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Abstract

This Ph.D thesis describes an investigation into the operation of the Blue Circle
Cauldon Works precalciner vessel. The vessel is part of the cement making
plant and it serves the purpose of providing a furnace that is maintained at
approximately 900°C to calcine the limestone in the raw meal prior to
cementation in the kiln. At Cauldon, tyre chips are used as a support fudl. It
was the aim of this work to predict the likely behaviour of the gases and
particles in the precalciner by using Computational Fluid Dynamics modelling.
The commercia code Fluent was used. Investigation of the likely trgjectories
and combustion behaviour of tyre chips was particularly important. In this way
it was hoped that a method of assessing the suitability of aternative waste fuels
for incineration in the precalciner might be established.

CFD models were constructed that ssmulated the precalciner with all
main reactions and energy exchanges occurring. The first model predicted the
behaviour of the precalciner burning coa and the full load of raw meal.
Subsequent models assessed the sensitivity of the first model to changes in the
boundary conditions. Further models were developed together with
experimental work to assess the combustion and aerodynamic behaviour of the
tyre chips. Alternative injection points for the tyre chips were investigated.

This type of precalciner had not previously been modelled elsewhere.
Similar models were found for the operation of the precalciner without tyre
chips but the geometrical accuracy of the models was improved in this work
due to improvements in commercial CFD code. No similar study of tyre chip
combustion has been made elsewhere.

CFD was used successfully to model a precalciner vessel with tyre chip
and coal combustion and the full raw meal loading simulated. Adjustments can
be made quickly to the model to assess minor geometrical alterations.
Alternative fuel injection points can be quickly assessed using the model.
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1 Introduction to the project

This thesis describes the application of CFD to a complex interna flow in a
cement manufacturing plant. The work was based on the Blue Circle Cement
Industries Cauldon works in Staffordshire, UK. F.L.Schmidt (now
incorporated into Fuller Company) installed the plant in 1983. Since then
modifications have been made to adapt to burning tyre chip materia in the
precalciner vessel. A schematic of the processis shownin Fig. 1-1. The
layout of the preheater tower isillustrated in Fig. 1-2. The operation of the
plant is described in detail in Chapter 2. All dimensions in the following brief
description are approximate.

Raw meal isinjected at the top of the 80m high tower, and descends
through cyclonic separation vessels in the opposite direction to hot gases rising
from the kiln. The precalciner vessd, illustrated in the schematic Fig. 1-3, is
located just before the kiln in the process. The cylindrical section is 15 m high
and has a diameter of 6.9 m. Thetotal height is 26 m. Raw meal drops from
the stage 3 cyclone into a splash box at the raw meal inlet at the rate of 200
tonnes per hour (t.p.h.), where it bounces into the rising gas stream from the
kiln. Kiln gasentersat 1100°C and 18 m/s and has oxygen content of 5%. Air
from the tertiary air duct enters at 900°C and 30 m/s a an angle of 60° to the
horizontal. It drives the raw meal into the main section of the precalciner and
provides oxygen for fuel combustion. 4” diameter pneumatic conveying pipes
deliver 2 t.p.h. of coa at 25 m/s. The coal/air stream enters the precalciner at
30° below the horizontal and in the vertical plane through the vessel centre-
line. A bucket elevator and screw feeder to the tyre chip inlet convey tyre
chips to the precalciner from ground level. They are dropped into a splash box
and enter the precalciner on the side opposite the tertiary air and raw meal
inlets and 1.5 m from the centre-line toward the kiln side. Fuel combustion
supports the calcination reaction, which converts limestone to quicklime. The
calcined raw meal then exits the precalciner into the stage 4 cyclone before it
enters the kiln where the cement clinker isformed. From the kiln, clinker
drops into the clinker cooler before being conveyed as inch-sized nodules to

the cement mill where it is pulverised into the familiar cement powder.
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The precalciner was the subject of this research project, which was
sponsored by Blue Circle Cement Industries and the Engineering and Physical

Sciences Research Council.

1.1 The problem of tyre chips

Tyre chip disposal presents a problem since landfill is a poor option. The
calorific value of tyre material makes it an ideal candidate for combustion
processes and the cement industry provides the ideal conditions of high
temperature and long residence times.

