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Abstract 
 

 

A current-switched superconducting field-cycling NMR spectrometer has been 

designed and built for studying the role of quantum tunnelling in molecular dynamics.  

The instrument is designed for work in the solid state with sample temperatures 

extending from 4K up to 300K. The maximum field-switching rate is 10Ts
-1

. Among 

the samples studied in this thesis is the nuclear spin-relaxation and proton tunnelling.  

 

Concerted double proton transfer in the hydrogen bonds of carboxylic acid dimers is 

well established as the model system for translational quantum tunnelling. The model 

system has been chosen to illustrate the smooth quantum-to-classical transition and at  

all temperatures the proton transfer is characterised by a single correlation time. 

 

Quadrupolar interactions introduce an additional relaxation to the proton spin 

polarisation. The enhanced relaxation of the proton spin appears as a dip in the proton 

magnetisation curve. This technique is employed to measure the quadrupolar 

transition frequency of 
14

N and 
35

Cl and determine the structure of heroin 

hydrochloride. 

  

The introduction of a second spin species has a significant effect on the spin-lattice 

relaxation. Compared with homonuclear systems, the spectral density acquires 

additional components characterised by the sum and difference Larmor frequencies of 

the two nuclei. Further, instead of a single relaxation time, there are four elements of a 

relaxation matrix. Therefore, the magnetisation recovery becomes bi-exponential and 

the initial polarisation state of the second nucleus strongly affects the magnetisation 

recovery of the nucleus which is being observed. We shall report on the results of 

spin-lattice relaxation investigations on 
1
H-

13
C, 

1
H-

19
F systems. The role of 

heteronuclear interactions in spin-lattice relaxation and the newly developed 

methodology of field-cycling relaxometry will be discussed. This represents the first 

13
C field-cycling NMR experiment and the first to measure the field dependence of  

the off-diagonal element of the relaxation matrix. 
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Chapter 1 Introduction 
 

The transfer of protons involved in hydrogen bonding is fundamental to many 

chemical and biological processes. It has been widely studied 
[1-16]

. The sample BA 

(benzoic acid) has been established as a model system to illustrate the dynamics of the 

proton transfer process in hydrogen bonds. At low temperature, the proton dynamics 

are dominated by quantum tunnelling process, while at high temperature, the 

dynamics more closely approximates to Arrhenius behaviour. A theoretical study has 

been successfully set up by Skinner and Trommsdorff (ST) 
[5]

 to model the proton 

transfer dynamics. Later Brougham et al 
[11]

 modified the theory to account for 

tunnelling pathways via excited states which become important at higher temperature. 

 

As a unique and powerful tool to investigate the quantum molecular dynamics, 

FCNMR (field-cycling NMR) has an advantage over many other NMR techniques 

which permits one to cover several decades of frequency with the same instrument. 

Therefore the field dependence curve of the inverse spin-lattice relaxation time maps 

out the spectral density directly, enabling the correlation rate for molecular dynamics 

to be determined very accurately. This advantage has been utilised in the investigation 

of the molecular quantum dynamics on the samples studied here. Both homonuclear  

and heteronuclear systems have been modelled and investigated here using FCNMR.  

 

FCNMR could be employed in many application fields 
[17-22]

. The application fields in 

my work cover some of those listed in these reference papers such as quadropolar dips 

and polymers (not related to the publication and no results and discussion in this 

thesis), and a new explored application field, the dynamics of heteronuclear system, 

which was a challenging problem not only in FCNMR experiments but also in the 

analysis of the experimental data. 

     

This thesis is configured to focus on the topics related to my published papers. There 

are five main chapters from Chapter 2 to Chapter 7.     

 

The background of NMR and theories for understanding and analysing the 

experimental data are described in Chapter 2. The structure of our FCNMR 
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spectrometer and function of each component are presented in Chapter 3, as well as 

the pulse sequences which were designed for different experimental purposes. From 

Chapter 4 to Chapter 7, the experimental results and discussion are presented in detail  

in order of complexity and difficulty of experiments and data analysis.      

 

The model system BA was chosen to investigate the spectral densities (the field 

dependence of the spin-lattice relaxation time) with FCNMR at a set of temperature in 

Chapter 4. Each spectral density curve which was characterised by only one 

correlation rate was the best proof for confirming the theory of ST and arguing against 

a non-physical theory proposed by Latanowicz and Reynhardt 
[23]

 (LR). The smooth 

transition between quantum and classical mechanics was obtained in perfect 

agreement with the ST model and with many quantum phenomena in which there 

should be no distinguished difference between quantum behaviour and classical 

behaviour, because classical behaviour is the extreme of quantum behaviour. Only 

with FCNMR could the inadequacy of LR theory be completely revealed.  

 

In Chapter 5, quadrupolar dips of 
14

N and 
35

Cl were observed in the spectrum of 
1
H 

magnetisation recorded at the liquid helium temperature and at zero magnetic field 

with FCNMR in heroin hydrochloride supplied by Prof. Smith, King’s College 

London. These dips were due to the enhanced relaxation of 
1
H spins which was 

affected by the quadrupolar interaction. The measured spectra were employed to assist 

in the determination of the structure of the sample. It indicated that FCNMR/NQR 

could be a potential tool of identifying the particular drug in the presence of other 

closely related compounds. 

 

In Chapter 6 and Chapter 7, the heteronuclear interactions between two spin ½ nuclei 

were studied on two samples sample 
13

C-BA (Benzoic acid, 99% 
13

C substitution of 

the carboxy carbon) and TFTA (tetrafluoroterephthalic acid: C6F4(COOH)2) 

respectively. Although both the systems obey the same theory as discussed in Chapter 

2, the difference in the relative magnitude of the off-diagonal elements of the 

relaxation matrix meant that different experimental techniques and data analysis 

methods had to be employed for the two different samples. For the sample 
13

C-BA 

studied in Chapter 6, the first 
13

C FCNMR investigation to be reported, the off-

diagonal element was so small that the magnetisation recovery curve could be fitted 
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with a single exponential function and the effective relaxation time was employed to 

record the experimental data; however since the effective relaxation time was the 

weighted average of the two time constants characterising the underlying bi-

exponential magnetisation recovery curve, the initial conditions which determined the 

coefficients of the two spin species became a dominant problem to deal with. For 

TFTA by contrast, the sample studied in Chapter 7, the off-diagonal elements were 

comparable with the diagonal elements. The magnetisation recovery curves were bi-

exponential and two relaxation rates were determined. The problem is that no function 

is known a priori for fitting the spectral density curve; an alternative approach was 

designed to measure the off-diagonal elements directly by setting up appropriate 

initial conditions. Using this novel experiment, the correlation rate was determined 

directly from the field dependence of the off-diagonal elements. This method could in 

principle be applied on most of heteronuclear samples which exhibit bi-exponential  

relaxation. 

 

In this thesis, a key concept is the fluctuation of local magnetic field which arises 

from the motion of the moment-carrying molecule. The relaxation processes, both in 

homonuclear system and in heteronuclear system, are driven by this random motion. 
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Chapter 2 Theory 
 

 

The theories related to my work will be summarised here. The relevant background 

knowledge of the nuclear magnetic resonance (NMR) 
[24-28]

 will be introduced in 

section 2.1 giving emphasis to the spin-lattice relaxation process which underpins 

most of the experimental work in this thesis. Proton transfer dynamics and the model 

developed by Skinner and Trommsdorff will be presented in section 2.2 to describe 

the proton tunnelling process in hydrogen bonds. We study both single spin and two 

spin systems so the theory of the homonuclear and heteronuclear spin-lattice 

relaxation will be studied in section 2.3 and section 2.4 respectively in the context of 

the proton transfer dynamics in hydrogen bonds. Finally in section 2.5, the nuclear 

quadrupolar interaction, leading to completely different heteronuclear interaction, will 

be introduced to deal with the samples where quadrupolar nuclei are present.       

 

 

2.1 NMR 

2.1.1. Larmor Precession 

 

When a nucleus is placed in a magnetic field B, the Hamiltonian operator for the  

interaction is given by 

Ĥ = − iBµµµµ                                                                                                                   (2.1) 

where µµµµ  is the magnetic moment of the nucleus with magnetogyric ratioγ , 

γ= Lµµµµ                                                                                                                        (2.2) 

where L is spin angular momentum, so associating this with the dimensionless spin 

angular momentum operator Î , we can write Î→ �L and take the applied magnetic  

field to be 0B along z-direction, finally 

0
ˆ ˆ

z
H B Iγ= −�                                                                                                               (2.3) 

The eigenvalues of this Hamiltonian are simple, proportional to the eigenvalues of ˆ
z

I . 

Therefore the allowed energies are 
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0m
E B mγ= − �                                                                                                              (2.4) 

where , 1,..., .m I I I= − −  These energies are illustrated in Fig 2.1 for the case 3/ 2I =  . 

The levels are equally spaced, the energy gap ∆ between adjacent levels being 0Bγ � . 

                            

Fig 2.1 Energy levels of equation (2.4) 

 

When µµµµ is interacting with the magnetic field, there is a tendency for it to align 

parallel with field B to lower the total energy of system; it experiences a torque × Bµµµµ . 

We can gain useful insight by viewing the system classically. Equating the rate of 

changing of angular momentum with the torque, the equation of motion for µµµµ  can be 

obtained as follows 

d

dt
γ= × B

µµµµ
µµµµ                                                                                                                (2.5) 

 

The solutions are illustrated in Fig 2.2, describing a precession of the magnetic 

moment about the axis of the applied field at the frequency
L z

Bω γ= , which is known 

as the Larmor frequency. The magnetic moment goes around and around on the same 

precession cone, always keeping the same angle between the spin axis and the  

magnetic field.                  

                                     

       Fig 2.2 Larmor precession of the magnetic moment 

Z, B 

μμμμ 

O 

X 

 Y 

ωωωωL 

m 

 
-3/2 

-1/2 

 1/2 

3/2 

 ∆ 



Chapter 2                                                                                                             Theory 

 20 

2.1.2 Bulk magnetisation 

 

We have discussed a single nucleus in the magnet field
z

B , however real systems 

consist of many nuclear spins. A sample containing a large number of spin moments 

in an applied magnet DC field 0z
B B= for an extended period will reach a state of 

equilibrium, where the populations are described by Boltzmann’s law. Under the 

assumption of isolated spins, the populations
m

P are proportional to ( )exp /m BE k T− , 

where
m

E is the magnetic energy corresponding to the quantum number m of the spin, 

as illustrated in Fig 2.1.  The net magnetisation of a sample containing N spins will be 

( )

( )

0

0

exp /

exp /

I

B

m I

I

B

m I

m mB k T

M N

mB k T

γ

γ

γ

=−

=−

=
∑

∑

�

�

�

                                                                           (2.6) 

The energy difference between the neighbouring levels, 0Bγ � , is extremely small in 

comparison with
B

k T , it is permissible to make a linear expansion of the Boltzmann  

exponential, thus obtaining 

2

2 2 2 2

0
0 0 0 0

( 1)

2 1 3

I

m I

B B

m
N B N I I

M H H
k T I k T

γ γ
µ χ=− +

= = =
+

∑
� �

                                               (2.7) 

where 0χ is the static nuclear susceptibility. The proportionality of 0χ to 1/T is the 

well-known Curie law.  

 

The assumption is in fact a good deal more general, as can be demonstrated easily 

using the formalism of the density matrix method. 

 

Suppose that the Hamiltonian of a system of N nuclear spins contains, besides their 

Zeeman energy 0 0 0
ˆ j

z z

j

H B Bγ γ= − = −∑� �I J , where j

z z=∑J I , other terms such as 

dipolar couplings between the spins or quadrupolar couplings with local gradients, 

which we describe as an extra term, 1Ĥ , in the Hamiltonian. The assumption of 

thermal equilibrium between the spin system and the lattice is expressed by a  

statistical spin operator 
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0 1 0 1
ˆ ˆ ˆ ˆ

ˆ exp / tr exp
B B

H H H H

k T k T
ρ

    + +
= − −    

     
                                                              (2.8) 

the macroscopic nuclear magnetic moment of the sample will be { }ˆtr zM Jγ ρ= � or, if 

we assume that the ratio ( )0 1
ˆ ˆ /

B
H H k T+ is small, 

( ){ }
{ }

0 1
ˆ ˆtr 1

tr 1

z

B

J H H
M

k T

γ− +
≅

�

                                                                                 (2.9) 

if 1Ĥ is such that { }1
ˆtr 0

z
H =J , which happens to be the case for both spin-spin  

couplings and quadrupolar couplings, it will be seen that  

{ }
{ }

{ }
{ }

2 2 2 2 2
0 0 0

ˆtr tr ( 1)1 1

tr 1 tr 1 3

z z

B B B

J H B J N I I B
M

k T k T k T

γ γ γ− − +
≅ = =

� � �
                        (2.10) 

in accordance with (2.7) and irrespective of the relative magnitude of 0Ĥ and 1Ĥ ,  

provided that both are much smaller than 
B

k T .         

 

In order to measure the energy separation ∆ between two energy levels of a system, or 

other parameters corresponding to the bulk magnetisation or the change of the bulk 

magnetisation, which is the fundamental spectroscopic problem, a resonant method 

was introduced. The system under consideration is irradiated by an r.f. pulse, the 

frequency of which can be changed continuously. As long as the resonance condition 

hν∆ = is not fulfilled, the probability for a transition of the system to be induced by 

the field is very weak, but it increases considerably when the value /hν = ∆ is reached. 

If the increase of the rate of transitions causes a detectable change in the system, a 

resonance has occurred and the measurement of ∆  is reduced to the measurement of a  

frequency.  

 

2.1.3 Rotating Frame; the interaction with EM radiation 

 

When the nuclear spins interact with EM photons to introduce flips in the spin state, 

the interaction is driven by the oscillating magnetic field associated with the EM 

radiation. Let us treat the system classically and apply linearly polarised r.f.  radiation  
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B1(t) to a single nuclear spin in the presence of a static field B , commonly 

0

1( ) 2 cos

B

t tω

=


=

B k

B i B1111

                                                                                                 (2.11) 

and B1(t) can be resolved into two rotating components as Fig 2.3 

1

1

( ) ( cos sin )

( ) ( cos sin )

a

c

t t t

t t t

ω ω

ω ω

= +


= −

B B i j

B B i j
                                                                                (2.12) 

                               
 

Fig 2.3 Two rotating components of ( )
a

tB  

 

Both Ba and Bc will introduce a torque on µµµµ . In Fig 2.4, the torque of  Bc  on µµµµ  is 

c
torque = × Bµµµµ                                                                                                         (2.13) 

Its direction is perpendicular to both µµµµ and Bc . If L
ω ω= , which means Bc rotates at 

the same frequency as µµµµ is precessing, then the torque due to the r.f.  field is 

consistently in the same direction. The effect is to change the direction of µµµµ , that is, to 

introduce transitions amongst spin states. We can see when
L

ω ω= , the effect of Bc is 

the strongest. As one moves away from this resonance condition then the torque no 

longer acts consistently in the same direction and the ability of a non-resonant r.f.  

field to introduce transitions is rapidly diminished as ω  moves further from
L

ω . 

 Ba(t) 

 Bc(t) 

+ω 

-ω 

o 

Y 

X 
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Fig 2.4 Torque introduced by time dependent field 

 

We will find it easy to discuss the interaction between nuclear spins and EM photons 

when we move into a frame of reference which rotates clockwise about the z-axis at 

the r.f. frequency ω− . It is a frame of reference called ‘The Rotating Frame’ where 

B1 is stationary, as shown in Fig 2.5a. 

( )1 1 't B=B i                                                                                                               (2.14) 

In this rotating frame, the magnetic moment will precess about the axis of
eff

B (an 

effective magnetic field, equation (2.15)). 
eff

B and the motion are illustrated in Fig  

2.5b and Fig 2.5c.  

1 0'
eff

B B
ω

γ

 
= + − 

 
B i k                                                                                             (2.15)   

When 
L

ω ω= , that is when the r.f.  field is on resonance with the Larmor precession, 

then 1 '
eff

B=B i , and while the r.f. field is present, µµµµ  precesses about the 'X  axis (Bc  

direction) in the 'Y Z−  plane at the angular frequency 1Bω γ= − . 

ω

 ω

μμμμ 

μμμμ×Bc(t) 

torque 

Bc(t), X’ 
 

X 

 Y 

Z, B0 

Y’ 
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Fig 2.5 The rotating frame (a), effective magnetic field (b) and the precess motion in rotating frame (c). 

 

In a time tω , µµµµ  rotates through the angle  

1B tωθ γ=                                                                                                                   (2.16) 

So it appears that applying a pulse of resonant r.f.  radiation enables us to change the 

orientation of the magnetic moment. After the r.f. pulse is turned off, the magnetic 

moment will precess about 0B . In the laboratory a coil is fixed to measure the emf 

which will be induced by the alternating flux in the coil. It is a typical experimental 

arrangement to observe the magnetisation by studying the emf. This process is  

illustrated in Fig 2.6. 

 

 
 

Fig 2.6 (a) coil containing sample. In thermal equilibrium the moments are parallel to magnetic field B0. 

(b) following a 90-degree pulse, the moments precess at angular frequency 0Bγ perpendicular to B0. 

The moments produce a flux through the coil which is alternating as the spins precess. The induced emf 

may be observed. 

 

The induced emf would persist indefinitely if there were no interactions of the spins 

with their surroundings. But in practice, these interactions cause a decay which means 

the moments along z-axis are getting bigger and the moments in x-y plane are getting 
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smaller. Therefore the emf is getting smaller during the decay. The decay may last in 

liquids for many milliseconds, but in solids it is more typically less than 100 sµ . This 

is called the “free induction decay” (FID). It has the great virtue of enabling one to 

study the resonance signal in the absence of the voltages needed to produce B1. It is  

illustrated in Fig 2.7. 

 

 
 

Fig 2.7  r.f.  pulse and the induced NMR signal(FID). 

 

2.1.4 Relaxation 

 

Now let us inquire what will happen to the real samples which contain an ensemble of 

nuclei if we apply r.f.  radiation to them. After the r.f.  pulse, we create a non-

equilibrium M (total magnetisation vector). When the r.f.  field is removed, M will 

come back to its initial thermal equilibrium value by two relaxation mechanisms. One 

is the recovery of the longitudinal magnetisation
z

M , and the other is the decay to 

zero of the transverse magnetisation 
x

M and 
y

M .  

 

The Bloch equations 
[29]

 provide an exceedingly successful description of the 

magnetic properties of ensembles of nuclei in an external magnetic field. Let us obtain 

these equations following these steps: 

 

RF Pulse 

NMR signal 

The decay is characterised by a time 
constant T2 
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First, in an arbitrary homogeneous field by analogy with the earlier treatment for an 

isolated magnetic moment, the equation of motion of the nuclear magnetisation for an  

ensemble of free spins can be written as 

 
d

dt
γ= ×

M
M B .                                                                                                       (2.17) 

 

Second, in a static field 0z
B B= , the trend of the magnetisation towards its equilibrium 

value 0 0 0 0/
Z

M M Bχ µ= = can often be described with good accuracy by the equation 

0

1

zz
M MdM

dt T

−
= − . 1T  is the relaxation time characterising the longitudinal  

magnetisation. 

 

Third, if by any means such as an r.f.  pulse, the nuclear magnetisation is given a 

component at right angles to the applied field, the various local fields, owing to the 

fact that the spins are actually not free but interact with each other and with their 

surroundings, cause the transverse magnetisation to decay at a rate which can often be 

represented by the equations
2

x x
dM M

dt T
= − ,

2

y y
dM M

dt T
= − , where 2T is called the 

transverse relaxation time. 

 

All these lead to the Bloch equation  

0

2 1

x y z
M + M M Md

dt T T
γ

−
= × − −

i jM
M B k                                                               (2.18) 

where i , j and k are the unit vectors of the laboratory frame of reference. 

 

If the system is initially at equilibrium, 0z
M M= , 0

x y
M M= = , then after a 

2

π
-pulse, 

the magnetisation is tipped into the transverse plane and we can write the Bloch  

equations as  
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2

2

0

1

0

x x
y z

y y

x z

zz

dM M
M B

dt T

dM M
M B

dt T

M MdM

dt T

γ

γ


= −




= − −

 −

= −


                                                                                           (2.19) 

where 1T  and 2T  are two kinds of relaxation time : 

• 1T  is the spin-lattice relaxation time. It governs the recovery of the 

longitudinal magnetisation
z

M . This process involves an exchange of energy  

      with the lattice to flip the nuclear spins. 

 

• 2T  is the spin-spin relaxation time. It governs the recovery of the transverse           

magnetisation 
x

M  and 
y

M . This process involves a dephasing process  

      amongst the spins. 

 

Both the relaxation of longitudinal magnetisation and the relaxation of transverse 

magnetisation are driven by the randomly fluctuating field which is a crucial concept  

in this thesis. 

 

The electrons and nuclei that comprise molecule are all sources of magnetic fields, 

and undergo constant vigorous motion. Therefore, the local field on each molecule 

fluctuates rapidly both in space and in time. It has a slightly fluctuating magnitude and 

a slightly fluctuating direction, therefore a gradual breakdown of the constant-angle 

‘cone precession’ of the nuclear spins arises. However the spin reorientation is 

towards an energy favourable orientation with the magnetic moment parallel to the 

magnetic field. This leads to an anisotropic distribution of nuclear spin polarisations, 

at thermal equilibrium in an applied magnetic field. Therefore a small net magnetic 

moment along the applied magnetic field, named the longitudinal magnetisation, is 

obtained. The process of returning this component to thermal equilibrium is  

conventionally called spin-lattice relaxation. 

 

As we discussed in 2.1.3, by applying an r.f. pulse of appropriate frequency and 

duration, the net spin polarization along the z-axis (longitudinal magnetisation) can be 



Chapter 2                                                                                                             Theory 

 28 

transferred into a net spin polarization along the y-axis (or any axis in the xy plane 

perpendicular to the magnetic field). The net magnetic moment perpendicular to the 

magnetic field is called the transverse magnetisation.  

 

After the pulse is turned off, the spins will resume their precessional motion. The bulk 

magnetic moment rotates in the xy-plane, perpendicular to the applied magnetic field. 

Due to slightly fluctuating microscopic magnetic fields, different spins experience 

different magnetic fields and therefore precess at slightly different frequencies. The 

precessing nuclear spins gradually get out of phase with each other and lose the 

transverse magnetisation. The time constant T2, characterising the decay as illustrated  

in Fig 2.7, is sometimes called the spin-spin relaxation time constant.   

 

 

 

2.1.5 NMR spectrum 

 

As illustrated in Fig 2.7 and expressed in equation (2.19), the transverse magnetisation 

components after the r.f.  pulse have the following form: 

( ) ( ) ( )

( ) ( ) ( )
0 0 2

0 0 2

cos exp /

sin exp /

y

x

M t M t t T

M t M t t T

ω

ω

= − −


= −
 ,                                                                     (2.20) 

or combining them to form a complex signal ( )s t  : 

( ) ( ) ( )0 2exp exp /s t i t t Tω −∼                                                                                    (2.21) 

where ( ) ( )Re
y

M t s t=    and ( ) ( )Im
x

M t s t=    are the real and imaginary parts of 

the complex FID signal respectively. 

 

Both components oscillate at the nuclear Larmor frequency 0ω , and decay with the 

time constant 2T . The signals represented by equation (2.20) contain enough 

information to determine both the magnitude of the Larmor frequency 0ω  and the 

decay time constant 2T . In practice, the determination of both the magnitude of the 

Larmor frequency 0ω  and the decay time constant 2T is performed by Fourier 

transformation. 
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The NMR spectrum, defined in the frequency domain, is the Fourier transform of the 

FID, 

( ) ( ) ( )
0

exps s t i t dtω ω
∞

= −∫                                                                                     (2.22) 

 

A simple example of an NMR spectrum is plotted in Fig 2.8, which is the real part of 

the Fourier transform of the NMR FID illustrated in Fig 2.7 and the input function  

shown in equation (2.20). It has the following mathematical form: 

( )
( )

2 2

0

Re s
λ

ω
ω ω λ

=  
− +

                                                                                 (2.23) 

where 21/Tλ = . 

  

Fig 2.8 A simple NMR spectrum centred at 0ω and with width 2λ . 

This is a Lorentzian peak (Fig 2.8) with full width at half-height, equal to 22 2 /Tλ = . 

 

Both FID and NMR spectrum are complex quantities. ( )Re s ω    is the absorption 

component whereas ( )Im s ω   is called the dispersion. The latter is illustrated in Fig 

2.9. Both absorption and dispersion are relevant to NMR experiments and will be 

discussed again in Chapter 3. 

2λ

0ω

ω
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( )0,0ω ω

( )
( )

0

22

0

Im s
ω ω

ω
λ ω ω

−
= −  

+ −

( )0,0ω ω

( )
( )

0

22

0

Im s
ω ω

ω
λ ω ω

−
= −  

+ −

 

Fig 2.9 Dispersion Lorentzian line in a simple NMR spectrum. 

 

 

2.2 Proton transfer dynamics and ST model 

 

Proton transfer in the hydrogen bond is one of the fundamental chemical reactions. It 

is a process that is relevant to many biological processes important to life. It is the 

main theme of the work presented in this thesis where we have explored the use of 

heteronuclear interactions to measure the proton transfer rate. As illustrated in Fig 

2.10, the hydrogen is exchanging its position between the two oxygen atoms in the 

hydrogen bond. This process is called proton transfer and the interchange between the 

two equilibrium states is hindered by an interceding potential barrier 
[1, 5, 11-14, 30-51]

. At 

high temperature, classical hopping dominates the process; but in low temperature and 

intermediate temperature regimes, quantum mechanics must be employed to explain 

the proton transfer process since tunnelling plays an important role. In this section, the 

dynamics of this process will be discussed along with the theoretical models used to  

describe it. 

  

 

Fig 2.10 Proton transfer in hydrogen bonds. 

 

O-H---O  O---H-O 
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We will discuss the proton transfer dynamics in detail based on the model system, 

Benzoic Acid (in Chapter 4). Here we introduce the background to proton transfer 

dynamics. 

 

 

2.2.1 Coherent and incoherent quantum tunnelling 

 

Particles are confined to certain regions of space because they do not have enough 

energy to ‘escape’ from that region. These regions are defined by potential energy  

wells on a potential energy surface comprising wells and barriers.  

 

Quantum tunnelling is where a particle is found outside a confining potential despite it 

having insufficient energy to cross the barrier classically. For example, as illustrated 

in Fig 2.11, a particle whose kinetic energy KE is smaller than the barrier potential PE, 

according to the classical theory, should be localized in the left well; but as a matter of 

fact, it can be found and detected in the right well, which seems that the particle 

undergoes a tunnelling process. This is due to the wave nature of particles at the 

quantum level: there will always be a finite probability of finding the particle on the 

other side of the barrier unless this is infinitely high or wide. The wavefunctions of 

the two sides of the barrier are therefore coherent. This is coherent quantum 

tunnelling. The coherent wavefunctions will overlap in both wells. One kind of 

parameter is introduced in quantum theory to characterise the overlap, called  

tunnelling matrix elements, 

ˆ, | | ,
ij

L i H R j∆ =                                                                                                   (2.24) 

which is the energy for tunnelling between two energy states ,L i and ,R j . i∆ is 

often used in this thesis representing the energy for tunnelling between the | i states of  

the left and the right wells, 

ˆ, ,i
L i H R i∆ =                                                                                                      (2.25) 

It can be shown mathematically that the probability of tunnelling decreases 

exponentially with the height of the barrier, the width of the barrier and the square  

root of the mass of the particle, as in equation (2.26), 
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2
exp

mV
d

 
∆ ∝ −  

 �
                                                                                              (2.26)      

where V is the height of the barrier, and d is the barrier width. 

 

 

 

Fig 2.11 Particle tunnelling process in double wells when the kinetic energy is smaller than barrier 

potential energy. The particle will be found in both wells with a finite possibility. |L> and |R> are the 

wavefunctions in both wells which are coherent due to the quantum tunnelling. The overlap of these 

two wavefunctions is characterised by a parameters ∆ which is called tunnelling matrix element. ∆ is 

insignificant in the samples we studied. Here it is enlarged to make a clear show. 

 

Thus tunnelling is very important for light particles such as electrons but is 

insignificant for heavier entities such as diatomic molecules because the probabilities 

involved are negligibly small. In the case of nuclear spin system, the proton atom is 

the lightest one rendering a significant tunnelling effect which may be observed in  

NMR experiments. 

 

When the barrier is large, which applies to all the samples we studied, it turns out that 

coherent tunnelling is insignificant, especially in comparison with the energy 

asymmetry of the DMP (Double Minimum Potential). In practice, asymmetry in the 

environment leads to an energy asymmetry in the depths of the potential wells, Fig  

2.12. 

