et al., 2002a) 
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Since Gabor wavelets are nonorthogonal bases, linear projections of a new pattern on 

them do not produce the correct weights. As a result, dual Gabor wavelets 

T
N )~,~~(~

21 ϕϕϕ L=Ψ  have to be found to compute the weights: 

( ) TTwithI ΨΨΨΨΨW 1~    ~ −==      (3.3) 

Once the GWN is learned to represent a face image, the representations can be used for 

recognition. Since the number of wavelets and weights may vary for different images, a 

special distance measure has been designed in (Kruger et al., 2002b) for similarity 

measurement. Recently, Zhang et al. (Zhang, Zhang, Huang, & Tian, 2005) proposed 

the concept of the Subject Dependent Gabor Wavelet Network (SDGWN), which is 

learned from all of the training images of the same subject. Instead of representing each 

subject image with different GWNs, their method uses the same GWN model to 

represent all images from the same individual. The SDGWN was then further combined 

with a recent proposed neural network model, named Kernel Associative Memory 

(KAM) for face recognition. The results on FERET, ORL and AR face databases show 

that this method achieved better performance than other popular approaches. 

3.2.4  Performance Evaluation 
With a lot of face databases available, evaluation of different face recognition 

algorithms is always one of the most difficult tasks. Even when the same database is 

used, different papers may use different parts of the database for experiments. Moreover, 

the partitioning of training images, gallery images and test images may also vary. For 

example, the results of (Wiskott et al., 1997) were reported using 250 fa and 250 fb 

images from FERET, while those from (Liu et al., 2002) were reported using 600 

frontal FERET images. In (Lades et al., 1993), the database consists of images captured 

from 87 people. Subjects were asked to keep in standard pose, look 15o to the right and 

make a random expression. The standard images are used as the model and the images 
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with different poses and expressions are used as two probe sets for testing. Accuracy of 

98% was achieved for elastic bunch graph methods when frontal view faces were used 

for testing (Wiskott et al., 1997), where neutral frontal view faces (fa) were used as the 

model gallery and frontal view faces with different facial expression (fb) were used as 

probe images. When half profile faces or profile faces were matched with the frontal 

faces, the accuracy drops significantly. A number of databases are tested in (Zhang, 

Yan, & Lades, 1997) and the results of their algorithm are compared with state of the 

art algorithms such as Eigenface, elastic graph matching and neural network, etc. It is 

claimed that their algorithm is competitive to the popular methods and their algorithm 

achieves higher performance than most of other algorithms when the FERET database 

is concerned. Liu et al. (2002) use 600 FERET frontal face images with different 

illumination and facial expressions from 200 subjects for performance evaluation. The 

eyes of face images were manually detected and used to normalize the scale and 

rotation. Two images of each person were randomly chosen as training images while 

the remaining image was used for testing. 100% accuracy was achieved when the 

dimension of feature was set as 65. A pose estimation module is also developed in (Liu, 

2004a) and the algorithm is tested using the CMU PIE database where faces with 

different poses are available. The accuracy of 96% reported in (Ayinde et al., 2002) was 

achieved when 9 images of each person in the ORL database were used for training. 

Table 3-1 summarizes the database and recognition rate of different Gabor feature 

based algorithms. All of the recognition rates listed in the table are for frontal view 

faces only, results for half profile and profile faces from FERET database can be found 

in (Wiskott et al., 1997) and (Hjelmas, 2000). Since the performance for methods group 

shifting /deformation (Mu et al., 2003) and weighted EBGM (Duc et al., 1999) are 
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reported with False Acceptance Rate (FAR) and False Rejection Rate (FRR), their 

results are not included in the table. 

Algorithms Test 
Database 

Recognition 
Rate (%) 

DLA (Lades et al., 1993) Own 88 
EBGM (Wiskott et al., 1997) FERET 98 

Liao and Li’s method (Liao et al., 2000) Yale 96.4 
XM2VTS 97.1 Gabor + Bayesian (Wang et al., 2003) 

AR 93.3 
Own 93.3 

Elastic Graph 
Matching 

Based 
Methods 

Face structure based facial feature 
detection (Jiao et al., 2002) ORL 94.5 

Stirling  100.0 
AR  100.0 

ORL 95.3 
Variable facial feature points 

(Kepenekci, 2001) 
FERET 96.3 

Edge/color based facial feature points 
detection (Wu et al., 2002) Own  92.8 

Local 
Methods 

Non-Graph 
Matching 

Based 
Methods 

Log-Polar + Gabor (Escobar et al., 2002) Yale 88.9 
Gabor-Fisher (Liu et al., 2002) FERET 100.0 

FERET 98.5 
Gabor – ICA (Liu et al., 2003) ORL 100 

CMU PIE 95.3 Gabor – Kernel PCA (Liu, 2004a) 
FERET 99.5 
FERET 97.5 Gabor-Kernel (Shen et al., 2004b) ORL 100 

ORL 96.0 

Global 
Methods 

 

Gabor + rank correlation (Ayinde et al., 
2002) UMIST 97.5 

Yale 97.8 
GWN (Kruger et al., 2002b) Mancheste

r 
93.3 

FERET 99.6 
ORL 100 

Gabor 
Wavelet 

Networks 

 

SDGWN + KAM (Zhang et al., 2005) 
AR 96.5 

Table 3-1  List of Gabor wavelet based face recognition algorithms and 
accuracy 

 

A few works in literature have also compared Gabor feature based methods with other 

popular face recognition algorithms. A Dynamic Link Architecture based algorithm is 

evaluated as more robust than eigenface methods and neural network approaches 

(Zhang et al., 1997). A combination of four databases: MIT, ORL, Weizmann and Bern 

were used to evaluate different algorithms. While the performance of the eigenface 
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method deteriorates significantly as lighting variation increases, the elastic matching 

algorithm, on the other hand, is insensitive to lighting, face poses, and expression 

variations and therefore is more versatile. An accuracy of 93% was reported for the 

DLA algorithm, which is much higher than that of Eigenface methods (66%). Kalocsai 

et al. (Kalocsai, Zhao, & Elagin, 1998) attempt to compare the performance of machine 

face recognition systems with that of humans: 64 volunteers performed a sequential 

face matching task and their error rate and reaction time was recorded as the 

psychophysical data. Two face recognition models, the DLA and PCA-LDA models 

were also applied to the same image test set and the results were compared 

quantitatively and qualitatively. The analysis shows that both models are correlated to 

human performance, however, the DLA model seems to capture human performance 

better than PCA-LDA model. 

Several large databases and evaluation protocols have also been available in literature 

such that different algorithms can be compared in the same framework. In 1996 and 

1997, the FERET evaluation methodology and benchmark were designed to evaluate 

state of the art face recognition algorithms (Phillips et al., 2000). Different test sets 

were designed in the evaluation to test the robustness of face recognition methods 

against variance caused by various expressions, illuminations and capture times.  A 

number of systems such as PCA, PCA + LDA, neural network and Bayesian methods 

were evaluated and the results show that EBGM achieved the top performance. To 

make the testing be as closely as possible with real authentication applications, the 

BANCA database (Baillere & Bengio, 2003; Messer et al., 2004) has also been released 

recently to replace the XM2VT database (Messer, Matas, Kittler, Luettin, & Maitre, 

1999) for evaluation of face verification algorithms. Organized by the University of 

Surrey (UK), more than 10 research institutes participated in the face verification 
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competition (FVC2004), which was based on the BANCA database. Several protocols 

were designed in this competition to test the robustness of algorithms against variance 

of image quality, face poses and illumination. The results show that two methods using 

Gabor wavelets for feature extraction demonstrated the top performance (Messer et al., 

2004). Based on the comparison of the Gabor feature based methods with state of the 

art algorithms and the results of FERET evaluation and FVC2004, we believe that 

Gabor wavelets might be the best choice to extract features for face recognition. The 

features could be extracted either locally or globally, and then different classification 

approaches can be applied. 

3.2.5  Complexity of Gabor Feature Based Methods 
Despite the advantages of Gabor wavelet based algorithms in recognizing face images 

with different illumination, pose and expression, they require high computational efforts. 

Even when a parallel computer system was used, it was reported in (Lades et al., 1993) 

that the convolution of a 128×128 pixel image with 40 Gabor wavelets took about 7 

seconds. When 23 transputers were used, the comparison of an image to a stored face 

model took 2 to 5 seconds, while the identification of a probe face in a database of 87 

people took about 25 seconds. For the elastic bunch graph matching algorithm, the 

location of face, detection of facial feature points and matching with FGB together take 

less than 30 seconds on a SPARC station 10-512 (Wiskott et al., 1997). Since fewer 

graph nodes are used and the similarity of graphs is simply an average over the 

similarities between pairs of corresponding jets, the comparison of an input face against 

a database of 250 people took less than 1 second. As a result, the main computational 

loads for graph matching based analytic methods are from the process of the 

convolution of the image with the family of Gabor wavelets, and the elastic graph 

matching step. Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) 
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can be used to speed up the convolution process, i.e. both Gabor wavelets and the image 

are transformed to frequency domain using FFT and the product is then transformed 

back to spatial domain using IFFT. The whole convolution process can thus be 

completed within 2 seconds for images with size 128×128 on a Pentium 4 1.8G HZ PC. 

However, the 2 stage elastic graph matching process remains a time consuming step. A 

natural way is to replace part of, or the whole graph matching process with a faster 

method implementing similar function.  

Jiao et al. (2002) replaced the rigid matching step with a structure knowledge and grey 

intensity information based facial features location process. Once the features are 

located, the position of the bunch graph is initialized and the elastic deformation step is 

then used for feature position refining and adjusting. However, the time saved 

compared to the standard elastic graph matching process is not reported. Duc et al. 

(1999) proposed a coarse to fine rigid graph matching method  to speed up the 1st stage 

process, which is based on a Gaussian pyramid structure. They also tested the 

significance of the elastic step by simply dropping them, which results in 3% increase 

in classification error. The performance drop due to the elimination of the deform step 

is not significant and can be compensated by other enhancements, e.g. weighting of the 

graph nodes. The whole elastic graph matching process could also be replaced by a 

robust facial feature location process. In (Wu et al., 2002), once the image has been 

preprocessed using Gabor wavelets, facial feature points are detected using color, edge, 

Gabor features and corner information, which only takes about 0.15 seconds. When 12 

purposely designed Gabor wavelets are applied for facial feature point extraction, it is 

reported that the processing time of the Gabor transformation takes about 3 seconds 

with a 533MHz Celeron processor. The processing time could have been further 
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reduced with a more powerful PC. However, the feature point location algorithm itself 

has to be robust against the variation of illumination, pose and expression. 

 Similarly, the computationally intensive convolution processes for Gabor feature based 

holistic methods could also be speed up by using FFT and IFFT. However, the 

dimension of the extracted Gabor feature is incredibly huge, e.g. 655,360 for an image 

with size 128×128 when 40 wavelets are used. Although downsampling could be used 

to reduce the feature dimension to a certain magnitude, the dimension after 

downsampling is still very high, e.g. 16,384 with a downsampling rate of 40 (Shen et al., 

2004b). As a result, high memory capacity is required to save the features of face 

templates. In addition, both the training and application of classifiers using such high 

dimensional features would be very time consuming. The Gabor feature representation 

of a face image is substantially compressed when a GWN is used. 52 wavelets have 

been shown to be sufficient for real time pose estimation and face tracking (Kruger et 

al., 2002b). However, the GWN optimizing process given an image requires a high 

computational cost. It was reported in (Kruger et al., 2002b) that it takes about 30 

seconds on a 750-MHz processor to optimize a GWN with 16 wavelets, even when a 

coarse-to-fine strategy has been adopted. 

3.2.6  Optimization of Gabor Wavelets for Feature Extraction 
As described in the last section, a number of methods have been proposed to reduce the 

computational complexity of Gabor feature extraction, e.g. FFT or using alternative 

facial feature location approaches, etc. Some researchers have also tried to optimize the 

Gabor representations by using a feature selection scheme. The dimension of Gabor 

features could thus be reduced and the feature will be more robust against the influence 

of noise. These optimization methods can be mainly classified into the following 

categories: 
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3.2.6.1 Optimization of Locations 
A local linear discrimination criterion has been developed in (Duc et al., 1999) to 

measure the importance of different nodes on the rectangular graph representing face 

images. By using only the Gabor jets located at significant nodes, not only is the feature 

dimension reduced, but the classification performance is also improved. The 

discrimination criterion is similar to the Fisher measure (Fisher, 1936) such that the 

variance between samples of the same individual is minimized. Another interesting 

work models the feature location optimization objective as a subset selection problem 

(Gokberk et al., 2003). They tested three different Gabor jet representation schemes: a) 

rectangular graph with sparse nodes; b) face adapted graph with nodes located at 

prominent facial features only, e.g. eye corners, mouth corners, etc. c) the whole 

convolution result including all pixels in the image. Different feature selection methods 

such as best individual feature (BIF), sequential forward selection (SFS), sequential 

float forward search (SFFS) and genetic algorithm (GA) were tested and the results 

show that GA with representation scheme c) achieved the best performance. One can 

observe that most of the significant jets are located at the periphery of facial features. 

However, the results do suggest that the best locations to represent face images using 

Gabor jets may not necessarily be exactly at the facial features. PCA is performed on 

the augmented feature vectors in (Liu, Lam, & Shen, 2004). They argue that the 

summation of the eigenvectors at a particular position represents the corresponding 

variations among training images and thus reflects the corresponding importance in 

distinguishing human faces. Each pixel in the image is then classified as either a “key 

point” or “assistant point” based on this criterion. Different sampling intervals are 

adopted on the key and assistant points and a Gabor feature vector of lower dimension 

can thus be generated. LDA is finally applied to the resultant feature vector for face 
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recognition. See Figure 3-14 for the feature locations selected by different algorithms. 

As can be seen from the figure, most of the significant locations are around facial 

features, e.g. eyes, nose and mouth etc.  

    
              (a)     (b)     (c) 

Figure 3-14  Significant locations selected by different algorithms: (a) a 
local discrimination criterion ranked jets location, significances are 

proportional to the radii of the circles; (b) the 15 most important locations 
selected by GA; (c)2×2 sampling for key points while 4×4 sampling for 

assistant points 

3.2.6.2 Optimization of Gabor wavelets 
Instead of optimizing the locations to extract jets for face representation, a few works 

have tried to optimize the Gabor wavelet basis used for feature extraction. Wang and Qi 

(Wang et al., 2002) applied GA to select the optimized Gabor wavelet basis for feature 

extraction. 34 easily identifiable landmarks, located manually on each image, are 

selected to represent faces. A set of Gabor wavelets with 4 scales and 6 orientations is 

then designed as candidates and the aim of the GA is to then select the optimal subset as 

a basis for face representation. To reduce the computation burden on the GA, they also 

proposed to use information complexity as a fitness measure of the chromosome. Face 

recognition is then performed based on the 4 optimal basis selected by GA and 

substantial improvements over the eigenface method have been observed. 

In summary, most of the works available in literature either select locations where a 

fixed set of Gabor wavelets are applied, or optimize the wavelet basis to be convolved 

at a fixed set of feature points. Since different parts of natural objects usually display 
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various local characteristics, an improved method should apply the optimal wavelets at 

the most appropriate locations for feature extraction. 

3.3 3D Face Recognition Methods 
With most of the 2D recognition methods focusing on frontal view face images only, 

3D models have been adopted to recognize faces with any pose. One of the 

representative works using a 3D model is described in (Romdhani, Blanz, & Vetter, 

2002). This work performs face recognition in an analysis-by-synthesis fashion. The 

algorithm uses linear equations to recover the shape and texture parameters irrespective 

of pose and lighting conditions of the face image. Those parameters are then used for 

recognition. However, the model fitting process takes quite long time, e.g., 8 minutes 

on a Pentium III 800 MHz PC. Similar work can also be found in (Zhao & Chellapa, 

2000; Lee & Ranganath, 2003). In these works, a 3D face model was usually used to 

synthesize images with different illumination and poses from a frontal face image, 2D 

techniques are then applied to the synthesized images for recognition. 

With the development of 3D capture systems, face recognition using 3D facial data is 

also attracting much attention. (Beumier & Acheroy, 2000) developed both surface 

matching and central/lateral profiles for recognition, the results show that the two 

methods give the same level of performance.  Other techniques used for 3D face 

recognition are Extended Gaussian Image (EGI) (Tanaka, Ikeda, & Chiaki, 1998) and 

point signature (Chua, Han, & Ho, 2000). Some works also applied 2D techniques to 

3D range data for recognition, e.g., 3D Eigenfaces (Hesher & Erlebacher, 2002). In 

addition to using 3D data only, multi-modal 3D+2D face recognition has also been 

proposed (Wang, Chua, & Ho, 2002). In this work, Gabor wavelet responses in 2D and 

point signatures in 3D are integrated to an augmented vector for feature representation. 