Tyre chips have been used as a support fuel at the Cauldon works since
1993. The application isin the precalciner where approximately 2/3 of the fuel
isrequired. The proportion of energy supplied by the tyre chips has increased
with increasing alowance from the Environment Agency.

Tyres are delivered whole to the site and chipped in a tyre shredder.
The shredding plant is shown in Fig. 1-4. The size of the tyre chips may have
asignificant effect on precalciner operation. There are reasonable arguments
to support use of smaller and larger nominal chip sizes. Smaller tyre chips
may have desirable combustion and aerodynamic behaviour. The cost of
shredding increases as the required size of the tyre chipsisreduced. The
relation between size and cost is exponential so that reduction of nominal chip
size must be thoroughly justified. Larger tyre chips may not be supported by
the rising gases in the precalciner and so may tend to fall into the kiln. The
wire content of larger tyre chips may be may be responsible for build-up in the
relatively low temperature precalciner resulting in premature need to shutdown
the plant for maintenance. In chapter 7 of this thesis, the mechanism of tyre
chip disintegration was investigated and the observations have important
consequences for the nominal chip size.

Tyre chip combustion in the cement industry is very efficient; it makes
use of the whole tyre since the steel strengthening wire and other combustible
material becomes part of the mineral content of the cement. The oxidation of
the tyre material is complete, and it will become clear in the course of this
thesis that it has a beneficial impact on the gas exhaust emission from the
stack. Wire build-up in the cooler parts of the precalciner and its surrounding

connections to the rest of the plant has required regular shutdown of the plant
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to remove the blockages since they reduce the efficiency of the plant. Figure
1-5 illustrates the blockage inside the tertiary air duct that was typical at the
commencement of the project. About athird of the areais blocked by tyre
material build-up. One of the key aims of this research work was to
investigate the causes of tyre material build-up on the precalciner walls and to

suggest ways of reducing it.

1.2 Application of Computational Fluid Dynamics

Fluid flow and thermodynamics within the precalciner are not well understood
in detail. In chapter 2 the results of the limited research done into the
behaviour is summarised. Measurements on the plant are very difficult due to
the high temperature and the high mass of raw meal carried by the gases
passing through the vessel. The mass ratio of raw meal particlesto gasis
approximately 1.1:1. The use of modelling to predict the behaviour has
produced a few papers using one-dimensional models and some using CFD.
The CFD applied in previous work was done using early grid generation
technigques so that the wall of the vessel had steps and did not conform to the
true geometry of the precalciner. In thiswork, one of the novel featuresis the
use of body fitted gridding technique. This feature is discussed further in the
section on the application of CFD, chapter 3. Commercial codes are now
highly developed and have useful features included for the numerical solution
of awide range of realistic models. During the course of this work, Fluent
software was applied. The well-established k-e mode for turbulence was used.
Combustion was modelled using the Magnussen-Hjerteger scheme. Particles
were modelled in the Lagrangian frame of reference. These features of the
model are also described in detail in chapter 3. The geometry of the

precalciner from this work has not previously been modelled.

1.3 Summary of the work done during the research project

During the course of the work, the cement plant heat and mass balance was
thoroughly analysed to establish realistic boundary conditions for the
precalciner. Thisincluded the gas flows entering from the vessels connected to
the precalciner and the injection of the raw meal, coal and tyre chips. Details

of the development of the boundary conditions are discussed in detail in
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chapter 4 for the model without tyre chips and then in chapter 7 for the model
with tyre chips.

The CFD models generated from the work progressed quickly from the
initial development of gas only models to models with reacting particles. Raw
meal was simulated as a combusting particle, for which the volatile content
was carbon dioxide with energy release equivaent to the enthalpy of the
calcination reaction. Coal with composition smilar to the plant fuel was
simulated with a volatile component, char and ash content. The injection of
particles led to stability problems with the solution for high mass loading with
reacting particles. The techniques used to overcome these difficulties are
outlined in Chapter 5 in which the results of the initia fully representative
model of the precalciner are presented. Some measurements were made on site
through ports in the precalciner wall. An indication of the velocity and
temperature at the access points was given by using an S-type Pitot probe with
thermocouple attached. The results of the model were compared at the points
of measurement. Severa interesting features of the flow were observed.