 

Despite the fact that coherent quantum tunnelling is suppressed and negligible in our 

samples, tunnelling still plays an important role especially in low temperature. So 

long as the system can interact with a thermal bath, the tunnelling matrix element 

provides a pathway for through barrier crossing; this is phonon assisted tunnelling 

KE 

PE 

 
|L> 

|R> 

∆ 
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because the phonons provides the energy mismatch between the wells. It is an 

incoherent process because information on the phase of wavefunction is lost in the  

interaction with the environment. 

|L,0>

|R,0>

A

A

|L,0>

|R,0>

A

A

 

Fig 2.12 Phonon assisted tunnelling process in asymmetric DMP. A is the energy asymmetry. The 

coherent tunnelling process is suppressed and the tunnelling matrix element ∆
0 
is too small in 

comparison with the energy asymmetry A to be illustrated in the figure. 

 

For phonons to be available to mediate the process, the energy asymmetry must be 

generally be smaller than the Debye frequency 
D

ω . 

 

 

2.2.2 Proton transfer rate and ST model in small energy asymmetry 
 

 

As discussed above, the tunnelling in the asymmetric DMP is dominated by 

incoherent process. At low temperature, an assumption was made by Skinner and 

Trommsdorff 
[5]

 that only the two ground states of the DMP are populated (It’s also 

implicit that the energy asymmetry A is smaller that the Debye cut-off energy), then 

the low temperature tunnelling rate LTΓ  can be calculated as the sum of the upward  

and downward rates which are shown in Fig 2.13. 
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Fig 2.13 Random hopping between two ground states. kRL and kLR are the ‘downward’ tunnelling rate 

and the ‘upward’ tunnelling rate respectively. 

 

At thermal equilibrium, detailed balance applies so we have 

( )/ exp /RL LR Bk k A k T=                                                                                            (2.27) 

together with 

LT

RL LR
k kΓ = +                                                                                                          (2.28) 

It can be shown that 

0 coth
2

LT

B

A
k

k T

 
Γ =  

 
                                                                                              (2.29) 

where 
( )

( )
0 exp /

exp / 1

B

RL

B

k A k T
k

A k T
=

−
, 

( )
0

exp / 1
LR

B

k
k

A k T
=

−
. The ‘downward’ tunnelling rate 

RL
k has contributions from both simulated and spontaneous one-phonon emissions and 

therefore has a finite value at T = 0K, while the ‘upward’ tunnelling rate 
LR

k vanishes 

as the temperature approaches zero. 0k  is the incoherent tunnelling rate constant,  

which can be written as: 

2

2

0

3

2
p

D

A
k c

π

ω

 ∆
=  

 � �
                                                                                              (2.30) 

where ∆ is the tunnelling matrix element as described in equation (2.25), and 
p

c is the 

phonon coupling constant. The incoherent tunnelling rate constant 0k is therefore 

proportional to the square of the tunnelling matrix element. 

 

As the temperature rises, the excited states of the DMP become occupied, and the 

measured tunnelling rate will be faster since new tunnelling pathways become 

kRL 

kLR 

|L,0> 

|R,0> 
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available, Fig 2.14. If the first excited states are taken into account, that is to say, if 

the two ground states and two excited states are considered, the low temperature  

tunnelling rate can be written as follows 
[34]

: 

0 1 exp( / )
coth

1 exp( / ) 2

LT exc B

exc B B

k k V k T A

V k T k T

 + −
Γ =  

+ −  
                                                              (2.31) 

where 1k  is the incoherent tunnelling rate constant for the first excited states, 
exc

V  is 

the mean energy difference between levels | , 0L 〉 , | ,1L 〉  and | , 0R 〉 , | ,1R 〉 . The 

equation (2.31) will reveal the importance of excited state tunnelling in describing the  

intermediate temperature range. 

 

0k

1k

A

,0R

,1R

,0L

,1L

0k

1k

A

,0R

,1R

,0L

,1L

 

Fig 2.14 Tunnelling pathways (excited states) become available when the temperature rises.  

 

At high temperatures, there is tunnelling via multiple states in the wells and the 

behaviour resembles classical barrier hopping. Therefore, the expression for the high  

temperature proton transfer rate is easily derived from the Arrhenius law: 

1

0 exp expHT

B B

V V A

k T k T
τ −

    −
Γ = − + −    

    
                                                                (2.32) 

where V is high temperature activation energy, 0τ is the correlation time at infinite  

temperature. 
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Consequently the expression for the correlation rate for the small energy asymmetry  

A  is  

1

10 1
0

exp( / )
coth exp exp

1 exp( / ) 2

LT HT

c

exc B

exc B B B B

k k V k T A V V A

V k T k T k T k T

τ

τ

−

−

= Γ + Γ

      + − −
= + − + −      

+ −       

           (2.33) 

 

The correlation rate 1

c
τ −  characterizes the molecular dynamics, next we establish how 

it can be measured directly from the spin-lattice relaxation time 1T . The expression for 

1T  depends on the sample. For example, powder sample or single crystal, 

homonuclear or heteronuclear samples, will have different 1T expressions. First, the  

homonuclear spin-lattice relaxation time 1T  expressions will be introduced.   

 

 

2.3 Homonuclear spin-lattice relaxation 

 

In NMR, spin-lattice relaxation is governed by random fluctuation in the magnetic 

interactions experienced by the nuclei. Random fluctuations in the proton-proton 

dipolar interaction dominate the relaxation processes in proton-rich molecules in the 

solid state. For a homonuclear 1
2

I =  spin system, there are only two spin states for 

single spin: 1
2I

M = +  ( |α > ) and 1
2I

M = −  ( | β > ); there are four spin states for  

dipolar coupled spins: |αα > , |αβ > , | βα >  and | ββ >  as shown in Fig 2.15. 

 

The four spin states are degenerate in the absence of a magnetic field. But when they 

are in the magnetic field, the degeneracy will be broken. The energy levels are shown 

in Fig 2.15. It is evident that the transitions between energy levels |1> and |3> or 

between |2> and |4> will introduce single spin flips while the transitions between |1>  

and |4> or between |2> and |3> will introduce two spin flips. 
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Fig 2.15 Energy levels and spin flipping in the dipolar interaction system. 

 

The dipolar Hamiltonian can be written as 

( ) ( )
2

2

ˆ
m

m m

dd

m

H A F
=

=−

= ∑ i                                                                                                  (2.34) 

where ( )m
A and ( )m

F are tensors representing the spin and spatial variables  

respectively.  

 

This can be written in a well-known ‘alphabet’ form 
[24, 27]

: 

ˆ ( )ddH A B C D E Fη= + + + + +                                                                              (2.35) 

The terms A to F are given explicitly as follows: 

( ) ( ) ( )1 2 2ˆ ˆ 3cos 1
z z

A I I θ= − −                                                                                          (2.36) 

( ) ( ) ( ) ( ) ( )1 1 1 1 21 ˆ ˆ ˆ ˆ 3cos 1
4

B I I I I θ+ − − +
 = + −                                                                          (2.37) 

( ) ( ) ( ) ( ) ( )1 2 2 13 ˆ ˆ ˆ ˆ sin cos exp
2

z z
C I I I I iθ θ φ+ +

 = − + −                                                          (2.38) 

( ) ( ) ( ) ( ) ( )1 2 2 13 ˆ ˆ ˆ ˆ sin cos exp
2

z z
D I I I I iθ θ φ− −

 = − +                                                            (2.39) 

( ) ( ) ( )1 2 23 ˆ ˆ sin exp 2
4

E I I iθ φ+ += − −                                                                                (2.40)                        

( ) ( ) ( )1 2 23 ˆ ˆ sin exp 2
4

F I I iθ φ− −= −                                                                                  (2.41) 

where θ is the angle between the vector joining the two nuclei and the magnetic field.  

The common factor η  is known as the dipolar coupling constant and is given by 

2

0 1 2

34 r

µ γ γ
η

π
=

�
                                                                                                            (2.42) 
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where r is the internuclear distance. 

 

In the dipolar Hamiltonian, the term A contains no spin flip operators; term B contains 

flip-flop operators which flip one spin up and simultaneously flip the other one down. 

Neither will change the population of spin states for homonuclear systems, they are 

secular, contributing only to the frequency of the lines in the NMR spectrum. The 

terms C and D contain spin operators, which can flip a single nuclear spin. The terms 

E and F contain spin operators, which can flip two nuclear spins.  

 

Spin-lattice relaxation is driven by fluctuations in the dipolar interactions between 

nuclei labelled k and l, 

( ) ( )1 (1) (2)

1

1
4 2

8
kl kl

k l

T J J
N

ω ω−

≠

 = + ∑                                                                          (2.43) 

The sum extends to over all proton pairs in the sample containing N protons. 

 

The correlation function representing random fluctuations in the dipolar interactions  

arising from molecular motion is defined by  

( ) ( ) ( ) ( ) ( )
*

m m
G F t F tτ τ=< + >                                                                                 (2.44) 

The Fourier transform of the correlation function 
( ) ( )m

J ω is known as the spectral  

density function: 

( ) ( ) ( ) ( )exp
m

J G dω τ ωτ τ
+∞

−∞

= −∫                                                                                (2.45) 

Therefore it is evident that the terms C and D contribute to the spectral density 

term ( )J ω  and the terms E and F give rise to a spectral density term ( )2J ω . 

 

In the weak collision regime, where 1c
Tτ � , evaluating the correlation functions, the 

spin-lattice relaxation rate in the applied magnetic field B, where Larmor frequency 

Bω γ= , is finally given as follows for a  powder sample (the full derivation can be  

found in 
[52,53,54]

): 

( )1 2

1 2 2 2 2

4
, sech

2 1 1 4

c c
D

B c c

A
T T C

k T

τ τ
ω

ω τ ω τ
−   

= +   
+ +   

                                             (2.46) 
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Since we record the magnetic dependence of 1

1T
− , it is more convenient for analysing 

experimental data to express the relaxation rate in terms of magnetic field B. It is  

rewritten as 

( )1 2

1 2 2

1 1 4
, sech

2 1/ 1/ 4
D

B c c c c

A
T B T C

k T B Bγ γτ γτ γτ γτ
−   

= +   
+ +   

                        (2.47) 

In equations (2.46) and (2.47), 
D

C is the dipolar constant and is a function of 

geometry of the system, A is the energy asymmetry of the DMP and 
c

τ is the 

correlation time at the temperature T. The fit of the experimental data to the equation 

(2.47) gives rise to two crucial parameters which characterise the molecular quantum 

dynamics. One is 21
sech

2
D

B

A
a C

k Tγ

 
=  

 
, may be applied to determine the dipolar 

constant 
D

C and energy asymmetry A; the other one is 1/
c

b γτ= , directly leads to the 

measurement of correlation rate 1

c
τ − . We will discuss these later in the experimental  

chapter. 

 

With Equation (2.47), if we plot 1

1T
− against magnetic field, we can map out the 

spectral density function directly as the black curve shown in Fig 2.16. The spin 

lattice relaxation rate is a sum of two Lorentzian lineshapes centered at zero frequency, 

( )L ω  and ( )2L ω , which are the blue and red curve respectively. The linewidths are 

determined by the inverse correlation time. The two Lorentzians have amplitudes in 

the ratio 1:4 and linewidths in the ratio 2:1. To explore the magnetic field  

dependence of  1

1T
− , we employ field-cycling techniques. 

 



Chapter 2                                                                                                             Theory 

 40 

0

0.02

0.04

0.06

0.08

0.10

-3.0 -1.5 0 1.5 3.0

J(2ω)
J(ω)
fit of experimental data

τ
c

-1
=γb

B/Tesla

T
--

1

1
/s

-1

BA 18K spectral density and two Lorentzians

 

Fig 2.16 The spectral density curve measured in BA 18K to show that the two Lorentzians have 

amplitudes in the ratio 1:4 and linewidths in the ratio 2:1. 

 

The half-width at half-maximum of ( )L ω  is 1

c
τ −  and the full width at half-maximum 

of ( )2L ω  is also 1

c
τ − , so the spectral density provides a direct measurement of the 

proton transfer rate from a determination of the width of the spectrum. For the case in 

Fig 2.16, the correlation rate for sample BA (benzoic acid) at 18K is 

( )1 8 11.507 0.004 10c sτ − −= ± × . As we discussed above, the correlation rate 1

c
τ − plays a 

vital role on studying the molecular quantum dynamics, in low temperature regime, 

1

c
τ − characterises the tunnelling process and determines the tunnelling rate, while in 

the high temperature regime, it characterises pseudo-classical ‘Arrhenius’ process. 

Therefore the field-cycling NMR becomes a reliable and effective technique in the 

study of molecular quantum dynamics. The most important feature of field-cycling 

NMR is its ability to map out the spectral density directly. In comparison with field-

cycling NMR technique, it is more difficult or even impossible to directly measure the 

frequency dependence of the spin-lattice relaxation rate with many other NMR  

techniques due to their invariable magnetic field.  
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2.4 Heteronuclear dipolar interaction 

 

We have discussed the role of homonuclear dipolar interactions in section 2.3. 

However, not only do many samples naturally contain multiple magnetic nuclei, but 

also in the study of complex systems of biological interest, for example,  isotopic 

labelling and deuteration may be used to discriminate different functional sites. 

Therefore dipolar interactions between different nuclear species can become 

important to the spin-lattice relaxation behaviour. The information related to the 

heteronuclear interaction is of significance to improve our understanding of the  

dynamics in the heteronuclear system in chemical and biological reactions. 

  

The system chosen for introducing the theory of heteronuclear interaction is a two 

spin-½ heteronuclear species system. The heteronuclear spins are labelled as spin I 

and spin S. Due to the fact that the lightest atom, the proton, experiences the largest 

quantum effect and it is one of the most important atoms in biological and chemical 

reactions, the proton is one of the two spin species in the heteronuclear system we  

investigate and is labelled as spin I. 

 

Each spin nucleus in the heteronuclear system possesses a thermal reservoir 

associated with its Zeeman energy (Fig 2.17). There are some different mechanisms 

for the interactions between the two spin species, such as dipole-dipole coupling, J-

coupling, and spin-rotation interaction. Dipole-dipole coupling is the dominant 

interaction for the solid state samples studied in this thesis. Mutual interactions 

between the two spin species give rise to a coupling of the reservoirs and their spin-

lattice relaxation behaviour is therefore interdependent. The typical structure for 

heteronuclear dipole-dipole coupling in context of proton transfer in hydrogen bonds  

is illustrated in Fig 2.18.  
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Figure 2.17  Spin I and spin S thermal reservoirs with their Zeeman energies and the coupling among 

the reservoirs (two spin thermal reservoirs and lattice reservoir). 

 

 
Fig 2.18 Geometry of two spin species interacting. The proton, labelled I, occupies a hydrogen bond. A 

second spin S acts as an observer of the proton transfer. The dash lines are distances between spin I and 

spin S. 

 

The spin relaxation due to dipole-dipole coupling interaction has been established. 

The differential equations governing the longitudinal polarisations 
z

I〈 〉 and 
z

S〈 〉 are 

given by the Solomon equations 
[55]

 

0

0

z
zI I

S s z
z

d
I

I Idt

d S S
S

dt

ρ σ

σ ρ

 〈 〉  〈 〉 −  
= −     〈 〉 −    〈 〉

  

                                                                         (2.48) 

where 0I  and 0S  are the magnetisations of spin I nuclei and spin S nuclei respectively 

at thermal equilibrium. The elements of the relaxation matrix, 
I I

S s

ρ σ

σ ρ

 
=  
 

� , are 

inverse spin-lattice relaxation times defined in terms of spectral density contributions 

sampled at the Larmor frequencies of spin I and spin S (
I

ω and 
S

ω respectively) , and 

O-H···H-O 

12ijθ

1ij
r 2ij

r

S 
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also the sums and differences of the two. Notice, whereas for a homonuclear system, 

there is only one characteristic relaxation rate, for a heteronuclear system there are  

four elements of a spin-relaxation matrix. 

 

For heteronuclear interactions in a powder sample the elements of � have the form: 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

2

2

2

2

4
, 3 , 6 ,

(1 )

4
, 6 ,

(1 )

4
, 6 ,

(1 )

4
, 3 , 6 ,

(1 )

IS

I IS I S C I C I S C

IS

I IS I S C I S C

IS

S IS I S C I S C

IS

S IS I S C S C I S C

a
C L L L

a

a
C L L

a

a
C L L

a

a
C L L L

a

ρ ω ω τ ω τ ω ω τ

σ ω ω τ ω ω τ

σ ω ω τ ω ω τ

ρ ω ω τ ω τ ω ω τ

= − + + +
+

= − − + +
+

= − − + +
+

= − + + +
+

                         (2.49) 

Here, ( ) 2 2
,

1

C
C

C

L
τ

ω τ
ω τ

=
+

 is a Lorentzian with half-width at half-maximum amplitude 

equal to the inverse correlation rate 1

C
τ − , and ( )exp / Ba A k T= where A  is the energy  

asymmetry of DMP. 
IS

C  is the lattice sum of dipolar interactions, 

( )
22 2 2

6 6 3 3 20
1 2 1 2 12

,

1 3cos
40 4

I S
IS ij ij ij ij ij

i j

C r r r r
γ γ µ

θ
π

− − − −   = + + −    
Σ

�
                                      (2.50) 

I
γ and 

S
γ are the respective magnetogyric ratios and the sum involves spin S (labelled  

j) interacting with spin I atoms (labelled i) which undergo proton transfer. The  

geometrical parameters are defined in Fig 2.18. 

 

Homonuclear spin I- spin I ( 1 H -- 1 H ) interactions also contribute to 
I

ρ since proton- 

proton interactions will also modulated by the motion. For a powder sample,  

( )
( ) ( )( )2

4
, 4 2 ,

1

II

I II I C I C

a
C L L

a
ρ ω τ ω τ= +

+
                                                           (2.51) 

where  

( )
24 2

6 6 3 3 20
1 2 1 2 12

,

3 1
1 3cos

40 4

I
II kj kj kj kj kj

k j

C r r r r
N

µγ
θ

π
− − − −   = + + −    

Σ
�

                                   (2.52) 

which is a lattice sum involving the dipolar contacts of all protons (labelled k), with 

the hydrogen bond protons (labelled j) which undergo proton transfer. N is the number  

of protons contributing to the homonuclear dipole-dipole interactions. 



Chapter 2                                                                                                             Theory 

 44 

 

Normally the relaxation in this kind of heteronuclear system is dominated by two 

symmetry related intra-dimer dipolar contacts with two dynamic protons. The  

homonuclear spin S interactions are insignificant and negligible. 

 

Summing heteronuclear and homonuclear contributions, the overall relaxation may  

now be characterised by the matrix, 

IS II IS
I I I I I

IS IS
S s S S

ρ σ ρ ρ σ

σ ρ σ ρ

 + 
= =   
   

�                                                                           (2.53)      

 

The general solution of (2.48) describing the magnetisation recovery following a 

disturbance away from equilibrium is a weighted sum of two exponentials for each  

nuclear species 
[43, 48, 55]

, 

 
( ) ( )( )
( ) ( )( )

0 1 1 2 2 0

0 1 1 2 2 0

exp exp

exp exp

I I

z

S S

z

I I c R t c R t I

S S c R t c R t S

〈 〉 = − + − +

〈 〉 = − + − +
                                                          (2.54) 

Where the weighting coefficients c are functions of 1R , 2R and� , determined by the 

magnetisation state of each reservoir at time 0t = , namely the spin temperatures of the 

two reservoirs associated with the two nuclear species. The spin-lattice relaxation 

rates 1R and 2R  are eigenvalues of � . These have the following functional form  

obtained by diagonalization of the relaxation matrix: 

( ) ( ) ( )
2

1,2

1
4

2
I s I s I s I S

R ρ ρ ρ ρ ρ ρ σ σ = + ± + − −  
                                              (2.55) 

The foregoing analysis highlights two consequences for the spin-lattice relaxation of  

both spin I and spin S species:  

• The spectral density is sampled at multiple frequencies. 

• In general, the magnetisation recovery curves will be biexponential. 

 

Analytical expressions for the weighting coefficients can be determined under certain  

idealised initial conditions for the magnetisation states of the two spin species.  

• Initial condition 1: when 0,t =  0z
I I〈 〉 =  and 0

z
S〈 〉 = . (the spin S nuclei are  

      saturated but the spin I nuclei are not). 
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1
1

1 2

2
2

1 2

S I

S I

R
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R R

R
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R R

ρ

ρ

−
= −


− =

 −

                                  

0
1

1 2 0

0
2

1 2 0

I

I

S
c

R R I

S
c

R R I

σ

σ


= − −


 =
 −

                               (2.56) 

• Initial condition 2: when 0,t =  0
z

I〈 〉 =  and 0
z

S〈 〉 = (both the two kinds of  

      nuclei are saturated at their resonance field). 

( )

( )

01
1 2

1 2 0

1 0
1 2

1 2 0

1

1

S I
I

I S
S

IR
c R

R R S

R S
c R

R R I

ρ
ρ

σ

ρ
ρ

σ

 −
= − + 

−  

 −
= − + 

−  

 

( )

( )

01
2 2

1 2 0

1 0
2 2

1 2 0

1 1

1 1

S I
I

I S
S

IR
c R

R R S

R S
c R

R R I

ρ
ρ

σ

ρ
ρ

σ

 −
= − − − + 

−  

 −
= − − − + 

−  

     (2.57) 

 

Clearly the coefficients 1

S
c , 2

S
c , 1

I
c and 2

I
c  depend on the initial conditions as shown in 

equations (2.56) and (2.57). However, according to equation (2.55), 1R and 2R depend 

on the temperature and magnetic field (or resonance frequency), but not on the initial 

conditions of the two nuclear species magnetisation. Significantly the spin-lattice 

relaxation is characterised by two relaxation rates 1R and 2R . It means that traditional 

data analysing techniques must be modified for the heteronuclear spin systems; also 

there are significant consequences affecting the methodology of field-cycling  

relaxometry. 

 

It is evident that the heteronuclear system has more information on the molecular 

dynamics. This can be advantageous since the spectral density function is sampled at 

multiple frequencies, but it is also more complicated than the homonuclear system and 

leads to more complex behaviour requiring a more complex interpretation and 

analysis of the experimental data. How to record and analyse the experimental data is  

a challenge. We will discuss this problem later in the experimental chapters.                                                                    
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2.5 Nuclear quadrupolar interaction in Solids 

 

One of the systems studied in this thesis contained quadrulpoar nuclei. The 

quadrupolar nuclear energy level structure was probed by proton field-cycling NMR. 

Effectively, the quadrupolar system acted as a relaxation sink for 
1
H Zeeman energy.  

Here the nuclear quadrupole interaction will be introduced 
[27, 56, 57]

. 

 

The electric quadrupole moment Q is an intrinsic nuclear property. It can interact with 

the electric field gradient q governed by the surrounding electrostatic potential. The 

origin of this interaction is illustrated in Fig 2.19, where the electric field gradient is 

generated by point positive charges. It is clear that the orientation of Fig 2.19 (a) has a 

lower energy than that of Fig 2.19 (b) and will be energetically more favourable. 

Since each quadrupolar nucleus has a magnetic moment, this ordering produces a 

magnetic polarization in crystal, in a similar way to that produced by a magnetic field. 

  

If 
n

eρ is the nuclear charge density, the quadrupole moment of such charge  

distributions may be defined by the equation  

( )2 23
n

eQ e z r drρ= −∫                                                                                             (2.58) 

                                                                                             

                                  

 
 

(a) (b) 

Fig 2.19 Two orientations for an electric quadrupole moment in the electric field gradient of a pair of 

point positive charges. 

 

It is only non-zero if the nuclear spin quantum number 1I ≥ , so 
1
H is non- 

quadrupolar, but 
14

N ( 1I = ) and 
35

Cl ( 3/ 2I = ) are. 
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The electric field gradient, q, at a nuclear site arises from the electronic charge 

distribution in atoms, and from both electrons and neighbouring nuclei in molecules. q  

may be defined as a tensor, 

xx xy xz

yx yy yz

zx zy zz

q q q

q q q q

q q q

 
 

=  
 
 

                                                                                                 (2.59) 

 

It is always possible to find a set of axes, known as the principal axes, in which all 

non-diagonal matrix elements are zero and only 
xx

q , 
yy

q  and 
zz

q  finite. We use the  

common convention that  

| | | | | |
zz yy xx

q q q≥ ≥                                                                                                       (2.60) 

and they can be described as below 
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        (2.61) 

 

It is customary to set 

zz
q q=                                                                                                                       (2.62) 

and it is usual to define an asymmetry parameter η  by the equation 

( ) /
xx yy zz

q q qη = −                                                                                                     (2.63) 

 

Now we can derive the energy of interaction of a nuclear electric quadrupole moment 

in the electric field gradient of an external charge distribution — the so-called 

quadrupolar Hamiltonian 
[24, 27, 56]

. The energy operator ˆ
QH is 

2
2 2 2ˆ ˆ ˆ ˆ3 ( 1) ( )

4 (2 1) 2
Q z

e qQ
H I I I I I

I I

η
+ −

 
= − + + + 

−  
                                                         (2.64) 

in which ˆ
z

I , Î+ and Î−  are nuclear spin operators. ˆ ˆ ˆ
yI I iI± += ± . The solutions of  

equation (2.64) depend on the nuclear spin quantum number I. 
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For spin-1 nuclei, the actual eigenstates are linear combinations of the 
I

m sub-states  

|1>, |0>, |-1> and are given by 

( )
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                                           (2.65) 

 

There are three transitions allowed, Fig 2.20, with frequencies 
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For 
3

2
I = , the eigenstates also are suitable linear combinations of the 

I
m sub-states 
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                                                                                      (2.67) 

there are two transitions allowed, but only one frequency is observed, Fig 2.21, 

1
2 2

21
( / ) 1

2 3
Q e qQ h

η
ν

 
= + 

 
                                                                                      (2.68) 

 

In both cases there is a zero-field splitting of the nuclear sub-states. In pure NQR 

(Nuclear Quadrupole Resonance) the transitions are driven directly in zero (or very  

small) magnetic field. 
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Fig 2.20 Energy level diagram for a spin-1 nucleus in zero field. 

 

                                         

 

                                                             

 
 

Fig 2.21 Energy level diagram for a spin-
3

2
 nucleus in zero field. 
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Chapter 3: Experimental 
 

 

The majority of NMR spectrometers in the world are fixed field instruments. However 

there are significant advantages to study NMR phenomena as a function of magnetic 

field. To achieve this, we have adopted a magnetic field-cycling approach 
[17, 20, 21, 22, 

58]
. Field-cycling relaxometry is the only NMR technique that effectively enables one 

to investigate the frequency dependence of spin-lattice relaxation rate and cover 

several decades of frequency with the same instrument. This feature makes field-

cycling relaxometry a most powerful tool for the study of molecular dynamics in  

complex systems. 

 

In this chapter we will give a description of our field-cycling spectrometer and how it 

works. Here we give a brief description of the hardware and the software, which is 

indispensable to understand the whole system. In the description we will introduce the 

modifications we have made in hardware, software and experimental methods in  

carrying out the research in this thesis. The modifications include: 

• modification of the probe and RF coils to improve the signal quality, to 

minimize the dead time and to choose an appropriate Q factor which is a 

compromise between the signal quality and frequency profile. 

• modification of the magnetic field quenching detection program to protect the 

magnetic coil in case of a quench. 

• modification and automation of a field offset to minimize the effect of 

magnetic field instability. 

• modification of  the time limit to tune or polarize the long T1 sample easily 

and run a set of polarisation experiments automatically.  

• modification of the measurement pulse amplitude to avoid the signal 

saturation at high field or low temperature.  

• development of new pulse sequences to investigate spin-lattice relaxation in 

heteronuclear systems.  
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Finally in this chapter, we will discuss the experimental details of tuning the 

spectrometer, the T1 experiment and low field experiment. The curve fitting of the 

experimental data will also be introduced as well as the simulation of experimental  

data. 

 

 

 

3.1 Field-cycling NMR spectrometer 
 

 

 

Fig 3.1 A schematic of the new state of art field-cycling system. 

 

 

Our new state-of-art field-cycling NMR spectrometer has a field switching rate of 

10T/s in the range of magnetic field 0-2.5T. A built-in cryostat provides a wide 

temperature range 4K-325K. Therefore, we can directly map out the field/frequency 

dependence of the spin-lattice relaxation rate, namely the spectral density as a 
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function of temperature. The fast test spin-lattice relaxation time that can be measured 

is in the order of 100ms. With the ability to map out the spectral density, the rate of 

molecular dynamics is directly determined. With the fast field switching, many faster 

T1 experiments and other new experiments such as NQR which need fast field 

switching to minimize the magnetisation relaxation during the field switch become  

possible. A schematic diagram of the system is shown in Fig 3.1. 

 

 

3.1.1 Magnet, cryostat and magnet power supply 
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Fig 3.2 The structure of magnet and cryostat. 

 

A diagram of the superconducting magnet and the low temperature cryostat is shown 

in Fig 3.2. The superconducting magnet is situated inside a helium bath cryostat 

(4.2K). The liquid helium bath is itself insulated by a large reservoir of liquid nitrogen 

(77K). The reservoirs are separated from each other, and from the outside 

environment, by evacuated barriers, in order to reduce thermal leakage. A variable 

temperature insert (VTI) is situated inside the cold bore of the magnet to provide a 
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variable temperature environment for the sample, 4.2 300T≤ ≤ K. The helium is 

drawn through a needle valve from the main helium bath to cool the sample. A heater 

and temperature controller are employed to stabilise the desired sample temperature 

(long term stability and accuracy is 0.05K for T < 100K and less than 1% for T >  

100K). 