Classification is done by SVMs.  
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Despite the overall optimism about 3D face data relative to 2D face images, it is pointed 

out by (Bowyer, Chang, & Flynn, 2004) that there are still significant limitations in 

current 3D sensor technology and most current 3D face recognition algorithms do not 

handle expression variations well. While 3D shape is defined independent of 

illumination, it is sensed dependent of illuminations. “Holes” may occur in areas where 

data is missing, even under ideal illuminations, see Figure 3-15 for the example. 3D 

depth resolution also needs to be improved to benefit the recognition algorithms. All of 

these limitations suggest that the optimism sometimes expressed for 3D face 

recognition is still somewhat premature (Bowyer et al., 2004). Thus the appropriate 

issue may not be 3D versus 2D, but instead the best method to combine 3D and 2D. 

 

Figure 3-15  Example 2D intensity image, 3D range image and sample 
“Hole” in sensed 3D data (Bowyer et al., 2004) 

3.4 Summary 
A detailed survey of 2D face recognition algorithms and particularly, Gabor feature 

based methods has been given in this chapter. 3D face recognition approaches are also 

briefly described. The short survey on 3D approaches shows that 3D technologies are 

still at the initial stages due to a number of limitations. Texture, appearance, 

geometrical features etc. 2D information will continue to play important roles in face 

recognition. 2D methods can be basically classified into three categories: analytic, 

holistic and hybrid. While the analytic methods extract feature from prominent facial 

feature points, the holistic methods extract feature from the whole face pattern. Due to 

the robustness against complex distortions caused by various variations in illumination, 
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facial expressions and poses, Gabor wavelets seems to be promising basis to extract 

local features for face recognition, for several reasons: 

• Biological motivation: the shapes of Gabor wavelets are similar to the receptive 

fields of simple cells in the primary visual cortex (Daugman, 1985), 

• mathematical motivation: the Gabor wavelets are optimal for measuring local 

spatial frequencies (Kruger et al., 2002a; Kruger et al., 2002b), and 

• empirical motivation: they have been found to yield significantly better 

performance than other methods in some performance tests (Zhang et al., 1997) 

(Kalocsai et al., 1998), FERET evaluation (Phillips et al., 2000) and FVC2004 

competition (Messer et al., 2004).  

Similar to general 2D face recognition algorithms, Gabor wavelet based approaches are 

also categorized as analytic and holistic methods. When elastic graph matching based 

analytic methods represent face images with different graph structures, the elastic 

matching process to locate graph nodes for a face image is however, very time 

consuming. To replace such a complex process, some researchers locate facial features 

by edges, colours etc. such that Gabor features can be extracted from those fiducial 

points for recognition. The location algorithm itself has to be robust against distortions 

caused by illumination, pose and expression. The success of Gabor feature based 

holistic methods relies on an augmented vector extracted from the whole face image, 

which is usually with huge dimension, e.g. 655,360 for image with size 128×128 when 

40 wavelets are used. The feature thus requires high memory cost and could add high 

computation cost to the classifier as well. As a result, the research presented in this 

thesis will focus on application of Gabor wavelets for face recognition, and on 

developing methods to optimize the Gabor feature extraction process for performance 

improvement and computation/memory cost reduction. 
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Chapter 4 Gabor Features and Kernel Subspace Analysis for 
Face Identification 

 

The detailed review on the background of Gabor wavelets has suggested the robustness 

of such mathematical tools for feature extraction. Once robust features are extracted, 

subspace analysis could be applied for further class separability enhancement and 

feature dimension reduction. Due to the adoption of kernel methods, non-linear kernel 

subspace analysis, e.g. Kernel Principal Component Analysis (KPCA) and Generalized 

Discriminant Analysis (GDA), might have substantial advantages over linear subspace 

techniques such as Principal Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA). This chapter presents work that utilises Gabor features and kernel 

subspace analysis for face identification. A set of 40 Gabor wavelets is used to extract 

robust features, which are then subjected to KPCA or GDA to handle non-linear 

variations. Thereafter, different distance measures are evaluated and the nearest 

neighbour classifier is used for recognition. 
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4.1 The Methodology 

4.1.1  System Architecture 
Figure 4-1 shows a flow chart demonstrating the use of Gabor features and kernel 

subspace analysis for face recognition. Initially a set of Gabor wavelets are used to 

extract appropriate features, this process is detailed in the next section. The Gabor 

features extracted from a set of training images are then used to learn the kernel 

subspace, which is represented by the projection matrix W . To identify a person, Gabor 

features of the face image are extracted, concatenated into a vector, projected to the 

learned kernel subspace and finally compared with the projections of training (gallery) 

images in the database. After comparison using a distance measure (such as Euclidean 

distance) the person is identified as the one whose image produces the smallest distance. 

Gabor Feature 
Extraction 

Kernel Subspace 
Projection 

KNN 
Classifier 

Projection Matrix 

ID DownSample 

 

Figure 4-1  System architecture 

4.1.2 Gabor Feature Extraction 
As described in chapter 3, a Gabor wavelet is determined by the following parameters: 

the central frequency f , the orientation θ  and the ratio between frequency and the 

sharpness of Gaussian axis ηγ , . When the values of γ  and η  are normally fixed, a set 

of Gabor wavelets with different frequency and orientations should be designed to 

extract discriminant Gabor features. Most of the works in face recognition follow from 

the strategies proposed in (Lades et al., 1993; Wiskott et al., 1997), i.e., 
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size of the Gaussian envelope monotonically decreases with the value for the central 

frequency. The higher the central frequency of the Gabor sinusoidal carrier, the smaller 

the area the Gaussian envelop will cover in spatial domain. This is reasonable since the 

high frequency signal changes faster. According to the Nyquist sampling theory, a 

signal containing frequencies higher than half of the sampling frequency cannot be 

reconstructed completely. Therefore, the upper limit frequency for a 2D image is 0.5 

cycles/pixel, while the lower limit is 0. However, for face images the actually useful 

band is much narrower, 25.0max =F  cycles/pixel has been proven to be a reasonable 

choice (Lades et al., 1993). A Gabor wavelet with parameters ),,,( ηγθvuf  can now be 
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Given a bank of 40 Gabor wavelets, ),,({ , yxvuϕ  }7,...0,4,...,0 == vu , image features at 

different locations, frequencies and orientations can be extracted by convolving the 

image ),( yxI with the wavelets: 

),(),(),( ,, yxyxIyxO vuvu
I ϕ∗=      (4.2) 

Figure 4-2 shows the 40 Gabor wavelets and their representation in the frequency 

domain. As can be seen, the set of wavelets is tuned to a wide range of scales 

(frequencies) and orientations. The orientations of Gabor wavelet shown in the figure 

vary along the horizontal axis, while their scales vary in the vertical axis. The image in 

the 2nd row shows the spectrum of the 40 wavelets in frequency domain, with each blob 

representing the energy of a wavelet. To extract features at these different scale and 



Gabor Features and Kernel Subspace Analysis for Face Identification 

71 

orientation levels the resultant Gabor feature set thus consists of convolution results of 

an input image ),( yxI  with all of the 40 Gabor wavelets: 

}7,...,0{},4,...,0{:),({ , ∈∈= vuyxOS I
vu     (4.3) 

 

 

Figure 4-2  The 40 Gabor wavelets in the spatial and frequency domain 

 

 

  

 

 

Figure 4-3  Convolution result  - (magnitude and real part) of an image 
with 40 Gabor wavelets 
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Figure 4-3 shows the magnitude and real parts of Gabor representations of a face image 

at 5 scales and 8 orientations. A series of row vectors I
vu ,O could be converted out of 

),(, yxO I
vu  by concatenating its rows or columns, which are then concatenated together to 

generate a discriminative Gabor feature vector: 

)   ()( 7,41,00,0
IIIIG OOOO L==      (4.4) 

As an example take an image with size 128×128, the convolution result will give 

128×128×5×8=655,360 features.  

4.1.3  DownSampling and Kernel Subspace Analysis 
Due to the extremely high dimension of the extracted Gabor features, the computational 

cost associated with learning the subspace projection matrix is very high. Though the 

feature dimension does not affect the size of the kernel matrix it does increase the 

computational cost of the dot product of the two data samples. As suggested in (Liu et 

al., 2002), the Gaussian pyramid downsampling is used here for feature dimension 

reduction. The experiments of varying downsampling rate show that recognition rate 

drops drastically when the rate is larger than 64. However, the performance is actually 

very similar when the downsampling rate is less than 64. Considering both computation 

cost and system performance, the downsampling rate is set as 16 throughout this work. 

Take an image with size 128×128 for example, the dimension of Gabor features can 

now be reduced to 128×128×5×8/16=40,960. 

Details of kernel subspace analysis have been discussed in chapter 3 where PCA and 

LDA are performed in the high dimensional feature space. By using the kernel 

technique the dot product of two data vectors in the mapped feature space can be easily 

computed from the kernel function. The KPCA and GDA subspace can thus be learned 

without knowledge of the mapping function. Due to its wide application in the radial 
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basis neural networks and Support Vector Machines the Gaussian kernel is used in this 

work: 
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yxyxk
2

exp),(      (4.5) 

  

Figure 4-4  Sample images from the UMIST database 

 
To give some initial ideas about the performance of kernel and linear subspace 

techniques, the ability of PCA, LDA, KPCA and GDA to separate data from different 

classes is considered first. In order to include non-linear variation within the sample set 

of face images the UMIST database (Granham & Allison, 1998) is used in this test. 128 

face samples from 4 people (32 face images per person) are randomly selected. The 

database covers a range of poses from half profile to frontal views, see Figure 4-4 for 

the samples. Although the number of subjects is small in this example the variations of 

face images, even for the same person, are quite large. Due to the substantial pose 

variation the difference between face images of the same person might be larger than 

that due to the subject identity and thus the classification problem presented here is not 

a trivial one. The pixel values of the 128 training samples are directly used as features 
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and analyzed by PCA, LDA, KPCA and GDA respectively. The corresponding 

subspaces are constructed using the resultant eigenvectors. After that, the samples are 

projected onto the first two eigenvectors extracted by PCA, LDA, KPCA and GDA 

respectively. Figure 4-5 shows the distribution of the face samples in these subspaces 

after projection. In this example, the samples projected by LDA and GDA are well 

separated. The faces from the same person are projected to the same point by the GDA 

methods. This figure provides an example of better performance of LDA and GDA over 

PCA and KPCA. The discrimination ability of GDA is also proved in the experiments: 

GDA performs better than PCA, KPCA, and LDA when the FERET and ORL database 

are used for testing. The experimental results will be presented in detail in the following 

section. 

 

 

Figure 4-5  Distribution of face samples in PCA, LDA, KPCA and GDA 
subspaces 
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Figure 4-6  Energy of the eigenvalues in PCA, LDA, KPCA and GDA 
subspaces 

 
Since the eigenvalues associated with learned projections (eigenvectors) might give 

important information to the discriminative ability of the subspace, we also show the 

energy of the eigenvalues for PCA, LDA, KPCA and GDA in Figure 4-6. Given a set of 

eigenvalues { }mii ,,2,1, L=λ , the energy for iλ  is defined as ∑=

i
i

i
ie

λ
λ . The maximum 

dimension of LDA and GDA is decided by 1−C , where C  is the number of individuals 

in the training set. As a result, while the energy for 10 eigenvalues are shown for PCA 

and KPCA, the energy for only 3 eigenvalues are shown for LDA and GDA. As shown 

in this figure, the variations of the eigenvalues of PCA and KPCA are quite similar in 

this example, which explains their similar classification performance. The eigenvalues 

shown for GDA are defined in the equation (A.4) in the appendix, which interestingly 

show that the first 3 eigenvalues are exactly the same. It seems that the 3 projections of 

GDA are equally important in this example. 
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4.1.4  Distance Measure and Classification  
Given a set of training samples },...,1,{ Mixi = , a kernel function ),( yxk  and a subspace 

projection matrix W  with dimension MLLM <<× , , a L  dimensional feature y can be 

derived from the Gabor feature vector x  extracted from a test face image by Wky x= , 

)],( ... ),( ),([ 21 Mxxkxxkxxk=xk . As described below, three different distance measures 

MCE ddd ,, are used in our experiments to calculate the distance between two sample 

projections 1y and 2y : 

Euclidean Distance (Eu): 

)()(),( 212121 yyyyyyd T
E −−=      (4.6) 

Mahalanobis Distance (Ma): 

)()(),( 21
1

2121 yyyyyyd T
M −Σ−= −     (4.7) 

Normalized Correlation (Nc): 

21
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yy
yy

yyd
T

C =       (4.8) 

where Σ  is the covariance matrix calculated from the projected training samples, and ⋅  

denotes the norm operator. The simple nearest neighbour classifier is used in our 

experiments for classification, i.e., the person is identified as the closest class to the 

input image: 

),(minarg
1

*
i
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yydi

≤≤
=       (4.9) 

where M  is the number of sample projections in the database. 

4.2 Experimental Results 

4.2.1   The Datasets 
Now the performance of the Gabor feature and kernel subspace based methods are 

analyzed using two databases: the Face Recognition Technology (FERET) database 
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(Phillips et al., 2000) and the Olivetti Research Laboratory (ORL) database (The AT&T 

Lab Cambridge, 2002). The FERET database is associated with a testing procedure that 

is intended to evaluate face recognition systems. The facial images were collected in 15 

sessions between August 1993 and July 1996. There are 14,126 images from 1,199 

individuals included in the FERET database, which is divided into development and 

sequestered portions for evaluation. Due to the complexity of the Gabor feature based 

method, only a subset of the FERET database is used for testing in this chapter. 

However, with the improvements proposed in chapter 7, experimental results on the full 

FERET database according to the associated evaluation protocol will be given there. 

The ORL database contains face images taken between April 1992 and April 1994 at 

the University of Cambridge, UK. There are 400 images from 40 individuals. 

The proposed method will first be tested using a subset of the FERET database, where 

variations in illumination and facial expression are available. Different distance 

measures for the Gabor + KPCA and Gabor + GDA methods will be evaluated and 

compared with the linear subspace techniques, i.e. Gabor + PCA and Gabor + LDA. 

The approach will also be compared with those using raw pixel values as features and 

state of the art algorithms in literature. Following the test on the FERET database, the 

proposed method will be further evaluated using the ORL database, where face images 

are captured with varied poses and scales. The performance will also be compared with 

that of state of the art techniques. 

4.2.2  Performance Evaluation Using The FERET Database 
600 frontal face images corresponding to 200 subjects are extracted from the FERET 

database for the experiments. All the subjects are in an upright, frontal position, with 

tolerance for some tilting and rotation of up to 10 degrees. The 600 face images were 

acquired under varying illumination conditions and facial expressions. Each subject has 
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three images of size 256×384 with 256 gray levels. The following procedures are 

applied to normalize the face images prior to the experiments: 

• The centres of the eyes of each image are manually marked, each image is 

rotated and scaled to align the centres of the eyes, 

• Each face image is cropped to the size of 128×128 to extract the facial region, 

and normalized to zero mean and unit variance. 

To test the algorithms, two images of each subject are randomly chosen for training, 

while the remaining one is used for testing. Figure 4-7 shows sample images from the 

database. The first two rows are example training images while the third row shows 

example test images. One can see from the figure that all test images consist of 

variations in illumination and expression. 

         

         

         

Figure 4-7  Example training images (top 2 rows) and test images (bottom 
row) of the FERET database 

 

4.2.2.1 Comparison of Different Distance Measures 
Kernel subspace analysis, i.e. KPCA and GDA, are performed on the Gabor feature 

vector extracted from the original face images for face identification. A Gaussian kernel 

is used for KPCA and GDA with 8e4=r , which is determined empirically for the best 

results, i.e. the value of r was chosen to maximize the recognition rate. We observe in 

our experiments that GDA is less sensitive to the value of r  than KPCA. Three 

similarity measures Eu, Ma and Nr are tested and compared. As shown in Figure 4-8, 

normalized correlation achieved the best performance for GDA among the three 
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distance measures, while the difference between Euclidean distance and Mahalanobis 

distance is not large. However, Mahalanobis becomes the best distance measure for 

KPCA, which achieves significantly higher recognition rates than the other two 

measures (see Figure 4-9 for details). Similar results are also observed for the linear 

subspace projection methods, PCA and LDA. It seems that for expressive features 

derived in PCA and KPCA space, the Mahalanobis distance measure is more suitable 

than others; while for discriminating features extracted by LDA and GDA, the 

correlation distance measure seems to be the best choice. 

 

Figure 4-8  Performance of Gabor + GDA using different distance measures 

 

Figure 4-9  Performance of Gabor + KPCA with different distance measures 
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4.2.2.2 Comparison with Linear Subspace Methods 
The comparative results of PCA, LDA, KPCA and GDA on the Gabor feature vector 

with respective optimized distance measures are shown in Figure 4-10. One can see 

from the figure that nonlinear subspace methods are basically performing better than 

their corresponding linear approaches, i.e., KPCA performs better than PCA and GDA 

performs better than LDA. GDA performs the best among these four algorithms. 