The initial model gave rise to questions about the sensitivity of the
model to various parameters assumed for the model. In chapter 6 the
sensitivity of the model to various changes was checked. The results of these
further investigations showed that the initial model provided a good simulation
of the precalciner. As part of the sengitivity analysis, the throat section of the
model was reduced in size according to a modification made to the installation.

Tyre chip modelling was performed on the initial model and on the
model with the accelerator fitted. Data for the tyre chip aerodynamic and
combustion characteristics were determined by laboratory experiments.
Aerodynamic characteristics in the model were determined from previous work
done at the University of Nottingham and from new work involving supporting
the tyre chipsin acolumn of air against gravity. The observations of the
experiment showed that the tyre chips presented the maximum area to the flow.
Tyre chips' decomposition at 900°C in free air showed that the structure broke
down to char granules of approximately 3mm diameter, as the volatile material
was released, within 2 minutes. From this observation, the behaviour of tyre

chips was simulated by starting with a large tyre chip with equivaent
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aerodynamic characteristics to the face on chip which converted to the
aerodynamic properties of the char granule as the volatile material was
released. The details of the experiments and the results of the CFD simulations
based on the data in the previous models are presented in chapter 7.

14 Aims

The purpose of the work done during the project is summarised by the

following list of actions.

= collect relevant data from the plant for development of a model of the
precalciner vessel process

= model the precalciner using Fluent computational fluid dynamics software

= develop sengitivity models based on the initial model that will confirm the
reliability of the boundary conditions of the model

= conduct experiments to determine tyre chip aerodynamic and combustion
characteristics

= model the behaviour of tyre chipsin the precalciner

= accommodate changes made to the precalciner process in the models as the
work develops

» measure features of the precalciner process

= compare the measured data to the model predictions

= determine best aternative injection points for additional tyre chip material

= provide methodology for analysis of the behaviour of other waste derived
fuelsin the precalciner vessel

15 Objectives

The intended achievements of the project are summarised in the following list.

= amode fully representative of the precalciner burning coa with simulated
limestone reaction

» validation data for the initial model

» sengitivity test models based on the initial model

= datafrom tyre chip experiments that will enable realistic modelling of the
trajectory and combustion rate of the tyre chips in the precalciner process

= amode fully representative of the precalciner including tyre chip as a
support fuel
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an analysis of the behaviour of tyre chipsinjected at different pointsin the

precal ciner
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Fig. 1-1 Schematic of the overall process of cement at Blue Circle Cauldon works up to production of the clinker. Exhaust gases from the
'.: preheater tower are used to dry the raw meal at the ATOX mill, or are bypassed to the electro-static precipitator.




\ Tyre flow

\) Coal flow
e Gasfiow

\ Raw meal flow

Fig. 1-2 Schematic drawing of the preheater tower at Cauldon. Gas and raw
meal flow directions together with tyre and coal injection positions, are
indicated with coloured arrows. Hot gases rise, exchanging heat with the
descending raw meal. Most raw meal calcination occurs in the precal ciner
vessel. Kiln and tertiary air are drawn through the clinker cooler.
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Fig. 1-4 Tyre shredding plant at the Blue Circle Cauldon works; () whole
tyre conveyor side and (b) chipped tyre pile side.
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\ Descending raw
meal fiom stage a. External view of the
3eyclone tertiary air duct and the stage
3 cyclone drop chute.

b. Schematic diagram of
view shown in (a).

c. Looking down into the
partialy blocked tertiary air
duct.

Fig. 1-5 Photographs of the tertiary air duct illustrating the blockage problem;
(a) external photograph (b) external schematic diagram and (c) internal
photograph.
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2 Literature survey

This chapter gives an overview of and scientific basis for the work done during the

course of the project.

Section 2-1.  describes the development of the modern cement manufacturing
plant, including descriptions of the wet and dry process and the preheater
and precaciner plant.

Section 2-2.  discussesthe issue of pollution in cement manufecture. Typicd fud
characterigtics are described and difficulties associated with combustion in
the precalciner presented. Current legidation world-wide is consdered
before a description of current pollution control techniques and a discussion
of the production and control of NO, emissons. The section endswith a
discussion of the industry produced literature regarding NOx control.