 

The superconducting magnet is designed with a low inductance superconducting 

solenoid to allow fast field ramping and with high current operating mode to achieve 

high field. Unlike conventional NMR magnets, the solenoid in our system has no 

persistent mode switch and must be permanently connected to the magnet power 

supply by leads that carry not only the current but also heat from outside into the 

magnet; therefore the instantaneous magnetic field is proportional to the instantaneous  

current.  

 

There always are some requirements for the NMR magnet, as follows: 

• a good cooling efficiency permitting the high current densities needed for high 

fields 

• a good field homogeneity (that is, the relative field variation in the sample volume 

should not exceed the stability and reproducibility of the detection field.) 

• large room temperature bore diameters and large sample volumes (the signal 

sensitivity is proportional to the sample size). 

 

The energy stored in the field of a gas-core magnet coil is given by 

2

0

1

2 space
E B d

µ
= ∫ r ,                                                                                                  (3.1)    

where the integral covers the whole space over which the magnetic field is spread. 

This is the amount of energy that has to be cycled into and out of the magnet as fast as 

possible. Since a magnet with a smaller total field energy is easier to be cycled fast 

than a larger one, it is therefore important to minimize the total field energy while 

retaining large peak flux densities in the sample. So another requirement for the NMR 

magnet is that the magnet coil should be as compact as possible. It is in conflict with  

the three requirements listed above.  
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A compromise between the highest achievable ramp rate and the highest achievable 

field has to be made due to these conflicting requirements. In our case the 

superconducting solenoid was specified with an inductance of 0.023H which, with a 

±15V power supply, is capable of being switched at the highest rate of 10 Tesla 1
s

− . 

The maximum operating current is 160 A, leading to a maximum magnetic field in 

excess of 2.5 Tesla. In our experiments, field switches have duration of order tens or 

hundreds of milliseconds, enabling us to measure the molecular dynamics of samples 

with short T1. Important for our studies, there is no restriction on magnet duty cycle, 

allowing the magnet to be energised for very long periods of time, in particular for the  

study of very long T1 samples. 

 

The superconducting magnet is energised and fully protected against accidental 

quench by a magnet power supply (manufactured by CRYOGENIC). The power 

supply employs MOSFET transistors rather than power transistors to achieve a fast 

ramping rate. The MOSFET transistors are mounted on a water-cooled copper heat 

sink. There is automatic protection in case of a water supply failure. A thermo-switch 

is installed on the copper base to protect against overheating the MOSFET transistors.  

 

The power supply incorporates a sophisticated microprocessor unit, with all 

operations controlled through the internal firmware. All operating functions are 

available either locally at the front panel or remotely via a standard digital interface. 

An important feature of the power supply is that it can work either with the internal 

mode or with the external mode. In the internal mode, the field is set as a constant by 

setting the current via front panel control. In the external mode, the magnet power 

supply is controlled by a custom interface to produce a variable current which will 

introduce a desired field profile in the superconducting magnet for field-cycling 

experiments. A ‘gradient’ power supply supplied with the Apollo spectrometer 

provides this signal. To avoid damaging the system under no circumstances should the 

internal mode be switched to the external mode while the superconducting  

magnet is energised, and vice versa.  

 

The power supply possesses an internal protection unit which limits the voltage across 

the magnet in the event of a quench (loss of superconductivity of the current carrying 
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coil that may occur unexpectedly in a superconducting magnet). As the magnet 

becomes resistive, heat will be released that can result in rapid evaporation of liquid 

helium in the cryostat. However, the internal protection is only available in the 

internal mode; when the superconducting magnet is operated via the custom interface 

the normal over-voltage protection of the magnet is by-passed. In this case, suitable 

protection had to be designed to protect the superconducting magnet from quenching.  

This will be discussed later. 

 

A gradient power supply, which has the maximum output 10V, is employed to drive 

the superconducting magnet power supply via the custom interface, hence to control 

the field since the instantaneous field is directly proportional to the instantaneous 

current. It is controlled by a gradient waveform generator with its own DSP (Digital 

Signal Processing) and an optically isolated 18-bit DAC (Digital to analog converter). 

The waveform shape is defined in the pulse sequence and this was used to ramp the  

field smoothly to the chosen value. 

 

Concluding this section, the specifications of the superconducting magnet are  

summarized in Table 3.1: 

 

Normal coil inductance 23mH 

Maximum magnetic field >2.5Tesla at 4.2K 

Maximum operating current  160Amps 

Homogeneity in 5mm DSV +20ppm/-40ppm 

Maximum ramping rate 10Tesla s
-1

 

Sample space bore 25mm 

Sample temperature 4.2~300K 

Duty cycles Infinity 

Field/current ratio 167Gauss/Amp 

 

Table 3.1 Specifications of the superconducting magnet 
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3.1.2 Apollo console 

 

The Apollo spectrometer is a digital NMR spectrometer console manufactured by 

Tecmag. It is equipped with two RF Channels and an integrated pulse programmer. A 

gradient waveform generator is employed to control the current supplied to the 

superconducting field-cycling magnet. The NTNMR controlling software is Windows 

NT based and an important feature is OLE control that enabled us to write Visual  

Basic control programs to provide a high level of automation and control. 
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Fig 3.3 RF transmitter 

 

A schematic diagram is shown above to illustrate the operation of RF transmitter. 

Here we briefly explain the function of each component marked in Fig 3.3. The RF 

synthesiser○1  produces an oscillating electrical signal with a well-defined frequency 

which is the spectrometer reference frequency, denoted
ref

ω . The synthesiser output  

wave is given as 

( )( )cos
synth ref

s t tω φ+∼                                                                                              (3.2) 

where ( )tφ is the r.f. phase controlled by the pulse programmer○3 . The pulse gate○4  

is a fast switch opened at defined moment (controlled by pulse programmer○3 ) to 

allow the r.f. reference wave to pass through. The effect is to create an r.f. pulse with 

finite duration. The duration of the r.f. pulse is referred to as the pulse width, 
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determined by the pulse gate○4  and the pulse programmer○3 . The r.f. amplifier○5  is to 

scale up the gated wave to produce a large-amplitude r.f. pulse for transmission to the  

probe. 

 

In our case, each RF transmitter channel comprises a DSP (Digital Signal Processing) 

driven DDS based (Direct Digital Synthesiser) frequency synthesiser○1  and a 

transmitter modulator board. The synthesiser board produces small angle phase 

shifts○2  and the transmitter board supplies amplitude modulation. The final output 

from the transmitter has a maximum nominal output of 1V pp into 50 ohms. We used 

one RF channel to generate the resonance NMR pulse. This was directed to the 

sample coil via the duplexer after amplification by the AMT RF amplifier○5 , which 

can amplify the signal in the range 10-150MHz up to 1kW. The other RF channel was 

used for secondary irradiation, which generates the CW signals with a quite wide 

range from 5kHz to 450MHz. The broadband AR CW amplifier with low frequency 

(2kHz) capability provides the irradiation with power levels up to 100W in the range  

5kHz to 30MHz. 

 

The DSP driven pulse programmer○3  has 100ns timing resolution, 300ns minimum 

pulse width○4 , unlimited number of loop counters and 1024 events. The signal 

averager is controlled by an embedded PowerPC processor and is equipped with 

4Mword complex (2048*2048) memory, dedicated real-time display memory, and  

ultra fast upload capability. 

 

The Apollo spectrometer is controlled by the NTNMR software through two PCI 

cards, one is used to upload data to the main computer during and after data 

acquisition, the other one is responsible for all other communication between the main 

computer and the Apollo system, such as uploading pulse program data from the main  

computer to the system interface board. 

 

The commercial NTNMR software offers a lot of functions to process the detected 

signal. The FID signal was acquired from the Apollo console. The signal processing is: 

1) A baseline correction was performed to eliminate dc offset. 

2) A left shift was applied to eliminate any remaining dead time signal. 
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3) An exponential multiplication was performed on the FID data set with a function 

defined by ( ) ( )expf t t value= − ⋅ , where the ‘value’ parameter is set to 1/2000s
-1

 

in our processing. This simple low-pass filter improved the signal to noise ratio. 

This process is called apodization. 

4) Once the signal in the time domain had been optimised, a Fourier transform was 

then applied to transform the signal from time domain to frequency domain, and 

produced the NMR spectrum. 

5) The crucial part of the signal processing, namely phase correction and integration, 

was then performed. We compared the left and right wing of the dispersion 

spectrum and adjusted the phase until the absorption spectrum was symmetrical. 

The baseline correction was performed again to remove any dc offset. Finally, the 

centre of the absorption spectrum was found by measuring the moments of the 

line. The peak was then integrated to determine the magnetisation. 

 

The left shift, dead time, phase correction and moment are often encountered terms in 

the NMR technique and are used here in optimising the spectrometer set-up and the 

data processing.  

RF

dead time

left shift

RX gate

RF

dead time

left shift

RX gate

 

Fig 3.4 Dead time and left shift 

 

Dead time: the time between the pulse and the switch on of the receiver to register the 

FID, illustrated in Fig 3.4. To understand this effect, we must consider that the voltage 

in the NMR coil during the pulse is generally of the order of 1kV, while the induced 
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signal is at most several hundred µ V. Together with the receiver and the transmitter, 

the NMR coil is an RLC circuit, the oscillation of which does not stop suddenly, but 

follows the law ( )exp /t RC− . RC is known as the damping constant. For the voltage 

in the coil to fall to about 10 µ V, when the measurement of the FID begins to be 

possible, we must wait for the time ( )ln 1 /10 18t kV V RC RCµ= �  known as the dead 

time. An additional factor which increases the dead time is the saturation-recovery of 

the receiver; this was minimized by using receiver blanking. The early part of the FID 

carries information about the highest frequencies, so that its loss during the dead time  

may lead to a distortion of the extremes of the spectrum. 

 

Left shift: after the dead time, the receiver is switched on to record the FID, however 

there always some irregular dead time signal remaining during the first few points (the 

time between two neighbouring points is the sampling interval, 
sample

τ , 0.4 sµ in our 

spectrometer), left shift is applied to exclude these points and therefore eliminate the 

remaining dead time signal, Fig 3.4. It is also in time scale. Normally the left shift  

is recorded as the number of points excluded, and can be transferred as time, 

( ) ( ) 1 sampletimescale points
leftshift leftshift τ = − ×                                                              (3.3) 

It is evident that the two parameters dead time and left shift depend on each other. If 

the dead time is defined longer, the left shift will become smaller, and vice versa. The 

sum of these two parameters is determined by the hardware (coil and receiver) 

and the sample being studied. 

 

Phase correction: linear combination of the real and imaginary parts of the NMR 

spectrum to produce a peak with pure absorption mode shape. It can be performed  

automatically by software or interactively by the operator. 

 

Moments: The nth moment 
n

M  of a line shape function ( )G ω  with respect to the  

point 0ω  is given by, 

( ) ( )

( )

0
0

0

n

n

G d
M

G d

ω ω ω ω

ω ω

∞

∞

−
=
∫

∫
                                                                                     (3.4) 
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The zero moment is the integral of the line. The first moment determines the centre of 

the peak. The second moment 2M  characterises the line width. 

 

The signal processing discussed above is only part of the whole signal processing. 

Some important processing is accomplished by the receiver section of NMR system,  

Fig 3.5. Some components (○1 ,○8  and ADCs) are built in the Apollo console. 
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Fig 3.5 The receiver section 

 

The NMR signal arrives at the duplexer ○6 and is diverted towards the signal 

preamplifier ○7  which is a low-noise r.f. amplifier which scales up the tiny signal to a 

more convenient voltage level. This signal is a continuous current or voltage which 

must be converted into digital form for further interpretation and presentation on a 

computer. But the original NMR signal oscillates at very high frequency, tens or 

hundreds of MHz, which is too fast for the ADCs (analogue-to-digital conversion). 

The quadrature receiver ○8  is designed to generate a new frequency signal which is 

oscillating at the relative Larmor frequency (much slower than original signal) by 
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combining the NMR signal, which oscillates at the Larmor frequency 0ω , with the 

reference signal, oscillating at the frequency 
ref

ω . The relative Larmor frequency is 

0 ref
ω ωΩ = −                                                                                                               (3.5) 

The offset frequency / 2πΩ  is usually of the order of 1MHz or less, enabling the 

signal to be handled accurately by ADCs. Now the output of the receiver is 

( ) ( ) ( )2cos exp /s t t t TΩ −∼                                                                                        (3.6) 

It is similar to expression (2.20), with 0ω  substituted by Ω . The problem is that the 

equation (3.6) doesn’t distinguish the difference between 0 ref
ω ω> or 0 ref

ω ω< . That is 

why the absorption line and the dispersion line are needed in NMR experiments as  

discussed in Chapter 2. This two-output detection is called quadrature detection.   

 

The two outputs of the quadrature receiver are connected to their own ADCs to 

convert the continuous analogue signal into digital form. The digitization is to sample 

at a set of points and record them as a set of values. The time separation between the 

sampling points of the ADCs is called the sampling interval, 
sample

τ . In our case, the 

sampling interval is 400ns, and the number of sampling points (usually an integer  

power of 2) is 1024. 

 

The whole signal processing, comprising the signal processing by NTNMR software 

and the signal processing by receiver section, converts the original NMR signal to the 

visible NMR spectrum which is ready for rendering the dynamic information of the  

sample. 

 

 

3.1.3 Duplexer 

 

The duplexer is designed to achieve the following task: when a strong r.f. signal 

arrives from the amplifier ○5 , the duplexer diverts it down the cable leading to the 

probe; on the other hand, when the tiny NMR signal travels down the same cable in 

the opposite direction, the duplexer diverts it into the receiver section. The diagrams  

for the two modes are illustrated in Fig 3.6(a) and Fig 3.6(b). 
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Fig 3.6 (a) the duplexer in transmit mode (b) the duplexer in receive mode. 

 

 

3.2 Probe 

 

The probe is located in the centre of the superconducting magnet and the sample 

cryostat to ensure the sample in the region of homogeneous magnetic field. The NMR 

probes, with primary and secondary r.f. irradiation coils, tank circuits and temperature  

control electronics, were designed and built in our laboratory, as shown in Fig 3.7. 

                                                                

Fig 3.7 The probe structure 
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The sample was contained in a glass tube, which sits in cylindrical cavity inside the 

radiofrequency coil. The RF coil, core element, was made by winding wire tightly on 

a KEL-F former. It was connected to the top and outside of the cryostat by a 50Ω 

semi-rigid coaxial RF line approximate 1m long.  The internal coil diameter was 5mm. 

The number of turns, the inductance, the resonance frequency of the coil and even the 

tank circuit depended on the types of experiment and sample. Because the 

experiments were run in field-cycling mode, the NMR detection/irradiation frequency 

could be chosen depending on a variety of constraints. Therefore it was possible to 

design the RF coil according to the requirements of sample, nucleus, matching, Q  

factor, signal quality, and dead time etc. 

 

Two kinds of tank circuits, parallel and series, were designed for different 

experiments. They both comprised an RF coil and two capacitors, as illustrated in Fig  

3.8(a) and Fig 3.8(b). 
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Fig 3.8 (a) parallel tank circuit (b) series tank circuit 

  

The parallel tank circuit shown in Fig 3.8(a) is the typical tank circuit employed in 

many NMR probes. The two capacitors, 
T

C  and 
M

C  in the tank circuit have the 

following functions. The capacitor 
M

C  is called the matching capacitor and the other 
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capacitor 
T

C  is called the tuning capacitor. The matching capacitor matches the 

impedance of the loaded probe to that of the 50 Ohm cable coming from the 

spectrometer. The tuning capacitor changes the resonance frequency of the RF coil 

and enhances the current in the coil by electromagnetic resonance. The resonance 

frequency is determined by the inductance L  of RF coil and the capacitance of the  

tuning capacitor
T

C ,  

1/ LC
T

ω =                                                                                                             (3.7) 

In Fig 3.8(a), the RF coil is in parallel with the tuning capacitor
T

C , so the tank circuit 

is called parallel tank circuit; and in Fig 3.8(b), the RF coil is in series with the tuning  

capacitor, the tank circuit is therefore called series tank circuit. 

 

The electrical properties of the tuned circuit are affected by the nature of the nucleus. 

It is therefore necessary to adjust the values of capacitors 
T

C and 
M

C  every time the 

nucleus is changed. Normally this is done by manual adjustments of the capacitors- a 

process called ‘tuning the probe’. In practice, an oscilloscope is used to display the 

reflected power vs. frequency. The goal is to adjust the display so that the reflected 

power from the RF coil is zero at the resonance frequency of the nucleus, as shown in  

Fig 3.9. 
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Fig 3.9 Reflected power close to zero at resonance frequency in well-tuned tank circuit. 
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The NMR spectrum achieves the maximum signal intensity when the measurement 

field matches the resonance field. The response function vs magnetic field of the tank 

circuit containing the NMR coil defined a ‘calibration curve’; this was measured by  

determining the signal amplitude as a function of detection field. 

 

It was evident, Fig 3.10, that different tank circuits, parallel and series, had a 

significant effect on the effective Q-factor for the resonance coil and hence the 

calibration curve. The parallel tank circuit had a narrow calibration curve which 

meant the effective Q factor was high and the signal was big. On the contrary, the 

series tank circuit had a broad calibration curve, low effective Q factor and small 

signal. If in our experiment the field shift was a problem to cause a critical error, we 

used the series tank circuit because the broad top of the calibration curve may 

minimize the effect of field shift. If the signal was tiny, the parallel tank circuit might 

be taken into account to improve the signal quality. Hence the choice was determined 

by the particular sample; for example, when measuring 
13

C NMR, signal sensitivity 

was paramount and a parallel arrangement was chosen, whereas for 
1
H NMR, signal 

stability as a function of field was more important and the series resonant circuit was  

used.  

 

The irradiation coils were required for secondary irradiation in low field NMR and 

NQR experiments and were placed perpendicular to the RF coil on both sides. The 

irradiation coils were connected with the connector on the top of the probe using a 1m 

long twisted pair assembly. This arrangement minimized the self capacitance, 

enabling the circuit to possess low impedance and therefore provide broadband  

irradiation. 

 

A relay was designed to minimize any noise introduced down the cable by limiting 

the connection to the AR CW amplifier. The relay was switched on only during the  

irradiation time in the low field NMR experiments, as illustrated in Fig 3.11. 

 

The temperature sensor was mounted in a groove cut into the brass block of the probe 

tail adjacent to the NMR coil. This is a calibrated CERNOX resistance thermometer 

and the temperature range is from 4K to 325K. A heater consisting of copper wire 
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wound round a brass bobbin was fixed to the bottom of the probe tail. Temperature 

control with optimised settings of the proportional, integral and derivative parameters  

of the feedback circuit was carried out by a Lakeshore 331E temperature controller.   

 

   

0

0.4

0.8

1.2
Parallel 33.7MHz
Series 45.8MHz

Calbration Curve

/ 2ν ω π=
33.7MHz 45.8MHZ

0

0.4

0.8

1.2

0

0.4

0.8

1.2
Parallel 33.7MHz
Series 45.8MHz

Calbration Curve

/ 2ν ω π=
33.7MHz 45.8MHZ

 

Fig 3.10 The normalized calibration curves of parallel and series tank circuits. The frequency axis is 

linear for each curve, but the blue curve was moved close to the green one for comparison. 
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Fig 3.11 A relay was introduced between the AR CW amplifier and the probe to minimize the noise 

caused by other electrical circuits and increased by the amplifier. 
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3.3 Superconducting magnet protection 

 

As reviewed in section 3.1.1, the superconducting magnet has its internal protection 

against magnet quench. However, in our field-cycling experiments, the magnet was 

usually working in the external control mode, driven by the gradient power supply. In 

the external mode, the power supply provides no automatic protection for the magnet 

from ‘quenching’, which means it can’t automatically detect an increasingly resistive 

load, and instantaneously switch the current to zero. To protect the magnet, we have a 

home-built interface connected with the gradient power supply to enable/disable its 

output. This interface is linked to both the main NMR control computer and a 

dedicated power supply monitor computer using digital I/O cards supplied by 

Amplicon Liveline Ltd. In the main computer we have built in a 4-bit ‘Dongle’ 

facility in the self-designed VB software; only when we send the 4-bit ‘Dongle’ 

correctly in the software and the ‘quench detecting’ program is enabled can the main 

NMR computer take over the control of the gradient power supply. The dedicated 

power supply monitor computer communicates with two HP 34401A multimeters at 

high speed, recording 1000 readings per second. One multimeter measures the voltage 

across the output terminal and the other measures the voltage across the shunt resistor, 

which is proportional to the current in the coil. A VB program operating on the 

dedicated power supply monitor computer was applied to detect the ‘quench’ 

condition, and send the signal through the Digital I/O card to trigger a relay, hence to  

disable the gradient power supply output in the event of ‘quench’. 

 

The dedicated power supply monitor computer directly reads the data from the two 

HP 34401A multimeters without any other communications or processes. It can detect 

a quench very effectively and protected the superconducting coil and power supply 

well. There were periodic problems with noise on the data line connecting the system, 

which led to a false quench condition at the start of a run before the magnet was 

energised. While not harmful, it was disruptive to the automated processes. To 

minimize the incidence of ‘false quench’ detection, some averaging was programmed  

into the procedure. 
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The Cryogenic Helium Level Gauge provided another protection for the magnet. The 

safety level was set to a value just above the level of top of the magnet; when the 

helium level was below this value, and the magnet power supply was working in the  

external mode, it triggered off the power supply. 

 

 

3.4 Field switching 
 

When the field-cycling experiment was running, the magnetic field switched on to 

higher field and switched off to lower field. In order to achieve the best performance 

of our field-cycling experiment, it was imperative to investigate the field switching  

profile. 

 

Fig 3.12 is a typical magnetic field switching profile in a saturation-recovery pulse 

sequence. Each time when the field was switched externally, before the magnetic field 

reached the target field, there was always a small overshoot before settling down. This 

didn’t matter much when the field was switched from resonance field to recovery field, 

as it was only around 20ms delay during the evolution of magnetisation which was 

normally much shorter than the evolution time. However, after the field was switched 

back to the NMR resonance field, the measurement pulse was triggered to measure 

the magnetisation. It was important that the hardware and software procedures were 

designed such that the actual field, at the moment the pulse was applied, was as 

consistent and repeatable as possible. Following a variety of trials and investigations, 

good results were obtained by introducing a delay (settle time) of 20ms between the 

end of the field ramp and the pulse trigger. Also, reducing the ramp rate to 5Ts for the  

field switch to the NMR detection field was also found to optimise performance. 

 

In practice, the field switching time and the settle time will only have an effect on 

very short T1 values (about 100ms). For the samples we studied, there was no  

predominant effect on the T1 result, because T1 is long enough.  

 

Another effect that was observed was that drifts in the target field which were a 

function of recovery field and recovery time. These drifts were for the most part 

reproducible and predictable. Therefore a two-variable function was determined 



Chapter 3                                                                                                   Experimental 

 69 

experimentally to correct for the field drifts. A parameter ‘offset’ was programmed 

into the VB code to compensate. Using this, the field stability achieved was typically  

better than 20Gauss which was tolerated by the calibration curve.  
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Fig 3.12 Magnetic field switching profile (saturation-recovery pulse sequence). 

 

 

 

3.5 Magnetisation data calibration 

 

Adding a parameter ‘offset’ into the VB program successfully minimized the field 

drifts, but could not completely eliminate them. This was a source of systematic error 

in the magnetisation measurement due to the response function of the NMR coil in its 

tank circuit. By measuring the response function, small corrections to the 

magnetisation were made by using the ‘calibration curve’. The calibration curve is a 

convolution of the response function of the coil in its tank circuit with the Fourier  

transform of the pulse envelope. 
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Fig 3.13 is a figure of how the signal intensity changes with the field. There are two 

such calibration curves in the figure. The blue one was of 4-nitrobenzoic sample at 

28MHz. It came from a Gaussian fit to the experimental data. But not all the 

experimental data could be fitted by Gaussian function within an acceptable error; for 

example the red curve was determined by numerical interpolation. The red curve was 

moved upward 0.5 to give a clear view of the whole figure. In each curve, the 

maximum appeared when the field was exactly at the resonance field. When the 

measurement field deviated from the resonance field, the signal amplitude decreased.  
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Fig 3.13 Two normalised calibration curves. The blue curve was a smooth Gaussian fit and centred at 

28MHz ; the red curve was determined by numerical interpolation and centred at 34.5MHz. The 

frequency axis is linear for each. The red curve was moved close to the blue one for comparison and 

was moved upward 0.5 to give a clear view.  
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Fig 3.14 Comparison between raw data (integral) and calibrated data on the sample BA at 18K and 

2kGauss with polarisation-recovery pulse sequence.  

 

With the calibration curve, the measurement data can be properly corrected for small 

field drifts. All the data are calibrated to the central frequency/the resonance field to 

improve the data quality. The calibrating process was written in our VB program and  

was automatically done if the calibration curve was found in our system. 

 

Fig 3.14 is a figure to illustrate the comparison between typical raw and calibrated 

data. The r
2
 fit to red square calibrated data (0.9995) is better than that of blue circle 

raw data (0.9988). The T1 values extracted from the red squares and blue circles, 

16.28s and 17.16s respectively, are slightly different (5%). The relative error of T1 is 

1/3 smaller after data calibrating (from 0.4193/17.16 = 0.0244 to 0.2625/16.28 = 

0.0161). It is clearly shown how the calibration works effectively on the first few  

points where the field drift is bigger.  

 

That the measurement data can be calibrated doesn’t imply that we can let the system 

work with significant field drifts. That is because, on one hand when the measured 

field deviated too much from the resonance field, the signal was small and the error of 

the signal was big. The uncertainty of the signal dominated the data quality even after 
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calibration; on the other hand, each point in the calibration curve has its own error. 

The farther away from the resonance field, the bigger the calibration error will be. So 

when we do field-cycling experiments, we normally try to set the measurement field 

in the range of 5% of the top of the calibration curve corresponding to a field drift in 

the range of ± 35 channels (1 channel equals to 0.57 Gauss in our system) or ±20 

Gauss. That is why it is better to design a tank circuit with, a broad calibration curve 

which has more than 60 channels (or from -20 Gauss to 20 Gauss) in the top (95%-1)  

range. 

 

As discussed above, many factors, such as RF coil turns probe tank circuit, Q factor, 

width of measurement pulse, temperature, etc., affect the shape of the calibration 

curve. When we design the probe, or do the field-cycling experiments, we need take 

the calibration curve into account. Here we summarize factors concerning the  

calibration: 

• The higher the Q factor is, the narrower the calibration curve will be. 

• The wider the measurement pulse is, the narrower the calibration curve will be 

since the spectrum is the Fourier transform of the pulse envelope. 

• When the measurement pulse is too strong (the pulse amplitude is too big), 

there will be some fluctuations in the top of the calibration curve because at 

some fields the pulse is greater than 90-degree. For this reason we usually set 

measurement pulse to be less than 90-degree. 

• The measurement field position should be in the top range (95%-1) 

• If the calibration curve cannot be fitted by a Gaussian function, the 

interpolation method should be employed to generate a correct calibration 

curve.  

• When the sample temperature is changed, we need check the calibration curve. 

• When samples are changed especially if there are two or more spin species in 

the sample, the calibration curve needs to be checked, because different 

nucleus may have different field response. 

• When the cooling system of the magnet power supply changes, for example 

the temperature of cooling water changes with environment temperature, the 

calibration curve also needs checking.   
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3.6 Software 

 

There are two kinds of software employed in our NMR experiments. One is for 

improving the automation of the NMR spectrometer system and for designing 

different pulse sequences 
[61, 62]

; the other one is for analysing the experimental data.  

 

The former has been introduced separately or will be introduced in many applications 

such as the protection against quench, the ‘offset’ to stabilize the measurement field 

and different pulse sequences employed in the field-cycling NMR experiments which  

will be discussed later.  

 

The latter is as important as the former. It directly led to the interpretation of the 

experimental data and publication of the research results. It was accomplished by the 

available software tools; for example, the graphic tool ‘easyplot’ was employed to 

plot the daily experimental data and extract the parameters such as spin-lattice 

relaxation time 1T from best fits to model functions; Matlab or Visual Basic was 

employed to do the modelling and simulation of tunnelling and polarisation behaviour.  

 

 

3.7 Pulse sequences and curve fit 

 

Pulse sequences are programmed in the NTNMR software of the Apollo spectrometer. 

We can design them for different experiments by the OLE interface. Here we 

summarize the pulse sequences we employed in the experiments. Each kind of 

experiment has its own pulse sequence and its own experimental result. The data fits  

are introduced here as well as the simulation of our experimental data. 