Following GDA, LDA performs better than KPCA and PCA. The results match well 

with the data separation test in section 4.1.3. A recognition rate as high as 97.5% is 

achieved for the novel Gabor + GDA approach when the number of components is set 

as 35. When the number of component became bigger than 90, we observed that the 

accuracy of PCA and KPCA converged around 80%, and there is no overlap between 

GDA and PCA, or KPCA. 

 

Figure 4-10  Experimental results of PCA, LDA, KPCA and GDA using Gabor 
features  

4.2.2.3 Comparison with Raw Pixel Features 
To emphasize the discriminating power of the extracted Gabor feature vector, the 

comparative performance of PCA, Gabor + PCA, GDA and Gabor + GDA are also 

shown in Figure 4-11. When the Gabor feature vector is not used, the pixel values of 
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face images are simply concatenated to a feature vector. For example, the length of a 

raw pixel feature vector will be 128×128=16,384 for an image with size 128×128. One 

can see that the adoption of the Gabor feature vector improves the performance of PCA 

and GDA by a large margin. The Gabor + PCA method achieves 20% higher accuracy 

than PCA, while 6% improvement is observed for GDA when Gabor wavelets are 

applied. The improvement for Gabor + LDA and Gabor + KPCA has also been 

observed in the experiments. Please note that the performance of GDA does not always 

improve with the increase of dimension. As the small (trailing) eigenvalues tend to 

capture noise, GDA achieves its maximum performance at dimension 35. 

 

Figure 4-11  Performance improvement of PCA and GDA using Gabor 
features 

4.2.2.4 Comparison with Other Methods 
For further comparison of Gabor feature and GDA based methods with other 

approaches, the results on the same database for Radial Basis Function (RBF) neural 

network and HMM (Nefian et al., 1999; Bai et al., 2003a) based methods are shown in 

Table 4-1. Raw pixel features are used for RBF based methods, i.e. the normalized pixel 

values of the image are input directly to the network for personal identity determination. 

The two layers of the RBF network and HMMs are trained using the same training set, 
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with parameters optimized for best performance. The form of the neural network input 

layer is actually the Gaussian basis function, which is the same as the Gaussian kernel 

function. To make RBF the same structure with kernel subspace analysis, which takes 

inner product of the input data with all of the training samples, the network is designed 

with 400 nodes for the input layer and 200 nodes for the output layer. When DCT-

HMM uses DCT (Discrete Cosine Transform) coefficients for observation vector 

extraction, DWT-HMM adopts DWT (Discrete Wavelet Transform) for more robust 

feature extraction. As shown on Table 4-1, Gabor + GDA performs significantly better 

than the other two methods. 

 Recognition Rate 
RBF Network 75% 
DCT-HMM  32.5% 
DWT-HMM 44.5% 
GDA 90% 
Gabor + GDA 97.5% 

Table 4-1  Comparative results of Gabor + GDA with other methods on part 
of the FERET database 

4.2.3  Performance Evaluation Using the ORL Database 
The ORL database contains 400 images from 40 subjects. All the images were taken 

against a dark homogeneous background with the subjects in an upright, frontal position, 

with tolerance for some tilting and rotation of up to 20 degrees. The variation in scale is 

up to about 10%. Figure 4-12 shows example training images and test images for 2 

people. Each image is resized to 64×64 pixels and normalized to zero mean and unit 

variance.  Both hair and forehead are included in the face images and the poses vary 

from left to right and up to down. To evaluate the algorithms, 5 images of each person 

are randomly chosen for training while the remaining 5 are used for testing.  

PCA, LDA, KPCA and GDA are first performed on the original images for 

identification. As shown in last section, the Mahalanobis distance measure is used for 
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PCA and KPCA, while correlation distance measure is adopted for LDA and GDA. The 

results are tabulated in Table 4-2. As shown in this table, the performance of LDA 

deteriorates when the variation in pose increases the intra person variance significantly, 

thus it will be very difficult to find a projection space such that the within class variance 

is minimized. However, once the data is projected to the high dimensional feature space, 

GDA is still able to find the desired projection matrix. As a result, both PCA and KPCA 

achieve better performance than LDA, while GDA is still the best method for 

recognition. 

 
       (a) 

 
        (b) 

 
(c) 

 
(d) 

Figure 4-12  Example training (a), (c) and test images (b), (d) in the ORL 
database 

 
Method Recognition 

Rate 
PCA 92.0% 
LDA 85.0% 
KPCA 91.5% 
GDA 96.5% 

Table 4-2  Experimental results of PCA, LDA, KPCA and GDA on the ORL 
database 
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In the next series of experiments, PCA, LDA, KPCA and GDA are applied to the Gabor 

features extracted from the images and the results are shown in Table 4-3. The 

performance of LDA was greatly improved and it now achieves better performance than 

PCA and KPCA, which shows the robustness of Gabor features against the variation of 

pose. The novel Gabor + GDA methods achieve 100% accuracy when only 35 

components are used, which is so far the best reported results in literature on the ORL 

database, see Table 4-4 for the results of other methods. Since the number of subjects in 

the ORL database is much smaller than FERET database, all algorithms achieve much 

better performance. The results are taken from the original papers directly, where the 

same testing strategy is used, i.e. half of the images are used for training and the 

remaining images are used for testing. 

Method Recognition Rate 
Gabor + PCA 98.5% 
Gabor + LDA 99.0% 
Gabor + KPCA 98.5% 
Gabor + GDA 100.0% 

Table 4-3  Performance improvements using Gabor features on the ORL 
database 

 
Method Recognition Rate 
RBF  (Er et al., 2002) 98.08% 
DCT-HMM (Bai et al., 2003a) 97.50% 
DWT-HMM (Bai et al., 2003a) 98.50% 

Table 4-4  Results of other methods on the ORL database 

4.3 Conclusions 
A Gabor feature and kernel subspace analysis based face identification method has been 

presented in this chapter. Gabor wavelets are used to extract features from the face 

images, which are then further analyzed by kernel subspace methods, such as, KPCA 

and GDA in order to achieve a highly discriminative feature for recognition. Two 

databases, FERET and ORL, have been used to test the proposed algorithms. While the 

face images extracted from the FERET database were acquired under variable 
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illumination and expressions, the samples in the ORL database represent variations in 

pose and scale. The results show that better performance can be achieved for kernel 

methods than their corresponding linear methods. By testing PCA, LDA, KPCA and 

GDA using the pixel features and the extracted Gabor feature vector respectively, the 

results show that the Gabor feature vector extracted from the filtered images yields a 

significantly more discriminative representation of the face than the original image. 

Comparison among different state of the art techniques show that the Gabor + GDA 

method achieves much more efficiency on both the FERET and ORL databases. As 

high as 97.5% and 100% accuracy have been observed on the two databases. By 

mapping the input features to a high dimensional nonlinear feature space, GDA can not 

only greatly reduce the feature dimension, but also increase the discrimination power of 

the extracted features. Encompassing different scale, locality and orientation 

information, the proposed Gabor + GDA method has bee proven to be very robust 

against variations of illumination, expression, pose and scale. 
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Chapter 5 Generalized Discriminant Analysis of Gabor 
Features for Face Verification 

 
 
 
Whilst face identification aims to identify the personal ID of an input image, 

verification attempts to verify a claimed ID associated with a facial image. As a result, 

while an identification system needs to compare its input with each person in the 

database, verification systems attempt to match an input image with the claimed 

identity only. Based on the matching result, the system either accepts, or rejects the 

claimed ID. Applications of face verification can be found in passport control, E-

business, personal authentication and in many additional areas.  

Due to the successful application of Gabor features and GDA for face identification, 

this chapter presents a face verification system using the same technology. Robust 

Gabor features are first extracted from different face images, projected to the trained 

GDA subspace, and matched using the normalized correlation distance measure. The 

system will be fully tested using the BANCA database according to evaluation 

protocols of the recent Face Verification Competition 2004. As a result, the results are 

directly comparable with other participants. 
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5.1 Face Verification Competition 2004 and The BANCA Database 

5.1.1  The Competition 
With a large number of face recognition algorithms available in the literature, direct 

comparison between them is very difficult since tests are normally performed on 

different data sets. When images are captured with varying sensors, viewing conditions, 

illumination and backgrounds, it is unclear which method is the best. A standard test set 

with evaluation protocols could help alleviate this problem.  

In Aug 2004, a face verification competition was organized by University of Surrey, 

UK. The contest was held in conjunction with the 17th International Conference on 

Pattern Recognition. 13 verification algorithms from 11 academic and commercial 

institutions around the world participated in the competition and the results are reported 

in (Messer et al., 2004). Different verification systems are first tested using face images 

normalized with manually located eye centres, and then assessed using their own 

automatic normalization methods. To make this work directly comparable with other 

participants, the verification methods presented in this chapter will be fully tested using 

exactly the same database and protocol as required by the contest. 

5.1.2  The Database 
Several data sets have been made available in literature over the past few years. While 

the FERET database (Phillips et al., 2000) defines a protocol for face identification 

evaluation, the XM2VTS  database (Messer et al., 1999) can be used to test different 

face verification systems. The XM2VTS database, together with the Lausanne protocol, 

contains 295 subjects captured over 4 sessions. The data was recorded in a controlled 

environment, which makes it unrealistic compared to real world situations such as when 

one makes a transaction at home through a consumer web cam or through an ATM in a 

potentially very wide variety of surroundings. As a result, the BANCA database with 
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associated protocols (Baillere et al., 2003) has been proposed to make the evaluation as 

realistic as possible when real world factors are taken into consideration. 

The BANCA database consists of images from 52 subjects captured in 12 sessions. 10 

face images are captured for each person in each session. The 12 sessions are composed 

of 3 different scenarios: 1) Controlled scenario for sessions 1-4, 2) Degraded scenario 

for sessions 5-8, 3) Adverse scenario for sessions 9-12. A web cam was used in the 

degraded scenario and a high quality camera was used in the controlled and adverse 

scenarios. Images are captured with normal pose in the controlled and degraded 

scenarios, whilst a head down pose is required in the adverse scenario. Figure 5-1 

shows some sample images captured in different scenarios from this database. All of the 

images are colour images with a size of 720×576. Images captured in different 

scenarios: controlled, degraded and adverse are shown on the first, second and third 

rows respectively. 

 

Figure 5-1  Example Images in the BANCA Database 
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5.1.3  Test Protocols 
Seven test protocols, which identify different training and test images, are defined in 

(Baillere et al., 2003) to evaluate verification algorithms. Of these protocols, protocol P 

is the most difficult and challenging one. The protocol specifies the partitioning of the 

database into two disjoint sets: a development set (26 subjects) and an evaluation set 

(26 subjects). For each set, 5 images from each person captured in the 1st session 

(Controlled scenario) are used as training images, while 2730 selected images captured 

in all three scenarios are used for testing. There is no overlap between the training 

images and test images. Of the test images, 1170 images are claimed with the true 

identity (client access) to test FR, while other images are claimed with a false identity 

(impostor access) to test FA. Each set thus consists of 130 training images, with the test 

data consisting of 1170 client accesses and 1560 impostor accesses (Baillere et al., 

2003). 

The performance of verification systems is normally assessed by the False Acceptance 

Rate (FAR) and the False Rejection Rate (FRR). These two measures are directly 

related, i.e. decreasing the number of false rejections will increase the false acceptance 

rate. The point at which FAR=FRR is known as Equal Error Rate (EER). The lower the 

value of the EER, the more reliable the system.  EER can be used to measure the system 

performance where FAR and FRR are equally important, Weighted Error Rate (WER) 

is defined for weighted FAR and FRR as below: 

R
R
+
×+

=
1

FRRFARWER      (5.1) 

where 
FR

FA
C

CR = defines the cost ratio between FAR and FRR, 3 distinct cases can be 

defined to assess verification systems: 

 1.0=R , FA is an order of magnitude less costly than FR 
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 1=R , FA and FR are equally costly 

 10=R , FA is an order of magnitude more harmful than FR 

Obviously, EER is a special case where FA and FR are equally harmful. In order to 

meet the requirements of the contest, the results of Gabor + GDA for the 3 cases are 

reported in this chapter.  

5.2 The Methodology 

5.2.1  System Architecture 
Figure 5-2 shows the flow chart of the described approach using Gabor features and 

GDA analysis for face verification. The GDA subspace, represented by the projection 

matrix W , is first learned from the Gabor features extracted from a set of training 

images. The registered facial images of each person are then projected to the GDA 

subspace and projection coefficients are saved as templates in the database. To verify a 

claimed personal ID, the same process is applied to a given input image and the 

projection is compared with the stored projections of the person to be verified (the 

claimed ID). A decision could be made by a simple thresholding strategy, i.e., if the 

similarity is above or equal to the given threshold, the claim is accepted; otherwise it is 

rejected. 

Gabor Feature 
Extraction 

GDA Subspace 
Projection 

Projection Matrix 

Claimed ID 

DownSample 

Use ID to retrieve 
feature from database 
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e
c
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Figure 5-2  System architecture 
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5.2.2 Similarity Measure and Threshold Determination 
Based on the evidence resulting from extensive experiments for the face identification 

approach, the robustness of the Gabor feature and GDA based methods were fully 

demonstrated in the previous chapter. The work also shows that the Mahalanobis 

distance measure should be used for expressive features such as PCA and KPCA, while 

the correlation distance measure is more appropriate for discriminative features derived 

by LDA and GDA. As a result, the work presented here follows this strategy. Since 

there might be a number of projections registered for a person i , the matching score, or 

confidence iC  of an input image projection y  belongs to the subject is defined as below: 

∑
=

=
iN

j
j

i
i yyd

N
C

1

),(1      (5.2) 

where iN  is the number of projections jy  registered for person i , and ),( jyyd  are 

different distance measures such as Mahalanobis or correlation measures (see chapter 4 

for details). 

To make a decision on whether the claim is accepted, or rejected, a simple thresholding 

scheme can be used. While varying thresholds can be set for different people, a simpler 

approach is to use a global threshold for all of the subjects. A separate training set, or 

development set, can be used to determine the value of threshold(s). Thereafter, the 

performance of the system can be tested using a different test set. Whilst subject 

specific thresholds can achieve smaller error rates on the training or development sets, 

they might be easily over tuned to the training set and as a result, the simpler global 

threshold scheme is used throughout this work. 
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5.3 Experimental Results 

5.3.1  The Dataset 
To make the results of our method directly comparable with other methods in the 

competition, the BANCA database is used for testing in the experiments. Similar to the 

procedure used in chapter 4, all of the images used in the experiments are normalized 

semi-automatically. To achieve spatial normalization, face images are rotated, 

translated and scaled according to the position of the eyes. The images are cropped to a 

standard size of 48×48 and rotated so that the eyes are placed at fixed points. To reduce 

illumination variations, all of the images are initially histogram equalized and then 

shifted and scaled such that the mean values of all pixels equals zero, while the standard 

deviation equals one. While the results are reported on the manually normalized images 

in this chapter, results for the fully automatic verification system will be given in 

chapter 7. Figure 5-3 shows some normalized face images of three subjects acquired in 

different sessions: controlled, degraded and adverse scenarios are shown on the first, 

second and third rows respectively. 

 

Figure 5-3  Normalized face images 

5.3.2  Results on The Development Set 
As defined in the protocol, a development set with 130 training images and 2730 test 

images from 26 subjects is first used to test the system. All the parameters of the system, 

e.g., subspace dimension, RBF kernel and decision threshold etc., are optimized to 
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maximize its performance on the development set. The results for Gabor + GDA are 

listed in Table 5-1, together with the baseline approach, Gabor + PCA. The reason 

behind the choice of PCA as a baseline is that LDA does not perform well when the 

training images are not representative, which is the case here since most of the test 

images are captured under distinct scenarios. Whilst PCA uses the Ma distance measure, 

the Nc distance measure is adopted for the GDA method. A RBF kernel with r=9e4 is 

found to achieve the best results. The ROC curves for the two methods using the 

development set are also shown in Figure 5-4. It can be seen from this figure that the 

Gabor + GDA method performs the best with a 5.96% EER (See Table 5-1). As 

described before, a global threshold is used for an acceptance or rejection decision. 

Method Kernel Threshold FAR FRR EER 
Gabor + PCA N/A 26.00 8.20 8.11 8.15 
Gabor + GDA RBF (r=9e4) 0.22 6.02 5.89 5.96 
Table 5-1  Verification performance on the development set 

 
Figure 5-4  ROC curves on the development set 

5.3.3  Results on The Evaluation Set 
An independent evaluation set was designed in protocol P to test the generalization 

ability of the verification algorithms. The evaluation set consists of the same number of 
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subjects and images as that of the development set. However, the subjects of the 

evaluation set are distinct from those in the development set. With parameters adjusted 

and performance optimized using the development set, the generalization ability of 

algorithms can be further analyzed using the evaluation set. The EER of the Gabor + 

PCA and Gabor + GDA methods on the evaluation set are tabulated in Table 5-2. All of 

these results have been tuned to the development set in the first series of experiments, 

i.e., the decision threshold has been adopted during the development phase. Again, the 

Gabor + GDA method achieves a lower EER than Gabor + PCA. However, the 

advantage of GDA over PCA is not big in this test, which might be caused by the small 

size of the training set and the significant difference between the face images in the 

training set and the test set. 