Section 2-3.  presentstheissue of waste derived fuels and scrap tyre disposal.
Some dternative fuels and thelr merits are presented. The “recovery”
approach to scrap tyresis discussed as opposed to land-fill. Combustion of
tyre wadte in the cement indudtry is presented from severd indudtriad surveys
and research papers. Potentid pollutants from tyre materid are considered.

Section 2-4.  presents the rdevant features of limestone. The hitorica gpplication
of limestone is described and reactions for making cement considered.
Thermd behaviour and mathematicd modelling considerations are presented.

Section 2-5.  describes the structure and chemistry of cod and considers
mathematica moddling characterigtics

Section 2-6.  considers the work of researchers into the characterigtics of heating
and oxidising tyre materia. Products of combustion and pyrolysis are
presented together with rates for oxidation and devolatilisation processes.

Section 2-7.  presents the theory associated with non-spherical particle
aerodynamics. Forces, the effect of shape and aerodynamic response times

are consdered.
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Section 2-8.

Section 2-9.

idea of atheoreticaly derived extinction coefficient and the effects of
scattering and absorption by gases and particle clouds are considered.

congders the effects of radiant heeat transfer in the precdciner. The

consders research models and measurements made on precalciners.

Mathematical models and CFD models are described and the difficulty of

meaking successful measurements is presented.

Section 2-10.  concludes the chapter by describing ways in which the work

presented in thisthessis origind.

Notation for Chapter 2

A
Ar

Ki
ki
Koi

Mco2

wn

pre-exponential constant in Arrhenius rate equation (s%)
Archimedes number

Drag coefficient

diameter of particle (m)

specific activation energy in Arrhenius rate equation (Kg?)
accderation due to gravity (ms?)

rete constant of limestone calcination rate equation (s™)
extinction coefficient of medium (mi*)

optica thickness of medium (m)

rete constant for devolatilisation of tyre particle (s%)
penetration distance of light beam in medium (m)

meass of araw med particle (kg)

mass of carbon dioxide available for release from raw med particle (kg)
(superscript) reaction order of tyre component material
number of particles per unit volume in a suspengon ()
pressure (Pa)

molar gas corstant (kmol™*K ™)

Reynolds number

surface area of particle (nr)

path length of radiant energy (m)
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Spn  surface area of sphere ()

S scattering cross section ()

Sy Stokes number for aparticle in afluid
t time (9

T temperature (K)

w tota mass of atyre particle (kg)

Wi meass fraction of a component of tyre materid
a,  absorption coefficient of medium (m?)

I wavdength of light (m)

m  dynamic viscosity of fluid (kgmi's™)

X Sze parameter of particle in medium

ri  densty of fluid (kgm®)

ro densty of patide (kgm?)

Syg  scatering coefficient of medium (i)
te  characterigtic time of flow (9)

ty  momentum response time of particle ()
f shape factor of non-sphericd particle

2.1 Cement manufacture

In this section a brief description of the development of the modern cement
manufacturing plant is given, based largely on the work of Garret (1985) and
highlighting the importance of the precalciner. In order for a cement manufacturer to
remain competitive in the market, the industria process should be as energy efficient
as possble and it isthis fundamentd tenet that has driven the development process.
In the early days of cement manufacture the “wet” process was used for
large-scale production. In this process, adurry of limestone and shae in water is
mixed to give a homogenous blend and then hested in along kiln to eveporate the
water and cause the calcining and cement clinkering reactions to occur in the one
vessel. The need to evaporate large amounts of water made this process inefficient.
Thisled to the development of the suspension preheater system, which enablesthe
process to be done “dry”, making the durry unnecessary thereby eliminating mass
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water evgporation. The suspension preheater system has become the most widdy
employed process technique for cement manufacture since Humbol dt-Wedag first
made it commercialy viablein 1951. In addition to the kiln the processincludes a
prehegter tower, which istypicaly in the order of 80m high and includes 4 to 6
cyclone separation vessals. The process was later further improved by the addition
of aprecaciner vess.