 

 

3.7.1 Tuning – Find 90º saturation and measurement pulse 

 

Tuning in this context means that we optimise the width and amplitude of the r.f. 

pulse to match the 90º tipping angle. This is achieved by applying a two-pulse 
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sequence to the sample, Fig 3.15, with separation short compared with 1T but long 

compared with 2T to avoid echo generation. The separation time 
p

τ  is normally set to  

350 sµ . 

2 1p
T Tτ� �

Saturation Measurement

r
τ 2 1p

T Tτ� �

Saturation Measurement

r
τ

 

Fig 3.15 Two-pulse sequence to find the 90-degree pulse 

 

In our tuning program, the first pulse (saturation) can be enable or disabled. Therefore 

there are two modes to find the 90-degree pulse. When the first pulse is enabled, and 

is a 90-degree pulse, the FID following the second pulse should be zero. Therefore by 

plotting this FID as a function of the amplitude of the first pulse, the curve follows a 

sine function and the pulse parameters defining a 90° -pulse are obtained. When the 

first pulse is disabled, the FID following the measurement pulse can also be plotted as 

a function of the amplitude of the measurement pulse. The curve also follows a sine  

function but the 90° pulse appears in the first maximum of the sine function.  

 

However the spin-polarisation before the saturation pulse (the first mode, saturation 

pulse enabled) or the spin-polarisation before the measurement pulse (the second 

mode, saturation pulse disabled) is an arbitrary value which may cause FID signal 

intensity fluctuations (with a significant random error). In view of this arbitrary spin-

polarisation, the first mode is better than the second one, because the saturation pulse 

will reduce the random effect but one saturation pulse may not be enough to 

completely eliminate the random effect (due to the fact that the applied field cannot be 

perfectly homogeneous and the sample itself tends to distort the applied field). 

Therefore in practice, a saturation train of pulses are required, as shown in the shadow 

area in Fig 3.15. This saturation train of pulses, usually comprising 6 or more 

90° pulses separated by approximately 350 sµ  are employed to fully saturate the spin-

polarisation. After the train of pulses, the spin-polarisation is built up during a fixed 
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recovery time
r

τ and therefore a constant spin-polarisation is achieved before the first 

(single saturation) pulse. A simple diagram of the FID as a function of the  

measurement pulse is shown in Fig 3.16. 
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Fig 3.16 FID intensity as a function of pulse amplitude (sine function) 

 

When the tipping angle of the measurement pulse is 90º, the emf voltage reaches the 

maximum value and we get the maximum amplitude of the NMR spectrum. If the 

spin-lattice relaxation time T1 is not too long, that is to say, we don’t have to employ 

spin-echo method to measure T1, we will use a measurement pulse as strong as 

possible to get a big signal. A slightly less than 90º measurement pulse is 

recommended because the signal will be more stable (if the measurement pulse is 

stronger than 90º pulse, with field instability the signal might be over-saturated and  

the stability of it will be worse).  

 

As discussed in the calibration curve section, the selection of measurement pulse 

width, pulse amplitude and pulse attenuation is not only on the basis of the 90º pulse 

and the signal amplitude, but also on the shape of the calibration curve to meet the 
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needs of the particular experiment. The selection is different from sample to sample, 

RF coil to RF coil. For example, the pulse width 2µs was normally used in 
1
H  

experiments and 4µs was used in 
13

C experiments.  

 

According to the discussion above, we can conclude the procedure of tuning as  

follows: 

1. run the tuning program. 

2. set the correct field and estimated T1 value.  

3. change the measurement pulse amplitude (normally the pulse width and pulse 

attenuation could be set by experience) and record the signal amplitude 

without saturation pulse. 

4. choose a value of measurement pulse amplitude where the signal amplitude is 

at maximum. 

5. set the saturation pulse amplitude to be this value (if the saturation pulse width 

and pulse attenuation are same as measurement pulse’s. The pulse attenuation 

is normally the same). Then run the tuning experiment with saturation to check 

how much signal is left. The interval between the saturation pulses is set to be 

350µs to prevent echoes. Normally the signal remaining should be smaller 

than 10% of the original signal without saturation. If the saturation pulse width 

is different with measurement pulse, we have to sweep the saturation pulse 

amplitude to find where the minimum remaining signal is. 

6. set the measurement pulse amplitude to be slightly less than the amplitude of 

90º pulse. 

7. analyse the FID signal to optimise the left shift and the dead time values. This 

is an essential step before data acquisition. In our 
1
H experiments, left shift is 

typically around 6, dead time is about 5µs.  

8. record the calibration curve and check that it is not too narrow and has a 

regular smooth shape.  
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3.7.2 Calibration curve pulse sequence 

 

After the tuning procedure, a calibration curve experiment must be done before  

carrying out field-cycling experiments. 

 

As discussed above, the calibration curve experiment is not only for field calibration, 

but also is to check the resonance field and to check the tuning quality. It plays a vital  

role in our field-cycling experiments.   

 

The pulse sequence for the calibration curve experiment is similar to the pulse 

sequence of the saturation-recovery experiment, 
2 x

π 
 
 

- τ -
2 x

π 
 
 

. We send a train of 

90º pulses to saturate the longitudinal magnetisation. Following a recovery delayτ , a 

90º measurement pulse is employed to measure the recovered longitudinal 

magnetisation. There are two differences with the saturation-recovery pulse. One is 

that in the calibration curve pulse sequence the measurement field is not the resonance 

field. A variable field offset is applied which enables us to create a set of off- 

resonance fields and measure the field dependence of the signal intensity.   

 

Because the signal intensity decreases rapidly when the offset is getting bigger, and 

our field shift can’t be that big in our field-cycling experiments, the offset is normally 

set in the range of (-80Gauss-+70Gauss). The calibration curve in this range is  

adequate to calibrate all the experimental data points. 

 

The other difference is that the recovery time is set to a fixed value which is about T1. 

It is easy to understand because the calibration curve experiment is not for the study  

of relaxation but for the field dependence of signal intensity. 

 

 

3.7.3 Field-cycling T1 experiment 

 

As reviewed in Chapter 2, the spin-lattice relaxation time is a two-variable function of 

temperature and magnetic field/frequency. Two kinds of experiments are therefore 
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employed to map out the profiles of spin-lattice relaxation time: T1 vs temperature and 

T1 vs field respectively. Finally we obtain the 2D (one dimension is temperature, the 

other one is field/frequency) profile of the spin-lattice relaxation time. The dynamics  

of the studied sample will be extracted from these data. 

 

The T1 versus temperature experiments could be run at the resonance field using the 

internal mode of the magnet power supply; there is no field-cycling and the field is  

stable at the NMR resonance field. 

 

The spin-lattice relaxation time T1 versus magnetic field experiments must be run with 

the field-cycling technique using the external mode of the magnet power supply. 

Different pulse sequences employed depend on the precise nature of the experiments. 

We will summarize the pulse sequences here and we also will discuss them in later  

chapters to explain them in the context of a specified experiment. 

 

 

3.7.3.1 Saturation-recovery pulse sequence 

 

The pulse sequence of saturation-recovery experiment is shown in Fig 3.17.  
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Fig 3.17 Saturation-recovery pulse sequence 
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1) Saturation of magnetisation with a comb of resonant o90  pulses at the resonance 

field 
NMR

B  

2) Rapid magnetic field switch to recovery field Br, which was selected for 

relaxation 

3) Evolution of magnetisation in the field Br  for a period of time 
r

τ  

4) Rapid magnetic field switch back to the resonance field 
NMR

B  

5) Measurement of magnetisation with a o90  pulse 

 

To measure the spin-lattice relaxation time at the fixed resonance field, we just need 

to simply disable the field switching. We normally repeat this sequence N times with 

different recovery time delays
r

τ  to obtain a magnetisation recovery curve with N 

points. The value N depends on the sample. Normally if it is homonuclear system and 

the relaxation curve is single exponential, N is set to 20; if the relaxation curve is bi-

exponential which is a normal phenomenon in heteronuclear system, N is set to 30 or 

even more to make sure that there are enough points in the relaxation curve to show 

both the fast and slow components clearly. The recovery time is determined by two 

parameters set before the experiment, initial delay time
initial

t  and estimated spin-lattice 

relaxation time 1estimate
T . The minimum recovery time is given by min initialt t= and 

maximum recovery time is given by max 110 estimatet T= × . The recovery times are 

incremented with steps that are linear in the logarithm of time; some example data is  

shown in Fig 3.18. 

 

As reviewed in equation (2.19) of Chapter 2, the longitudinal magnetisation recovery 

equation is:  

0

1

zz
M MdM

dt T

−
= −                                                                                                      (3.8) 

Given the conditions t → ∞ , 0z
M M= and 0t = , 0

z
M = , the solution is: 

( ) ( )( )0 11 exp /zM t M t T= − −                                                                                     (3.9) 
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Fig 3.18 The spin-lattice relaxation curve of sample BA recorded at 18K and 7kG. The data points are 

equally separated along time axis in log scale. Best fit to equation (3.10) is shown with a red solid line. 

The spin-lattice relaxation time for this case is ( )1 64.2 0.4T s= ± . 

 

Due to the fact that there is often some recovered magnetisation during the field 

switch to recovery field after the saturation pulses, there may be some magnetisation 

offset at short times ( 0t = ). Also, there may be baseline corrections, so the spin- 

lattice relaxation curve fitting equation is therefore as follows: 

( ) ( )( )0 11 exp /zM t M t T c= − − +                                                                              (3.10) 

where c is the magnetisation offset. As an example, this equation was employed to fit  

the curve (red solid line) in Fig 3.18. 

 

It was important to check the signal intensity in low temperature and/or in high field. 

That was because in these two conditions the signal intensity might be so strong that 

the amplifiers became saturated and operated in a non-linear region. The signal 

saturation problem could be checked by plotting the curve of the equilibrium 

magnetisation versus inverse temperature. It should be a linear curve as shown in Fig  

3.19. 
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Fig 3.19 Curve of the equilibrium magnetisation vs inverse temperature. Sample is OsHH2. 

 

The time range of the relaxation curve is determined by the parameters 

initial
t and 1estimate

T . To get an accurate T1 from the relaxation curve, two base lines are 

crucial; one base line is the base line of the magnetisation offset c, which is close to 0; 

the other one is the base line of the equilibrium magnetisation 0M . According to the 

equation (3.9), when the recovery time 
r

τ is longer than 5T1 , the magnetisation is 

about 99.3% of the equilibrium magnetisation, consequently tmax  was set to 10 1estimate
T . 

Normally 5 points on the relaxation curve were measured to get a rough estimation of  

T1 before running the experiments in an automated sequence.  

 

 

3.7.3.2 Polarisation-recovery pulse sequence 

 

To measure the spin-lattice relaxation time, a non-equilibrium state is created and the 

return to equilibrium is obtained. Conventionally the non-equilibrium state can be 

either saturated ( ( )0 0M
z

= ) or inverted ( ( )0
0

M M
z

= − ). With field-cycling, an 

alterative sequence is available, namely the polarisation-recovery pulse sequence, as  
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shown in Fig 3.20. 
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Fig 3.20 Polarisation-recovery pulse sequence. 

 

1) Saturation of magnetisation with a comb of resonant o90  pulses at the resonance 

field 
NMR

B  

2) Rapid magnetic field switch to high polarising field 
pol

B  for a period of time 
pol

τ  

to allow growth of spin polarisation 

3) Rapid magnetic field switch to Br, which was selected for relaxation  

4) Evolution of magnetisation in the field Br  for a period of time 
r

τ  

5) Rapid magnetic field switch back to the resonance field
NMR

B  

6) Measurement of magnetisation with a o90  pulse 

 

As the magnetisation is proportional to the magnetic field, the NMR signal intensity 

we detect in low measurement field is weak. It is at low field that the polarisation-

recovery pulse sequence is an advantage. To gain the better signal noise ratio, and 

hence improve the accuracy of spin-lattice relaxation time measurement, we  

introduced the polarisation-recovery pulse sequence. 
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Fig 3.21 A comparison of polarisation-recovery and saturation-recovery experimental data and curve 

fit on the BA sample at 21K and 0.3T. The spin-lattice relaxation times extracted from these two curves 

are consistent with each other. One is ( )11.77 0.22 s± on the saturation-recovery curve, the other one is 

( )11.73 0.17 s±  on the polarisation-recovery curve. The equilibrium magnetisation in the recovery field 

is same in the two curves.  

 

Similar to the saturation-recovery field-cycling experiment, this sequence is repeated 

N times with different evolution time to obtain the spin-lattice relaxation curve as 

shown in Fig 3.21. 

 

The longitudinal magnetisation recovery equation is the same as equation (3.8), but 

the initial condition is different to that of saturation-recovery experiment. In the 

polarisation-recovery experiment, the initial condition is when 0t = , z PolM M= ; 

t → ∞ , 0z
M M= ; PolM is the magnetisation built up at high polarising field. The  

solution of the equation (3.8) is: 

( ) ( )0 0

1

expz Pol

t
M t M M M

T

 
= + − − 

 
                                                                     (3.11) 
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In Fig 3.21, the polarisation-recovery field cycling pulse sequence was applied to 

measure the spin-lattice relaxation time of BA at 21K and the measurement field was 

0.3T; the polarisation field was 1T and polarisation time was 120s; the result is plotted 

as red squares. The result from saturation-recovery pulse sequence is plotted as blue 

circles as well. The results from the two different pulse sequences are in good  

agreement each other. 

 

To improve the signal to noise ratio, the polarisation field is chosen to be much bigger 

than the recovery field. To build up the magnetisation, the polarisation time is about 

the T1 or twice the T1 in the polarisation field at that temperature. If the polarisation 

time is too short, the obtained magnetisation will not be big enough to improve the  

signal quality. 

 

This polarisation-recovery pulse sequence is also employed in the low field  

experiments, such as NQR, which will be discussed in Chapter 5.  

 

 

3.7.3.3 Pulse sequences designed for heteronuclear systems  

 

The saturation-recovery and the polarisation-recovery pulse sequences discussed 

above are the basic pulse sequences employed to study spin-lattice relaxation and 

therefore the dynamics of the sample, irrespective of whether it is a homonuclear  

system or a heteronuclear system.  

 

In homonuclear system, these two pulse sequences work very well and give good data. 

But when they are applied in heteronuclear system, due to the cross relaxation 

between the two different spin species, spin I and spin S, they are not powerful 

enough to express the more complex information on cross relaxation. Hence two pulse 

sequences were designed to investigate the heteronuclear interaction 
[65, 66]

. These 

pulse sequences are called the heteronuclear preparation-recovery pulse sequence and  

the heteronuclear cross relaxation pulse sequence. 
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3.7.3.3a Heteronuclear preparation-recovery pulse sequence 

 

Inspection of the Solomon equations reveals that the effects of cross relaxation can be 

minimized when the second spin species is at thermal equilibrium at the beginning of 

the experiment. The pulse sequence that achieves this is shown in Fig 3.22, which was  

applied on the 
13

C-BA sample. 
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Fig 3.22 Heteronuclear preparation-recovery pulse sequence applied on the 
13

C-BA sample. B13C and 

B1H are the resonance fields of 
13

C (spin S) and 
1
H (spin I) respectively.  Br is the recovery field for the 

13
C spin to recover its magnetisation after saturation pulses. The measurement field is on the spin S 

resonance field to measure the relaxation process of spin S. 

 

1) Preparation of spin I at the recovery field of spin S for at least three times the T1 of 

spin I at this field.  

2) Saturation of spin S magnetisation with a comb of resonant o90  pulses at the spin 

S resonance field driving a rapid field excursion. 

3) Rapid magnetic field switch to Br, which was selected for relaxation.  

4) Evolution of magnetisation in the recovery field Br for a period of time. 

5) Rapid magnetic field switch back to the spin S resonance field. 

6) Measurement of spin S magnetisation with a o90  pulse. 
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This pulse sequence was employed to satisfy the initial condition which can minimize 

the cross relaxation effect and measure the relaxation of spin S consistently and 

accurately according to our simulation based on the theory in chapter 2. The expected 

initial condition is: when 0t = , 0z
I I= and 0

z
S = . The time zero point is chosen to be  

just after the saturation pulses.  

 

The experimental data will be discussed in the chapter of 
13

C-BA experiment. 

 

 

 

3.7.3.3b Heteronuclear cross-relaxation pulse sequence 

 

Field-cycling can be used to monitor cross relaxation between the two spin species: as 

part of this thesis, we have developed a new pulse sequence for this purpose. The  

pulse sequence is shown in Fig 3.23, which was applied on the sample of TFTA. 

 

As reviewed in the theory chapter 2, when the initial condition at 0t = , is 0z
I I= and  

0
z

S = , the expression for the time dependence of the spin I magnetisation is   

( ) ( ) ( )( )0
1 2 0

1 2

exp exp
z

S
I t R t R t I

R R

σ
〈 〉 = − − − − +

−
                                                     (3.12) 

It is a combination of equation (2.54) 

 

( ) ( )( )
( ) ( )( )

0 1 1 2 2 0

0 1 1 2 2 0

exp exp

exp exp

I I

z

S S

z

I I c R t c R t I

S S c R t c R t S

〈 〉 = − + − +

〈 〉 = − + − +    

and equation (2.56) 

0
1

1 2 0

0
2

1 2 0

I

I

S
c

R R I

S
c

R R I

σ

σ


= − −


 =
 −
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Fig 3.23 Heteronuclear cross-relaxation pulse sequence applied on the sample of TFTA. The only 

difference with the pulse sequence in Fig 3.22 is the measurement field. In this pulse sequence, we 

measure the magnetisation of spin I instead of spin S. 

 

The magnetisation recovery curve of spin I in this pulse sequence is shown in Fig 3.24. 

By fitting the curve in the Fig 3.24 to the equation (3.12), we extracted four 

parameters from the experimental data, recorded as 0
1

1 2

 = I S
c

R R

σ
−

−
, 1R , 2R and 0I . 

Therefore the off-diagonal element σ  was calculated directly from the four  

parameters which were extracted from the magnetisation recovery curve, 

( ) ( )01 1
1 2 1 2

0 0 0

I I

I

s

Ic c
R R R R

I S I

γ
σ

γ
= − − = − −                                                                  (3.13) 

 

By measuring the field dependence curve of the off-diagonal element, we can extract 

the correlation rate 1

c
τ −  accurately. We will discuss this pulse sequence later in the  

chapter of TFTA. 
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Fig 3.24 Magnetisation recovery curve of spin I by the heteronuclear cross relaxation pulse sequence 

recorded on the sample TFTA at 20K and at the recovery field 3500Gauss. Due to the fact the R1 and 

R2 can be measured by other method, we can get a more accurate R1 and R2, and fix them in the fitting 

equation to get the other two parameters 1

I
c and 0I .These four parameters were employed to calculate 

the off-diagonal element σ . For the data recorded in this figure, the off-diagonal element 

( ) 1
0.135 0.003 sσ

−
±= .  

 

 

3.7.4  Curve fit and  simulation of our experimental data 

 

We have introduced how to extract the spin-lattice relaxation time constants by the fit 

to the magnetisation recovery curves.  Hence we can have two kinds of curves to 

investigate the dynamics of the sample. One is the temperature dependence of the 

spin-lattice relaxation time at a fixed field; the other is the field/frequency dependence  

of the spin-lattice relaxation time at a fixed temperature.   

 

As reviewed in Chapter 2, the parameters such as the energy asymmetry A, dipolar 

interaction constant 
HH

C  (homonuclear), 
CH

C , 
FH

C  (heteronuclear), incoherent 
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tunnelling rate constant k0, high temperature activation energy V, and correlation 

time
c

τ , etc, are needed to depict the dynamics of the sample. Some parameters can be 

extracted directly from the temperature dependence curve of the spin-lattice relaxation 

time and the field dependence curve of the spin-lattice relaxation time while other  

parameters need to be calculated or to be simulated from the two curves.   

 

The temperature dependence curve of the proton spin-lattice relaxation time in 
13

C- 

BA sample measured at 37.8MHz is illustrated in Fig 3.25. 

 

We know, in low temperature regime, 0 coth
2

LT

B

A
k

k T

 
Γ =  

 
, the correlation rate is 

close to the incoherent tunnelling rate constant k0, which means in the expression of 

the spin-lattice relaxation time ( )1 2

1 2 2 2 2

4
, sech

2 1 1 4

c c
D

B c c

A
T T C

k T

τ τ
ω

ω τ ω τ
−   

= +   
+ +   

,  

the correlation time 
c

τ is a constant, and 

( )
( )

( )( ) ( )
1 2

1 2

exp / 1
, sech

2 exp /1 exp /

B

B BB

A k TA
T T

k T A k TA k T
ω−  

∝ ∝ ≅ 
+ 

.                         (3.14) 

Therefore we get the fit equation, as shown in equation (3.15), of the temperature  

dependence curve in low temperature regime.              

( )1 , exp
B

A
T T

k T
ω

 
∝  

 
                                                                                             (3.15) 

Thus the energy asymmetry A can be extracted directly from the low temperature 

region on the temperature dependence curve of the spin-lattice relaxation time. In the 

case investigated in Fig 3.25, the energy asymmetry is / 80.7 0.9
B

A k K= ± . When we 

perform a computer simulation to fit both the temperature dependence and the field 

dependence of the spin-lattice relaxation time to get a more accurate dynamics 

expression for the sample, this energy asymmetry from the fit of low temperature  

regime will be a reference value to make a first step estimation.  

 

In high temperature regime, the correlation rate is 



Chapter 3                                                                                                   Experimental 

 90 

1

0 exp expHT

B B

V V A

K T K T
τ −

    −
Γ = − + −    

    
 and in the expression of the spin-lattice 

relaxation time ( )1 2

1 2 2 2 2

4
, sech

2 1 1 4

c c
D

B c c

A
T T C

k T

τ τ
ω

ω τ ω τ
−   

= +   
+ +   

,  

2sech 1
2

B

A

k T

 
→ 

 
. Therefore leading to the approximate fit equation for which we  

can make an estimation of the parameter V,  

( ) ( )
1

1

1 , HT

c
T Tω τ

−− ∝ = Γ or ( )1 , HT
T Tω ∝ Γ                                                            (3.16) 
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Fig 3.25 The temperature dependence of the spin-lattice relaxation time in 
13

C-BA. The red fit at low 

temperature is to find the value of energy asymmetry. The black fit at high temperature is to investigate 

the barrier when the dynamics is the Arrhenius law. 
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In the expression of high temperature correlation rate, exp
B

V A

K T

 −
− 
 

 will be 

dominant. So when we fit the data in high temperature regime, the value 
B

V A

K

−
 is the 

gradient.  In the case investigated in Fig 3.25, 433
B

V A
K

K

−
≅ ,  therefore  

/ 433 80 513
B

V k ≅ + = K, is a good first estimate. 

 

These estimations from the T1 versus 1/T curve provide preliminary estimations which  

will help us to find the best values of A and V from a full computer simulation. 

 

In the expression of ( )1 2

1 2 2 2 2

4
, sech

2 1 1 4

c c
D

B c c

A
T T C

k T

τ τ
ω

ω τ ω τ
−   

= +   
+ +   

, we know 

the frequency ω , the energy asymmetry A, and the dipolar constant 
D

C which can be 

calculated from the structure or extracted from the spectral density curves (will be 

discussed next). The only unknown at a given temperature, the correlation 

time
c

τ could be obtained by solving the equation. Thus the correlation rate 1

c
τ − versus 

1/T curve can be transferred directly from the T1 versus 1/T curve. This transferred 

curve is employed to check our theory, to help us find the best parameters especially 

for the intermediate temperature regime and to compare with the correlation rate 

extracted directly from the spectral density curves. This kind of method was applied 

to analyse the data before the fast field-cycling technique was available. The result is 

shown in Fig 4.13, Chapter 4. The results from this method and from the spectral  

density curves are in perfect agreement with each other.  

 

Here we have discussed the information we could obtain from ( )1

1 ,T Tω−  curve 

whenω  is a constant. To get whole profile of  ( )1

1 ,T Tω−  and the dynamics of the 

sample, the ( )1

1 ,T Tω−  results need to be discussed when temperature T is a constant. 

 

The expression of ( )1

1 ,T Tω−  can be rewritten as follows when temperature T is a  

constant (referred to equation (2.47)), 
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( )1

1 2 2 2 2 2 2 2 2 2 2

2 2

4 4

1 1 4 1 1 4

1 4

1/ 1/ 4

c c c c

c c c c

c c c c

T c c
B B

c

B B

τ τ τ τ
ω

ω τ ω τ γ τ γ τ

γ γτ γτ γτ γτ

−    
= + = +   

+ + + +   

 
= + 

+ + 

                          (3.17) 

where 

2sech
2

D

B

A
c C

k T

 
=  

 
                                                                                               (3.18) 

c is a constant when temperature is a constant. The two parameters in this equation, 

c and 
c

τ , can be directly determined by fitting the spectral density curve to this  

equation. 

 

The spectral density measured at 18K on BA sample by field-cycling experiments is 

shown in Fig 3.26. Equation (3.17) was fitted to the data, the correlation rate was 

( )1 8 11.507 0.006 10c sτ − −= ± × and the amplitude was ( ) 6 22.484 0.006 10c s
−= ± × in this  

case. 
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Fig 3.26 The field dependence of the spin-lattice relaxation time measured at 18K on BA sample. 

 

If the spectral density curves were measured at a set of temperatures (as for the BA 

sample which will be discussed in Chapter 4), by fitting the spectral density curves 

with expression (3.17), the 1

c
τ − vs 1/T ( the correlation rate versus inverse temperature) 
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curve and the c  vs 1/T curve were therefore obtained. The former curve ( 1

c
τ − vs 1/T) 

can be employed to investigate the theoretical model of the correlation rate, while the 

latter one ( c  vs 1/T) can be used to extract the parameters 
D

C and A by fitting with  

the equation (3.18). The results will be shown in Fig 4.12 and Fig 4.13, Chapter 4. 

 

In conclusion, we now have two methods for evaluating
D

C , A  and 1

c
τ − vs 1/T curve, 

(the second method for 
D

C is to calculate it directly according to equation (2.52)). A 

large parameter space encompassing frequency and temperature is available for our 

experiments, so we are able to obtain good estimates of the dynamical parameters that  

we can use to confront theories for tunnelling dynamics.  

 

However all discussed above is based on homonuclear system where a single spin-

lattice relaxation time characterises the relaxation process. The data analysis and 

curve fit will be more complex in heteronuclear systems. The details will be discussed  

later in the chapters on heteronuclear samples. 
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Chapter 4: The dynamics of proton transfer in the 

hydrogen bonds of benzoic acid [67] 

 

4.1 Introduction 

 

The dynamics of proton transfer in the hydrogen bonds has been of topical interest in 

recent years. The system represents one of the most fundamental chemical reactions  

and plays a crucial role in a variety of important chemical and biological processes.  

 

A full theoretical description of the proton transfer process requires knowledge of the 

potential energy surface (PES) characteristic of the molecule. The proton 

displacement is always accompanied by readjustments in the molecule so the PES is 

multi-dimensional. To a first approximation the potential energy along the trajectory 

of the particle through the multi-dimensional PES may be described as a double 

minimum potential (DMP) (Fig 4.1a and Fig 4.1b). For an isolated molecule, this 

DMP is symmetrical, however in the solid state, asymmetry in the environment 

introduces an asymmetry into the depth of the wells. Therefore, when a particle moves 

between the two wells, energy must be exchanged with its environment; the process is 

dissipative and consequently the dynamics of the proton may be modelled as that of a  

particle in a DMP which is coupled to a bath of phonons. 

 

The light mass of the proton means that its de Broglie wavelength can achieve a value 

which is of similar order to the distance the proton moves. The classically forbidden 

barrier region of the potential exhibits transmissibility arising from the partial 

delocalization of the particle wavefunction, so tunnelling matrix elements which 

connect the potential minima provide pathways for the proton dynamics. 

Consequently quantum effects dominate the low temperature dynamics and make an  

important contribution to the motional spectrum at all temperatures. 
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Indeed, for carboxylic acid dimers in the solid state at low temperature, the proton 

dynamics are dominated by phonon assisted tunnelling. This system, exhibiting a 

concerted double proton transfer motion in the pair of hydrogen bonds bridging the  

dimer, is established as a model system for translational atomic tunnelling. 
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Fig 4.1a Classical hopping over the barrier in DMP 

 

An interesting perspective arises in the description of these proton transfer dynamics; 

at low temperature (typically T<50K) tunnelling dominates and the proton transfer 

rate is independent of temperature as shown in Fig 4.1b. However, when the 

temperature is increased, the dynamics acquires more classical characteristics and 

more closely to Arrhenius behaviour. Therefore the system provides the opportunity 

to investigate the so-called quantum-to-classical transition, a topic which is becoming 

increasingly important as issues of coherence and decoherence are raised in the 

context of, for example, small scale devices, quantum computing and tunnelling on a  
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multi-dimensional potential energy surface. 
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Fig 4.1b Phonon assisted quantum tunnelling in an asymmetric DMP 

 

 

 

4.2 Benzoic Acid (BA): the model system 

 

The structure of the benzoic acid dimers is illustrated in Fig 4.2. There are two 

tautomeric forms (L and R) and the interchange between the two is mediated by 

double proton transfer within the bridging hydrogen bonds. In the isolated dimer the 

energies of the two tautomers are equal, however, in the solid state the crystal field 

breaks the symmetry and one tautomer is energetically favoured. We characterise the  

energy asymmetry by the symbol A as shown in Fig 4.1b.    
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Fig 4.2 The two tautomers of BA dimer showing the double proton transfer process in the bridging 

hydrogen bonds which mediates the conversion between the two tautomers. χ is the angle subtended 

by the inter-nuclear vectors and rHH is the intra-dimer proton-proton distance. 
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It is the dipole-dipole interaction that is modulated by the molecular dynamics and 

which gives rise to transitions that reveal the tunnelling dynamics. The spin-lattice 

relaxation time dominated by the proton-proton dipolar was discussed in the theory 

section (Chapter 2). In our experiment, the influence of proton tunnelling is 

investigated by making direct measurement of the spectral density function from the 

dispersion of the spin-lattice relaxation time using field-cycling relaxometry, which 

enables us to analyse the correlation rate 1

c
τ − (as shown in Fig 4.1a and Fig 4.1b)  

directly. 