Method Threshold FAR FRR EER 
Gabor + PCA 26.00 7.17 9.57 8.37 
Gabor + GDA 0.22 7.75 7.43 7.69 

Table 5-2  Verification performance on the evaluation set 

5.3.4  Comparison with Other Methods 
Once the performance of the Gabor + GDA approach has been analyzed using EER, it 

is now compared with all of the participants in FVC2004. Table 5-3 describes these 

results. Using the definition given in last section, the performance is now assessed using 

WER with 3 different values of R. Please note that the entry for “Univ Nottingham” is 

the other method developed by us, which uses Gabor wavelets for feature extraction, 

PCA for feature dimension reduction and Support Vector Machine (SVM) for 

classification. Since an executable exe file is required, we developed another method 

simply because of the insufficient of time available to convert the Gabor + GDA 

method into C implementation. Subject specific SVMs and thresholds are learned for 

each person. Once the parameters are optimized using the development set to achieve 



Generalized Discriminant Analysis of Gabor Features for Face Verification 

95 

the lowest possible WER, the same parameters can then be used when reporting the 

WER on the evaluation face image set. A number of different technologies have also 

been involved in this competition, e.g., PCA and LDA for feature extraction and 

dimension reduction, Hidden Markov Models (HMM) and Gaussian Mixture Models 

(GMM) for probability based classification and Nearest Neighbour (NN) and SVM for 

distance based classification. The IDIAP Fusion system is composed of three 

classification subsystems, i.e. DCT + HMM, DCT + GMM and LDA + Multi-layer 

Perceptron (MLP), the matching score of UCL-Fusion system is a weighted score of 

LDA + correlation distance and SVM. A more detailed description of the different 

approaches can be found in (Messer et al., 2004).  

R=0.1(WER) R=1(WER) R=10(WER)  
Dev Eval Dev. Eval. Dev. Eval. Avg

IDIAP HMM 8.69 8.15 25.53 26.25 8.84 6.24 12.95
IDIAP Fusion 8.15 7.43 21.85 16.88 6.94 6.06 11.22
QUT 7.70 8.53 18.08 16.12 6.50 4.83 10.29
UPV 5.82 6.18 12.29 14.56 5.55 4.96 8.23 
Univ Nottingham 
Gabor + PCA + SVM + 
subject specific thresholds 

1.55 1.77 6.67 7.12 1.32 1.58 3.33 

National Taiwan Univ 7.56 8.22 21.44 27.13 7.42 11.33 13.85
UniS 4.67 7.22 12.46 13.66 4.82 5.10 7.99 
UCL-LDA 8.21 9.49 14.96 16.52 4.8 6.45 10.08
UCL-Fusion 6.05 6.01 12.61 13.84 4.72 4.10 7.80 
NeuroInformatik 32.40 21.80 12.10 16.80 32.80 33.10 23.83
Tsinghua Univ 1.13 0.73 2.61 1.85 1.17 0.84 1.39 
CMU 5.79 4.75 12.44 11.62 6.61 7.45 8.11 
Gabor + GDA + 
global threshold 

3.62 4.59 5.96 7.69 2.51 2.49 4.48 

Table 5-3  Verification results for partially automatic systems  

 
 
The results for the proposed Gabor + GDA method have been appended to the bottom 

of the table. The comparison shows that the two methods developed by us are among 

the top three approaches. The performance of our methods have been shown to be 

significantly better than other participants except the Tsinghua University system, 
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which combines several classifiers for additional performance enhancement. Please 

note that the entry “NeuroInformatik” is based on the famous Elastic Bunch Graph 

Matching method (Wiskott et al., 1997), which extracts Gabor jets on manually defined 

feature points for recognition. Whilst their method achieves the top performance in the 

FERET evaluation (Phillips et al., 2000), it is has been shown not to perform to a high 

level of accuracy within the context of the FVC2004 competition. As specified in their 

description, their method may be more suitable for large and high quality images. Due 

to the adoption of subject specific thresholds, the method using Gabor + PCA + SVM 

achieves lower error rates than the Gabor + GDA approach presented in this chapter. 

However, methods using subject thresholds are more sensitive to the overfitting 

problem. 

5.4 Conclusions  
Following the successful application of Gabor + GDA methods for face identification, 

the same approach has also been used for solving the face verification problem. With 

very minor modifications, the system has proved to work well for verification 

applications. The system is fully tested using the BANCA database, which consists of 

images taken under uncontrolled environmental conditions. As a result, the test mirrors 

conditions found in real world application environments. By using the same database 

and protocol as the FVC2004, the results presented here are directly comparable with 

participants from all over the world. The comparison with other state of the art 

technologies shows that the work presented here is one of the most accurate, advanced 

and robust systems currently under development. With the exception to one institute, 

the method developed by us performs significantly better than other approaches. The 

results prove the robustness of the proposed Gabor feature and GDA subspace, thus the 

extracted features have been shown to be robust against variance of pose, illumination 
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and camera. Whilst the Tsinghua Univ combines several classifiers for performance 

enhancement, the second method developed by us uses subject specific thresholds. As a 

result, the performance of Gabor + GDA method could be further improved by fusing 

additional features and replacing global thresholds with subject specific ones. However, 

subject specific thresholds may cause the system to be over-tuned to the available data 

and thus a different data set may cause the system performance to drop dramatically, 

where as more generalised methods should naturally handle the change in data more 

appropriately. 
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Chapter 6 Optimising Gabor Features for Object Detection and 
Recognition 

 
 
 
As shown in the previous chapters, the Gabor + GDA method has been successfully 

applied to both face identification and verification problems. The proposed approach 

was fully tested using the FERET and BANCA database and excellent performance has 

been observed. However, since a set of 40 Gabor wavelets is used to extract features, 

both computation and memory costs for this method are very high. The costs are mainly 

caused by the following processes: 1) the convolution operation of the image with 40 

wavelets. Though FFT and IFFT can be used to speed up the process, the 40 

convolution operations for a 128×128 image using a P4 1.8GHz PC still takes about 2 

seconds; 2) the huge dimension of extracted features, i.e. 128×128×40 = 655,360 for a 

128×128 image, brings a large memory and computation burden to the classification 

algorithm. A feature selection method, capable of reducing the number of convolutions 

and feature dimension, is required to solve such problems.  

In this chapter, feature selection schemes such as AdaBoost algorithm will be applied 

for Gabor feature selection.  The approach presented here aims to apply the optimal 

Gabor wavelets at the most appropriate locations for feature extraction. To reduce the 

redundancy among AdaBoost selected features, a novel boosting based feature selection 

algorithm --- MutualBoost is also proposed.  
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6.1 AdaBoost Feature Selection and Classifier Learning 

The AdaBoost algorithm is based on the idea that a “strong classifier” can be created by 

linearly combining a number of “weak classifiers” (Freund et al., 1999). For image 

related problems, a weak classifier could be a very simple threshold function jh  

consisting of only one simple feature )(If j  extracted from the image I : 




−

<
=

otherwise                  1
)(        1   jjjj

j

pIfpif
h

λ            (6.1) 

where jλ  is a threshold and jp  is a parity to indicate the direction of the inequality. The 

feature could be the simple Haar-like features as described in (Lienhart et al., 2002), i.e., 

the linear combination of the sum of pixel values of neighbouring rectangles. Various 

features thus differ in any of the following rectangle parameters: location, width, height, 

and orientation α∈{0, 450}. According to the structure of the neighbour rectangles, the 

features can be classified into 14 prototypes, i.e., four edge features, eight line features, 

and two centre-surround features. As shown in Figure 6-1, if one denotes the black and 

white rectangles as 21, rr  and the sum of pixels of a rectangle as )(rS , a Haar-like 

feature given any rectangle structure in an image I  can be denoted as 

)()()( 2211 rSwrSwIf j += , where weights Rww ∈21 , .  

 

Figure 6-1  Prototypes of simple Haar-like features (Lienhart et al., 2002) 
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Details of the algorithm (also see chapter 2) are: T weak classifiers are selected to form 

the final strong classifier over a number of T rounds. In each of the iterations, the space 

of all possible classifiers is searched exhaustively to find the best weak classifier with 

the lowest weighted classification error. The error is then used to update the weights 

such that the wrongly classified samples get their weights increased. The resulting 

strong classifier is a weighted linear combination of all T selected weak classifiers. 

Since each weak classifier is using different features, the most important T features 

have also been selected. Note that AdaBoost algorithm is used here to address two class 

problems and weak classifiers with discrete output only. See AdaBoost.M1 and 

AdaBoost.MH (Freund et al., 1999) for solutions to the multi-class problem and 

RealBoost (Schapire & Singer, 1999) for boosting weak classifiers with real valued 

output.  

6.2 The Proposed MutualBoost Algorithm 
As described in previous section, the AdaBoost algorithm selects weak classifiers and 

adjusts sample weights based on the classification error. The motivation behind the 

weight adjustments is to change the distribution of samples such that the weak classifier 

selected at current round T is “uncorrelated” with the class label in the next round T +1 

(Freund et al., 1999; Aslam, 2000). Intuitively, the learner is thus forced to learn 

something new in the next round T +1. However, a correlation between the class label 

and a certain weak classifier selected at round t, Tt <<0 , might still exist. In this case, 

the weak classifier selected at round T +1 could be similar with the one selected at 

round t. As a result, many features selected by the AdaBoost algorithm might be similar 

(Li & Zhang, 2004).  

The proposed boosting algorithm incorporates the idea of Mutual Information (MI) to 

eliminate those non-effective weak classifiers. Before a new weak classifier is added, 



Optimising Gabor Features for Object Detection and Recognition 

101 

the MI between the new classifier and each of the selected ones is examined to make 

sure that the information carried by the new classifier has not been captured before. 

Given stage T+1 where T weak classifiers L,,{ )2()1( vv hh  })(Tvh  have been selected, the 

function to measure the max MI )( jhR  between a candidate classifier jh  and the 

selected classifiers can be defined as follows: 

TthhIhR tvjtj L,2,1),,(max)( )( ==    (6.2) 

Each weak classifier }1,1{: −→N
j Rh  is now considered as a random variable (r.v.). the 

estimation of MI between two r.v., e.g. ih  and jh  requires information about the 

marginal distribution )( ihp , )( jhp  and the joint probability distribution ),( ji hhp , which 

could be approximated by histogram estimation. However, it is very difficult to 

determine the ideal number of histogram bins. Though a Gaussian distribution could be 

applied as well, many of the features, might not show Gaussianity. To reduce the 

complexity and computation cost of the feature selection process, we hereby focus on 

random variables with binary values only, i.e., }1,1{},1,1{ −∈−∈ ji hh . For binary r.v., the 

probability could be estimated by simply counting the number of possible cases and 

dividing that number with the total number of training samples. For example, the 

possible cases will be )}1,1(),1,1(),1,1(),1,1{( −−−− for the joint probability of two binary r.v. 

),( ji hhp .  

The value of )( jhR can be directly used to decide whether the new classifier is redundant 

or not. The value is compared with a pre-defined Threshold Mutual Information (TMI) 

value, if it is bigger than the TMI, we can deduce that the information carried by the 

classifier has already been captured. Besides MI, the classification error of the weak 

classifier is also taken in to consideration, i.e., only those classifiers with small errors 
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are selected. The classifiers (features) thus selected might be both accurate and non-

redundant. Details of the algorithm are listed in Figure 6-2 as below. 

Given M  training samples Miyx ii ,..,2,1),,( =   
Initialization: weights Miw /1)(1 =  
For t=1, …, T 

1) Train weak learners using distribution tw  
2) Given each candidate weak classifier jh , calculate the 

classification error |)(|)( iij
i

tj yxhiw −=∑ε  

For (;;) 
Choose uh  with lowest error uε from the candidate 
classifiers  
Calculate the max MI )( uhR according to Eq. (6.2) 
If TMIhR u <)(  

The classifier found, th  = uh , tε = uε  
go to 3) 

Else 
Remove uh  from the candidate list 

End If 
End Loop 

3) Calculate 






 −
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4) Update weights: ( )
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t
tt xhsignxH

1

)()( α   

 
Figure 6-2  The proposed MutualBoost Algorithm 

 

6.3  Application to Object Detection 
Classification based object detection methods normally scan the image with a small 

window and make decision using a trained classifier as to whether the processing 

window is the object, or not. As described in section 1, AdaBoost algorithm has been 

successfully applied to select and learn Haar-like feature based classifier for object 

detection. In this system, each weak classifier is designed to make a prediction using 

single Haar feature extracted from image I , i.e. )()()( 2211 rSwrSwIf j += . In the context of 

Gabor feature selection, )(If j  is simply the convolution result of the input image with a 
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certain Gabor wavelet at location ),( yx . Given an image with size HW ×  and a bank of 

VU × Gabor wavelets ),,({ , yxvuϕ  }1,...0,1,...,0 −=−= VvUu , a set of 

VUHWN ×××= Gabor features at different location, frequency and orientation can 

be extracted as below: 

( ) NjIGIf jj ,...,2,1   ,)()( ==     (6.3)   

where )(IG  is the Gabor feature vector extracted from image I using the set of Gabor 

wavelets, i.e. ),,   ()( 1,1,1,00,0
I

VU
I

vu
IIIG −−= OOOO LL . The row vector I

vu ,O is generated by 

concatenating the convolution result ),(, yxI vuϕ∗  of an image I  with a wavelet ),(, yxvuϕ , 

see chapter 4 for details. Each weak classifier is now trained to use a single feature from 

the complete Gabor feature set for classification. When these classifiers are combined, a 

much better performance can be achieved than that of single classifier.  

Based on the importance of classification accuracy, essential Gabor features with 

appropriate frequencies and orientations are selected at different image locations and 

ranked by the AdaBoost algorithm. Once those discriminative Gabor features are 

selected, they can also be input to more complex classifiers, e.g. Support Vector 

Machine (SVM) for classification. The method will be applied to classify face/non-face 

and car/non-car images in the experiments and compared with Haar-like features based 

approaches. The Gabor feature based classifier can be further developed into a fast 

object detection system using a cascade structure as described in (Lienhart et al., 2002; 

Viola et al., 2001). 

6.4 Application to Face Recognition 
Since both algorithms of AdaBoost and the proposed MutualBoost are addressing two 

class problems only, the multi-class face recognition problem has to be reformulated to 

make the algorithms applicable. The Gabor feature difference space is adopted in this 
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work such that a set of training samples can be generated in the two class space. Once 

the set of samples and weak classifiers are available, Adaboost and MutualBoost can be 

applied directly for Gabor feature selection. 

6.4.1.1 The Gabor Feature Difference Space 
Since the feature selection presented here focuses on two class problems only, face 

recognition is formulated as a problem in the difference space (Phillips, 1999), which 

models dissimilarities between two facial images. Two classes, dissimilarities between 

faces of the same person (intra-personal space) and dissimilarities between faces of the 

different people (extra-personal space) are defined. The set CI  (intra-personal 

difference) contains the within class difference, while the set CE  (extra-personal 

difference) gives the dissimilarities among images of different individuals in the 

training set: 

{ }
{ }qpqp

qpqp

IIIGIGCE

IIIGIGCI

~,)()(

~,)()(

/−=

−=
    (6.4) 

where pI  and qI  are the facial images from people p  and q  respectively, and )(⋅G  is 

the Gabor feature extraction operation as defined in last section. Each of the M samples 

in the difference space can now be described as Miggggx Nji ,,2,1], [ 21 LLL == , where 

N is the dimension of extracted Gabor features and ( )
jqpj IGIGg )()( −= . 

6.4.1.2 Training Samples Generation 

For a training set with L facial images captured for each of the D persons, 







2
L

D  

samples could be generated for the intra-personal difference class while 







−




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DL  

samples are available for extra-personal difference class. There are always many more 

extra-personal samples than intra-personal samples for face recognition problems. Take 
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a database with 400 images from 200 subjects for example, 200 intra-personal image 

pairs and 800,79200
2

400
=−







 extra-personal image pairs are available. To achieve a 

balance between the numbers of training samples from the two classes, a random subset 

of the extra-personal samples could be produced. However, the generated subset should 

also be representative of the whole set. To achieve this trade off, the procedure as 

shown in Figure 6-3 is proposed to generate m  extra-personal difference samples using 

VU × Gabor wavelets: instead of using only m  pairs, the method randomly generates m  

samples from VUm ×× extra-personal image pairs. As a result, without increasing the 

number of extra-personal samples to bias the feature selection process, the training 

samples thus generated are more representative. 