Cauldon plant employs the preheater system, and Fig. 2-1 and 2-2 show
schemétic diagrams of the prehester tower configuration. Essentidly, in the
preheater system hot gases from the kiln pass upward a the same time asthe
pulverised raw med travels downwards. Theraw med is pulverised, mixed whilst
dry and supplied to the top of the preheater tower (cyclone stages 1A and 1B on
Fig. 2-1). According to Perry, 1984, each cyclone acts as a co-current hest
exchanger asthe pulverised raw med and hot gases circulate in the same direction
during the separation process. The hot gases are generated by fuel combusgtion in
thekiln (located at the bottom of the tower) and drawn through a duct from the top
of the tower by alarge fan mounted at ground level. Within the preheater tower,
heat from the risng gases mixes with descending raw med powder. The overdl
effect of the preheater tower istherefore to act as a counter current heat exchanger
with heet passng from the risng gases to the descending raw medl.

Recent progress in development of the cement manufacturing process has
focused on increasing throughput and improving emissions control.  The development
of the precaciner sysem has implications for application of waste derived fuels since
the combustion vessel operates a high temperature and prolongs the resdence time
of thefud.

Following the development of the preheater system, the introduction of the
precaciner vessd, isolating the limestone calcination reaction in one vessd made a
further improvement in energy efficiency. Intheinitia developments of the preheater
system the calcination reaction occurred mogtly in the kiln. When the new vess
was firgt introduced it was dubbed the precdciner asit islocated immediately prior
to entry to the kiln. Ishikawgima Harima Heavy Industries based in Japan
deve oped the first commercidly successful precaciner ingdlationin 1972. The
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preheeter with precdciner is operated with fud injection into the kiln and the
precalciner and approximately /5 of the total fud requirement is delivered to the
precaciner in atypicad inddlation. In the Cauldon prehester tower, cacination of
the raw med occurs mainly in the precaciner, which islocated between the kiln and
the stage 4 cyclone (see Fig. 2-2).

Klotz (1997) gives a ussful review of current precalciner technology and
summarises the types of precaciner firing technique:
= Air Through—dl ar issupplied from the kiln;
» Air Segparate — uses atertiary air duct from the cooler to the precaciner (the

Cauldon plant fdls into this category);

= Separate Line — combustion occurs separately from the kiln gas stream.

According to Garrett (1985) the technology change brought about by
development of the precaciner was quite radicd in concept. It dlowed effective
doubling of kiln capacity and produced severd other benefits including increased
refractory life, reduced NO, emissions and easier use of waste or lower grade fuels.
The technology is applicable to large-scale manufacture (typicaly 1000 tonnes per
day). Recent progressin the development of the cement manufacturing process has
focused on increasing throughput and improving emissons control.  The development
of the precaciner syssem hasimplications for gpplication of waste derived fuels since
the combustion vessel operates a high temperature and prolongs the resdence time
of thefud. Thissuggeststhat in future it may be possible to safely reclam energy
from waste products by using them to generate some of the heat required in cement
manufacture. AsKlotz (1997) shows, some of the most intensive research in the
cement industry has been applied to the development of a more effective precaciner
vessd, cgpable of greater throughput and improved emissions control.

2.2 Combustion pollution production and control

A survey of fuds used in the cement industry in Europein 1995 produced the
following summary: cod 38%; petroleum coke 36%; lignite 8%; fue oil 7%; naturd
gas 2% and aternative fues 9% (Bannon in Taylor, 1997). Cod isavailablein
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different grades depending on the congtituent moisture, volatiles, carbon and ash

content (Smoot, 1993). Generdly, higher fixed carbon indicates higher-grade cod,

i.e. higher cdorific vaue. With a precaciner and preheater tower arrangement, the

combustion is performed at two points - at the kiln clinker exit end, in order to

maintain the high temperatures for the clinker formation, and in the precaciner to
complete the converson of raw med to cacined raw med. The combugtion in the
kiln is outsde the scope of this investigation.

Mullinger and Jenkins (1996) made the following observations about the
complexity of combustion in the precaciner environment:

= changesto the air flow-patterns, such as moving the combustion nozzles and the
tertiary ar duct, have a“huge effect on the fud/air mixing’;

» thedifficulty of maintaining aflame in the calcination region, due to the
endothermic calcination reaction, can lead to “flame extinction”;

= most heat transfer takes place by convection because the precaciner isawell-
mixed system with gas and particles in intimate contact;

» ungdable flow patterns within the precaciner will adversdy affect the degree of
cacination.