 

 

4.3 Comparison of two theories 

 

Before discussing the experiments, we need to compare two theoretical descriptions 

of the dynamics of the proton transfer in the hydrogen bonds.  One is the theory of 

Skinner and Trommsdorff (ST) 
[5]

, which has been discussed in the theory section 

(Chapter 2) and will be summarised here; the other one is proposed by Latanowicz  

and Reynhardt (LR) 
[23]

, which will be described here. 

 

For a homonuclear system the spin-lattice relaxation time T1 can be written as follows: 

 

1 (1) (2)

1 ( ) ( )T C J Jω ω−  = +  ,                                                                                       (4.1)                                                                                           

 

where C is a constant and ( ) ( )mJ ω  is the spectral density function which is the Fourier 

transform of the correlation function for the spatial part F
(m)

 of the dipolar interaction  

between nuclei, 

 

*( ) (m) (m)( ) F ( ) F ( ) exp( )m
J t t i dω τ ωτ τ

+∞

−∞
= + −∫ i .                                                       (4.2) 

 

ST theory and LR theory differ in the evaluation of the spectral density functions, 

equation (4.2).  In both approaches stochastic jumps are invoked between the two 

wells and a variety of pathways are identified. The height and width of the interceding 
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barrier determines the magnitude of the tunnelling matrix elements which characterise 

through barrier pathways. The asymmetry of the wells means that interaction with a 

phonon heat bath is necessary to mediate the proton transfer. Therefore coherent  

tunnelling is quenched and all barrier crossing processes are necessarily incoherent.  

 

At low temperature, through barrier tunnelling pathways involving deep-lying 

vibrational states of the DWP dominate the dynamics. This is the regime of phonon-

assisted tunnelling and at the lowest temperatures these connect only the ground state 

of each well and involve only single phonons. With increasing temperature so higher 

vibrational states become populated and these also provide conduits for through 

barrier tunnelling, albeit with greater barrier transparency since the barrier region is 

narrower in these excited states. With sufficient thermal energy then barrier crossing  

can emulate classical Arrhenius behaviour.  

 

In LR theory the concept of over barrier hopping in the classical sense appears to be 

invoked more literally, whereas in ST theory this regime is considered more as a 

limiting sum of barrier crossing processes via states with elevated energies. These 

could conceivably include states above the barrier but for BA it is known that the 

actual barrier is approximately one order of magnitude larger than the measured  

Arrhenius activation energy at room temperature. 

 

 

4.3.1  ST theory 

 

The proton transfer rate is an algebraic sum of the rates of various barrier crossing 

processes since the probabilities of interchange between the two sites are additive. In 

the simplest approximation just two processes are considered, ground state tunnelling 

and pseudo-classical barrier hopping. The latter has Arrhenius form and is classified 

as pseudo-classical because it is well established that even at room temperature when 

the dynamics appear Arrhenius, the dynamics are in fact mediated by through barrier 

tunnelling pathways. The proton transfer rate is then characterised by the inverse  

correlation time: 
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1 (0)

c tu Arrh
τ − = Γ + Γ ,                                                                                                      (4.3) 

where (0)

tu
Γ is the ground state tunnelling rate and 

Arrh
Γ is the pseudo-classical barrier  

hopping rate. They are given by 

(0)

0

1

0

coth
2

exp exp

tu

B

Arrh

B B

A
k

k T

V V A

k T k T
τ −

  
Γ =  

 


    −Γ = − + −    
    

                                                            (4.4)    

where 0k is the incoherent tunnelling rate constant which is proportional to the square 

of the tunnelling matrix element, V is the activation energy for thermally activated  

hopping from the lowest well. 

 

More refined approximations can be obtained by adding terms to allow for through 

barrier tunnelling in low lying excited states 
[11]

 and multiple phonon processes 
[69]

. 

However, at whatever level of approximation, what characterises this theory is the 

fact that the dynamics are defined by a single correlation time. This being the case, for 

powder samples, assuming stochastic interchange between two tautomers, the spectral  

density functions are evaluated as follows 
[53, 54]

: 

( ) ( ) ( )
( )

( ) ( )

2

2
,

1

m m m c
c D

c

J J S K T
τ

ω ω τ
ωτ

 
= =  

+  
,                                                     (4.5) 

where ( )DK T  is a temperature dependent constant determined by the spatial parts of  

the dipolar interaction, 1
S = 2/15 and 2

S = 8/15. So the expression for the spin-lattice  

relaxation rate is: 

( )
( )

1 2

1 22 2 2

4
sech

2 1 1 2

c c
D

B c c

A
T C

k T

τ τ
ω

ω τ ω τ

−
  

= +   + +  
,                                             (4.6) 

where A is the energy asymmetry of the two wells and 
D

C is a dipolar constant. The 

angular frequency can be probed via the Larmor frequency, 
L

Bω γ= , associated with 

spin precession in the magnetic field B (γ is the proton magnetogyric ratio). In field-

cycling NMR relaxometry, the technique is to record 1

1T
− as a function of magnetic 

field thereby directly plotting out the spectral density functions 
[21, 46]

. ( )1

1T B
−  

(equation (4.6)) represents a superposition of two Lorentzians with half widths at half 
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maximum equal to the inverse correlation time 1

c
τ −  and 1

c
τ − /2. the respective 

amplitudes have the ratio of 1:4 and diminish with decreasing temperature according  

to 2sech
2

B

A

k T

 
 
 

. 

 

 

4.3.2 LR theory 

 

In LR theory, tunnelling and classical barrier hopping retain their separate identities. 

The pathway undertaken by the particles when the system interchanges between the 

two sites remains knowable to the observer. Distinguishable spectral features appear  

corresponding to each pathway.  

 

A B

0ν

1ν ABE∆

ABE∆

( )AB 1
E

ν

( )AB 0
E

ν

A B

0ν

1ν ABE∆

ABE∆

( )AB 1
E

ν

( )AB 0
E

ν

 

Fig 4.3 The potential energy diagram for the proton transfer in asymmetric DMP. 0ν and 1ν are the 

local vibrational states.  

 

The spin-lattice relaxation rates due to the dipole-dipole interaction of a homonuclear  

pair (i, s) are given by 

( )
( )

( )( )
1 21 9

2
8

1

J J
is is isT

ω ω
 
 
  

= + ,                                                                                     (4.7) 
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If the population of molecules and the Boltzmann distribution law are taken into  

account, the relaxation rate is given by 

( ) ( )
1

1 0 1

, ,1 10 1

1 1 1 1
is is

i s i s

T n n
i iT T

ν ν

ν ν

−
      

= + +   
      
∑ ∑ � ,                                                      (4.8) 

where 0nν , 1nν ,……, are the fractions of molecules in the separate vibrational levels 

associated with the average energies 0Eν , 1Eν ,……, of the ground, first and other 

excited vibrational levels. Because the population of molecules in the second excited 

vibrational level is very low, it is reasonable to take into account only two vibrational  

levels: ground level and first excited level. Therefore, 

( )( )
0 1

1 0 1 0

1

/ exp /

n n

n n E E RT

ν ν

ν ν ν ν

+ =


= − −
                                                                            (4.9) 

where 
A B

R N k= , 
A

N is Avogadro constant and 
B

k is Boltzmann constant. So 

( )

( )
( )

1

1 0

1 0

0

1 0

1

exp / 1

exp /

exp / 1

n
E E RT

E E RT
n

E E RT

ν

ν ν

ν ν

ν

ν ν


= − +  


−   = − +  

                                                                             (4.10) 

 

The spectral density in LR theory is characterised by three correlation rates, which is a 

significant difference with the spectral density in ST theory, for the dynamics 

consisting of thermally activated jumps between two sites A and B and incoherent  

tunnelling, as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( )
2

1 2 1 2 22 2 2

0

, ,

2 2 2

11 1

m m ov tu

x x

ov tum

x x x

ov tu
xx x

J J

S
C C C C C

C

ν ν

ν ν ν

νν ν

ω ω τ τ

τ τ τ

ωτωτ ωτ

=

 
 = + +
 ++ + 

                    (4.11) 

where  

( ) ( )2 2AB
0

AB AB

1
A B

1 1
cc cc

K
C d d

K K
= +

+ +
                                                                      (4.12) 

( )
( ) ( ) ( ) ( ) ( )1 2 2 2AB

1 AB AB AB2

AB

A B A B 3cos 1
1

is

cc cc cc cc

K
C K d K d d d

K
θ− = + + − +

            (4.13) 

( )
( ) ( ) ( ) ( ) ( )2 2 2AB

2 AB2

AB

A B A B 3cos 1
1

is

cc cc cc cc

K
C d d d d

K
θ = + − − +

                        (4.14)  
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AB
AB exp

E
K

RT

∆ 
=  

 
                                                                                                   (4.15) 

3

cc i s is
d Rγ γ −= �                                                                                                            (4.16) 

 

correlation rates for thermally activated jumps: 

( ) ( )AB AB AB

0

1
exp expov x x

ov

x

E E E
k

RT RT

ν ν

ντ

 − + ∆    
= − +    

     
                                           (4.17) 

correlation rates for incoherent tunnelling: 

( )
( )

AB AB
0 0

0 AB

'

1 0

exp / 11
coth

exp / 1 2

1 1

tu tu

tu

tu tu

E RT E
k k

E RT RT

k

ν ν

ν

ν ν

τ

τ τ

 ∆ + ∆ 
= =  

∆ −  

 =


                                                   (4.18) 

 

Additionally a complex motion is invoked, involving both tunnelling and over barrier  

hopping. For this motion the correlation rate is: 

1 1 1
ov tu

x x xν ν ντ τ τ
= +                                                                                                          (4.19) 

 

xν  indicates 0ν  or 1ν , AB

isθ is the angle between ( )AisR and ( )BisR , ABE∆ is the 

energy asymmetry of the two wells, ( )AB x
E

ν
is the thermally activated energy as 

shown in Fig 4.3, m
S =2/15, 8/15 for m = 1, 2, respectively, 0

ov
k , 0

tu
kν  and '

k are the  

activation parameters, ' 1k � . 

 

LR theory introduces some restrictions as follows: 

• If ( ) ( ) ( ) ( )1 1
, ,ov tu

x x
J Jν νω τ ω τ> and if ov tu

x xν ντ τ<  then ( ) ( ) ( ) ( )1 1
, , ,ov tu ov

x x x
J Jν ν νω τ τ ω τ=  

• If ( ) ( ) ( ) ( )2 2
2 , 2 ,ov tu

x x
J Jν νω τ ω τ> and if ov tu

x xν ντ τ<  then 

( ) ( ) ( ) ( )2 2
2 , , 2 ,ov tu ov

x x x
J Jν ν νω τ τ ω τ=  

 

These restrictions actually mean the tunnelling spectral densities are eliminated from 

the spin-lattice relaxation process when the value of this spectral density is 

comparable with that of classical jumping, and they are based on the assumption that 
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in the higher temperature range there is no tunnelling process. This assumption is  

contrary to the ST theory where the classical hopping is associated with incoherent 

tunnelling even in room temperature and named pseudo-classical hopping, and is in 

conflict with quantum theory in which quantum phenomenon can happen at any 

temperature. The lower the temperature is, the more evident the quantum effect will  

be.  

 

The spectral density will have two typical features according to the LR theory: 

 

• If the LR theory is employed to fit the experimental data, there must be three 

or more components which are characterised by the three correlation rates: 

1/ ov

xντ , 1/ tu

xντ and 1/
xντ ; there will be multiple spectral density components. 

• The restrictions will lead to the discontinuities in the spectral density curve 

especially in the intermediate and high temperature regimes. 

 

 

 

4.4 Experimental results and discussion 

 

4.4.1 Experimental 

 

We have made measurements of the proton spin-lattice relaxation time in the  

magnetic field range 0.1 to 2.3T at a variety of temperatures from 18K to 80K. 

 

• Benzoic acid (BA), in its natural abundance isotopic form (C6H5COOH) was 

purified and studied as a powder. 

 

• The NMR spectrometer operated at the fixed frequency 50.7MHz, with very 

short dead time 1.5µs and typical Gaussian calibration curve. 
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• From 0.4T to 2.3T, the saturation recovery pulse sequence was employed to 

record the spin relaxation process. When the field was lower than 0.4T, the 

signal was getting smaller and the signal to noise ratio was getting worse, the 

polarisation recovery pulse sequence was employed to record the spin 

relaxation curve. 

 

• In low temperature or high field, when the signal is so big that the amplifiers 

might be saturated, a measurement pulse factor was introduced into the Visual 

Basic program to control the amplitude of the measurement pulse. If the 

polarisation recovery pulse sequence was employed, the polarisation field was 

also selected to prevent the signal from being saturated. 

 

• The field offsets were selected to make sure that the spectra were always 

centred within a narrow range of frequency which should be in the top 5% 

region of the calibration curve.     

 

 

4.4.2 Experimental results and simulation 

 

According to the comparison of the ST theory and the LR theory, the principal 

characteristic which distinguishes the ST theory from LR theory is the number of 

correlation times: in ST theory there is just one, in LR theory tunnelling and classical 

pathways retain their separate identities to the observer and there are at least three,  

more as the temperature is increased.  

 

The other characteristic which also distinguishes the ST theory from the LR theory is 

the discontinuities in the spectral density curve: in ST theory there is no discontinuity, 

while in LR theory the restrictions prohibiting tunnelling at intermediate temperature  

lead to the discontinuities especially as the temperature is increased. 

 

Field-cycling NMR has been employed to record the spectral densities and to 

establish whether the experimental data is consistent with single or multiple  

correlation times. The data are presented in Fig 4.4.  
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Fig 4.4a The magnetic field dependence of the relaxation rate for benzoic acid recorded at 18K, 21K 

and 24.97K. 
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Fig 4.4b The magnetic field dependence of the relaxation rate for benzoic acid recorded at 28K, 

33.65K and 38.05K. 
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Fig 4.4c The magnetic field dependence of the relaxation rate for benzoic acid recorded at 42.58K, 

51.78K and 54.49K. 
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Fig 4.4d The magnetic field dependence of the relaxation rate for benzoic acid recorded at 61.12K, 

70.61K and 80K. 

 

The data in all these four figures (Fig 4.4a, Fig 4.4b, Fig 4.4c and Fig 4.4d) record the 

spectral densities for proton transfer in the intermediate temperature range where 

proton dynamics interchanges between quantum tunnelling and Arrhenius behaviour. 

The solid lines are fit to equation (4.6) assuming a single correlation time. The data 

have been reflected in the B-axis to accentuate the Lorentzian character of the  

lineshapes.  

 

The equation ( )1 2

1 2 2 2 2

4
, sech

2 1 1 4

c c
D

B c c

A
T T C

k T

τ τ
ω

ω τ ω τ
−   

= +   
+ +   

 is employed to fit 

the curve. It is evident that, when temperature is increased, both the amplitude c  

( 2sech
2

D

B

A
c C

k T

 
=  

 
(3.18)) and the correlation rate 1

c
τ − will increase. It is confirmed 

by the experimental data illustrated in the four figures. The curves are broadening 
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with increasing temperature: ‘the half-width at half-maximum of ( )L ω  is 1

cτ −  and the 

full width at half-maximum of ( )2L ω  is also 1

cτ − , so the spectral density provides a 

direct measurement of the proton transfer rate from a determination of the width of 

the spectrum’ as discussed in Chapter 2. Also the amplitude is increasing when 

temperature increases. Two parameters extracted from the curves are listed in Table  

4.1 for comparison. 

 

Temperature (K) Amplitude c (s
-2

) Correlation rate 1

c
τ − ( s

-1
) 

18 62.50 10×  
81.460 10×  

21 64.94 10×  
81.465 10×  

24.97 68.81 10×  
81.655 10×  

28 71.26 10×  
81.826 10×  

33.65 71.92 10×  
82.248 10×  

38.05 72.41 10×  
82.675 10×  

42.58 72.87 10×  
83.242 10×  

51.78 73.64 10×  
84.880 10×  

54.49 73.81 10×  
85.514 10×  

61.12 74.21 10×  
87.716 10×  

70.61 74.57 10×  
91.105 10×  

80 74.89 10×  
91.657 10×  

 

Table 4.1 The amplitude and the correlation rate extracted from the spectral density curves at a set of 

temperatures. 

 

At each temperature an excellent fit to the experimental data is obtained with just one 

correlation time. In no spectrum is there any evidence of multiple spectral density  

components and multiple correlation times.  

 

Simulations to fit the experimental data with the LR theory and the parameters they 

published in the paper 
[23]

 show that only in low temperature range (<20K) the LR 

theory can fit the experimental data with small error. This is inevitable because the 
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theories converge at low temperature where there is only ground state incoherent 

tunnelling with a single correlation time. In their paper, only T1 vs temperature data at  

fixed frequency were considered.  

 

As the temperature is increased, the error between the simulation with LR theory and 

the experimental data gets bigger and bigger and becomes unacceptable when the  

temperature is higher than 50K (intermediate temperature region). 

 

As the temperature is increased, the discontinuities appear in the spectral density 

curve of the simulation with LR theory, which are never found in the experimental  

data and also unreasonable even only in view of the mathematics. 

 

The simulation results and the comparison with ST fit are shown in Fig 4.5 to Fig 4.11,  

where we can find easily which one is acceptable. 
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Fig 4.5 Fit the experimental data to ST and LR theories at 18K 
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Fig 4.6 Fit the experimental data to ST and LR theories at 24.97K 
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Fig 4.7 Fit the experimental data to ST and LR theories at 33.65K 
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Fig 4.8 Fit the experimental data to ST and LR theories at 51.78K 
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Fig 4.9 Fit the experimental data to ST and LR theories at 61.12K 
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Fig 4.10 Fit the experimental data to ST and LR theories at 70.61K 
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Fig 4.11 Fit the experimental data to ST and LR theories at 80K 
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The figures from Fig 4.5 to Fig 4.11 are the comparisons between two theories in a variety of 

temperatures to show the evolutions of the spectral densities fitted to the two theories and show to what  

extent they agree with the experimental data.   

 

It is evident that the features of the LR theory are unphysical and in complete 

disagreement with the experiment data. On the contrary, the ST theory works very 

well across the whole temperature range. This demonstrates the inaccurate 

conclusions that can arise from analysing only T1 data at fixed frequency and the  

advantage of recording the relaxation as a function of field/frequency. 

 

In Fig 4.12 the Lorentzian amplitudes are plotted as a function of inverse temperature 

and fitted to the function ( )2sech / 2D BC A k T , equation (4.6). Excellent agreement is 

obtained with ( )/ 80 1 KBA k = ± and ( ) 7 26.30 0.05 10 sDC
−= ± × . This also shows that  

the ST theory gives a correct molecular dynamics description.  
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Fig 4.12 The inverse temperature dependence of the amplitudes of the spectral density lineshapes in 

Fig 4.4a, b, c and d. The solid line is a fit to the function ( )2
sech / 2

D B
C A k T . 

 



Chapter 4                                                                                                  Benzoic Acid 

 116 

The proton transfer rates, 1

c
τ − , determined from the data in Fig 4.4a, Fig 4.4b, Fig 4.4c 

and Fig 4.4d are plotted as a function of inverse temperature in Fig 4.13. At low 

temperature the proton transfer rate is independent of temperature, characteristic of 

phonon-assisted tunnelling. With increasing temperature the proton transfer rate 

gradually increases, approaching Arrhenius behaviour at ambient temperature. The 

data spans the intermediate temperature region corresponding to the changeover 

between quantum and Arrhenius regimes. It is a typical smooth transition without any 

distortion as expected in the LR theory. If multiple correlation times were present as 

mentioned in the LR theory, it is here that we would expect them to be most evident.  

No such multiple component character is observed in any of the data in Fig 4.13.  
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Fig 4.13 The inverse temperature dependence of the inverse correlation times, 
1

c
τ

−
, for proton transfer 

in BA. At low temperature the proton transfer rate is independent of temperature but smoothly evolves 

towards Arrhenius behaviour at higher temperatures. The blue filled circles are the data transferred 

directly from T1 vs 1/T curve, the red filled rectangles were extracted from the fits shown in Fig 4.4a 

and Fig 4.4b, the black triangles were earlier field-cycling data from 
[11]

. It is evident that all these data 

are in good agreement with each other and with the ST model. The solid line has been calculated from 

the ST model and parameters reported in 
[11]

 and listed in Table 4.2, determined before  

field-cycling data was available at temperatures above 17K. 
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Table 4.2 parameters employed to calculate the 
1

c
τ

−
vs inverse temperature from the ST model: 

 

Energy asymmetry A /kB 78.2K 

Dipolar constant
D

C  7 26.25 10 s
−×  

Incoherent tunnelling rate constant 0k  8 11.22 10 s
−×  

 

These parameters are in good agreement with our field-cycling experimental result. 

The energy asymmetry listed in Table 4.2, 78.2K, is slightly smaller than the result of 

field-cycling experiments, 80K; this is because it was directly extracted from the 

gradient of T1 vs inverse temperature curve in low temperature region, but the fit 

equation (3.15) is based on the assumption: ( )exp / 1BA k T � which is not entirely 

correct when the temperature is higher than 30K; the extracted value is normally 

slightly smaller than actual value or the value we employ in our simulation to provide 

a perfect fit. It also turns out that the energy asymmetry extracted from the Lorentzian 

amplitude vs inverse temperature curve is more accurate than the result extracted from  

the gradient in T1 vs inverse temperature curve. 

 

 

4.5 Discussion and concluding remarks 

 

Here we have demonstrated how the field-cycling NMR technique may be applied to 

the direct measurements of incoherent molecular dynamics and the evolution of the  

temperature dependence of the correlation rate.    

 

In both ST and LR theories, different barrier crossing pathways are identified, 

involving tunnelling in the ground state, tunnelling in excited states and related 

processes which imitate classical hopping. What distinguishes the two theories is the 

manner in which these different pathways are combined to determine the overall 

dynamics. In ST theory, the probabilities for interchange are additive leading to a 

summation of the rates of the individual pathways and a single correlation rate. In LR 

theory, the different pathways retain their separate identities and it is the spectral 

densities which are additive. The experimental evidence supports the ST approach and 

the concept of a smooth transition between quantum and classical regimes. Quantum 
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and classical descriptions are consistent with each other. The fundamental foundations 

of molecular dynamics are quantum mechanical; it is issues of coherence allied to the 

de Broglie wavelength which determine in what temperature range the behaviour  

resembles classical dynamics. 

 

Only with field-cycling are the inadequacies of the LR theory completely evident-  

their theory was developed for T1 at fixed field. 
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Chapter 5 Heteronuclear experiments I – NQR 

detection of heroin hydrochloride monohydrate [68] 

 

 

Beginning with this chapter, we present our investigation of heteronuclear systems 

with field-cycling NMR. It is a significant part of the research in this thesis. Many 

samples contain multiple nuclei, and therefore the heteronuclear interaction becomes a 

relevant and crucial topic to the study of complex systems and those of biological  

interest.  

 

An example of the heteronuclear interaction between spin I (½) and spin S ( ≥ 1) is 

discussed in this chapter. As reviewed in Chapter 2, when spin ≥ 1, the nucleus is 

quadrupolar. The NQR of quadrupolar nuclei is detected by a heteronuclear transfer of 

polarisation with 
1
H nuclei. Therefore the NQR is detected through measurements of 

the 
1
H NMR signal. Generally such inverse peaks characterising the detected 

spectrum are called quadrupole dips 
[21]

. However, here the NQR transitions are  

driven externally by irradiating with r.f. rather than via natural relaxation pathways.  

 

NQR (Nuclear Quadrupole Resonance) is related to NMR. We know when a nucleus 

with spin is placed into a magnetic field, this results in some sub-states and the 

Zeeman splitting. When an irradiation r.f. frequency matches the transition frequency 

among the Zeeman sub-states, a resonance we call NMR occurs. NQR concerns 

nuclear quadrupole resonance that arises due to the splitting in the quadrupolar 

nuclear sub-states; the levels acquire a zero-field splitting due to the quadrupolar 

interaction. The quadrupolar nuclear sub-states and the allowed transitions have been  

introduced in Fig 2.19, Fig 2.20 and equations (2.66), (2.68) in Chapter 2. 

 

 

5.1 Introduction  

 

Heroin (diacetylmorphine), Fig 5.1, is a class ‘A’ drug, closely related to morphine  

and codeine, and derived from the opium poppy. 
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It was produced by acetylation of morphine extracted from poppy latex, followed by 

treatment with HCl to give the hydrochloride, which was recrystallised from ethanol 

and diethyl ether to give heroin hydrochloride monohydrate. The monohydrate could 

be dried to give an anhydrous form. While simple colorimetric tests exist to detect the 

presence of drugs such as heroin hydrochloride, a simple quantitative, portable and 

non-destructive method for selectively identifying heroin in the presence of closely 

related compounds such as acetylcodeine is highly desirable. The ratio of 

acetylcodeine to heroin is, for example, often used as an indication of the origin of 

illicit drugs. This was part of a wider study to assess whether NQR could be used as  

diagnostic tool.  

 

 

Fig 5.1 structure of heroin (diacetylmorphine) 

 

A sample of heroin hydrochloride was supplied by Professor John A. S. Smith of 

King’s College London and used in our NQR low field experiments. We were in 

collaboration with him to determine the unusual crystal structure of heroin 

hydrochloride monohydrate and experimentally confirm the calculated 14N and 35Cl 

nuclear quadrupole resonance (NQR) frequencies using Gaussian (method: HF/6- 

31+G*).  

 

 

5.2 Experimental  

 

As reviewed in Chapter 2, due to the quadrupolar interaction, there is a zero-field 

splitting of the nuclear sub-states. To investigate the quadrupolar transitions arising 

from the splitting, the low field NMR technique 
[22]

 is applied for measuring the 

transition frequencies in the range 6kHz to 3MHz. The low field NMR technique 
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employs a polarisation-recovery pulse sequence, with r.f. irradiation applied via 

secondary coils during the recovery period where the magnetic field is low; in fact for 

the NQR experiment, the magnetic field is chosen close to zero field. The F1 Channel 

of the Apollo spectrometer was used to provide the secondary low field r.f. irradiation, 

and the irradiation times were typically 400ms for the sample we studied. The low  

field experiment pulse sequence is illustrated in Fig 5.2. 
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Fig 5.2 low field experiment pulse sequence 

 

1) Saturation of the 
1
H magnetisation with a comb of o90  pulses at the resonance 

field 
NMR

B  

2) Rapid magnetic field switch to the polarisation field 
pol

B , evolution for a period of 

time to polarise the nuclear spins 

3) Rapid magnetic field switch to the low field
rf

B , simultaneously apply the r.f.  

irradiation at frequency 
rf

ν  for a period of time 

4) Rapid magnetic field switch to the resonance field  

5) Measurement of magnetisation with a o90 pulse 
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The sequence is repeated many times so the magnetisation spectrum can be recorded 

in one of two modes, 

1) Frequency swept mode, in which 
rf

B is constant and 
rf

ν is systematically 

incremented in each cycle 

2) Field switch mode, in which 
rf

ν  is constant and 
rf

B is systematically incremented 

in each cycle 

 

In our experiments, at constant low magnetic field, Brf, the spectrum is recorded point 

by point as a function of irradiation frequency. When the irradiation frequency 

matches a magnetic transition, in NQR experiments the transition is a quadrupolar 

transition, then 
1
H magnetisation will be destroyed. The heteronuclear quadrupole 

interaction between 
1
H and the studied quadrupolar nuclei will introduce a significant 

relaxation mechanism due to quadrupolar coupling which is not present in a spin ½ 

system. The relaxation rate due to quadrupolar coupling is recorded as 1

1qT
− . Thus the  

relaxation rate of 
1
H magnetisation becomes, 

1 1 1

1 1 1

dd q
T T T

= +                                                                                                             (5.1) 

where 1

1dd
T

− is the relaxation rate due to dipole-dipole interaction which is dominant for 

the spin ½ sample in solid state. Thus the relaxation of 
1
H magnetisation is speeded up, 

leading to quadrupole dips appearing in the curve of the 
1
H magnetisation vs 

irradiation frequency when quadrupolar transition occurs. This curve is applied for  

searching the Nuclear Quadrupolar Resonance frequency.  