For mi L,2,1=  
For 1,1,0 −= Uu L  

For 1,1,0 −= Vv L  
Randomly generate an image pair ( )qp II ,  from different person 
Calculate the Gabor feature difference vu ,Z  corresponding to filter 

),(, yxvuϕ  using the image pair as below:  
=vu ,Z qp I

vu
I

vu ,, OO −  
End 

End 
Concatenate the VU ×  feature differences into an extra-personal sample, 

][ 1,1,1,00,0 −−= VUvuix ZZZZ LL  
End 
 
Output the m  extra-personal Gabor feature difference samples 
{ } 1,),(,),,( 2111 ==== mmm yyyyxyx LL . 

 
Figure 6-3  Extra-personal difference samples generation 

 
 

Including the 







=

2
L

Dl  intra personal difference samples, the training sample generation 

process finally outputs a set of lmM +=  Gabor feature difference samples: 

{ }),(,),,( 11 MM yxyx L . Each sample ] [ 21 Nji ggggx LL=  in the difference space is 
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associated with a binary label: 1−=iy  for an intra-personal difference, while 1=iy  for 

an extra-personal difference. 

6.4.1.3 Weak Classifiers  
Once a set of training samples with class labels (intra-person, or extra-person) 

{ }),(,),,( 11 MM yxyx L  is given, a large number of candidate weak classifiers jh  need to be 

designed for selection. Given a sample ] [ 21 Nji ggggx LL=  in the Gabor feature 

difference space, each weak classifier is now designed to be a simple threshold function 

using single feature, i.e., if the difference is less than a threshold, the prediction is set as 

-1, otherwise it is set as 1.  
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    (6.5) 

Since we are only interested in the selection of features in this application, the threshold 

jλ  is simply determined by the centre of the intra-personal sample mean and extra-

personal sample mean,  
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where m  and l  is the number of extra and intra personal difference samples, 

respectively. The set of candidate weak classifiers are now represented by N  random 

variables with binary values, the MI between a candidate classifier and the selected 

classifiers can be easily calculated and the iterative process of MutualBoost as 

described in Figure 6-2 can be applied thereafter. On the other hand, the AdaBoost 

algorithm can be applied directly to the learned weak classifiers for selection. 

The Gabor features thus selected by AdaBoost or MutualBoost are carrying important 

information about predicting whether the sample is an intra-personal difference, or an 

extra-personal difference. Based on the fact that face recognition is actually to find the 
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most similar match with the least difference, the selected features might be very 

important for recognition as well. 

6.4.1.4 Kernel Enhancement 
Once the most discriminative Gabor features are selected, they could be either used 

directly, or input to some classification system for face recognition. Different 

classification schemes could be used here, e.g., after Principal Component Analysis 

(PCA) or Linear Discriminant Analysis (LDA) is further applied for feature 

enhancement, the nearest neighbour (NN) classifier can be used for classification. In 

previous chapters, kernel subspace methods have been successfully applied to face 

identification and verification and the comparative identification results with linear 

subspace methods have clearly shown their advantage in handling nonlinear data. By 

mapping sample data to a higher dimensional feature space, effectively a nonlinear 

problem defined in the original image space is turned into a linear problem in the 

feature space (Scholkopf et al., 1999). Support Vector Machine (SVM) is another 

successful example of using kernel methods for classification. However, SVMs are 

basically designed for the two class problem.  

Based on the successful application of Generalized Discrimniant Analysis (GDA) for 

face identification and verification in previous chapters, GDA is adopted here for 

further feature enhancement and KNN classification for recognition. The GDA 

subspace is first constructed from the selected Gabor features of training images and 

each image in the gallery set is then projected onto the subspace. To classify an input 

image, the selected Gabor features are extracted and then projected to the GDA 

subspace. The similarity between any two facial images can then be determined by the 

normalized correlation distance of the projected vectors. Details of applying GDA for 

face recognition can be found in chapter 4. 
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6.5 Experimental Results 

6.5.1  Gabor Feature Based Classifier for Object Detection 
The experiments presented here apply the AdaBoost algorithm to learning Gabor 

feature based classifier for object detection, which classify an image of standard size 

(e.g. 20×20 pixels) into either face (car) or non-face (non-car). As a two class problem, 

classification based methods (Rowley, Baluja, & Kanade, 1998; Osuna et al., 1997) 

have been one of the main approaches for object detection. Recent works (Lienhart et 

al., 2002; Viola et al., 2001) successfully built a face detection system with both high 

accuracy and fast speed. The system used the AdaBoost algorithm to select and learn 

Haar-like features based classifier for face detection. Following their framework, the 

experiments will perform two tasks: feature selection and classifier learning. 

6.5.1.1 Data Sets 
Two image sets, a face image set and car image set, are used to test the Gabor feature 

based object detection algorithm. The face image set is provided by Carbonetto 

(Carbonetto, 2001) and contains 4916 images with faces in them and 7872 images 

without faces in them. Figure 6-4 shows some example face and non-face images. All 

of the face images are of size 24×24, and are randomly split into a training set and test 

set containing 2458 positive samples (faces) and 3936 negative samples (non-faces) 

each. The second image set used in the experiments contains 550 images with at least 

one car in them and 500 images that do not contain a car (Agarwal, Awan, & Roth, 

2002). The car image set is also randomly split into a training set and a test set. The 

training set contains 440 car images and 400 non-car images, whilst the remaining 110 

car images and 100 non-car images are included in the test set. Figure 6-5 shows sample 

images from the car image set, which are of size 100×40. 
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Figure 6-4  Images from face image set 

 

    
 

    

Figure 6-5  Images from car image set 

6.5.1.2 Selected Gabor Features 
Given the set of the two classes of training samples with a class label, each sample 

could be represented with 24×24×40 = 23,040 Gabor features obtained by convolving 

40 Gabor wavelets at each pixel location. Each Gabor feature obtained is thus 

associated with an image location and a Gabor wavelet. Once the most significant 

Gabor features to discriminate the two classes are selected by AdaBoost, their 

associated Gabor wavelets can be traced to gain information about the scale and 

orientation distribution of the wavelets. Figure 6-6 shows the distribution for the face 

image set. The scale with index 52,1, L=uu  represent the wavelet with central 

frequency ( )uu
Ff

2
max= It is clear from the bar charts that the high frequency wavelets 

are chosen much more often than low frequency ones, and Gabor wavelets with 

orientation π/2 are preferred for this classification task. The orientation preference 

shows that horizontal features happen more frequently in face images, e.g. eyebrows, 

eyes, and mouth. The first eight Gabor wavelets selected by the AdaBoost algorithm for 

the car image set is also shown in Figure 6-7, which interestingly indicates that tyres are 

very important features for car detection. 
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Figure 6-6  Scale and orientation distribution of filters selected for the face 
image set 

 

    

    

Figure 6-7  First eight selected Gabor wavelets for the car 

6.5.1.3 Classification Performance Evaluation 
The AdaBoost algorithm not only selects the most discriminative Gabor features, but 

also learns a classifier using the selected features. The False Accept Rates (FAR) and 

False Reject Rates (FRR) for the AdaBoost trained classifier, GaborBoost, on the 

training image sets are shown in Figure 6-8. One can observe from the figure that 100 

features are enough for GaborBoost to achieve zero FAR and FRR on the face image 

set, while only 20 features are required for the car image set. The results on the test face 

image set and the test car image set are shown in Figure 6-9. The best face/non-face 

classifier achieves 99.39% classification rate and 1.75% FRR with 150 selected Gabor 

features, while the best car/non-car classifier achieves 100% classification rate and 

1.82% FRR with only 80 features.  

To compare GaborBoost with other methods, the results of two other methods, named 

ExBoost and EABoost on the same face image set are also listed in Table 6-1. ExBoost 

uses the Haar feature set and AdaBoost algorithm to select features and learn classifiers, 

which is identical to the algorithm proposed in (Viola et al., 2001). They also proposed 
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to use a Genetic algorithm to reduce the search space during the boosting procedure, 

and named the algorithm as EABoost. As shown in the table, the GaborBoost algorithm 

outperforms ExBoost and EABoost in terms of both FAR and FRR, while using a fewer 

number of features. The results clearly show the advantages of Gabor features over 

Haar-like features in the context of object detection. 

 
(a)  

 
(b) 

Figure 6-8  FAR and FRR on the training face image set (a) and the 
training car image set (b) 

 
 Algorithm Feature Numbers FAR FRR 

ExBoost 220 0 0 
EABoost 160 0 0 Training Set 
GaborBoost 100 0 0 
ExBoost 227 3.9% 3.5% 
EABoost 163 3.1% 3.2% Test Set 
GaborBoost 150 0.61% 1.75% 

Table 6-1  Comparative classification results on the face image set 
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(a) 

 
(b) 

Figure 6-9  FAR and FRR on the test face image set (a) and the test car 
image set (b) 

6.5.1.4 SVM for Classification 

In the following experiments, SVM is applied on the AdaBoost selected Gabor features 

for classification. The classifier, named as GaborBoostSVM, is trained using the Gabor 

features selected by the AdaBoost algorithm. Face images with the same partition of 

training set and test set are used for training and testing. 150 boosted Gabor features are 

extracted from each sample in the training set, which are then passed to SVM for 

training. The results are shown in Table 6-2 and compared with a SVM trained using 

the whole set of Gabor features with dimension 23,040 (GaborSVM), using the raw 

pixels (RawSVM) and GaborBoost as described above. For RawSVM, the pixel values 
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of each sample are concatenated to a feature vector to train a SVM. A Pentium 4 1.8 

GHz PC and the SVM-Light package (Joachims, 2004) were used in our experiments. 

SVM 
GaborBoostSVM GaborSVM RawSVM 

 Gabor-
Boost Linear RBF Linear RBF Linear RBF 

Feature Dimension 150 150 150 23,040 23,040 576 576 

Number of SVs N/A 233 271 503 N/A 1434 1386 

SVM Training 
Time 

N/A 38s. 75s. 10h. >74h 180s 270s 

FRR (%) 1.75 1.43 1.26 1.10 N/A 10.49 4.96 
FAR (%) 0.61 0.36 0.30 0.18 N/A 3.78 0.97 

Table 6-2  SVM classification results on the face image set 

 

Compared with classifiers utilizing Gabor features, RawSVM achieves the highest FAR 

and FRR, which suggests that Gabor wavelets are a good choice for extracting features 

for classification. However, due to the huge dimension of Gabor features, we did not 

succeed in training GaborSVM using the RBF kernel - the program crashed after 

running for 74 hours, which may be caused by high memory usage and computation 

cost. It also takes about 10 hours to train the GaborSVM with a linear kernel. The 

training time appears to increase exponentially with the number of training samples. In 

addition, the computational cost of convolving an image with 40 Gabor wavelets is very 

high, which makes GaborSVM unsuitable for real time applications. Since the SVM is 

specially suited for binary classification, GaborBoostSVM achieves lower FAR and 

FRR than GaborBoost. Both methods use the same 150 Gabor features selected by the 

AdaBoost algorithm. The training of GaborBoostSVM with a RBF kernel takes less 

than 2 minutes. Only 150 convolution operations using one variable wavelet is 

necessary to extract the selected Gabor features, which makes GaborBoostSVM highly 

effective in terms of memory and computational efficiency. 
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6.5.2  Selecting Gabor Features for Face Recognition 
Based on the discriminative power of Gabor features for pattern classification, the 

experiments presented in this section aim to learn the most significant Gabor features 

for face recognition. By reducing the feature dimension, not only is memory and 

computation cost greatly reduced, the system may also be more robust against the 

inference of noise. As a standard test bed, the FERET database (Phillips et al., 2000) is 

used here to evaluate the performance of selected Gabor features for face recognition. 

The same subset (600 frontal face images corresponding to 200 subjects) used in 

chapter 4 is first used here to compare the performance of different feature selection 

schemes, i.e. AdaBoost and MutualBoost. All of the images are normalized in both size 

(64×64) and orientation according to the eye coordinates. Both the difference between 

selected features and recognition performance will be analyzed. The recognition 

performance using the selected Gabor features will also be compared with the method 

shown in chapter 4, where the whole set of Gabor features before selection is used for 

identification. Once an improved feature selection approach for face recognition is 

identified, it will be applied to the whole FERET database according to the specified 

evaluation protocol for identification. Finally the performance will be compared with 

other state of the art algorithms.  

6.5.2.1 Selected Gabor Features 
The randomly selected 400 face images (2 images for each subject) are first used to 

learn the most important Gabor features for intra-personal and extra-personal face space 

discrimination. As a result, 200 intra-personal face difference samples and 1,600 extra-

personal face difference samples using the method as described in Figure 6-3 are 

randomly generated for feature selection. Figure 6-10 and Figure 6-11 show the first six 

locations of the first 200 Gabor features selected by AdaBoost (AdaGabor) and 
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MutualBoost (MutualGabor) respectively, both are overlapped with a typical face 

image in the database. It is interesting to see that most of the selected Gabor features are 

located around the prominent facial features such as eye brows, eyes, noses and chin, 

which indicates that these regions are more robust against the variance of expression 

and illumination encountered within the database subset. This result is agreeable with 

the fact that the eye and eyebrow regions remain relatively stable when a person’s 

expression changes. Though the first six Gabor wavelets selected by the AdaBoost and 

MutualBoost algorithms are similar, the locations of the 200 features show the 

existence of redundancy among AdaBoost selected features, i.e. many of the features 

are very near, or similar, to each other. The features selected by MutualBoost are more 

widely spread and thus exhibit a lower degree of correlation. 

 
        (a)         (b)   (c)            (d)              (e)             (f)                (g) 
Figure 6-10  First six Gabor features (a)-(f); and the 200 feature points (g) 

selected by AdaBoost 

 

 
        (a)         (b)   (c)            (d)              (e)             (f)                 (g) 
Figure 6-11  First six Gabor features (a)-(f); and the 200 feature points (g) 

selected by MutualBoost 

 
 
Figure 6-12 shows the distribution of MutualBoost selected wavelets in different scales 

and orientations. As shown in this figure, wavelets centred within low frequency bands 

are selected much more frequently than those in high frequency bands. On the other 

hand, the majority of the discriminative Gabor features have an orientation around π/4, 

3π/8, π/2 and 5π/8. It is interesting to compare the two distributions of Gabor wavelets 
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selected for face detection and recognition: while the dominant orientations of the 

selected wavelets are similar for both applications, the dominant frequency bands are 

different – one prefers high frequency information and the other favours lower 

frequencies. This suggests that high frequency features are more important to 

discriminate objects with backgrounds. Since the differences between face images are 

used to select Gabor features for recognition, low frequency features seem to be more 

robust against the distortions caused by expression and illumination variations. 

 

 

Figure 6-12  Distribution of MutualGabor features in scale and orientation 

 
 
To show the existence of redundancy among AdaBoost selected features (weak 

classifiers), the max MI )( jhR for each selected feature is shown in Figure 6-13a. It can 

be observed from the figure that some of the features are highly redundant, e.g. the MI 

of features with numbers 149, 177 and 180 is greater than 0.99. The redundancy among 

selected features increases with the number of features, it is this undesired redundancy 
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that we aim to eliminate or reduce. The MI data for features selected with MutualBoost 

has also been shown in Figure 6-13b (with TMI=0.1). Due to the introduction of TMI, 

all the selected features now show MI values of less than 0.1 and thus one can conclude 

that the features are informative and non-redundant. 

 
 (a)        (b) 

Figure 6-13  MI of features selected by AdaBoost (a); MutualBoost (b) 

6.5.2.2 Algorithm Complexity 
Due to the introduction of mutual information, MutualBoost requires longer training 

time than that required by AdaBoost. However, the only computation cost added to 

AdaBoost is the loop to calculate MI values for redundancy checking, see Figure 6-2 

for details. Table 6-3 shows the Average Number of Loops (ANL) required in each 

iteration and the corresponding TMI. The table shows that the computation burden 

added by the introduction of MI is actually very low (ANL is normally less than 10). As 

a result, the training time required by the proposed algorithm in our experiments is only 

about 0.1 times greater than that of AdaBoost. 

TMI 0.08 0.09 0.10 0.11 0.12 
ANL 8.42 8.07 7.25 5.43 3.25 

Table 6-3  ANL for different TMI 

 
As seen from the table, the higher the value of TMI, the less ANL required, i.e. the 

faster training speed. Actually AdaBoost can be seen as a special case of MutualBoost 
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when the value of TMI is set as 1. In this case, the features, or weak classifiers selected 

by the proposed algorithm will be exactly the same as those chosen by AdaBoost.  