These observations are related to the commonest problems with precalciners, which

are:

»  incomplete combustion due to poor mixing of fuel and air streams and flame
guenching by the strongly endothermic cacination of limestone; these problems
are worse for fudsthat are difficult to burn, e.g. gas with sdective combustion
temperature range and petroleum coke;

= ungtable operation, with cyclic or random variation of degree of cacination,
outlet temperature, and oxygen NO, and SO formtion;

= excessive NO, formation due to the hot core where fud isinjected;

=  materid build up due to excessive residence times or overhesting.

The caciner of thisinvestigation is shown schemdticaly in Fig. 2-2. These effects

have been observed in the Cauldon precalciner under varying operating conditions.

Makroum and Mounir (1995) presented a study of a separate line caciner
and kiln system, which delivered a quditative analyss of some control characteristics
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by using statistical process control. For this current work, the key points from the
paper are that the divison of fud between the precalciner and the kiln affectsthe
overdl specific fud requirement and that the precaciner operating temperature can
be used to limit over-burning of the clinker produced.

2.2.1 Legislation

Research for improvement of the cement manufacturing process includes meseting the
requirements of the legidation by gpplying improved control. Worldwide concern
about polluting the environment has resulted in the new legidation and the progress
mede S0 far suggests that the legidative control islikely to get tighter.

The 1970 Clean Air Act in the USA has been updated with increasing
understanding of emission effects and control technology. The EC hasadirective to
control emissionsin Europe, and Germany, Japan and the Commonweslth of
Independent States (CIS, i.e. what used to be mainly the USSR) dl have legidation
in place. The current legidating body in the UK is the Environment Agency (formed
October 1996). Legd requirements are detailed in The Integrated Pollution Control
(IPC) Guidance Notes Series 2 (SO, 1996) for Minera Industry Sector and Waste
Disposd and Recycling Sector. Thelegidation isamed at the “ criteria pollutants’™:
CO, hydrocarbons (including aromatic hydrocarbons Furans and Dioxins),
particulate matter, NO, and SO, (Smoot, 1993). Since the cement industry
produces large scae combustion products, it is subject to the tightening legidation

and must conform to the controls introduced.

2.2.2 Current pollution control in the cement industry

There are already a number of well-established controls (Perry, 1984). Increasing
the efficiency of combustion can control hydrocarbon emissions (including CO).
Furans and Dioxins are effectively destroyed at the high temperatures employed in
cement production. It is the cooling gases at exit from the preheater tower that may
be subject to production. It isimportant to quickly cool the exit gases through the
temperature range 450° C to 200° C since Furans and Dioxins can be produced in
thisrange. The gas-conditioning tower at the exit from the prehester is a cooling
tower. It reduces the temperature from gpproximately 450°C to 150°C in the order
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of asecond. For more details see the |PC document (Environment Agency, 1997).
The problems remain with NO, and SO, control, since control of these may inhibit
efficient combustion and cause other emissons.

In practice, control of SO in the cement industry is not a problem asthereis
anauraly occurring reduction mechanism in the reactor. CaO produced in the
cacination reaction absorbs the SO, converting it into CaSO,, which can be
removed from the stack gases by electro-static-precipitation as a solid particulate
(Smoot, 1993). The temperature and residence time in the precaciner isided for
this reaction to take place. Particulates can be collected by electro-static-
precipitators (ESP).

2.2.3 NO production and control

Intensive research into NO, control in the cement manufacturing process continues.
Thetotd stack volume exiting the typica cement worksisin the order of 100,000
Nr/hour (i.e. volume of gas produced a Norma conditions, 0°C, 1 atmosphere).
Anything more than avery smdl percentage of NO, emissons will cause amgor
pollution problem in the vicinity of the plant. The Environment Agency monitors
current legidation in the UK and operation regtrictions are outlined in the Integrated
Pollution Control (I1PC) Guidance Notes series 2 (Environment Agency, 1997).
NO, emissions on cement manufacturing plant must be less than 900 mg/Nn? at the
standard reference conditions (276K, 101.3 kPa, 11% oxygen and dry gas).