 

Due to the fact the quadrupolar interaction is much weaker than the interaction 

between the nucleus and the magnetic field, the magnetisation of the proton only 

undergoes a small change when the NQR transition was irradiated, which means the 

quadrupole dips in the spectrum are tiny and the signal to noise ratio becomes the  

dominant problem in this kind of experiment. 

 

To get the maximum inverted peak, the NQR experiment was run at the lowest  

practical temperature 4.2K (liquid helium temperature).  
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The polarisation field 
pol

B was typically set between 0.8 to 1T with a polarisation time 

of 30 to 60s. This polarisation field was set as high as possible to improve the signal 

quality, however during the field switching time, the relaxation of 
1
H magnetisation 

was inevitable and became significant, therefore the polarisation field was chosen as a  

compromise between high preparation field and short field switching time.  

 

The NMR observation field 
nmr

B was 0.627T (
1
H frequency of 26.7MHz). The low 

field 
rf

B  was between 0 and 20Gauss as required to investigate the quadrupolar 

nuclear splitting at zero field. Higher fields would lead to broadening of the NQR  

peaks which was not desirable.  

 

The field switching rate was set to 8T/s in preference to the maximum value 10T/s. 

This was a compromise since if the field switching rate was set too high, a long settle 

time had to be chosen to allow field to stabilize. We found that the magnet power 

supply did not perform so well at low field, with a long ‘tail’, as shown in Fig 5.3b. 

So that we only irradiated when the field was less than 20G, a ‘settle time’ was 

introduced into the sequence. This was typically 200ms in our experiments. It was 

unfortunate that it was required, since the protons relax during this period, reducing 

the signal to noise in our data. However, we were still able to record satisfactory NQR  

data. 
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Fig 5.3a The field switch profile for low field experiment. After switching down from 8000Gauss to 

zero irradiation field at 8T/s, the start field in the irradiation period τ is about 35Gauss instead of zero 

as we expected, so the delay tdelay was introduced.  
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Fig 5.3b Zoom in of Fig 5.3a to illustrate the long ‘tail’ 
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5.3 Results and discussion 

 

At the outset, we didn’t know the NQR peak positions, but Prof. Smith indicated the 

broad frequency range in which they might be found. By making repeated scans, 

small dips were obtained that might be candidates as ‘quadrupole dips’, but by 

optimising the experimental parameters and averaging a series of scans, good NQR  

spectra were finally obtained, as shown in Fig 5.4.  

  

Inspection of the experimental spectrum suggested a zero field NQR frequency of 

around 2000kHz (for 
35

Cl) and two zero field NQR frequencies around 1000kHz (for  

14
N). No separately identifiable dip for 

37
Cl was observed. 
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Fig 5.4 The best NQR data for heroin hydrochloride monohydrate sample supplied by Professor John A. 

S. Smith. Experimental conditions have been introduced in the text. Step frequency was 2kHz and the 

irradiation frequency was searched from 700kHz to 4000kHz. Two dips around 1000kHz for 
14

N 

and one smaller dip for 
35

Cl close to 2000kHz were found.   

 



Chapter 5                                                                                                               NQR 

 126 

Refinement of these values were achieved by repeating the frequency search in 

narrow frequency ranges, as shown in Fig 5.5, 1800kHz to 2200kHz for 
35

Cl, and in  

Fig 5.7, 700kHz to 1200kHz for 
14

N.  

 

 

 

5.3.1 Results for 
35

Cl 

 

The upper three curves in Fig 5.5 were three scans in the frequency range from 

1800kHz to 2200kHz with the same experimental conditions. The lower spectrum was 

the average of these three curves. The baseline of the latter was adjusted for clarity. 

Two 
35

Cl NQR frequencies at 1950kHz and 1965kHz were found in the averaged  

spectrum. 

 

Fig 5.5 The 
35

Cl NQR frequency search at 4.2K with frequency step 2kHz. The upper curves were 

three experimental data from same experimental conditions. The lower spectrum was the average of 

these three. 

 

According to the theory of quadrupolar interaction discussed in Chapter 2, 
35

Cl is a 

spin-
3

2
nucleus, and there should be one NQR frequency observed as expressed in  

equation (2.68) and Fig 2.20. The frequency is  

1
2 2

21
( / ) 1

2 3
Q e qQ h

η
ν

 
= + 

 
                                                                                        (5.1) 
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The crystal structure need to be introduced which has been determined by the group in 

King’s College London. The result is shown in Fig 5.6 and Table 5.1.The asymmetric 

hydrogen bonding around each chlorine ion in the crystal structure leads to a non-zero 

quadrupolar interaction at this nucleus and a finite NQR frequency. It is evident, both 

in Fig 5.6 and Table 5.1, that there are two kinds of 
35

Cl ions, Cl(1) and Cl(2), 

crystallographically non-equivalent, being hydrogen bonded to one N-H group and 

two water molecules. The slightly different positions of the hydrogen-bonded 

hydrogen atoms make a small difference between the electric field gradients at these 

two chlorine ions. Therefore two 
35

Cl NQR frequencies are expected. The observed 

peak is broad and any site splitting must be within this linewidth. There is some  

evidence in the averaged data that a doublet is just resolved. 

   

 

 

 

 

 

 

 

 

 

 

Fig 5.6 Projection of two independent molecules on the ab plane, showing the N–H Cl
–
 and Cl

–

OH2 hydrogen bonding. 

 

It is impossible to deduce the quadrupole coupling constants 2 /e qQ h and the 

asymmetry parameter η  for these two 
35

Cl ions separately from equation (5.1). Other 

experiments are needed for obtaining these two parameters in combination with the  

NQR results.  
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Table 5.1 Hydrogen bonds in heroin hydrochloride monohydrate  

 
D–H A d(D–H)/  d(H A)/  D(D A)/  

 

DHA/° 

 

O(1S)–H(1S1) Cl(1) 0.98 2.15 3.119(11) 167.5 

N(1)–H(1) Cl(2) 0.93 2.17 3.095(14) 172.1 

N(2)–H(2) Cl(1) 0.93 2.14 3.056(15) 169.0 

O(2S)–H(2S1) Cl(2) 1.16 2.01 3.103(11) 154.9 

O(2S)–H(2S2) Cl(1) 0.94 2.29 3.174(11) 158.1 

O(1S)–H(1S2) Cl(2) 0.96 2.46 3.153(11) 128.9 

 

 

 

5.3.2 Results for 
14

N 

 

Higher resolution results for 
14

N using a frequency step of 2kHz are illustrated in Fig 

5.7. Two dips were found at 0.957 and 1.035MHz, assigned to ν − and ν + respectively. 

Each peak had its own doublets. For spin-1 nucleus, 
14

N, the peaks are related to the  

quadrupole coupling constant and asymmetry parameter as 

23
1

4 3

e qQ

h

η
ν ±

  
= ±  

  
                                                                                               (5.2) 

which has been expressed in equation (2.66) in Chapter 2.  

 

The x-ray crystal structure analysis completed by the group of KCL (King’s College 

London) showed that the doublet structure was clearly resolved with splittings of 

6.5kHz for ν + and 5.7kHz for ν − . Therefore the frequencies (four possible values: 

957 5.7 / 2± kHz and 1035 6.5 / 2± kHz) for 
14

N peaks are paired off as shown in 

Table 5.2 as well as the quadrupole coupling constants and the asymmetry parameters  

calculated from equation (5.2).  
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Fig 5.7 NQR spectrum of 
14

N searched by frequency swept mode with frequency step 2kHz from 

700kHz to 1200kHz. Two dips assigned to ν − and ν + were found at 0.957 and 1.035MHz respectively. 

Each dip had its own doublet. 

 

Table 5.2 Frequency pairs and the related quadrupole coupling constants, asymmetry parameters. 

 

( ),ν ν− +  ( )2 / (MHz),e qQ h η  

( )0.960,1.039 MHz ( )1.333,0.119  

( )0.954,1.032 MHz ( )1.324,0.118  

( )0.960,1.032 MHz ( )1.328,0.108  

( )0.954,1.039 MHz ( )1.329,0.128  

 

The first two frequency pairs for the observed doublets was made to optimise the 

agreement between the asymmetry parameters (0.119 and 0.118 in Table 5.2), while 

the last two frequency pairs was made to optimise the agreement between the  

quadrupole coupling constants (1.328 and 1.329MHz in Table 5.2).  
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The predicted NQR frequencies (ν −  at 1.142 and 1.000MHz, ν + at 1.220 and 

1.099MHz) by theoretical calculation were close to the NQR experimental results 

(doublets close to 0.957 and 1.035MHz), bearing in mind the neglect of temperature  

effects.  

 

 

5.4 Conclusions 

 

NQR technique has been successfully implemented on our field-cycling spectrometer 

to detect 
14

N and 
35

Cl quadrupole nuclei in the sample and furthermore confirm the 

structure of the sample by the detailed NQR spectrum. For example, the 
35

Cl NQR 

doublets and the related quadrupole parameters in this sample can be applied to 

determine the electric field gradients governed by the positions of hydrogen-bonded 

hydrogen atoms at this ion, therefore to confirm the structure of the studied sample. 

The unique structure of heroin hydrochloride hydrate was reflected in the NQR data 

and hence suggested that NQR technique could form the basis for a sensitive method 

for the selective detection of this material in the presence of other closely related  

compounds. 
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Chapter 6 Heteronuclear experiments II-13C-BA [65] 

 

6.1 Introduction 

 

13
C -BA was the first sample chosen to investigate the spin½-spin ½ heteronuclear 

interaction system. In conducting the investigation of 13
C -BA there is a strong 

motivation to develop the techniques of field-cycling relaxometry and the 

methodology of data analysis for cases where heteronuclear dipolar interactions are 

present. Compared with the model system benzoic acid (BA), 13
C -BA sample has 

99% 13
C  substitution of the carboxy carbon, Fig 6.1. There is another motivation to 

study isotope effects of the skeletal framework atoms on the proton transfer 

dynamics. This is a long term motivation. Some research on isotope effects due to 

deuterium substitution in the hydrogen bonds has been completed by another PhD 

student in our group 
[62]

. However, when the hydrogen atoms move, the heavy 

skeletal framework atoms also move and the quasi-particle involved in the motion is 

‘dressed’ with the displacements of the skeletal framework atoms. Theoretical 

techniques for calculating such effects are only just becoming available; we sought  

experimentally for such effect. 

13C 13C

O-H···H-O

O-H···H-O

α

13C 13C

O-H···H-O

O-H···H-O

α

 

Fig6.1 Double proton transfer in 
13

C-BA. 
13

C acts as a ‘spy’ nucleus to monitor the concerted motion 

of the two hydrogen atoms in the hydrogen bonds. 

 

The 13
C -BA sample chosen for the investigation is based on the following  
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motivations,  

• BA is the established model system for translational molecular tunnelling. 

Experimental and theoretical aspects are very well characterised and 

understood both in structure and in dynamics. 

• The 13
C  substitution of the carboxy carbon will not change the structure 

significantly. We can still use the same structure geometry parameters such as 

the coordinate of each atom in the molecule in our simulations. With the 

geometry parameters, the lattice sum of heteronuclear dipolar interaction 
CH

C  

can be derived according to equation (2.50).  

• The dynamic parameters A , 0k , 1k ,V ,
exc

V and 1

0τ − will not change much when 

the carboxy carbon is substituted by 13
C . Then when we analyse the 13

C -BA 

experimental data and simulate them, we will have a good initial estimate of 

these dynamic parameters  

• 13
C acts as a ‘spy nucleus’ monitoring the concerted motion of the two 

hydrogen atoms in the hydrogen bonds that bridge the BA dimer. The 99% 

13
C  substitution of the carboxy carbon represents an additional advantage of 

studying heteronuclear relaxation because the system is ‘clean’. Relaxation of 

the 13
C is dominated by just two symmetry related intra-dimer dipolar 

contacts with the two labile protons. There are no homonuclear 13
C -

13
C interactions contributing to the relaxation.  

 

This is the first ever 13
C NMR investigation by field-cycling system; this led to a  

number of experimental challenges, 

• The natural abundance of 13
C is only 1.108%.  Even 99% enriched in our 

sample, the 13
C NMR spectra is still a tiny signal due to the small 

magnetogyric ratio. Only the carboxy carbon is enriched, so the 
13

C 

abundance in the molecule is also small. 

• NMR is intrinsically an insensitive technique; it is desirable to use all 

possible means to improve the signal-to-noise ratio. One of them is to 

increase the magnetic field 0B . But it is restricted by our field-cycling system. 

The maximum field we can have in our system is only 2.5T.  
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• As reviewed in Chapter 3, high-Q tank circuit is desirable for getting high 

quality signal both in amplitude and in signal to noise ratio. However this 

leads to a long dead time and a narrow calibration curve which makes it 

difficult to control the field drifts. Fortunately the field drifts are very small at 

high field (the 
13

C resonance field was chosen more than 2T) and the 

lineshapes of 
13

C are narrow, so we could afford a long dead time.   

• With field-cycling NMR, we can record the magnetic field dependence of the 

spin-lattice relaxation time. However at low field the NMR signal is very 

weak. In a homonuclear experiment, we usually employ saturation-recovery 

pulse sequence when the field is higher than 4000Gauss, and to overcome 

S/N problems, we employ the polarisation- recovery pulse sequence when the 

field is low. The pulse sequences are shown in Fig 3.17 and Fig 3.20. 

However in a heteronuclear experiment, the initial conditions of the second 

spin reservoir restrict the use of a particular recovery technique. This will be 

discussed later.      

 

Implications for field-cycling relaxometry 

 

The spin-lattice relaxation rate constants are weighted sums of various Lorentzian 

lineshapes, equations (2.49) and (2.51). There are two outlooks on an experiment to 

study molecular dynamics by NMR relaxometry. In the first, plotting 1

1T
−  as a 

function of frequency, Fig 6.2a, the width of the spectral density curve is determined 

by 1

c
τ − and the experiment samples this function at the specified frequencies. In the 

second, relevant to a field-cycling study of spin-lattice relaxation, plotting 1

1T
−  as a 

function of magnetic field, Fig 6.2b, the observed relaxation is a sum of Lorentzians 

with different width. The Lorentzians widths are scaled by the magnetogyric ratios 

when plotted as a function of magnetic field. Therefore, it is to be expected that, in 

interpreting such experimental data, information on the amplitudes of the various 

Lorentzian components would be required to unambiguously determine an accurate  

value for the correlation rate. 
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Fig 6.2 Two outlooks on the spectral density function: (a) plotted as a function of frequency, ω , 

where the half-width at half-maximum is equal to the correlation rate, 
1

c
τ

−
. In a spin-lattice relaxation 

experiment this curve is sampled at the three frequencies 
C

ω , ( )H C
ω ω+   and ( )H C

ω ω−  (b) 

plotted as a function of B-field, as applicable to field-cycling NMR. The proton transfer dynamics are 

determined by 
1

c
τ

−
 but the observed spin-lattice relaxation is determined by the sum of three 

Lorentzian components with widths 

1

c

C

τ
γ

−

, 
( )

1

c

H C

τ

γ γ

−

+
 and 

( )

1

c

H C

τ

γ γ

−

−
. 

 

Additionally, the spin-lattice relaxation rate constants 1R  and 2R  are molecular 

properties independent of the experimental procedures but the weighting coefficients, 

B 
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ωC ωH+ωC 
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c, depend on the initial polarisation states of both Zeeman reservoirs. Therefore, to 

obtain spin-polarisation recovery curves from which molecular parameters can be 

reliably recovered, the preparation of the initial states need to be rigorously 

systematic. This requires special procedures in the case of field-cycling relaxometry.  

We shall return to a discussion of these issues in the light of experimental data. 

 

 

6.2 Experimental 

 

A variety of pulse sequences were employed to study the spin-lattice relaxation. 

They will be described in the next section 6.3. In all cases saturation was achieved 

using a comb of six 2π  pulses and the longitudinal polarisation of the nucleus of 

interest was measured with a single pulse. Using logarithmic increments in τ, 

magnetisation recovery curves were recorded from which the spin-lattice relaxation  

parameters were obtained.  

 

The enriched (99 atom %) carboxy-
13

C benzoic acid (C6H5
13

COOH) was obtained 

commercially and used without further purification. The sample temperature was 

controlled by a variable flow helium cryostat that was incorporated into the cryostat 

of the superconducting magnet (supplied by Cryogenic Ltd). Sample temperatures in 

the range 4 – 300K were measured with a calibrated Cernox resistance thermometer; 

the long term stability and accuracy of the temperature in the region 20K was better  

than 0.01K.  

  

The resonance frequency of 
13

C for the field-cycling experiment was chosen to be 

21.9MHz, and the resonance field was about 2.03T, which was a compromise in  

consideration of 2.5T field limitation and the signal quality. 

 

The dead time is 20 sµ for the 
13

C probe, which is much longer than the value of 

4 sµ  which typified a 
1
H probe. The chosen saturation and measurement pulse 

widths were 4 sµ , double the value of typical 
1
H experiments. Fortunately the 

observed 
13

C linewidths, shown in Fig 6.3, were very much narrower than for 
1
H in 

the same sample, due to scaling of the dipolar interaction, by the smaller 
13

C 
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magnetogyric ratio. In fact the narrow line was a further advantage because it 

improved the effective S/N. However as discussed in Chapter 3, the measurement 

pulse width was bigger than normally used, so that the calibration curve was much 

narrower than that of 
1
H experiments, making the field stability more important than 

in 
1
H experiments. Although the field drifts are smaller in high field than in low field 

(the 
13

C resonance field is more than 2T), the spectrometer’s set up and field offset 

parameters still had to be very carefully determined before a set of experiments were  

run automatically over night or over weekends. 
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Fig 6.3 A spectrum of 
13

C in 13C-BA illustrating the narrow lineshape. 

 

 

 

6.3 Experimental and Simulation Results 

 

Two kinds of experiments have been carried out to investigate the heteronuclear 

interactions and dynamics on 
13

C-BA. One is for measuring the temperature 

dependence of spin-lattice relaxation time; the other is for measuring the  

field/frequency dependence of spin-lattice relaxation time.  
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6.3.1 13
C and 1 H spin-lattice relaxation at constant field 

 

The temperature dependence of 13
C spin-lattice relaxation time 13C

T  measurements 

were made on the Oxford NMR 270 magnet system operating in persistent mode 

using a saturation-recovery pulse sequence as shown in Fig 3.17. The magnetic field 

operated at 24280Guass and for 13
C the resonant Larmor frequency was 26MHz in 

this field. Field shimming was carried out at room temperature by noting the shape of 

the off-resonance free induction decay (FID) envelope following a single pulse of RF. 

An Oxford instrument continuous-flow cryostat was used to cool the sample, good 

temperature control was achieved by adjusting the liquid helium flow rate and  

the PID settings of the temperature controller. 

 

The 1 H  spin-polarisation recovery curve was recorded as a function of temperature 

using a conventional saturation-recovery pulse sequence at fixed magnetic field 

(0.883T/37.8MHz) as shown in Fig 3.17. The measurements were made on the  

custom built field-cycling NMR spectrometer which has been described in Chapter 3.  

 

In these experiments, both for 
13

C (Oxford magnet in persistent mode) and for 
1
H 

(field-cycling spectrometer in internal mode), the magnet was always on; therefore at 

time 0t = , the spin-polarisation of the nuclear species under investigation was 

saturated while the spin-polarisation of the second nuclear species was established  

close to its thermal equilibrium (i.e. for 13
C , 0 0 00,

z t z t
S I I= =〈 〉 = 〈 〉 = ).  

 

The polarisation state of the second nuclear species is important to the spin-

polarisation recovery of the nuclear spin being studied. According to the Solomon 

equations (2.48) the effect of cross relaxation will be minimized when the second 

spin is at thermal equilibrium. In any case, the polarisation state must be same for all 

measurements in a sequence. Unfortunately this is not the case when the magnet is 

working in external mode for field-cycling experiments. In field-cycling experiments, 

if no special control procedures are in place, the initial spin-polarisation can be any 

value which means different recovery curves may be obtained for different initial 

conditions at same temperature and same field. We will discuss it later when  
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analysing the field dependence experimental data. 

0

1

2

3

4

1 10 100 1000

bi-exponential
single exponential

recovery time/s

s
pi

n
-p

ila
ri

sa
tio

n
13C-BA 30K 

 

Fig 6.4 The spin-polarisation recovery curve characterised by a single exponential function, blue solid 

curve. The red solid curve was a fit to bi-exponential function, which was nearly same as the blue 

solid curve. The fit to bi-exponential function had an unacceptable error. 

 

According to the theory described in Chapter 2, the spin-polarisation recovery curves 

for the nuclei in 
13

C-BA should be bi-exponential. However, the spin-polarisation 

recovery curves for both nuclei were well represented by a single exponential with a 

single time constant,
( )

1

eff
T , within experimental error, as shown in Fig 6.4. Fitting to 

bi-exponential function did not improve the fit quality; furthermore although the 

spin-polarisation recovery curve was a bi-exponential function characterised by two 

time constants as discussed in the theory chapter (Chapter 2), it was difficult or even 

impossible to extract these two time constants with any accuracy in this sample (the 

accuracy for the bi-exponential fit in another heteronuclear sample which will be 

discussed in next chapter was so good that the two time constants were accurately 

extracted). Therefore special experimental techniques and data analysis method were  
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required for investigating the dynamics of this sample.  

 

That the spin-polarisation recovery for both nuclei is single exponential is a 

significant observation. This suggests that the off diagonal elements in the relaxation 

matrix, 
I

σ  and
S

σ , are small by comparison with the diagonal terms 
I

ρ  and
S

ρ . 

Simulations also show that the effects of the off diagonal terms are further minimised 

by preparing the polarisation of the ‘second’ nucleus close to its thermal equilibrium 

value. This being the case, the two observed relaxation times 
( )

1

eff

I
T  and 

( )
1

eff

S
T  should 

closely approximate 1

I
ρ −  and 1

S
ρ −  respectively under the measured conditions of 

magnetic field and temperature. To assess the validity of this assertion, the values of  

the relaxation matrix have been calculated using the following procedure:  

i. Determination of the dipolar relaxation constants: the value of 
CH

C was 

calculated from equation (2.50) given the atomic coordinates determined at low 

temperature by single crystal neutron diffraction. For this purpose it was 

sufficient to include only intra-dimer contributions since, for 
13

C-
1
H 

interactions, these dominate over inter-dimer contributions. In performing this 

calculation, as in reference 
[13]

, the atomic coordinates of the energetically less 

favourable dimer were determined by rotating the dimer about its central axis 

[ 6 0 ,  7 1 ]
.  T h e  c a l c u l a t e d  v a l u e  i s  

( )calc 7 -21.36 10  s
CH

C = × .  T h e  v a l u e 

7 -26.3 10 s
HH

C = × was obtained from the field-cycling 
1
H NMR relaxometry  

   study of BA in natural isotopic abundance 
[67]

.  

ii. Simulation of proton transfer rate: for the purposes of analysing the 

temperature dependence data, the correlation rate, 1

c
τ − , was modelled using the 

dynamical parameters determined in earlier investigations of proton transfer in 

benzoic acid, 

        1 8 10 11180 600
1.22 10 coth 1 10 exp 5 10 exp

2
c

B

A

k T T T
τ −   − −   

= × + × + ×     
    

         (6.1) 

The first term on the right hand side is a contribution from proton tunnelling in 

the ground state, the second term is due to tunnelling in an intermediate state 

and the final term is an Arrhenius law to accommodate the Boltzmann weighted 

average of through barrier processes via states higher up the barrier (pseudo-

classical dynamics).  
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In Fig 6.5a, Fig 6.5b and Fig 6.5c, Fig 6.5d the calculated values of the relaxation 

rates 1

1R
−  and 1

2R
−  (solid lines), the weighting coefficients ,

2

I S
c  and ,

1

I S
c , and the 

inverse of the diagonal elements  1

I
ρ −  and 1

S
ρ − (dashed lines) are presented as a  

function of temperature for two values of magnetic field:  

a) B=2.428 T, appropriate to the 
13

C saturation-recovery experiments 

b) B =0.8878 T, appropriate to the 
1
H saturation-recovery experiments. 
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Fig 6.5a Calculation as a function of inverse temperature of relaxation rates (blue and red solid lines) 

and the inverse of the diagonal elements (green dashed line) for 
13

C at B = 2.428T.  
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Fig 6.5b Calculation as a function of inverse temperature of the weighting coefficients for 
13

C at B = 

2.428T.  
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Fig 6.5c Calculation as a function of inverse temperature of the relaxation rates (blue and red solid 

lines) and the inverse of the diagonal elements (green solid line) for 
1
H at B = 0.8878T.  
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Fig 6.5d Calculation as a function of inverse temperature of the weighting coefficients for 
1
H at B = 

0.8878T.  

 

Inspection of the calculated weighting coefficients shows that across a wide 

temperature range, the 
13

C relaxation, Fig 6.5b, is indeed dominated by one 

exponential component. Only in a narrow temperature region do the weighting 

coefficients adopt values significantly different from 0 and 1, however, in this region 

R1 and R2 have similar values, Fig 6.5a, so it is doubtful that the observed spin-

polarisation recovery will deviate significantly from a single exponential function. 

Therefore, the calculated behaviour shows that in practice the 
13

C spin-polarisation 

recovery over the whole temperature range will be characterised by a single 

relaxation time constant, in agreement with observation. Similarly for the 
1
H 

relaxation represented in Fig 6.5d; there is bi-exponential character revealed in the 

values of the weighting coefficients at low temperature, but the values of R1 and R2, 

Fig 6.5c, are insufficiently different for the 
1
H relaxation to be distinguished from a  

single exponential.  

 

To compare the calculated behaviour with the 
13

C experiment we equate the effective 

T1 at B=2.428 T with the weighted mean of the two spin-lattice relaxation time  

constants, 
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( ) 1 1 2 2
1

1 2

S S
eff

S S S

c R c R
T

c c

+
=

+
                             (6.2) 

Similarly, using the same parameter set but at B =0.8878 T we have evaluated the  

effective T1 for the 
1
H NMR constant field spin-lattice relaxation experiments, 

( ) 1 1 2 2
1

1 2

I I
eff

I I I

c R c R
T

c c

+
=

+
                 (6.3) 

1

10

100

1000

10000

0 0.02 0.04 0.06 0.08 0.10

1
H at 37.8MHz

13
C at 26MHz

1/T/K

T
1e

ff

13C-BA T
1
 vs Temperature 

 

Fig 6.6 the inverse temperature dependence of the effective 
13

C and 
1
H spin-lattice relaxation time 

parameters recorded at constant field in each case. (
13

C: 26MHz, 2.428T; 
1
H: 37.8MHz, 0.8878T). 

The solid lines were calculated with dipolar constants 
7 2

1.36 10
CH

C s
−

= × and 
7 2

6.3 10
HH

C s
−

= × . 

 

The experimental (blue circles and green filled circles) and calculated spin-lattice 

relaxation times (solid lines) for both nuclei are plotted in Fig 6.6 as a function of 

inverse temperature. The parameters in equation (6.2) and (6.3) have been calculated 

and plotted in Fig 6.5a, Fig 6.5b, Fig 6.5c and Fig 6.5d. Neither 
CH

C  or 
HH

C  

reported in (i) above was adjusted in calculating these curves. The best fit value of 

the energy asymmetry, 80 2 K
B

A k = ± , is consistent with the value reported in  

Chapter 4 for the sample with natural isotopic abundance.  
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As illustrated in Fig 6.6 that the calculation result for 
13

C at 2.428T/26 MHz is in 

perfect agreement with the experimental data suggests that the dipolar constant 

CH
C calculated from the structure of BA without 

13
C substitution is a good 

approximation. There is a small difference between the calculation result of 
1
H and 

the experimental data in low temperature regime (< 50K) and high temperature 

regime (>150K), which may have arisen from a small error in allowing for the effect 

of spin-diffusion and related uncertainties in the effect of other protons from 

impurities such as water; however the bi-exponential behaviour in low temperature 

regime (as illustrated in Fig 6.5d) for 
1
H also makes the effective relaxation time less 

valid for presenting the relaxation. To fully present the bi-exponential relaxation, the 

relaxation rates are the only choice and need to be extracted accurately from the spin-

polarisation recovery curves, as will be discussed in next chapter; however it was 

difficult to extract these relaxation rates accurately for this case as discussed above,  

fortunately no significant error was introduced to the analysis of 
13

C and 
1
H data. 

 

It is notable and significant that the calculated values of 
( )

1

eff

I
T  and 

( )
1

eff

S
T  correspond 

very closely with the respective inverse diagonal elements 1

I
ρ −  and 1

S
ρ −  of the 

relaxation matrix; the latter are plotted in Fig 6.5a, Fig 6.5c (green lines). This 

confirms the assertion made earlier and will facilitate the interpretation of the field-

dependent T1 data in later sections, including the extraction of accurate values of the  

correlation rate for proton transfer. 