6.5.2.3 Recognition Performance on Subset of the FERET Database 
Once different sets of Gabor features are selected, they can be used either directly, or 

subjected to further analysis for recognition. To compare the performance of different 

feature selection schemes, Both AdaGabor and MutualGabor are first applied directly 

for face recognition, with the resulting performance shown in Figure 6-14. The features 

were tested using 200 images (one for each subject), which are different from the 

training images in both illumination and expression. The normalized correlation 

distance measure and the nearest neighbour classifier are adopted. The performance 

shown in Figure 6-14 proves the advantage of MutualGabor over AdaGabor, i.e. the 

accuracy of MutualGabor is equivalent with, or higher than AdaGabor with any number 

of features. Since the MI values for all of the first 60 features are quite small, 

MutualBoost starts by picking up much the same features as AdaBoost. However, once 

the number of features increases, AdaBoost starts to pick redundant features. The 

improved recognition rate accuracy over AdaBoost caused by the use of features 

selected using MutualBoost shows the usefulness of the techniques in eliminating 

redundancy. The performance drop using 160 MutualGabor features could be caused by 

the variance between test images and training images - some features significant to 

discriminate training images might not be the appropriate ones for test images. A more 

representative training set might alleviate this problem. As shown in the figure, 

MutualGabor achieved as high as 94% recognition rate with 200 features. 

In the next series of experiments, GDA will be performed on the selected Gabor 

features (MutualGabor + GDA) for further enhancement. To show the robustness and 

efficiency of the proposed methods, the performance of GDA on the whole Gabor 
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feature set (Gabor + GDA) is also included for comparison purposes. Downsampling is 

adopted to reduce feature dimension to a certain level, see chapter 4 for details. The 

normalized correlation distance measure and the nearest neighbour classifier were used. 

As described in chapter 4, the maximum dimension of the GDA subspace is determined 

by the number of classes and the number of non-zero eigenvalues of the kernel matrix. 

The maximum dimensions for Gabor + GDA and MutualGabor + GDA in this test are 

110 and 199 respectively. As shown in Figure 6-15, MutualGabor + GDA achieves as 

high as 99.5% accuracy. Since all of the face images in this experiment are normalized 

to a reduced size (64×64) to speed up the feature selection process, the performance 

(97%) of Gabor + GDA is a little bit lower than that reported in chapter 4 (97.5%), 

which was tested on images of size 128×128. The performance improvement of 

MutualGabor + GDA shows that some important Gabor features may have been lost 

during the dowsampling process for Gabor + GDA.  Additionally some of the 

remaining features are redundant. 

 

Figure 6-14  Recognition performance of AdaGabor and MutualGabor 
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Figure 6-15  Recognition performance of enhanced MutualGabor 

 
 
The computation and memory costs of Gabor + GDA and MutualGabor + GDA are also 

listed in Table 6-4. This shows that MutualGabor + GDA incurs significantly less 

computation and memory costs than Gabor + GDA, e.g., the number of convolutions to 

extract Gabor features is reduced from 16,3840 to 200. Although the Fast Fourier 

Transform (FFT) could be used here to circumvent the convolution process, the feature 

extraction process still takes about 1.5 seconds for images with size 64×64 in our C 

implementation whilst the 200 convolutions take less than 4ms. For Gabor + GDA with 

a down-sampling rate of 16, the feature dimension is reduced to 10,240, which is still 

50 times the dimension of MutualGabor + GDA. As a result, MutualGabor + GDA is 

much faster in training and testing. While it takes Gabor + GDA 275 seconds to 

construct the GDA subspace using the 400 training images, it takes MutualGabor + 

GDA only about 6 seconds. MutualGabor + GDA also achieves substantial 

improvements to recognition efficiency - only 4 seconds are required to recognize the 

200 test images. The computation time is recorded in Matlab 6.1, with a P4-1.8GHz PC. 
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With non-redundant and informative Gabor features, MutualGabor + GDA achieves 

better accuracy with significantly less computation than other methods described here.  

 Number of 
Convolutions to 
Extract Gabor 
Features 

Dimension of 
Gabor 
Features before 
GDA 

Training 
Time 

Test 
Time  

Gabor-GDA 16,3840 10,240  275 sec. 263 sec.
MutualGabor -GDA 200 200 6 sec. 4 sec. 

Table 6-4  Comparative computation and memory cost of Gabor + GDA and 
MutualGabor + GDA 

 
 
Having shown in chapter 4 that GDA achieves significantly better performance on the 

whole Gabor feature set (Gabor + GDA) than LDA (Gabor + LDA), the performance of 

LDA on the selected informative Gabor features (MutualGabor + LDA) is also included 

in Figure 6-15 for comparison. As shown in the Figure, the performance of 

MutualGabor + LDA is substantially worse than that of Gabor + GDA and 

MutualGabor + GDA. Only 82% accuracy is achieved when the dimension of LDA 

subspace is set as 60, which is even worse than that of MutualGabor --- application of 

LDA surprisingly deteriorates the performance of MutualGabor. The result suggests 

that when the input features are discriminative enough, LDA analysis may not 

necessarily lead to a more discriminative space. The results also show that the feature 

enhancement ability of GDA is better than LDA. 

6.5.2.4 Recognition Performance on the Full Set of FERET Database 
After showing the comparative results with a state of the art Gabor feature based 

algorithm, the MutualGabor + GDA algorithm is now tested on the whole FERET 

database. According to the evaluation protocol, a gallery of 1196 frontal face images 

and 4 different probe sets are used for testing. The numbers of images in different probe 

sets are listed at Table 6-5, with example images shown in Figure 6-16. Fb and Fc probe 

sets are used for assessment of the effect of facial expression and illumination changes 
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respectively, and there is only a few seconds between the capture of the gallery-probe 

pairs. Dup I and Dup II consist of images taken on different days from their 

corresponding gallery images, and particularly, there is at least one year between the 

acquisition of the probe image in Dup II and the corresponding gallery image. A 

training set consisting of 736 images, is used to select the most informative Gabor 

features and construct the GDA subspace. Note that the same set was released to 

researchers to develop their algorithms during FERET evaluation. As a result, 592 

intra-personal and 2000 extra-personal samples are produced to select 300 Gabor 

features using the sample generation algorithm and information theory. During the 

development phase, the training set is randomly divided into a gallery set with 372 

images and a test set with 364 images to decide the dimension for optimal GDA 

performance. The same parameters developed are used throughout the testing process. 

Probe Set Gallery Probe set size Gallery size Variations 
Fb Fa 1195 1196 Expression 
Fc Fa 194 1196 Illumination and Camera 
Dup I Fa 722 1196 Time gap < 1 week 
Dup II Fa 234 1196 Time gap > 1 year 

Table 6-5  List of different prob sets 

 

 

Figure 6-16  Examples of different probe images 

 
Performance results of the proposed algorithm are shown in Table 6-6, together with 

that of the other main approaches participating in the FERET evaluation (Phillips et al., 

2000), as well as an approach to extract Gabor features from variable feature points for 

recognition (Kepenekci, Tek, & Akar, 2002). The results show that MutualGabor + 
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GDA achieves the best result on all of the test sets. This can be attributed to the 

robustness of the selected Gabor features against variation in expression and capture 

time. Particularly, the performance of the proposed method is significantly better than 

all other methods on the Dup II set. Following the proposed method, the Elastic Bunch 

Graph Matching (EBGM) method, which is based on elastic graph matching, ranked as 

the second performer. However, the method requires intensive computation complexity 

for both Gabor feature extraction and graph matching. It was reported in (Wiskott et al., 

1997) that the elastic graph matching process took 30 seconds on a SPARCstation 10-

512. Compared with the EBGM approach MutualGabor + GDA is far superior in terms 

of both accuracy and computational efficiency. 

Method Fb Fc Dup I Dup II 
PCA 83.4% 18.2% 40.8% 17.0% 
PCA + Bayesian 94.8% 32.0% 57.6% 35.0% 
LDA 96.1% 58.8% 47.2% 20.9% 
Elastic Graph Matching 95.0% 82.0% 59.1% 52.1% 
Variable Gabor Features 
(Kepenekci et al., 2002) 

96.3% 69.6% 58.3% 47.4% 

MutualGabor + GDA 96.7% 85.6% 59.3% 62.4% 
Table 6-6  FERET evaluation results for various face recognition algorithms 

 

6.6 Conclusions  
Two different algorithms: AdaBoost and the proposed MutualBoost have been 

successfully applied for Gabor feature selection in this chapter. The AdaBoost 

algorithm is used to learn Gabor feature based classifiers for object detection. While 

accuracy advantages of Gabor features over Haar-like features are observed using the 

AdaBoost learned classifier, further improvements have been achieved when SVM is 

adopted for classification. Due to the greatly reduced feature dimension, the SVM 

classifier using selected Gabor features achieves a substantial speed advantage over 

systems using the whole Gabor feature set.  Based on its high accuracy, the module can 



Optimising Gabor Features for Object Detection and Recognition 

124 

be further developed to a classification based object detection system. A cascade 

structure could be used to achieve a trade off between accuracy and efficiency. 

The two feature selection schemes described have also been successfully applied to 

select Gabor features for face recognition. To simplify the computation cost and 

algorithm complexity, the intra-personal and extra-personal difference spaces are used. 

Compared with AdaBoost, experimental results show that features selected when 

mutual information is considered achieve higher recognition accuracy. The 

MutualBoost selected Gabor features are further enhanced in the non-linear kernel 

space using Generalized Dsicriminant Analysis and fully tested with extensive 

databases. Compared with one of the top methods in FVC 2004, the method shows 

advantages in both accuracy and efficiency. The results on the full FERET database 

following the evaluation protocol also show that the algorithm performs better than the 

previous top method, the elastic graph matching algorithm. However, the algorithm 

shows advantages in computation cost and efficiency since no graph matching process 

is needed. In addition, the method achieves significantly better performance on the most 

difficult test set, Dup II.  

Whilst the mutual information based feature selection process in this chapter addresses 

the r.v. with binary values only, it could certainly be extended to the case of continuous 

variables. A Gaussian mixture model may be needed to represent the distribution when 

the r.v.s do not show Gaussianity. The distribution could also be discretized using 

histogram estimation, if the number of bins could be determined. When a r.v. with 

multiple values is used, the feature selection process will incur a much higher 

computation cost and complexity.  

The value of TMI for MutualBoost needs to be selected appropriately to make sure that 

selected features are both non-redundant and useful for classification. A cross-
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validation set could be used to determine the TMI for common classification problems. 

As shown in Figure 6-13, since the redundancy increases with the number of selected 

features, an adaptive TMI, which increases with the number of features, might be more 

suitable.  
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Chapter 7 Radial Symmetry Transform Based Eye Location 
 
 
 
While the success of analytic face recognition approaches depends on the reliable 

detection of facial features, holistic approaches also need to use those feature points as 

important references for scale and orientation normalization. Eyes have been considered 

as more salient and stable than all other facial features (Brunelli et al., 1993). Face 

images can be easily normalized using geometrical measurements if both eyes are 

detected. Thus, eye location algorithms are very important for face recognition systems.  

While the face recognition algorithms presented in previous chapters used manually 

located eye centres for normalization, a simple and robust eye location system with no 

training and extra device requirement is presented in this chapter. The approach is 

based on the generalized symmetry transform; a low level operator that can be applied 

successfully for detecting regions of interest without any priori knowledge (Reisfeld, 

Wolfson, & Yeshurun, 1995). Based on context free and low level components, a high 

level and purposive model, which utilizes prior knowledge of eye features, is then 

implemented for the eye location task. The performance of the algorithm has been fully 

tested using the BioID and BANCA database, and has also been integrated into an 

automatic face verification system. 
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7.1 Background 
In (Yuille, Hallinan, & Cohen, 1992), deformable templates are used to detect facial 

features. The eye feature is described as a parameterized template which interacts 

dynamically with the image by altering its parameter values to minimize a defined 

energy function, thereby deforming itself to find the best fit. However, using this 

technique the templates have to be initialized at a position near to the actual eye 

location. The eigenface approach, was further developed in (Moghaddam & Pentland, 

1994) in the form of eigeneyes, eigennoses and eigenmouths which were used to detect 

facial features. A Support Vector Machine approach is applied in (Huang, Shao, & 

Wechsler, 1998) to estimate the facial pose and detect the eye locations. 186 eye images 

and 186 non-eye image are used to train the SVM classifier. Both methods require 

many images for classifier and model training. Rizon et al. (Rizon & Kawaguchi, 2000) 

used intensity and edge information to detect candidates for facial features and a cost 

function is defined for each pair of feature points satisfying a spatial constraint. The 

pair of feature points with the smallest cost is determined to be the pupils of both eyes. 

A very different system was developed by Morimoto et al. (Morimoto, Koons, Amir, & 

Flickner, 2000) and applied to pupil detection. Two near infrared, time multiplexed 

light sources are synchronized with the camera frame rate to generate bright and dark 

pupil images, which are then used for pupil segmentation. However, most of the 

described algorithms were tested using only a small set of images, and their effects on 

the performance of face recognition/verification systems are seldom reported. 

7.2  The Methodology 

7.2.1 The Generalized Symmetry Transform 
Since natural and artificial objects often give rise to the human sensation of symmetry, 

it has been suggested as one of the fundamental properties to guide higher level 
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processes in computer vision (Reisfeld et al., 1995). An object is regarded symmetric if 

it is invariant to the application of certain symmetry operations, e.g., the reflectional 

(mirror) symmetry operation. However, the shape of the object needs to be known 

before such operations can occur. The generalized symmetry transform, however, does 

not require this knowledge of shape. It operates on the edges in an image and assigns a 

continuous symmetry measure to each pixel. 

 

Figure 7-1  The contribution of points ip  and jp  to the symmetry measure 

(Reisfeld et al., 1995) 
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For each of the two points ip  and jp , we define l as the line passing through them, 

with ijα being the counter clockwise angle between l  and the horizon. The direction of 
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symmetry axis for points ip  and jp can be denoted as: 
2
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The contribution of points ip  and jp  to the symmetry measure of point p  can be 

represented as jijiji rrPppDjiC ),(),(),( θθ= . Now the symmetry magnitude of any point p  

can be defined as: 
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magnitude thus averages the symmetry value over all orientations. Once the symmetry 

direction is defined as ),()( ji ppp ϕφ = such that jijiji rrPppDjiC ),(),(),( θθ= is maximal 

for )(),( ppp ji Γ∈ , the symmetry value at point p  can be denoted as: 

( ))(),()( ppMpS φ=      (7.6) 

7.2.2  The Radial Symmetry Measure 
The transform defined above can effectively detect reflectional symmetry, which is 

invariant under 2D rotation and translation transforms. Sometimes we may also need to 

detect objects that are symmetric in multiple distinct orientations rather than a single 

principle one. The iris is an example of such an object. Radial symmetry such as this 

can be defined as: 

∑
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This expression emphasizes contributions in the orientations that are perpendicular to 

the main symmetry direction, and attains its maximum in a point that is surrounded by 

edges.  

7.2.3  Eye Location by The Radial Symmetry 
Since the main characteristic of the eye is its iris, which is symmetric in multiple 

distinct orientations, radial symmetry is adopted as our strategy for eye location. Our 

system incorporates the following modules: pre-processing, radial symmetry 

transformation, post-processing and eye location. Figure 7-2 shows the output from 

different modules within the system. 

    
             (a)         (b)                      (c)          (d) 

Figure 7-2  The system output at different stages. (a) the input image; (b) 
the radial symmetry map; (c) the filtered symmetry map; (d) the 

thresholded binary symmetry map 

 

7.2.3.1 Input and Pre-processing 
Once the face area is detected using a face detection module such as (Lienhart et al., 

2002), the left and right eye regions can be roughly cropped and used as input to the 

system for precise eye centre location. To cope with variations caused by image noise 

and lighting, a 5×5 Gaussian filter is applied before the symmetry transform. This has 

proved to be a simple and effective solution for noise removal. 

7.2.3.2 Radial Symmetry Transform and Post-processing 
A symmetry magnitude map can be attained after applying the radial symmetry 

transform to the extracted eye region, as shown in Figure 7-2. From this figure one can 

see that the eye region has been highlighted. A 5×5 mean filter is then applied to the 

symmetry map for noise suppression. This is followed by a thresholding process in 
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which the symmetry map is now turned to a binary image, where the pixels with high 

symmetry values are assigned with the label ‘1’ whilst the rest are assigned with label 

‘0’. See Figure 7-2 for an example. 

7.2.3.3 Eye Centre Location 
The potential positions for the centre of each eye have now been reduced to several 

candidate areas, or as is true for most cases, a single region for each eye.  Thus, the eye 

centre can now be trivially identified by locating the centre of each of the candidate 

areas. In cases where multiple candidate regions are still available, the smaller 

candidate regions are rejected.  In addition, the candidate positions for both eyes are 

examined to ensure that the two eyes are located on, approximately, the same horizontal 

line. Figure 7-3 shows a sample face image and the eye centre locations extracted by 

the described algorithm.. More eye location results can be found in Figure 7-4. 