The mechanisms of NOy production in combustion processes are described
by Borman and Ragland (1998) and by Smoot 1993. The most Sgnificant
production mechanisms for cod flames are:
= fud NO, (75-95%) in which fud bound nitrogen oxidises,
= therma NOy, which is caused by temperatures in excess of 1400°C,
= Prompt NOy, which isformed in the flame zone.

Control of NOy can be gpproached using the following techniques.
= Nitric oxide recycle reactions, where NO is converted to HCN. Thisisknown

as “re-burning” and can be gpplied as control for NO, using light hydrocarbon

2-8



gases or solid fue with high volatile content in the post-burner flame - these are
the suggested reaction schemes (Miller and Bowman in Smoot, 1993):

C+NO« CN+O Equation 2-1
CN+H, « HCN+H Equation 2-2
CH+ NO« CN +OH Equation 2-3

An dternative has been suggested in more recent literature as highlighted in the
work by Tokheim et d (1998). They showed that employing plastic asthe
reburning fud can reduce NO, emissons.

= Air staging, where up to 25% of the supply air is ddlivered after the flame.

»  Fud gaging, which makes use of re-burning. Part of the fud isinjected with the
bulk of theair (fud lean conditions) and then high volatile fud isinjected further
on. This mechanism offers a40-60% reduction of NO.

» Post combustion gas trestment with chemica reactants such asammonia. These
act as reducing agents and remove NO; at appropriate temperatures.

2.2.4 Research into pollution control in the cement industry

Cement manufacture research on pollution conssts of indudtrial scae experiments
and surveys of techniques used by operators. The volume of indugtria research
indicates the importance and difficulty of controlling NO, production. Severa
control techniques are effective. In particular, tyre combustion reduces NOy
production.

McQueen (1993) investigated the NO, production and control problem in the
cement industry in acritical andyss of available NO control technology. Thekilnis
an ided zone for therma NO production due to high temperature (1500°C) and
fuel-lean conditions. Lower NOy formation occursin the precalciner due to the
moderate temperature (850-900° C) and the fud-rich conditions. The main control
techniques available at that time were outlined and compared for effectiveness. They
were divided into combustion technologies (i.e. controlling the NO, production
mechaniam):
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= combustion operationd modifications (e.g. reducing excess ar volume and
temperature in the kiln combustion zone),

» low NO burners gpplied in the kiln firing zone,

= gaged ar combustion applied in the precalciner (firing 10-20% of precalciner
fuel upstream of thetertiary air supply creating a reducing zone),

and post combustion technologies (i.e. reducing the NO, already produced):

= sdective non-cataytic reduction (injecting NHs in the temperature zone 870°C
to 1040°C),

» and seective cataytic reduction.

The discussion described the high cost of controlling NO, and the didtinctly different

combustion characteristics of the kiln and precalciner.

Syverud et a (1994) presented results of atria, which showed the NO,
reducing effect of burning shredded car tyresin aprecaciner. The tests were done
on aPyroclon™ precalciner at a Norcem site as part of an investigation into
promoting post-combustion reduction by re-burn reduction of NOy in the lower
temperature zones of the process. NOy was reduced by up to 30-45% by using
chipped car tyres as a substitute for cod. Car tyre materid isan ided fud for
producing the re-burn effect due to the high volatile content of between 60% and
80% in comparison with cod, which has 10-30% volatiles. The checks on clinker
quality and emissonsin tests done showed no adverse effects. The sulphur cyclein
the precaciner was observed to change but stabilised; an accumulation was
observed in the precaciner due to dkai sulphate cycles, which was atributed to the
reducing conditions locally around the tyre chips.

Jepsen (1997) demonstrated the concept of NO reduction in the
precaciner by Staged Fue Combustion, cregting a reducing zone in the riser of the
kiln before the injection of the combustion air. Tests showed that the effect was
enhanced by operating at high temperature (1050°C ) in the reducing zone. Tedts
were done on alaboratory scale on alow NOy separate line caciner at Fuller
Company. The purpose was to enhance combustion of fuesthat are difficult to burn
by creating a high temperature region not atainable in thein-line caciner. Having a
separate line calciner enabled reduction of NOy by up to 40%. The mechanisms of
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N Oy reduction considered did not include the re-burn theory; they concentrated
instead on the generation of areducing zone a a temperature 900-1050°C.