 

Concluding this section on the constant field experiments: Using an estimate for the 

proton transfer correlation rate based on the behaviour of BA in natural isotopic 

abundance, equation (6.1), good agreement between the relaxation model and the 

experimental spin-lattice relaxation data is obtained. Clearly the heteronuclear 

interactions play an important role in the relaxation processes. Indeed it is the 

modulation of the
 13

C-
1
H interactions arising from the proton motion that drives the 

spin-lattice relaxation of the 
13

C nuclei. However, for both nuclei the spin-

polarisation recovery appears single exponential to within experimental error. This 

characteristic will be further explored in the context of variable field measurements  

in the next section. 
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6.3.2 Field cycling: 
13

C and 
1
H spin-lattice relaxation as a function of B-

field 

 

In a constant field experiment it is relatively straightforward to prepare the system in 

a systematic state where, for example, one nuclear spin system is saturated while the 

second has its equilibrium polarisation. In a field-cycling experiment, where the 

nature of the experiment is such that the magnetic field is switched rapidly across a 

wide range of values this is less easy and it is evident that particular care must be 

taken to establish consistent polarisation states before each measurement.  

 

Firstly we consider the results of a series of saturation-recovery experiments on 
13

C. 

Three field-cycling sequences were employed as illustrated in Figure 6.7a, Fig 6.7b 

and Fig 6.7c, each designed to prepare the 
1
H magnetisation differently. Some have 

been discussed in Chapter 3. For comparison and illustrating the purpose of  

designing them, we plotted them here again. 
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Fig 6.7a Traditional saturation-recovery pulse sequence same as the sequence in Fig 3.17. A settle 

time 10s was normally employed to stabilize the field before saturation pulse train applied and it also 

create a pre-determined polarisation of the second spin 
1
H.  

 



Chapter 6                                                                                                         
13

C-BA 

 146 

Seq. a.   Beginning from zero, the field was switched rapidly to the resonance 

condition for 
13

C ( 13 2.026 T
C

B = , 13 21.7 MHz
C

ν = ) where it remained for 

a period
s

τ  to create a pre-determined polarisation of the 
1
H nuclei. The 

13
C 

nuclei were then saturated with a burst of 2π pulses before the field was 

rapidly switched to the field of interest,
r

B , where the nuclei were allowed to 

relax for a time interval 
r

τ . A rapid field switch then took the field back to 

resonance with the 
13

C nuclei and the 
13

C spin-polarisation was measured 

with a 2π pulse before the field reverted to zero.  
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Fig 6.7b A variant to the sequence in Fig 6.7a, designed for saturating both the 
13

C and 
1
H spin-

polarisation before relaxation at recovery field. 

 

Seq. b.   In a variant to sequence a, a short pause at the resonance field of the 
1
H 

nuclei ( 1 0.5092 T
H

B = , 1 21.7 MHz
H

ν = )  was introduced into the field 

switch immediately following 
13

C saturation; here the 
1
H nuclei were 

saturated with a burst of 2π pulses. The original purpose of designing this 

pulse sequence was to eliminate the effect of 
1
H. However the experimental 

results were not as we expected, but the importance of initial conditions was 

elicited. 
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Fig 6.7c Heteronuclear preparation-recovery pulse sequence applied on the 
13

C-BA sample. B13C and 

B1H are the resonance fields of 
13

C (spin S) and 
1
H (spin I) respectively.  Br is the recovery field for the 

13
C spin to recover its magnetisation after saturation pulses. The measurement field is on the spin S 

resonance field to measure the relaxation process of spin S. This figure is same as Fig 3.22 

 

Seq. c. In a third sequence, the sample was prepared at 
r

B  for at least three times the 

proton 1T  before the 
13

C spin-polarisation was saturated. This prepared the 
1
H 

polarisation close to its thermal equilibrium value at the field the 
13

C 

relaxation was to be recorded. It was expected that this experiment would 

minimise the effects of cross relaxation between the two nuclear species. 

 

One polarisation pulse sequence designed to measure the relaxation time at low field  

is also plotted here, which will be discussed later. 

 

Seq. d. In this sequence, a polarisation field was employed to enhance the signal 

quality at low field. Two variants were employed; in one experiment the 

initial conditions of both 
13

C and 
1
H spins were polarised, whereas in the 

other experiment the 
1
H polarisation was destroyed. 
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Fig 6.7d Polarisation-recovery pulse sequence designed to measure the relaxation time at low field. 

 

 

Magnetisation Recovery Curves 

 

Magnetisation recovery curves were recorded using the three field-cycling sequences. 

In Fig 6.8 the magnetisation recovery of 
13

C arising from pulse sequences (a) and (c) 

is plotted; 
r

B =1.2 T, 
S

τ =10 s, T=20 K. Each set of data fitted well to a single 

exponential recovery law from which a relaxation time constant, 
( )

1

eff

S
T , was extracted. 

Within experimental uncertainties, no significant improvement was gained by fitting 

to a bi-exponential function. Significantly we observe a systematic difference 

between the two recovery curves leading to different 
( )

1

eff

S
T  values. As with constant 

field experiments, in no field-cycling experiment was it possible to definitively 

resolve two exponential components in any magnetisation recovery curve. The 

systematic differences arise from the preparation of the initial polarisation states and  

the resulting effects on the weighting coefficients, 1,2

S
c . 
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Fig 6.8 
13

C magnetisation recovery curves recorded using saturation-recovery pulse sequences (a) 

(filled circles) and (c) (open squares): B = 1.2 T, T = 20K. The simulations, representing the solutions 

of the coupled equation (2.48), are shown with dashed lines. The differences arise from the different 

initial polarisation states of the 
1
H reservoir. 

 

We have simulated the solutions to equation (2.48) using the calculated relaxation 

matrix defined by the parameters 7 -21.36 10  s
CH

C = ×  and 7 -26.3 10 s
HH

C = ×  

employed in the previous section. The Solomon equations are rewritten as follows, 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

0 0

0 0

z I z I z

z s z s z

I t I t I S t S t

S t I t I S t S t

ρ σ

σ ρ

  ∆ = − − − − ∆  


 ∆ = − − − − ∆  

                                                     (6.4) 

 

Given initial conditions, with small time increment t∆ (0.01s is enough for this 

sample), the time dependence of polarisation can be calculated and plotted as a 

recovery curve. It is noticeable that in Solomon equations 
z

I and 
z

S are spin 

polarisations of the two nuclei respectively. They are not magnetisations as often 

encountered in the homonuclear systems. Magnetisation is proportional to 2Bγ , 

whereas spin polarisation is proportional to Bγ , as discussed in Chapter2. In 

homonuclear system, only one magnetogyric ratio is present, there is no confusion 

between the two terms: magnetisation and polarisation; but in heteronuclear system, 
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the difference between these two terms becomes so important that the term 

polarisation, rather than the term magnetisation, must be used to investigate the  

relaxation process.      

 

Computed 
13

C polarisation recoveries, subject to the initial conditions defined for 

sequences (a) and (c), are superimposed on the experimental curves in Fig 6.8 

(dashed lines). In these calculations we estimate that the initial proton polarisation 

for field cycling sequence (a) is approximately 10% of 0I  at 1 T. The model 

successfully simulates the apparent shortening of the effective T1 when the initial 

proton polarisation differs from equilibrium. Close inspection of the simulation curve 

for sequence (a) reveals some bi-exponential character culminating in a very small 

Nuclear Overhauser Effect (NOE) 
[24-27], [70]

 enhancement of the 
13

C polarisation 

during the approach to equilibrium. An NOE enhancement is not evident in this 

particular set of experimental data, but the predicted effect is not large compared 

with experimental uncertainties. Small NOE enhancements were observed in some 

experimental data sets. The agreement between the experimental and computed 

recovery curves is generally very good given,  

i) the manner in which spin-diffusion is accommodated in the model,  

ii) effects arising from relaxation during the field switches 

iii) systematic uncertainties in our knowledge of the actual initial polarisation 

states.  

 

The third might be a relevant issue, particularly for sequence (a), since polarisation 

can be preserved for extended periods via the dipolar order, even if the field is  

switched to zero.  

 

Therefore to conclude the result of these calculations, the initial preparation of the 

second spin (
1
H) reservoir affects the effective spin-lattice relaxation time that is 

observed. However, the magnitude of the cross-relaxation effect is not large enough  

to enable us to resolve any bi-exponential curve experimentally. 
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Magnetic Field Dependence: Mapping the Spectral Density 

 

Using the three saturation-recovery field-cycling sequences, the magnetic field 

dependence of the 
13

C spin-lattice relaxation time, 
( )

1

eff

S
T , was measured at 20K in the 

field range 0.4 2.3 T
r

B≤ ≤ . Measurements at fields lower than 0.4 T were 

impractical due to the small 
13

C signal amplitude. The results are plotted in Fig 6.9 as 

( )( )
1

1

eff

S
T

−

 vs. 
r

B  on log-log axes. Systematic differences in the measured values of 

( )
1

eff

S
T  of the kind illustrated in Fig 6.8 are reflected in this graph. The band 

encompassing the three sets of data has a range of order 40%. However, significantly, 

the three curves are parallel to each other meaning that the information content 

regarding the proton transfer correlation rate is identical for the three sequences. Free 

fits to the three relaxation curves separately provide correlation rates that agree to  

within 5%. 

 

For sequences (a) and (b), since the proton polarisation is far removed from 

equilibrium, the effects of cross relaxation and the off-diagonal elements of the 

relaxation matrix influence the measured relaxation rates. Only for sequence (c) is 

cross-relaxation minimised. The disadvantage of this sequence, however, is the 

preparation time required. Since each data point on the magnetisation curve requires 

establishment of thermal equilibrium within the proton Zeeman reservoir, given the 

very long T1 values, the measurement of a 
13

C T1 can become excessively time 

consuming, especially if full field dependence is required. Fortunately, as is evident 

from the fits to the experimental data in Fig 6.9 and the simulations, where the off-

diagonal elements of �  are small then to a good approximation only the amplitude 

and not the shape of the 
( )

1

eff

S
T  vs. B curve is affected by the preparation of the 

1
H  

Zeeman reservoir. 
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Fig 6.9 The magnetic field dependence of the 
13

C inverse spin-lattice relaxation time,
( )( )

1

1

eff

S
T

−

, 

recorded at T = 20K using pulse sequences (a), (b) and (c). The solid lines represent free-fits to 

equation (6.5). The initial 
1
H polarisation states are different for the three sets of data but the curves 

are parallel indicating that the information content regarding the correlation rate,
1

c
τ

−
, is same for all 

three. 
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Fig 6.10 The magnetic field dependence of the inverse spin-lattice relaxation times (a) 
1
H: 

( )
1

eff

I
T  (T = 

20K), (b) 
13

C: 
( )

1

eff

s
T  (T = 20K) and (c) 

13
C: 

( )
1

eff

s
T  (T = 15K) where the proton transfer dynamics are 

dominated by phonon-assisted tunnelling. The data have been reflected in the B-axis to emphasise the 

Lorentzian character. Solid lines are fits to equation (6.4) and (6.5) respectively. The dashed lines in (a) 

represent the heteronuclear (
CH

I
ρ ; long dash) and homonuclear (

HH

I
ρ ; short dash) components of 

equation (6.4). The dashed lines in (b) and (c) represent the three Lorentzian components of equation  

(6.5) ( ( )H C
L ω ω+ ; long dash, ( )C

L ω ; dash-dot, ( )H C
L ω ω− ; short dash).  

 

The field dependence of the effective 
1
H spin-lattice relaxation rate 

( )( )
1

1

eff

I
T

−

 was 

also measured using field-cycling sequence (a). These measurements were found to 

be independent of the initial polarisation state of the 
13

C spins, consistent with the 

small heat capacity of the 
13

C Zeeman reservoir. The 
1
H data is plotted in Fig 6.10a. 

The field dependence of the effective 
13

C spin-lattice relaxation rate 
( )( )

1

1

eff

S
T

−

was 

also measured at two temperatures, Fig 10b, 20K and Fig 10c, 15K. The data are 

plotted with linear axes and are reflected about the B = 0 axis to emphasize the 

Lorentzian lineshapes. It is noticeable that the width of the relaxation peak appears 

broader for the 
13

C data than the 
1
H data; this reflects not a difference in correlation  
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rate but a difference in the frequencies at which the spectral density is sampled. 

 

 

6.4 Discussion  

 

6.4.1 Interpretation of the spectral densities 

 

The experimental data in Fig 6.10 represents a weighted mean of the spin-lattice 

relaxation rates R1 and R2. Our objective is to interpret this data in terms of the 

various Lorentzian components that constitute the relaxation matrix and to extract the 

correlation time for proton transfer. Our approach will be necessarily pragmatic. 

Independent experimental information on the elements of �  are unavailable to us, 

although the agreement with the temperature dependence data, the simulations of 

spin-polarisation recovery and our knowledge of the proton transfer behaviour in 

samples with natural isotopic abundance, gives us confidence that these can be 

calculated reliably in this particular material. Calculations confirm that at low 

temperature the values of 
( )( )

1

1

eff

I
T

−

 and 
( )( )

1

1

eff

S
T

−

 closely match the diagonal elements 

of � , 
I

ρ  and 
S

ρ , consistent with the off-diagonal elements being small. This being  

the case we are able to write; 

( ) ( )( )
( )( ) ( ) ( )( )( )

( ) ( )( )

1

1

, 3 , 6 ,

, 4 2 ,

eff CH HH

I I I

CH H C c H c H C c

HH H c H c

T B

K L B L B L B

K L B L B

ρ ρ

γ γ τ γ τ γ γ τ

γ τ γ τ

−

= +

= − + + +

+ +

                       (6.5)  

and 

( ) ( )( )
( )( ) ( ) ( )( )( )

1

1

, 3 , 6 ,

eff CH

S S

CH C H c C c C H c

T B

K L B L B L B

ρ

γ γ τ γ τ γ γ τ

−

=

= − + + +
                        (6.6) 

where the functions are expressed in terms of the magnetic field B. The Ks are the 

dipolar constants incorporating the temperature dependence factor associated with  

the energy asymmetry (See equations (2.49) and (2.51)).  

 

We have independently fitted the 
1
H and 

13
C T1 data in Fig 6.10 to the functions (6.5) 

and (6.6) above and the best fits are shown as solid lines; good agreement is 
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observed. The dashed curves depict the different Lorentzian components comprising 

the net spectral density. The proton transfer correlation rate values determined from 

t h e  
1 3

C  a n d  
1

H  d a t a  s e t s ,  ( )1 81.24 0.04 10cτ − = ± × s
- 1

 (
1 3

C :  2 0 K ) , 

( )1 81.33 0.08 10cτ − = ± × s
-1

 (
13

C: 15K) and ( )1 81.25 0.05 10cτ − = ± × s
-1

 (
1
H:20K), agree  

within experimental uncertainties.  

 

 

6.4.2 Polarisation-recovery experiments 

 

At low field, in this case defined as 0.4 T
r

B < , the 
13

C NMR signal is too small to 

make possible saturation-recovery experiments to measure the 
13

C relaxation. In such 

cases in homonuclear field-cycling relaxometry it is customary practice to employ 

polarisation-recovery pulse sequences to record the relaxation properties. We have 

investigated the 
13

C magnetisation recovery in such experiments on this 

heteronuclear material. Here the spin systems are first polarised at high field before 

the field is switched to the low relaxation field, 
r

B , where the return to thermal 

equilibrium of the spins is monitored. The polarisation-recovery pulse sequence is 

illustrated in Fig 6.7d and two variants were employed: in a first experiment the 

initial states of both 
1
H and 

13
C spins were polarised, whereas in a second experiment 

the 
1
H polarisation was destroyed with a resonant pulse during the switch from the 

polarisation field to the low relaxation field. The spin-polarisation recovery curves 

for these two experiments are depicted in Fig 6.11 where the relaxation field was 

0.3 T
r

B =  and the polarisation field was 1.5T
pol

B = . There is a considerable 

systematic difference in the recovery curves, reflecting the different initial 

polarisation states. Both recovery curves can be fitted satisfactorily with a single 

exponential function (solid lines) but clearly in both there is underlying a significant 

bi-exponential character. As earlier with the saturation-recovery experiments, we 

have simulated the solutions of the coupled relaxation equations (2.48) with 

7 -21.36 10  s
CH

C = ×  and 7 -26.3 10 s
HH

C = × . Simulated curves are superimposed on  

the experimental data in Fig 6.11 (dashed lines) and there is good agreement.  
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Fig 6.11 
13

C magnetisation recovery curves recorded using polarisation-recovery pulse sequence (d) 

with and without initial polarisation of the 
1
H reservoir. Filled red triangles; protons polarised. Filled 

blue circles; protons saturated. The simulations, representing the solutions of the coupled equation 

(2.48), are shown with dashed lines. Solid lines are free single exponential fit. 

 

Clearly the relaxation model is corroborated but where does this leave our 

experiment to measure the low field relaxation behaviour? Unfortunately, it is 

difficult to see how such a polarisation-recovery experiment can independently lead 

to a measurement of a relaxation rate that can be plotted as a function of field to map 

out the spectral density. We are no longer in a regime where the effects of the off-

diagonal elements of the relaxation matrix are negligible and where the observed 

relaxation rate corresponds closely with a diagonal element. Unless the 
13

C signal to 

noise ratio is sufficiently good to facilitate an accurate bi-exponential analysis, no 

independent reduction of the polarisation-recovery data can lead to a relaxation rate 

that can be assimilated into the magnetic field dependent data of Figs 6.9 and 6.10. 

Only if additional information from a model is input into the analysis can the 

polarisation-recovery curves be interpreted. Therefore, this polarisation-recovery 
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data, together with the simulations, provides corroboration of the dynamical model 

for proton transfer and the relaxation model but it does not unfortunately provide  

independent information on the correlation rate.  

 

 

 

6.4.3 Effects of 
13

C substitution on the proton transfer rate 

 

At temperatures of 20K and below the proton transfer dynamics are dominated by 

ground state phonon assisted tunnelling and the correlation rate is in the temperature 

independent ‘plateau’ region. We designate this as the ‘tunnelling rate’ and our 

experiments show that this value is the same within experimental error for 
13

C-BA 

and BA in natural isotopic abundance. Given the multi-dimensional character of the 

PES and the significant changes in bonding which occur as the protons move this 

result might be viewed as somewhat disappointing, especially as the tunnelling 

matrix element is an exponential function of the particle mass and the barrier 

properties. However, it is demonstrated how field-cycling experiments provide 

impressive accuracy (approximately 2% for homonuclear systems and 5% for 

heteronuclear) in the determination of correlation rates and now that ab-initio 

calculations of multi-dimensional tunnelling are becoming tractable on systems of 

the size of BA it will provide a useful result against which to evaluate the theoretical  

framework and the efficacy of contemporary quantum chemistry computations. 

 

 

 

6.5 Concluding Remarks 

 

Even though the 
13

C abundance was enriched at the carboxyl site, the measurement 

of the 
13

C relaxation properties was still a challenging one due to the small NMR 

signal amplitude arising from its small magnetogyric ratio and small mole fraction. 

Additionally, the very long relaxation times often precluded the possibility of 

extensive signal averaging. Nonetheless, a very satisfactory account of the relaxation  

properties of a heteronuclear system has emerged from this investigation.  
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There is a sense in which the study of the 
13

C relaxation in this material provides a 

very well-defined system with the 
13

C nucleus acting as a ‘spy’ on the proton transfer 

dynamics; just two 
13

C-
1
H dipolar contacts dominate. The advantages are familiar in 

the guise of isotopic labelling but no spin system can act in isolation and the 

disadvantage is the additional complexity in the spectral density components. The 

study benefited from prior knowledge and experience of the BA system and the 

relaxation theory has been validated to a highly satisfactory degree of precision. 

The relaxation theory for heteronuclear, coupled systems is long established but 

relatively few experimental investigations have been undertaken as a function of 

magnetic field. Here we have separately identified the different Lorentzian 

components for the first time. This study has confronted some interesting practical 

issues regarding the methodology of field-cycling relaxometry in heteronuclear spin 

systems. Clearly the initial polarisation of the spin systems is an important factor and 

must not be overlooked as experiments on isotopically labelled samples become 

more prevalent; neither must spectral density components that characterise the 

heteronuclear interactions be ignored if accurate values of the correlation times are to 

emerge. Systematic effects influencing the interpretation of single-spin relaxation 

data are readily observable and must be accommodated in any model used to 

interpret the data. Furthermore, as strategies to enhance NMR signals from 

traditionally unreceptive systems via polarisation transfer become more prevalent, 

investigations such as this to quantify the coupling between spin reservoirs are likely  

to become more important.  

 

The use of polarisation-recovery pulse sequences, often used in field-cycling, 

presents its own challenges for heteronuclear systems. Usually such schemes are 

necessary to obtain an adequate signal amplitude at low field but it is difficult to 

envisage a methodology that provides a systematic idealised polarisation state where 

the second spin system, in this case 
1
H, is close to its equilibrium value for the 

relaxation field 
r

B . It should be possible with carefully manicured 
1
H pulses and  

preparation periods but it would present a significant experimental challenge. 
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A field-cycling investigation is confronted with difficulties in multi-spin systems, 

however, as this example shows, if the preparation of the initial polarisations is 

systematic then all of the advantages of the field-cycling technique can be realised in 

providing accurate values for the correlation times and information on the 

mechanism driving the dynamics. This particular system benefited from relaxation 

processes that were dominated by the diagonal elements of the relaxation matrix, 

facilitating the analysis of the spectral density components and widths; the 
13

C 

relaxation was often mono-exponential and the bi-exponential character was usually 

only revealed when the 
1
H spin reservoir was far from equilibrium. In systems where 

the off-diagonal elements play a more significant role and bi-exponential behaviour 

is more apparent, as for example in 
1
H-

19
F heteronuclear systems, then alternative 

field-cycling methodologies must be adopted to determine all elements of the 

relaxation matrix individually. Only then can the relaxation data be reduced in such a 

way as to permit the spectral density components to be resolved with sufficient 

accuracy; such an investigation has been conducted on proton transfer in 

tetrafluoroterephthalic acid (TFTA) in our laboratory and will be discussed in the  

next chapter. 
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Chapter 7 Heteronuclear experiments III-TFTA [66] 

 

As discussed in Chapter 6, the magnetisation recovery curve of the spin ½ -spin ½ 

heteronuclear system should be characterised by two spin-lattice relaxation rates 

1R and 2R , and therefore present itself as bi-exponential behaviour. But for the 
13

C-BA 

sample, the bi-exponential behaviour is suppressed and two relaxation rates cannot be 

extracted from the magnetisation recovery curve since the off-diagonal element of the 

relaxation matrix is too small. Therefore the two relaxation rates are too close to each  

other making it difficult to resolve them from the magnetisation recovery curve. 

 

We have discussed how to deal with the special case of heteronuclear systems like 

13
C-BA in the last chapter. Here we would like to develop a methodology for how to 

extract useful information from the bi-exponential magnetisation recovery curve and 

express the dynamics of the heteronuclear interaction for samples where the  

off diagonal element is significant.  

 

A field-cycling NMR pulse sequence was designed for studying cross-relaxation 

between unlike nuclear spins in the solid state. This technique gave us an opportunity 

to directly measure the off-diagonal element which characterises the cross-relaxation. 

It has been applied to study proton tunnelling in the hydrogen bonds of a carboxylic 

acid containing 
19

F and 
1
H spins. The field-cycling technique has enabled us to map 

out for the first time the field dependence of the off-diagonal element that 

characterises the cross-relaxation process. Therefore an accurate measure of the 

proton transfer rate is obtained, not from the diagonal elements of the relaxation 

matrix, but from the off-diagonal elements; this is novel to this work and is reported 

for the first time here. To understand these results, they must be discussed in the  

context of polarisation transfer in magnetic resonance. 

 

In this chapter the context of polarization transfer in magnetic resonance will be 

briefly introduced. Some simulations will be discussed as well as the experimental 

results. These simulations will be in comparison with the results of 
13

C-BA to  

illustrate the difference between these two heteronuclear samples.    
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7.1 Cross relaxation and polarisation transfer  

 

Consider an ensemble of coupled heteronuclear spin systems, each consisting of a 

spin I (½) coupled to a spin S (½). There are four energy eigenstates, and hence 12 

different transition probabilities. There are eight single-quantum transitions, each with  

different probabilities, illustrated in Fig 7.1. 

 

| I Sβ β 〉

| I Sα α 〉

| I Sβ α 〉
| I Sα β 〉

| I Sβ β 〉

| I Sα α 〉

| I Sβ α 〉
| I Sα β 〉

 

Fig 7.1 Eight single-quantum transition probabilities within a two-½ coupled heteronuclear spin system.     

 

Taking the transition from | I Sα α 〉 to | I Sβ α 〉 for example, we can find only the spin 

state of spin I has changed. It means this transition is due to auto-relaxation and it 

contributes to the diagonal element in the relaxation matrix� . While we can write 

down the expression for the diagonal elements of the relaxation matrix, its precise 

form is determined by homonuclear and heteronuclear dipolar constants 
HH

C and 
HF

C ; 

these are not known a priori, so we do not know the precise form of the equation  

when fitting experimental data for our field-cycling experiments on the TFTA sample.  

 

There are another four transition probabilities (double- and zero-quantum) illustrated 

in Fig 7.2 corresponding to the cross relaxation. It is evident that during each 

transition, both spins change the spin states. It means that application of a weak r.f.  

field at the Larmor frequency of one of the spins, for a sufficiently long time, has a 

strong effect on the longitudinal magnetisation of the non-irradiated spins, and in 

some cases, even enhances the magnetisation of those spins. This is called the steady- 
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state nuclear overhauser effect, or steady-state NOE. 

 

 

 

Fig 7.2 Four transition probabilities related to cross relaxation. 

 

The polarisation transfer can only take place in a cross relaxation process where the 

spin states of both spins change at the same time. This phenomenon indicates the 

magnetisation transfer from one spin to the other spin, and it is called cross- 

polarization or polarization transfer.   

 

With the advent of techniques in magnetic resonance for enhancing the spin 

polarisation of nuclei 
[73, 74, 75]

, there is increasing interest in measuring and 

understanding cross-polarisation and cross-relaxation processes connecting different 

spin-species in the same material. By facilitating the transfer of spin polarisation from 

highly polarized spin systems, such techniques have the potential to substantially 

increase the sensitivity of NMR and to facilitate the observation of NMR spectra and  

images from nuclei in low abundance.   

 

Cross-polarisation processes are mediated by magnetic interactions which connect the 

two spin-species. In particular, the magnetic interactions must be rendered time 

dependent in order to provide an effective mechanism for transferring spin 

polarisation. The time-dependence can be introduced experimentally, for example by 

using the rotating-frames as with Hartmann-Hahn cross-polarisation, or as in our 

investigation, by utilizing inherent molecular motion in the material. Since spin 

| I Sβ β 〉

| I Sα α 〉

| I Sβ α 〉
| I Sα β 〉
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polarisation is proportional to inverse temperature, substantial gains can be made by 

operating at low temperature. However the spectral density characterizing the 

molecular motion must be strong enough to drive the relaxation processes in order 

that such gains can be realized. Since classical barrier hopping will invariably be too 

slow at low temperature, in practice it will be necessary to choose or design a 

molecular system in which quantum tunnelling dominates the motion; only then will  

the motion be sufficiently fast.  

 

Our research is to measure the cross-relaxation between 
1
H and 

19
F nuclei in a 

carboxylic acid in the solid state with a new magnetic field-cycling NMR technique 

instead of studying how to enhance the cross-polarisation. The cross-relaxation 

process is driven by proton tunnelling in the hydrogen bonds of the material and the 

magnetic field dependence of cross-relaxation provides a direct measure of the proton  

tunnelling rate. 

 

 

7.2 Experimental 

 

Experiments have been conducted in the solid state at low temperature on 

tetrafluoroterephthalic acid (TFTA: C6F4(COOH)2) where we assign spins I to be 
1
H 

and spins S to be 
19

F; Fig. 7.3. This di-carboxylic acid molecule forms infinite chains 

linked by pairs of bridging hydrogen bonds. Within each pair of hydrogen bonds there 

are two possible tautomeric configurations which can interchange by double proton 

transfer within the hydrogen bonds. In such infinite chains, experimental evidence to 

date is able to identify motion within a single pair of hydrogen bonds, however, 

coordinated motion along the chain involving many such hydrogen bond pairs has not 

yet been separately identified in experiments. Therefore, for the purposes of 

discussion we identify a dimer as a single pair of TFTA molecules. The concerted 

double proton transfer process leads to a modulation of both homonuclear 
1
H-

1
H 

dipolar interactions and heteronuclear 
19

F-
1
H dipolar interactions. Changes in both 

internuclear distances and in the angle made by the internuclear vector with respect to 

the applied B-field are responsible for this modulation. 
1
H-

1
H interactions are 

dominated by the intra-dimer internuclear vector connecting the two acid protons in 
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the bridging hydrogen bonds. Of more importance to this study are the numerous 
19

F-

1
H dipolar contacts, both intra- and inter-dimer, involving 

19
F nuclei on the phenyl  

ring and the hydrogen bond protons.  