  

Figure 7-3  A sample face image and the located eye centre 

 

7.3 Experimental Results 

7.3.1 The Results on BioID Database 
A test set, the BioID database (Jesorsky, Kirchberg, & Frichholz, 2001), is used in the 

experiments to evaluate the proposed algorithms. The set consists of 1521 images of 23 

different people and was recorded during several sessions in multiple locations. This set 

features a large variety of illumination, background and face sizes. All of the images are 

grey scale images with a size of 384×288 pixels. The x and y coordinates of the left and 

right eyes are already indicated and recorded in text files. 1460 face images containing 
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prominent eyes are further selected from the database for additional testing. The test set 

thus contains 475 images captured from subjects with glasses and 985 images from 

subjects without glasses. Since the objective here is the fair evaluation of the eye 

location algorithms, the face area for each image is simply cropped according to the 

anthropometric relations between the face and facial features. Figure 7-4 shows a 

number of BioID face images and the eye centre locations extracted by the described 

algorithm (all images have been scaled to the same size for visual convenience). 

 

Figure 7-4  Some sample test results 

 

Figure 7-5  Error distribution for test set with glasses and without glasses 
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To evaluate the accuracy of the eye location algorithm, the normalized distance 

between the located eye centre ),( tt yx  and the ground truth ),( cc yx  is calculated as 

below: 

w
yyxx

d ctct
e

22 )()( −+−
=     (7.8) 

where w  is the distance between the ground truth left and right eye centres. A correct 

location of the eye in a face image is registered if the distance ed is less than a threshold 

a , i.e., ade < . Figure 7-5 shows distribution of the error distance ed  for the test sets, 

both with and without glasses. One can observe that more than 91% of both histograms 

fall within the 0.2 error distance. The location accuracy for different values of a  is 

shown in Figure 7-6, suggesting that 99.34% accuracy can be achieved for images 

without glasses when 2.0=a . Due to reflection and edges artifacts caused by wearing 

glasses, the figure drops to 91.26% for this test set. 

 

Figure 7-6  The location accuracy varying with parameter a 

7.3.2  The Results on BANCA Database 
After the automatic eye location algorithm is fully tested using face images from the 

BioID database, it is now integrated with an automatic face detection module (Lienhart 

et al., 2002) and tested using the BANCA database. The face detection module is 
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implemented as a cascade of Haar-like feature based classifiers, which have been 

shown to achieve a very good trade off between accuracy and detection efficiency 

(Viola et al., 2001). 2730 images from the development set of the BANCA database 

(Baillere et al., 2003) are used for testing. Sample images can be found in Figure 5-1. 

The test images are initially used as input into the face detection module to locate facial 

regions, on which the automatic eye location algorithm is then applied. Once the two 

eye centres are located they are used as reference points to enable the face images to be 

normalized in both rotation and scale.  

 
 

Figure 7-7  Automatically normalized face images 

 
Figure 7-7 shows some sample images, normalized using the automatic face and eye 

location system thus proving its robustness in a variety of situations. The sample 

images are captured in several different sessions: high quality camera with normal 

poses, low quality camera with normal poses and high quality camera with the head 

looking down are shown on the first, second and third rows respectively.  There are, 

however, several cases where incorrect regions are selected due to errors in the face 

detection or eye location modules. For example, the images shown in Figure 7-8(a) are 

mainly background blocks, generated by errors in the face detection module. As shown 

in Figure 7-8 (b), the majority of the false “eyes” are located within hair regions, where 

many edges exist. Inclusion of too much background in the face region may also lead to 
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errors, since this can lead to an inaccurate initial guess for the eye regions. A statistical 

analysis of the eye location results on the BANCA database has also been performed 

and is shown in Table 7-1. In this analysis, the correct location of eyes is registered 

only if both eye centres are close enough to the ground truth data, in this case: 

2.0, =< aade . 

 
(a) 

 
(b) 

Figure 7-8  Wrong locations caused by face detection module (a); eye 
location module (b) 

 
Performance of face detection module Performance of eye location module Number of 

test images true face detections false face alarms true eyes locations false eyes alarms
2730 2711 (99.30%) 15 (0.55%) 2674 (98.64%) 37 (1.36%) 

Table 7-1  Statistical results on the BANCA database 

 

7.3.3  Integration with the Face Verification System 
Recall that a Gabor wavelet based face verification module has been developed in 

chapter 5. The verification system uses Gabor wavelets for feature extraction, GDA for 

enhancement and KNN for classification. The system is fully tested using the BANCA 

database according to the face verification competition held in 2004 (Messer et al., 

2004). The comparative results show that the performance of the system is among the 

top methods. Since the system in chapter 5 normalizes images with manually located 

eyes, it is regarded as partially automatic. In the following experiments, an automatic 

verification system (Gabor + GDA) is developed by integrating the eye location module 

and tested using the same database. The results for the automatic verification system, 

together with that of other automatic algorithms, are shown in Table 7-2. The results 
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verify the robustness of both eye location and face verification algorithms proposed in 

this thesis. The performance of the Gabor + GDA method ranked within the top three 

and is significantly better than many other methods. The average error rate of Gabor + 

GDA is only 6.58%. Similar to the results reported in chapter 5, since a subject specific 

threshold is used, the other method Gabor + PCA + SVM developed by us achieves 

better performance than Gabor + GDA. 

R=0.1(WER) R=1(WER) R=10(WER)  
Dev Eval Dev. Eval. Dev. Eval. Avg

IDIAP HMM 8.16 8.57 22.97 18.54 5.91 5.34 11.58
IDIAP Fusion 7.86 8.68 23.40 17.64 5.79 5.50 11.48
QUT 9.01 8.53 18.52 15.71 6.12 5.51 10.56
Univ Nottingham 
Gabor + PCA + SVM + 
subject specific thresholds 

3.34 3.20 8.51 7.59 2.51 2.30 4.58 

UniS-Fusion 7.92 10.06 16.07 18.00 4.58 5.42 10.34
UCL-LDA 9.77 10.84 20.30 19.55 7.21 6.97 12.44
UCL-Fusion 6.66 8.62 14.00 17.68 5.78 5.21 9.66 
NeuroInformatik 34.00 36.00 16.70 16.10 36.80 37.70 29.55
Tsinghua Univ 2.68 1.37 4.07 2.08 1.65 1.41 2.21 
CMU 7.72 8.78 26.08 23.05 18.19 9.12 15.49
Gabor + GDA + 
global threshold 

5.37 6.73 10.22 10.08 3.73 3.36 6.58 

Table 7-2  Verification results for fully automatic systems 

 

Due to minor errors within the automatic eye location algorithms, the automatic 

verification algorithms normally exhibit higher levels of verification error than the 

partially automatic methods. The comparative results of the fully automatic system with 

the corresponding partially automatic system, which normalize faces with manually 

located eyes, are shown in Table 7-3. The results for several different research 

institutions on the same BANCA database are also included, see (Messer et al., 2004) 

for the details. As expected, the automatic face detection and eye location module 

increase the weighted error rate of Gabor + GDA from 4.48% to 6.58%, which is 

common for all of the verification systems. However, the performance of the eye 
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location system is state of the art, and the developed automatic verification system 

achieves significantly lower error rates than many other systems. 

 

 Error Rate with 
Manual Eye 
Location (%) 

Error Rate with 
Automatic Eye 
Location (%) 

Increase of 
Error Rate (%) 

Gabor + GDA +  
global threshold 

4.48 6.58 46.87 

Gabor + PCA + SVM + 
subject specific thresholds 

3.33 4.58 37.54 

CMU 8.11 15.49 90.99 
Univ. of Surrey 7.99 10.34 29.41 
Tsinghua Univ. 1.39 2.21 58.99 
Table 7-3  Comparative results for fully and partially automatic face 

verification systems 

7.4 Conclusions 
A generalized symmetry transform based eye location algorithm has been proposed in 

this chapter. The robustness of the algorithm is first tested using 1460 face images from 

the BioID database, 99% and 93% accuracy was achieved for face images with and 

without glasses respectively. The eye location algorithm has also been tested using 

2730 images from the BANCA database, about 98.6% accuracy has been achieved. The 

results suggest that a more precise face locator could alleviate many of the eye location 

errors. An automatic verification system has been further developed by integrating the 

eye location module with the verification module (Gabor + GDA) proposed in chapter 5. 

The automatic system is fully tested using the BANCA database according to protocols 

used in the recent Face Verification Competition 2004. Though the error rate is larger 

than that reported in chapter 5 due to the mis-alignment among face images caused by 

the eye location algorithm, the performance of the automatic system is one of the top 

three and better than most of the participants in the contest. 
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Chapter 8 The Developed User Identification System 
 

 

This chapter presents an automatic user identification system developed at the initial 

stages of this research. The system consists of the following modules: face detection, 

registration and user information management. Once a subject is registered with the 

system, it can identify the registered person in real time when his face image is detected 

from a web cam. Based on its efficiency, the system is further developed to identify 

multiple persons simultaneously from real video streams. A video demo displaying how 

the system works can be found at http://www.cs.nott.ac.uk/~lls/demo.htm. 
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8.1  System Architecture 

8.1.1  Registration 
Each candidate needs to be registered with the system before they can be identified. The 

registration process thus consists of the following modules: user information registry, 

face detection, feature extraction and/or model training and feature/model saving. As 

shown in Figure 8-1, the process requires the full support of the face detection module, 

user management module and recognition module, which will be described in detail in 

the next section. About 30 staff from the Nottingham Computer Science School are 

registered with our system, with at least 5 face images for each subject on record. Once 

the face images are registered, the recognition module can be invoked to extract 

features or train subject specific models. These are then saved via the user management 

module for future identification purposes. 

 

Initialize New Person ID
and Register Personal Info

Grab An Image from Camera

Sufficient Face
Images ?

Locate Face

Add Face to the
registering ID

Feature Extraction and/or
Model Training

Save Feature and/or Model

End

Start

FACE DETECTION
MODULE

USER MANAGEMENT
MODULE

RECOGNITION
MODULE

Yes

No

 

Figure 8-1  Registration flow chart 
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Grab An Image from Camera
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All Registered ID
Scanned ?

Retrieve Feature/
Model for Current ID

Calculate Similarity
or Probability
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Probability/Similarity

Retrieve Information
Registered with the ID

End

Start

FACE DETECTION
MODULE

USER MANAGEMENT
MODULE

RECOGNITION
MODULE
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No

Feature Extraction

Start from the 1st Registered ID

Next Registered ID

 

Figure 8-2  Identification flow chart 

8.1.2   Identification 
The aim of user identification is to identify a subjects ID when their face is presented 

before a web cam. The subject has to be registered with the system before he can be 

identified. The identification process, as shown in Figure 8-2, can be summarized as 

follows: when a user is sitting before the web cam, their face area is located and 

captured, then refined by the face detection module and finally passed to the 

recognition module for processing and identification. The recognition module compares 

the input face with each registered subject, either by matching features directly or by 

computing the probability. The face is then identified as the person whose features or 

model gives the maximum similarity or probability. The personal information registered 

with the ID will finally be retrieved from the user management module and presented 
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by the system. Figure 8-3 shows a snapshot of the system. The screenshot shows that 

the system correctly identify the user “Dylan Shen” and presents his personal 

information, i.e., name, address, age, etc. The left column in the interface shows a 

subset of the users who have had their faces registered with the system. 

 

 

Figure 8-3  A snapshot of the user identification system 

8.2  System Modules 

8.2.1  Face Detection 
The algorithm proposed in (Lienhart et al., 2002) is initially applied in the system for 

face detection. The method is a classification based algorithm, which cascades a series 

of Haar-like features based face/non-face classifiers for efficient detection. The set of 

classifiers are all trained using AdaBoost algorithm and combined to form the final 

classifier, more details can be found in (Viola et al., 2001; Lienhart et al., 2002). Once 

the efficient classifier is learned, a window will be used to scan the test image to search 

for face instances. Source code for the face detector is freely available at the Intel Open 

Source Computer Vision Library (Intel Corporation, 2005). Figure 8-4 shows a sample 

image with the located face marked in a red rectangle. As can be seen, the located face 
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area contains a lot of noise information, e.g. background and hair etc, which could 

affect the performance of recognition algorithm. A skin mask module is developed and 

integrated into the system in order to refine the results from the initial face detection 

process. 

Face
Detection
Module

Input Image

Detected
Faces

 

Figure 8-4  A sample image with detected face  

8.2.1.1 Skin Masking 
It is widely accepted that the colour of human skin is distinctive from the colour of 

many other natural objects. Analyzing the statistics on skin colour it can be observed 

that skin colours are distributed over a small area in the chrominance plane with the 

major difference between skin tones being variations in intensity (Menser & Muller, 

1999). To utilize skin colour properties for the face detection refinement process an 

image is first converted into luminance and chrominance channels in the YCbCr color 

space. 

Let T
ijijij CrCb ] [=w  denote a vector composed of the chrominance components Cb and 

Cr for a pixel (i, j). The class-conditional pdf of ijw  belonging to the skin class x is 

modeled by a two-dimensional Gaussian (Menser et al., 1999; Bai & Shen, 2003b): 

[ ] [ ]





 −∑−−∑= −−− µwµww ij

T
ijij xp 12/11

2
1exp||)2()|( π   (8.1) 
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where the mean vector µ  and the covariance matrix ∑  are estimated from the training 

set. Figure 8-5 shows the distribution of skin colours in the Cb and Cr domains. The 

contour of the pdf defines an ellipse in the CbCr domain, whose center and principal 

axis are determined by µ  and ∑ , respectively. After building the skin colour model, the 

original colour image can be easily converted to a skin probability image P using 

equation (8.1). The image P indicates the probability of each image pixel belonging to 

the skin class x, i.e., )|(~),( xpjiP ijw . Figure 8-6 (a) and (b) shows the input colour 

image I and the skin probability image P respectively. 

 

Figure 8-5  Distribution of skin colors in Cb, Cr domain 

 

8.2.1.2 Ellipse Masking and Head Orientation Estimation 
Once the face region is extracted from the input image, a ellipse fitting method (Bradski, 

1998) can be used to approximate the skin blob and estimate the head orientation. 

Details of the fitting algorithm can also be found in Appendix C, which is based on 

statistical analysis of the skin probability image. Once the parameters of the ellipse 

approximation of the skin blob are determined, a face image can be masked by the 

ellipse with major axis l, minor axis w, and orientation θ. Figure 8-6 (c) shows the 

ellipse masked face image from (a). Figure 8-7 shows the fitted face with different 
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orientations. Each face has been masked with a corresponding ellipse. The two axes, 

centroid and orientation of the ellipse are indicated by a cross. 

        
        (a)    (b)         (c) 

Figure 8-6  Detected face image (a); skin probability image (b) and 
masked face image (c) 

 

           

Figure 8-7  Ellipse fitting for faces with different orientations 

 

8.2.2  Recognition 
As shown in Figure 8-8, the recognition module works in two modes: registration and 

identification. While the module extracts features and/or trains models for future 

processing in registration mode, it must compare the test face with each registered ID 

when in identification mode. A HMM based face recognition method is adopted in this 

system, which treats a face image as a sequence of states produced when the face is 

scanned from top to bottom. More interesting is the 2D embedded HMM proposed by 

Nefian (Nefian et al., 1999). The embedded HMM consists of a set of super states with 

each super state being associated with a set of embedded states. Super states represent 

primary facial regions whilst embedded states within each super state describe in more 

detail the facial region. Nefian defined 5 super states: forehead, eyes, nose, mouth and 

chin. Transitions between embedded states in different super states are not allowed. In a 

HMM based face recognition implementation, a face image is divided into a series of 

overlapping image blocks, the observation sequence can then be generated by 
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concatenating the observation vectors extracted from each image block for HMM 

training. Once HMM models are trained using registered face images, the observation 

sequence extracted from a test image is used as input to all of the trained HMMs 

associated with each person and the conditional probability given by each HMM is 

calculated. The identity of the input face is determined by the HMM which produces 

the highest probability. Figure 8-9 shows the flow chart of a generic HMM based face 

recognition system. 

Recognition
module

Identification Request

Test Face and Person ID

Identification Reply

Probability or Matching
Score

Registration Request

Registration Reply

Person ID and the
Registered Faces

Model Parameters or
Features  

Figure 8-8  Recognition module diagram 

 
 
The observation vectors tO  could be simply the grey values of pixels in the image block. 

However, such a method is sensitive to image variation due to illumination, translation 

and rotation. Moreover, since the dimension of the observation vectors is high, much 

computation is required. Image transform techniques will be helpful to make the model 

more robust and perform feature dimension reduction at the same time. Nefian et al 

apply 2D Discrete Cosine Transform (DCT) on each image block and only the low 

frequency coefficients are extracted to produce observation vectors. Due to its origins in 

simultaneous time and frequency analysis, wavelets are widely believed to be 

advantageous for image representation over other mathematical transforms such as the 

Fourier transform or DCT. Therefore, a Discrete Wavelet Transform (DWT) based 

HMM has also been proposed in (Bai et al., 2003a) for face recognition. Compared with 

DCT, DWT based HMMs achieved higher accuracy at the expense of slightly reduced 
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efficiency. Both methods have been implemented in the system and can be switched 

between according to application requirements. 

Tom’s HMM 

Dylan’s HMM

John’s HMM 

 
DCT 

Tt OOOO LL21 DWT

 

Figure 8-9  The HMM face recognition algorithm 

 
 

 

Figure 8-10  User management module diagram 

 

8.2.3  User Management 
ID management, image feature/model management and personal information 

management are the three main functions of the user management module (see Figure 

8-10 for details). The image feature/model manager is mainly concerned with the 

recording of all image feature/model files for registered subjects. The record gives an 

overview of the face database, as well as the details about saved image feature/model 

files, e.g. the path, number etc. The module updates each record whenever there is a 
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relevant change and responds to image feature/module retrieval requests when queried 

with a user ID. The user ID manager is mainly responsible for the issuing of new IDs 

and removing old IDs. The personal information manager maintains data regarding each 

registered users name, address, age and sex etc. Since the data is stored on a MySQL 

server, the personal information manager requires a database engine to interpret the 

Add/Delete, Update and Query SQL requests. 

8.3  Conclusions 
An automatic face based user identification system has been presented in this chapter. 

When integrated with face detection, recognition and user management modules, the 

system can locate faces from images captured by a normal web cam and recognize a 

subjects identity in real time. The flowcharts for two of the most important processes 

(registration and identification) have been described and the main functions of the three 

system modules have been explained in detail. A database with about 30 subjects, who 

are mainly students and staff from the University of Nottingham Computer Science 

School, has also been built to test the system. The system has shown excellent 

performance with high efficiency when this small database is used. Based on this 

framework, a video based face identification system has also been developed. The 

system can detect multiple faces in a real time video stream and identify each of them. 

Figure 8-11 shows a snapshot of the video based system, where three faces are detected, 

identified and labelled with the registered names. A demo of the system can also be 

found at: http://www.cs.nott.ac.uk/~lls/demo.htm. The system, when running on a P4-

1.8GHz PC, can support video streams with frame rates of up to 3 frames/sec.  

 



The Developed User Identification System 

148 

 

Figure 8-11  A snapshot of the video based identification system 

 
 
Since the system was developed at the initial stages of the research, the HMM based 

recognition algorithm is adopted. However, the algorithm has been shown to be only 

suitable for small databases. The results reported in chapter 4 show that though the 

DWT-HMM method achieves 97.5% accuracy at the ORL database (40 subjects), the 

figure drops dramatically to 44.5% on the subset of the FERET database (200 subjects) 

used for testing. A more robust method, such as the described Gabor wavelet based 

approach, which has been fully tested using a number of large databases in this thesis, 

could easily be integrated into the system framework for additional performance 

improvements.  
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Chapter 9 Conclusions and Future Works 
 
 
 
A fast and robust Gabor wavelet based method has been proposed for face recognition 

in this thesis and the method has been fully tested using public databases, e.g. FERET, 

BANCA etc. This chapter will give a summary about the work presented in previous 

chapters and some suggestions for future developments. 
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9.1  Summary of Works 

9.1.1 An Overview of Gabor Wavelets: Background and 
Applications 

A detailed review of the background and applications of Gabor wavelets has been 

presented in this thesis. Contributed by Dennis Gabor in 1946, the 1D Gabor function 

was first proposed for joint time frequency analysis of the time signal. As a member of 

the wavelet family, mathematical analysis shows that the Gabor wavelet achieves the 

optimal resolution in both the time and frequency domains. In the spatial domain, 

researchers have presented evidence showing the similarity of 2D Gabor wavelets with 

the receptive fields of mammalian visual cortex cells. Motivated by the mathematical 

background and biological evidence, 2D Gabor wavelets have been widely applied in 

different computer vision and pattern recognition applications including face 

recognition. A literature review on the application of Gabor wavelets for face 

representation has also been performed in this research. Aiming to give some guidance 

to researchers in this area, the review presented the latest Gabor wavelet based methods 

available in the literature and discussed both the limitations and advantages of different 

approaches.  

9.1.2 Gabor Wavelets and Kernel Subspace Methods for Face 
Identification and Verification 

Though face recognition has been an active research area for many years, it is still an 

unsolved problem due to the complex distortions caused by expression, pose and 

illumination variation. However, the task seems to be trivial for human beings. With the 

aid of complex perceptual systems, such as the visual cortex, it is very common for a 

human to recognize thousands of people, even in the presence of dynamic variations of 

face shape, pose, expression and appearance. Based on the overview on background and 

applications of Gabor wavelets, they are adopted in this research as a method to extract 
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robust features for face recognition purposes. Once the features are extracted, nonlinear 

kernel subspace analysis, i.e. GDA, is further applied for dimension reduction and class 

separability enhancement. The combination of Gabor wavelets and kernel methods have 

been successfully applied to face identification and verification and fully tested using 

public databases, e.g. ORL, FERET and BANCA. While the proposed method has 

achieved better performance than other state of the art identification algorithms on the 

ORL and FERET database, it has also shown to be more robust than most of the 

participants in the recent face authentication test using the BANCA database. 

9.1.3  Learning the Most Important Gabor Features for Object 
Detection and Recognition 

Despite the robustness of Gabor wavelets based methods, they require high computation 

and memory cost. Since a set of 40 wavelets is convolved with images, the feature 

extraction process takes long time. Though FFT could be used to speed up the 

convolution process, the huge dimension of extracted features will also bring high 

computation cost to the classification process. As a result, a feature selection method is 

required to eliminate those redundant features for dimension reduction. In this thesis, 

the AdaBoost algorithm is first applied to select Gabor features for object detection. 

Since both feature selection and classifier training can be completed in the same 

learning process, the classifier using the selected Gabor features can be used for object 

detection directly. A novel feature selection algorithm, MutualBoost, has also been 

proposed and successfully applied to select Gabor features for face recognition. 

Particularly, the mutual information between candidate features is used as an additional 

criterion to select one by one the most important Gabor features. Compared with 

AdaBoost selected features, the results show that Gabor features learned using 

MutualBoost techniques are more discriminative and achieve better recognition 
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accuracy. Both systems have been compared with those using the pre-selected Gabor 

features, substantial efficiency improvements have been observed without performance 

deterioration. The face recognition system using the selected Gabor features has also 

been compared with other state of the art methods on the whole FERET database 

according to the evaluation protocol and better accuracy has been achieved. The face 

recognition system thus developed is both robust and efficient. 

9.1.4  Automatic Eye Location 
To normalize the scale and orientation of different face images, an automatic eye 

location algorithm is required before the robust Gabor feature based face recognition 

system can be applied in real applications. Though there are quite a number of complex 

methods available, most of the eye location systems are only tested using a limited 

number of images and they normally require lots of training samples. The method 

proposed in this thesis is, however, very simple and requires no training images. The 

approach is based on a context free feature detector, the generalized symmetry 

transform, which requires no prior knowledge about eyes. Once those areas with large 

symmetry values are located, eyes can be easily located at the centre of these regions. 

The robustness of the algorithm is first tested using 1460 face images from the BioID 

database, 99% and 93% accuracy are achieved for face images with and without glasses 

respectively. The eye location algorithm has also been tested using 2730 images from 

the BANCA database, about 98.6% accuracy has been achieved. Based on the proposed 

eye location module, a fully automatic verification system has also been developed by 

integrating the verification module (Gabor + GDA) proposed in chapter 5. The 

automatic system is tested using the BANCA database according to protocols defined 

by the recent Face Verification Competition 2004. The performance of the automatic 
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verification system is one of the top three and better than most of the participants in the 

contest. 

9.1.5  The User Identification System 
An automatic real time user identification system has been developed in this research. 

The system consists of three main modules: face detection, recognition and user 

management. With the full support of each of these modules, the system can efficiently 

detect faces from images captured by a web cam, extract features and identify the user. 

The system can also function in registration mode such that the personal information, 

face images and model/features can be registered and saved either in files, or in the 

MySQL database. Utilising the high efficiency of the proposed techniques, a video 

based face identification system has been further developed, which can detect multiple 

faces from a real time video stream, identify them and display their names.   The 

modular design of the system allows a large degree of flexibility, allowing for future 

expansion and the integration of any new face detection or recognition algorithms. 

9.2 Future Works 

9.2.1  Extensions of the Present Works 

9.2.1.1 A Complete Gabor Feature Based Object Detection system 
Though the Gabor feature based classifier has shown the ability to discriminate car and 

non-car images as well as face and non-face images, more works still need to be done 

before the classifier can be applied in real object detection applications. For 

classification based detection methods, an image is usually scanned by a nn×  window 

with one pixel step size. Each image window is then input to the learned classifier to 

make a classification decision, i.e., object or background. Figure 9-1 shows a typical 

classification based face detection system. To deal with the scale variance, the image is 

usually rescaled by s  different factors such that a set of multi-resolution images are 
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generated, the detection process can be applied to each image thereafter. As a result, the 

number of images to be processed by the classifier is huge, with more than 90,000 

windows ( 20=n ) needing to be classified for an image with size 200×200 when 5=s . 

 

Figure 9-1  A classification based face detection system 

 
 
Based on the fact that most of the scanned image blocks are actually background (see 

Figure 9-1), a cascade of classifiers is used in (Lienhart et al., 2002; Viola et al., 2001) 

to speed up the detection process. Figure 9-2 shows the cascade structure of three 

classifiers. Simple classifiers are used to reject the majority of the sub windows before 

more complex classifiers are applied. The simple classifiers are adjusted such that the 

false negative rate is close to zero. A positive result from the first classifier triggers the 

evaluation of the second classifier with high detection rates, and so on. A negative 

result at any point leads to the immediate rejection of the sub window. As such, the 

cascade attempts to reject as many negative windows as possible at the earliest stage 

possible. Such a cascade structure shall also be used to learn a Gabor feature based 

classifier for real time object detection. The classifier at the 1st stage could be one 

which uses only two Gabor features with a minimized false negative rate. Subsequent 

classifiers will require a larger number of features. To reduce the computation cost of 

feature extraction, the classifiers at early stages could also be trained using simpler 
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features, e.g. Haar-like features (Lienhart et al., 2002; Viola et al., 2001). The complete 

object detector will thus be both robust and fast. 

 

Figure 9-2  Diagram of the detection cascade (Viola et al., 2001) 

 

9.2.1.2 Effects of Eye Location Algorithm on Face Recognition Approach 
A fully automatic face verification system has been developed in this thesis using a 

generalized symmetry based eye location algorithm. The Gabor + GDA system 

combines Gabor features and GDA for verification. Though the error rate is higher than 

that of the approach using manually located eyes for normalization, the performance of 

the fully automatic system has shown to be much better than many state of the art 

methods. The test proves the robustness of Gabor features against the mis-alignment 

caused by automatic eye location algorithms. To reduce the complexity and memory 

cost of Gabor feature based methods, information theory has also been applied to select 

the most important features for recognition. The method, named as MutualGabor + 

GDA, has achieved better recognition performance than Gabor + GDA when manually 

located eyes are used for image normalization. Since Gabor features are extracted from 

local image regions and MutualGabor + GDA is actually using a subset of the features 

used by Gabor + GDA, the method should be as robust against mis-alignment as Gabor 

+ GDA. However, future experiments should be carried out to justify this argument. 
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9.2.2  Gabor Feature Selection with Larger Search Space 
Since a Gabor feature is simply extracted by applying a wavelet at a certain image 

location, the mutual information based method in this thesis selects both Gabor 

wavelets and the locations where the wavelets are applied. While Gabor wavelets with 

varied frequency and orientations are applied at different locations, the approach 

reflects the fact that different image regions display varied texture features. However, 

the candidate features in this work are extracted using a pre defined set of 40 Gabor 

wavelets. While the most appropriate wavelet in the candidate set is chosen for a certain 

image location, the optimal wavelet for the position might not be included in the 

defined set. The search space of the wavelets has to be extended to all possible 

parameter spaces such that the optimal one can be found. Two ratios between the 

Gaussian envelop sizes and the central frequency, orientation, image location and centre 

frequency now form the five dimensional parameter space of candidate Gabor wavelets. 

The parameter space to be searched will be significantly larger as more parameters are 

included. Whilst most optimization algorithms seem to be intractable in the context of 

this problem, genetic algorithms (GA) may prove to be a suitable choice. However, the 

computation burden has to be reduced before GA can be applied. 

9.2.3  Pose Invariant Face Recognition 
Motivated by the biological resemblance with the primary visual cortex, Gabor 

wavelets form an optimal basis for measuring local texture features and representing 

images. By their very nature, Gabor wavelet representations are to some extent 

insensitive to variations of lighting and local distortions caused by face position and 

expression. Extensive experiments have shown the success of Gabor features for frontal 

view face recognition in this thesis. However, faces are such complex patterns that 

many images captured from the dynamic real world are often half profile, or even full 
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profile. A pose estimation module could be used to decide the pose of test faces such 

that they are compared with the images with corresponding pose only. However, a lot of 

images crossing different poses would need to be saved in the database for each subject, 

which would significantly increase the applications memory cost requirements. A 3D 

model could also be used to synthesize frontal view images from faces with different 

poses, though the model fitting process takes long time. Switching to 3D range data 

could alleviate the pose problem since the depth data can be easily rotated in 3D space. 

Since 3D face recognition systems are still in the early development stages, the 

robustness and accuracy of such systems remains unclear. However, 3D face models or 

3D face recognition systems should be involved in future works to develop fully pose 

invariant recognition systems. 
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Appendix A  Eigenvalue Solutions of GDA 
 
 
 
The method to solve the eigenvalue problem: KUKαKKα =λ  is shown in this appendix. 

The solution starts with the eigen decomposition of the Kernel matrix K : 

tPΓPK =     (A.1) 

where Γ  is a diagonal matrix consisting of the eigenvalues of K and P  is the matrix of  

normalized eigenvectors associated with Γ . Thus 1−Γ  exists and IPP =t . 

Substituting (A.1) to KUKαKKα =λ : 

αPΓUPPΓPαPΓPPΓP tttt         =λ  (A.2) 

Multiply ( ) 1 −ΓP  on both sides and given IPP =t , we obtain: 

αPΓUPPαPΓ ttt      =λ    (A.3) 

Now define β , V such that αPΓβ t =  and UPPV t= , (A.3) can be simplified as: 

Vββ   =λ     (A.4) 

Once β is calculated using the eigen decomposition of matrix V , α  can be simply 

obtained using:  

βPΓα 1−=     (A.5) 
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Appendix B  Optimising tα  and th  in AdaBoost Algorithm 
 
 
 
 
This appendix shows how to find the value of tα  and th to minimize the training error 

( )Htrε  of the learned strong classifier H  by the AdaBoost algorithm.  

As shown in chapter 3, the training error is bounded by ( ) ∏≤
t

ttr ZHε , where 

( )∑ −=
i

itittt xhyiwZ )(exp)( α . To simplify the notation, let us fix t  and let )( itii xhyu = , 

tZZ = , tww = , thh =  and tαα = . Our goal is to find the value α  which minimizes or 

approximately minimizes Z  as a function of α . 

For weak hypotheses h  with range [ ]1,1− , Z can be approximated as follows: 
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This upper bound is in fact exact if h  has range { }1,1− , which can be further rewritten as: 








 −+






 +
−

= ∑∑
i

i
i

i uiwuiwZ )(1
2

)exp()(1
2

)exp( αα  (B.2) 

Solving the equation 0/ =∂∂ αZ , we can find the optimal value of α  to be:  
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Plugging into Eq.(B.2), this setting gives the upper bound 21 rZ −≤ , where  

∑∑ ==
i
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i

i xhyiwuiwr )()()(     (B.4) 
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The quantity r  is actually a natural measure of the correlation of the predictions of h  

and the labels y  with respect to the distribution w . Let [ ]π  be an indicator variable that 

is 1 if the predicate π  is true and 0 otherwise, r  can be related with the weighted error 

[ ]∑ ≠=
i

ii yxhiw )()(ε of h  as follows: 
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Solving these equations, we get: 
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Once the setting of α  is found, the weights of samples can be updated as follows: 
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Recall that α  is selected such that Z  is minimized, i.e. 0/ =∂∂ αZ . By definition 
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Thus, ∑∑ == ++
i

iit
i

it xhyiwuiw 0)()()( 11 . In other words, this means that, with respect to the 

updated distribution 1+tw , the prediction of h  selected in round t will now be exactly 

uncorrelated with the labels iy .  
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Appendix C  Skin Blob Ellipse Fitting  
 
 
 
 
Assume a face image I(x,y) with size W×H is detected by the face detection module, 

and P(x,y) is the skin probability value for pixel (x,y). The zeroth moment of the skin 

probability image P is:  
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and the second moments are defined as: 
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Then the centre position (xc, yc) of the skin blob in the face region is: 
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and the head orientation can be defined as: 
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The length l and width w of the skin blob can be calculated as follows: 
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where 
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