 

 

Fig 7.3 Concerted double proton transfer in the di-carboxylic acid, TFTA 

 

Measurements were made using field-cycling NMR techniques. The temperature 

dependence of the spin-lattice relaxation time has been investigated at fixed field by 

former researchers in our group 
[43]

. The state-of-art field-cycling spectrometer 

enabled us to investigate the field/frequency dependence of spin-lattice relaxation 

time and therefore to obtain the 2D profile (one is temperature, the other one is 

frequency) for analysing the dynamics of the sample and understanding the cross- 

relaxation process which is crucial in heteronuclear spin systems. 

 

The frequency dependence of spin-lattice relaxation time experiments were conducted 

at a set of magnetic fields from 0.01T to 1T. Saturation-recovery pulse sequence was 

employed to record the data when the magnetic field was higher than 0.2T.  When the 

magnetic field was below 0.2T, a polarisation-recovery pulse sequence was employed 
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to improve the signal and record the spin-lattice magnetisation recovery curve. The 

experiment at higher fields than 1T became difficult due to the very long relaxation 

time. 

 

A new sequence called the heteronuclear cross-relaxation pulse sequence was 

designed to measure the off-diagonal element σ directly, as reviewed in Chapter 2. 

This kind of experiments was conducted at a set of fields from 0.02T to 1T, slightly 

different from the fields we mentioned above, since the signal to noise ratio was too 

poor to obtain reasonable data when the magnetic field was lower than 0.02T while  

the high field polarisation method cannot be applied in this pulse sequence.  

 

 

7.3 Results and Discussion 

 

7.3.1 Spectral density experiments 

 

The spin-lattice relaxation behaviour was observed to be bi-exponential at all B-fields 

studied and temperatures below 50K; the ratio of the two rates, 1 2R R  was typically 

10 to 15 depending on field and temperature (in this thesis, 1R  is chosen bigger than 

2R ). 1R  and 2R  could be extracted from the magnetisation recovery curve by fitting 

the curve with a bi-exponential equation. Fig 7.4 shows a typical set of data recorded 

using the saturation-recovery sequence; Fig 7.5 shows some data recorded using the 

polarisation-recovery sequence. The initial conditions for the experiments to measure 

the relaxation rates were not as important as for the spin-lattice relaxation time 

measurements on 
13

C-BA sample. This was because, changes in initial conditions 

affected only the weighting coefficients but not 1R  and 2R . In TFTA we can resolve 

1R  and 2R  separately, but in 
13

C-BA we could only determine a single time constant 

which was weighted average. Without the limitation of initial conditions, our 

experiments to measure the relaxation rates on TFTA sample could go to very low 

fields and we could employ both saturation-recovery pulse sequence and polarisation- 

recovery pulse sequence to record the field dependence of relaxation rates.  
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The equations for fitting the experimental data are 

1. saturation-recovery pulse sequence, 

( )( ) ( )( )1 1 2 21 exp 1 expzI c R t c R t c= − − + − − +                                             (7.1) 

where 1 2 0c c I+ = , 0I  is the spin-polarisation at thermal equilibrium, c is the 

magnetisation offset caused by the relaxation during the field switch time. 

2. polarisation-recovery pulse sequence,     

( ) ( )0 1 1 2 2exp expzI I c R t c R t= + − + −                                                           (7.2) 

where 1 2 0pol
c c I I+ = − , 

pol
I  is the magnetisation built up at the polarisation 

field. 
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Fig 7.4 The magnetization recovery curve recorded at 4500Gauss, 20K with the saturation-recovery 

pulse sequence on sample TFTA. Blue solid curve is a fit with bi-exponential equation. Red curve and 

black curve are the two components characterized by R1 and R2 respectively. For the case in this figure, 

1

1 0.179sR
−

= , 1

2 0.0133sR
−

= . 
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Fig 7.5 The magnetization recovery curve recorded at 1200G, 20K with polarization-recovery pulse 

sequence on sample TFTA. Blue solid curve is a fit with bi-exponential equation. Red curve and black 

curve are the two components characterized by R1 and R2 respectively. For this case, 1

1 1.216sR
−

= , 

1

2 0.133sR
−

= .  

 

It is evident that in both Fig 7.4 and Fig 7.5, the blue solid curves fitted with bi-

exponential equation are in perfect agreement with the experimental data. All the 

magnetization recovery experimental data were fitted with bi-exponential equations 

(7.1) and (7.2) and two sets of relaxation rates extracted from experimental data, 

plotted in Fig 7.6 as a function of magnetic field. Data were collected using two 

preparation schemes, (a) the polarization of the second nucleus was prepared by 

polarizing for 10s at the 
1
H NMR field; (b) the polarization of the second nucleus was 

prepared by polarizing for more than 13 T×  at the 
1
H NMR field. The values of  1R   

and 2R were not affected by the preparation, as expected.  

 

Since there are five variables in the fitting equations (7.1) and (7.2), the values of 1R  

and 2R  could not be as accurate as that obtained for a single relaxation rate in a single 
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exponential fit for a homonuclear system. Nevertheless, a good account emerges in 

Fig 7.6 of the field dependence of the two relaxation rates. The error bars of 1R  and 

2R  are also plotted. In the figure, the relative errors in 1R  are slightly bigger than the 

relative errors in 2R . This was because the weighting coefficient for 1R  was generally 

smaller. This is also confirmed by the heteronuclear cross relaxation experimental 

data which are also plotted in Fig 7.6, where the error between red squares and green 

filled circles is much bigger than the error between blue circles and black triangles. 

These relaxation rates were employed to calculate the off-diagonal element σ , as  

expressed in equation (3.13). We will discuss them later.  
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Fig 7.6 The field dependence curves of relaxation rates recorded at 20K on sample TFTA. The blue 

circles and red squares are the results extracted from the polarisation recovery curves. The black 

triangles and green filled circles are the results from cross-relaxation experimental data, will be 

discussed later. The data of blue circles and black triangles are in good agreement with each other, 

while there is a noticeable error between the data of red squares and green filled circles. 

 

In comparison with the spectral density curve in a homonuclear system, for example, 

BA sample discussed in Chapter 4, the spectral density curves in Fig 7.6 are the field 

dependence of the relaxation rates 1R and 2R rather than 1

1T
− . The expressions for 1R   
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and 2R , equation (2.55), 

( ) ( ) ( )
2

1,2

1
4

2
I s I s I s I S

R ρ ρ ρ ρ ρ ρ σ σ = + ± + − −  
                                                (7.3) 

indicate that it is too complicated to extract the correlation rate directly from the 

spectral density curves illustrated in Fig 7.6 as we did in the spectral density curve of 

homonuclear system. 1R  and 2R can be calculated, but the complexity means that 

fitting functions is not knowable a priori and an accurate value of the correlation rate  

cannot be extracted from these data alone.  

 

An alternative approach was devised to extract the correlation rate from the off-

diagonal elements instead of diagonal elements or the relaxation rates. This was not 

only because the off-diagonal elements had the simplest expression as expressed in 

equation (2.49), but also because the off-diagonal elements could be measured if the  

initial conditions were well controlled. 

 

 

7.3.2 Cross relaxation experiments 

 

For obtaining the value of the correlation rate, cross-relaxation experiments were 

designed to measure the off-diagonal element and therefore extract the correlation rate 

directly from the field dependence of off-diagonal element.  The pulse sequence for 

cross-relaxation experiments has been discussed in Chapter 3. Here we summarize it  

before we discuss the experimental results. 
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Fig 7.7 Cross-relaxation pulse sequence for measuring the off-diagonal element on sample TFTA. 

 

1) Preparation of spin I at the recovery field of spin S for at least three times the 

spin I T1 at this field to gain polarisation close to equilibrium.  

2) Saturation of spin S magnetisation with a comb of resonant o90  pulses at spin S 

resonance field. 

3) Rapid magnetic field switch to recovery field Br, which was selected for 

relaxation.  

4) Evolution of magnetisation in the field Br for a period of time. 

5) Rapid magnetic field switch back to spin I resonance field. 

6) Measurement of spin I magnetisation with a o90  pulse. 

 

The first step is to build up the equilibrium polarisation for spin I. The second step is 

to saturate the magnetisation of spin S. Hence the initial condition we created is that 

0z
I I= and 0

z
S =  at 0t = . 0I  is the polarisation at thermal equilibrium of spin I at 

recovery field. That is why the preparation field illustrated in Fig 7.7 is chosen to be 

same as the recovery field. Given this condition, the measured magnetisation of spin I  

0 t 

B 

Br 
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after relaxing at the recovery field is 

 ( ) ( ) ( )( )0
1 2 0

2 1

exp expS
z

I

I
I t R t R t I

R R

σ γ

γ
〈 〉 = − − − +

−
                                             (7.4) 

The experimental data can be plotted as a cross-relaxation magnetisation recovery 

curve which can be fitted with this equation. The fitting results provide a direct  

measurement of the off-diagonal element σ .  

 

In Fig 7.8 the polarization-recovery curve, ( )z r
I τ , for a cross-relaxation field-

cycling NMR experiment is presented; the temperature was 20K and 
r

B =0.35T. In 

order that equation (7.4) applies, it was necessary for the initial polarization of spins I 

to match the thermal equilibrium polarization, 0I , at the field 
r

B . This condition was 

tailored experimentally by selecting appropriate values of 
pol

τ  and 
pol

B . In Fig 7.8, 

following the saturation of spins S, the polarization zI  initially decreases with rate 

1R  as polarization is transferred to spins S via the cross relaxation pathway; thereafter 

zI  recovers towards its thermal equilibrium value at the field 
r

B  with rate 2R . 

Fitting equation (7.4) to the data enables the value of σ  to be determined. In this case,  

the off-diagonal element is 10.1353sσ −= −  at 3500G, 20K.  

 

It is illustrated in Fig 7.8 that the off-diagonal element can be calculated after the 

parameters are extracted from the polarization recovery curve. The two relaxation 

rates 1R  and 2R  are in excellent agreement with the values from traditional field-

cycling experiments with saturation-recovery or polarization-recovery pulse sequence 

when the field is higher than 1500G, as illustrated by the comparison of free fit and  

fixed fit shown in Fig 7.8.  

 

In low field, the quality of the experimental data is not good enough to independently 

extract an accurate value 1R , due to the fact that in low field the relaxation time 1

1R
−  

(fast component) is comparable with the field switching time and therefore the 

relaxation during the field switch becomes a dominant systematic error factor. 

Furthermore in low field the low signal to noise ratio leads to significant random error  

as well.  
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Fig 7.8 Polarisation recovery curve recorded at 3500G, 20K with cross-relaxation pulse sequence on 

sample TFTA. The relaxation rates derived from the free fit (R1=0.2946s
-1

, R2=0.0198s
-1

) are consistent 

with the relaxation rates from the traditional field-cycling experiments (R1=0.2895s
-1

, R2=0.0207s
-1

) 

shown in the spectral density curves in Fig 7.6.  

 

The random error could be minimized by doing many averages. It was time-

consuming, but the average result was satisfactory, as shown in Fig 7.9 for the  

recovery field at 500Gauss. 

 

The systematic error caused by the field switching time is not directly illustrated in 

the cross-relaxation recovery curve. It can be found by carefully analyzing the 

experimental data. Taking the cross-relaxation experiment at 500G, 20K for example, 

the average experimental result illustrated in Fig 7.9, we find the relaxation time 1

1R
−  

extracted from the cross-relaxation recovery curve is about 0.14s shorter than the 

value from the traditional field-cycling experiments shown in Fig 7.6. This value 

0.14s is close to the field switch time (0.17s switch to 
19

F resonance field 

8950G/36.35MHz at 5T/s, 0.11s switch to recovery field at 8T/s). It is evident that the 
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polarization relaxation during the field switching time has a strong impact on the 

shape of the cross-relaxation recovery curve and therefore on the determination of 

relaxation time 1

1R
− . The data on left half of the cross-relaxation recovery curve, not 

shown in Fig 7.9, have large systematic error, are not reliable and have to be 

abandoned. The data on right half of the cross-relaxation recovery curves do not 

suffer from this problem and were fitted to equation (7.4) with fixed 1R  and 2R (from 

the spectral density curve and our simulation). It was only for the lowest three field 

values, 500
r

B Gauss≤ , that it was necessary to choose the relaxation rates from the 

spectral density curves we measured and to constrain the values of 1R  and 2R in the  

fits.    

 

As σ  is proportional to ( )1 2R R−  (the difference of these two relaxation rates), it is 

the absolute errors in 1R  and 2R  instead of relative errors that determine the error in 

σ . Therefore the error in 1R  becomes the most important factor in determining the  

accuracy of the cross-relaxation experiments. 

 

If the errors are taken into account only mathematically, the relative error of σ  will 

be well determined by the relative errors of the relaxation rates which are 2-5% when 

field is higher than 0.15T and 5-8% when field is lower than 0.15T. However this is 

not entirely correct, because the 1R  and 2R  are employed to fit the cross relaxation 

experimental data; the uncertainty of 1R  will cause an increased uncertainty of σ , 

especially in low field where the signal quality is very poor and the relaxation is faster  

than the field switch.  
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Fig 7.9 Average of cross relaxation recovery curves recorded at 20K, 500G. Blue solid line was free fit 

all the data points to equation (7.4). The other three solid lines (black, red and green) were fixed fit to 

the right half data points to equation (7.4) with different sets of  relaxation rates R1, R2 . These fixed fit 

led to the extraction of off-diagonal element σ . There is a significant difference between the results of 

free fit and fixed fits. 

 

At the temperature T=20K, the cross-relaxation experiment was repeated for different 

values 
r

B  permitting the magnetic field dependence of σ  to be mapped out, as 

presented in Fig 7.10 and Fig 7.11. For fields 800B G≥ , a free fit was made to the 

polarization curves to extract 1R , 2R and σ : the values of the relaxation rates agreed 

within experimental error with those determined in a separate series of measurements 

using a conventional single-nucleus pulse sequence. In this field regime the 

uncertainties were of order 2-5% and dominated by random scatter.  For fields 

500B G≤  the relaxation rates were increasing and the NMR signal, proportional to 

field, was becoming very small; both trends made the measurements more challenging. 

To minimize uncertainties for the lowest three field values, the fits to the polarization-

recovery data were constrained with values of 1R  and 2R  determined in separate 
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measurements using conventional single-nucleus pulse sequences. As illustrated in 

Fig 7.9, three sets of 1R  and 2R  were chosen to fit the curve, the difference among the 

three extracted off-diagonal elements was dominated by the 1R  value, but it was much 

smaller than the difference between the extracted off-diagonal elements of free fit and 

fixed fits. In this field regime, 500B G≤ , the errors in σ  were dominated by 

systematic uncertainties in 1R  leading to the larger error bars are illustrated in Fig  

7.10, Fig 7.11. 
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Fig 7.10 The field dependence of the cross-relaxation time constant,σ , recorded at 20KT = . The 

minimum is around 500G.  
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Fig 7.11 the field dependence of the cross-relaxation time constant,σ , recorded at 20KT = . The 

black triangles are experimental data; the black solid line is the fit with equation (2.49) from which the 

correlation rate for proton transfer, ( )-1 6 1
2.66 0.08 10

c
sτ

−
= ± ×  , is determined; the blue solid line and 

the red solid line are the spectral density components, ( ),
I s c

L ω ω τ−  and ( ),
I s c

L ω ω τ+ , 

respectively. The blue line and the red line have opposite signs and significantly different widths when 

plotted as a function of field, as discussed in Fig 6.2b, Chapter 6.  The minimum of σ is around 500G. 

The green dashed line is the simulation result. 

 

In this particular system, for the range of B-field studied, Fig 7.11 reveals that σ  is a  

negative quantity. According to equation (2.49), 

( ) ( )( )2

4
, 6 ,

(1 )

IS

I IS I S C I S C

a
C L L

a
σ ω ω τ ω ω τ= − − + +

+
                                             (7.5)  

we can conclude that the spectral density component ( ),I S cL ω ω τ−  arising from 

zero-quantum transitions and characterized by the difference Larmor frequency, 

dominates the cross-relaxation process. Equation (7.5) was fitted to the σ  data in Fig 

7.11, resulting in the solid black line. For 
1
H and 

19
F, 

I
ω  and 

S
ω  differ by only 5.9%, 
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consequently in a plot versus B-field, since Larmor frequency is proportional to B, the 

Lorentzians ( ),I S cL ω ω τ−  and ( ),I S cL ω ω τ+  have very different widths. As the fit 

shows, in the field range studied for this heteronuclear system, the data is indeed 

dominated by the Lorentzian arising from the difference in Larmor frequencies. The 

Lorentzian ( ),I S cL ω ω τ+  would only become observable at very low B-field, beyond 

the range of the current experiment; but we still can find the turning point is around 

500G. When the field is lower than 500G, the Lorentzian ( ),I S cL ω ω τ+ starts to play 

its important role in the cross relaxation. From the fit we determine the inverse 

correlation time for concerted double proton transfer in the hydrogen bonds of TFTA 

at 20K to be ( )-1 6 12.66 0.08 10c sτ
−= ± × . Unlike many conventional studies of 

molecular dynamics by spin-lattice relaxation, this measurement has been determined 

wholly from an investigation of the cross-relaxation process. At the temperature 

recorded, the proton transfer dynamics are dominated by incoherent tunneling in the 

ground state of the double minimum potential. It is noteworthy that the proton transfer 

rate is nearly fifty times slower than similar processes in the model compound, 

benzoic acid. That this much slower motion is accessible to the B-field range studied 

in these cross-relaxation field-cycling NMR experiments is due to the fact that the 

spectral density is sampled at the difference Larmor frequency which for 
1
H-

19
F is  

relatively small. 

 

From the expression of the off-diagonal elementσ , the minimum position can be  

found mathematically,  in equation (7.5) 
I I

Bω γ= ,
S S

Bω γ= . 

At the turning point                                                                                                            

0
B

σ∂
=

∂
                                                                                                                       (7.6)  

then we get the equation for 2B , 

( ) ( )4 2

1 2 2 1 1 2 2 16 10 6 0c c c c B c c B c c− − − − =                                                                (7.7) 

where ( )
2 2

1 I S c
c γ γ τ= − , ( )

2 2

2 I S c
c γ γ τ= +  

the solution is  

( )
( )

1 2 1 2 2 12

1 2 2 1

5 6

6

c c c c c c
B

c c c c

± −
=

−
                                                                                      (7.8) 
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1) if 2 16 0c c− > , and due to 2 16 0c c− > , then the equation (7.7) has two solutions, 

one is positive, the other one is negative. So 
( )

( )
1 2 1 2 2 12

1 2 2 1

5 6

6

c c c c c c
B

c c c c

+ −
=

−
 

2) if 2 16 0c c− < , but 2 16 0c c− > , then the equation (7.7) becomes 2 0ax bx c+ + = , 

where , , 0a b c > . This kind of equation has two negative solutions. No solution 

for this kind of nucleus. 

 

So the condition 2 16 0c c− >  is the premise enabling us to find the turning point in the 

σ curve, which means 
7 2 6

5
S I

γ γ
−

> = 0.4202
I

γ . If spin I is proton, 
S

γ must be 

bigger than 81.1242 10× 1 1
T s

− − . It is really not easy to find this kind of spin 
1

2
nucleus. 

19F nucleus is one of the nuclei which can satisfy the condition, if we substitute the 

correlation time 
c

τ  from the experimental data at 20K into equation (7.8), 

73.76 10
c

sτ −= × ,  8 1 12.67522 10
H

T sγ − −= × a n d  8 1 1

19 2.518147 10
F

T sγ − −= × ,  t h e  

turning point will appear at the field: 

0.0476 476B T Gauss= =                                                                                           (7.9) 

 

This theoretical result is in good agreement with our experimental result illustrated in 

Fig 7.10, where the minimum is around 500Gauss. This is a good confirmation of our 

new method of directly measuring the off-diagonal element by the cross-relaxation  

field-cycling technique.  

 

Further simulation of the experimental data reveals more characteristics of this 

particular sample. We employ the parameters listed below to obtain the best fit of  

spectral density curves 1R  & 2R  and the field dependence curve of σ .   

8 2

7 2

1 6 11

9.5 10

2.8 10

/ 82

820
2.575 10 coth 1.18 10 exp

2

HH

HF

B

c

C s

C s

A k K

A

T T
τ

−

−

−

 = ×


= ×
 =


    = × + × −       

                                            (7.10) 
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The simulation fits are illustrated in Fig 7.11with green dashed line and Fig 7.12 with 

solid line. These fits are in good agreement with the experimental data. The off-

diagonal element is only related to the dipolar constant
HF

C , therefore the curve in Fig 

7.11 can be used to obtain an accurate value of 
HF

C . Fitting the curve in Fig 7.11 to 

equation (7.5) leads to the determination of  the amplitude 2sech
2

HF

B

A
C

k T

 
 
 

, which 

is 6 21.72 10 s
−× at 20K; the energy asymmetry has been determined to be 

( )/ 82 5 KBA k = ±  
[43]

; therefore the dipolar constant measured by cross-relaxation 

experiments is ( ) 7 22.69 0.15 10HFC s
−= ± × , which is in good agreement with the 

value employed in our simulation as shown in (7.10). It is also in relatively good 

agreement with the result, ( ) 7 21.8 0.6 10HFC s
−= ± × , determined before field-cycling  

data was available 
[43]

.  

 

The two relaxation rates have the contribution of
HH

C , which is from
HH

ρ or
II

ρ . 

However in our fit, when we change the value of
HH

C , the fast component, 1R , only 

has a slight change in comparison with the slow component, 2R . Mathematical 

analysis will be complicated. Here we just give a qualitative explanation: 1R is about 

10-15times bigger as 2R ; the change of 
HH

C only has a small relative change in  

1R  while it has a significant relative change in 2R . 
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Fig 7.12 Simulation fit (solid line) of relaxation rates. The change of CHH has a more significant effect 

on R2 than on R1.  

 

The simulation illustrated in Fig 7.11 also confirms our theoretical analysis of the 

minimum position on the field dependence curve ofσ and the experimental results. 

 

Given the parameters in (7.10), the field dependence of the ratio of 2 /
I s

σ ρ ρ  can be  

mapped out as illustrated in Fig 7.13. 
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Fig 7.13 Field dependence of the ratio
2 /

I s
σ ρ ρ on sample TFTA and 

13
C-BA at 20K. 

 

The ratio 2 /
I s

σ ρ ρ in TFTA is about 0.75 when the field is higher than 0.3T, while the 

ratio 2 /
I s

σ ρ ρ in 
13

C-BA is smaller than 0.08 (0.02 at high field). The huge difference 

between the ratios on these two samples leads to the significant difference between 

the relaxation behaviours of these two samples.  It will be easily understood if these  

ratios are substituted into the expression of relaxation rates, 

( ) ( ) ( )2 2

1,2

1
4

2
I s I s I s

R ρ ρ ρ ρ ρ ρ σ = + ± + − −  
                                                  (7.11) 

for sample 
13

C-BA, 1 I
R ρ≈ , 2 s

R ρ≈ , as illustrated in Fig 6.5a and Fig 6.5c, at 20K; 

for sample TFTA, the 1R and 2R  can not be calculated directly, but since 2σ is close to 

I s
ρ ρ , it is easily deduced that 1R  is much bigger than 2R , as presented in our 

experimental data where 1R is about 10-15 times bigger than 2R . Therefore in 
13

C-BA, 

the polarisation recovery curve is characterised by single relaxation time constant, 

which is recorded as 1

eff
T , while in TFTA, the magnetisation recovery curve must be 

analysed by two relaxation time constants, the weighted average of these two 
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relaxation time constants has no physical meaning. Furthermore, the correlation time 

c
τ  can be derived directly from the field dependence of 1

eff
T on sample 

13
C-BA, but it  

cannot be extracted from the field dependence of 1R  or 2R in TFTA.  

 

So the technique we employed to investigate the dynamics of sample TFTA is a 

technique which can be applied in the study of general heteronuclear interaction. The 

study of 
13

C-BA is only a special case, but it does improve our understanding of the  

heteronuclear interaction.  

 

Back to Fig 7.13, an interesting feature is illustrated when the field is lower than 0.1T: 

the ratio 2 /
I s

σ ρ ρ  is getting smaller when field is getting lower; it goes to 0 at about 

0.01T; then it increases again. The minimum to 0 implicates that the off-diagonal 

element is changing in sign around 0.01T, which is also illustrated in Fig 7.11. At the 

minimum position, the zero-quantum transition is in balance with the double-quantum 

transition. When field is higher than 0.01T, the zero-quantum transition dominates the 

cross-relaxation, but when field is lower than 0.01T, the double-quantum transition 

starts to dominate the cross-relaxation, and it increases rapidly when field is getting  

smaller.  

 

This is quite interesting, not only in mathematical terms. In order to understand this, 

the mechanism of double-quantum transition needs to be investigated. Simply 

speaking, the double-quantum transition is due to the dipolar local magnetic field 

rotation which is modulated by the molecular rotation. When the field is high, the 

fluctuation of the local magnetic field is not enough to introduce a lot of double-

quantum transitions, therefore in the spectral density the double-quantum transition 

term ( )I sL ω ω+  is very small and is negligible in comparison with zero-quantum 

transition term ( )I sL ω ω− . However when field is very low, comparable with the 

local fluctuating magnetic field, not only is the fluctuation of local magnetic field  

dominant, but also the coupling between the applied field (or the Larmor spin 

precession) and local magnetic field is strong, hence the double-quantum transition  

becomes dominant in the cross-relaxation processes. 
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7.4 Conclusions 

 

The field-cycling NMR techniques described in this chapter provide an experimental 

procedure for directly studying cross-relaxation processes in magnetic resonance. As a 

wider range of polarization transfer experiments are developed to improve the 

sensitivity of NMR and MRI, the methodology described in this chapter, including 

importantly the study of the magnetic field dependence, may be applied to provide 

insight into the mechanisms responsible for mediating the coupling between the two 

spin systems. It is note-worthy that quantum tunneling plays a vital role in the cross-

relaxation process in this case since in its absence, if the dynamics had been 

dominated by classical barrier hopping, the coupling between the two spin-reservoirs 

would have been vanishingly small at these temperatures. Furthermore, we have 

shown how the techniques have the potential to be applied in new ways to study 

molecular dynamics in systems where heteronuclear spins are coupled, as with the 

direct measurement of spectral density components that characterize the off-diagonal 

element of the relaxation matrix; in this case the study enabled the measurement of  

proton tunnelling in the hydrogen bonds of TFTA. 
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Chapter 8 Conclusions 

 

Field-cycling NMR (FCNMR) relaxometry has been successfully employed to 

investigate the nuclear spin relaxation and proton tunnelling both in homonuclear and  

heteronuclear systems. 

 

Using a model system that displays quantum tunnelling, the proton transfer is shown 

to be characterised by a single correlation time at all temperatures by directly 

measuring the field dependence of the spin-lattice relaxation rate. A smooth quantum-

to-classical transition is therefore obtained. The consistency between quantum and 

classical descriptions is of fundamental importance in investigating the proton transfer  

in hydrogen bonding which is the basic process in chemical and biological reactions.   

 

For homonuclear systems, there is just one spin-lattice relaxation time, but for 

heteronuclear systems, there are four elements of a relaxation matrix. By designing 

new pulse sequences, we have been able to measure the field-dependence of the off- 

diagonal element and cross relaxation process. 

 

First 
13

C FCNMR has given us a good start in investigating the heteronuclear 

interaction, although it turned out to be a special case since the off-diagonal element is 

small and the two relaxation rates cannot be resolved accurately from the recovery 

curve which has to be fitted to a single exponential function and characterised by an 

effective relaxation time. It enables us to have insight on the importance of the initial 

condition for the second nucleus and on the method of data analysis. Different 

spectral density components that appear in relaxation theory have been resolved and 

the correlation rate has been accurately measured from the field dependence of the 

inverse effective relaxation time recorded by 
13

C FCNMR. It is 
13

C FCNMR that 

illuminates a possible approach to obtain the correlation rate both from diagonal and  

off-diagonal elements by setting up an appropriate initial condition.  

 

This possible approach has been achieved in TFTA which is chosen to be a general 

sample with significant off-diagonal elements and typical bi-exponential relaxation 

behaviour. A new FCNMR pulse sequence was designed for investigating the cross 
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relaxation by evolving the second spin polarisation to thermal equilibrium before 

saturating the first spin polarisation. The off-diagonal element is measured from the 

cross-relaxation recovery curve as a function of field. Therefore the field dependence 

of the off-diagonal element has been obtained with high accuracy. This is the first 

case to extract the correlation rate from the field dependence of the off-diagonal 

element. This method can be utilised in any heteronuclear system with typical bi-

exponential recovery curve which means the two relaxation rates can be accurately  

resolved.   

 

Quadrupolar dips in the proton magnetisation curve in heroin hydrochloride have been 

found as evidence for an enhanced proton relaxation process introduced by the 

quadrupolar interaction. It turns out that FCNMR can become a sensitive method for 

searching the quadrupolar transition frequencies and has potential applications in drug  

detection.   
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