Conroy (1997) described the successful implementation of KHD Humbol dt
Wedag Pyroclon™ low-NO, precalciners a three plants. The observations from
these plants pointed the way to development of better low NOy precaciners. The
Pyroclon™ low-NO, precalciner is atube caciner, which is fed from the tertiary air
duct and the kiln exhaust gas. Fud isintroduced into the kiln exhaust gas to produce
areducing zone which encourages reversd of therma NO,. The CO rich stream
produced is burned in the tertiary air duct flow through the precaciner. Introduction
of aPyrotop™ swirl chamber at the precalciner exit encouraged complete
combustion of CO a temperatures that are too low for thermal NO, formation.

Bech and Gundtoft (1998) provided a more recent review of the NOy, SOy
and CO mechanisms in cement manufacture based on actua plant data. The NO,
andyds described the effectiveness of burning tyre and waste materia in the mid-kiln
region. They proposed that poor mixing of air with the fue creating alocaised
reducing zone caused the effect. The NO, destruction benefit of areducing zoneis
offset by promoted production of SOx.

2.3 Tyredisposal and burning technology in the cement industry

The 1972 fud crids prompted investigation into the use of dternative fues. Cement
manufacture providesided conditions for waste combustion because of the long
resdence time in the process and high temperature involved. Wadgte fuds that have
been conddered as partid substitute fuelsin cement manufacture include Refuse
Derived Fue (RDF, from domestic waste), and Secondary Liquid Fuels (SLF,
solvents disposed of by industry). Used road vehicle tyresin particular possess high
cdorific vaue, typicdly 35 to 40 MJkg (Conesa, 1998), making them a prime
candidate for use as a support fud. Although thisthesis focuses on combustion of
scrap tyres the analysis of other waste fuelsis useful and a brief catalogue of
previous work is given in the following paragraphs before discussng use of tyres.
Petrie and Baldwin (1992) andysed a variety of waste fudls, comparing
devolatilisation and combustion characteristics. They presented results of
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combustion tests on mixed briquettes of high caorific value wastes (scrap cod and
paper, scrap anthracite and molasses, paper and plagtic, and bagasse). In particular
they noticed that the devolatilisation rate is related to the volatile content and that the
char activation behaviour is related to the binder used. They concluded that thereis
‘ggnificant potentid’ for useful recovery of energy from these fuels.

The combustion of Refuse Derived Fuds (RDF) in the cement industry was
andysed by Lockwood and Ou, (1993), in astudy on a plant owned by Norcem in
Norway. The study showed that the use of poor quaity fuels such as RDF resulted
in lower production leves, emissions problems and worsening chlorine st build-up
cycles due to high chlorine content of the fud. They condluded that the upper limit
for fuel subgtitution with RDF is 30%, and that there is no economica advantagein
burning RDF in cement manufacture without subsdy dueto the initid cost of
investment in equipment and operation costs.

The combustion of tyresis advantageous to both the cement and waste
disposad indudtries as it provides recovery of some of the usefulness of the waste and
achegp form of energy for the cement industry. The technology for tyre combustion
in cement manufacture has been well developed and is used a anumber of Sites
throughout the world. Schrama et d (1995) indicated tyre production of 275 million
tyres per year in the USA, of which 14% went to the cement industry for useasa
subdtitute fudl. Useful applications were found for afurther 12%, but the remainder
was sent to landfill. Recycling Week (1996) showed a smilar situation in the UK,
presenting asummary of a recent report by the DTI Scrap Tyre Working Group
(1996). The Working Group found that of the 370,000 tyres scrapped in 1995 in
the UK, the end uses were found to be as follows:

" 4% - useful landfill enginearing

= 5% - put to use directly e.g., as boat fenders
» 11% - recycling

= 22% - energy recovery

= 30% - retreading

= 28% - not recovered i.e. landfill refuse Sites
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Comparison of sudiesby Schrama et a (1995) and Blumenthd (1996),
show that scrap tyre applications to useful purposesin the USA increased between
1995 and 1996 in order to dispose of the increasing supply, which had in the past
been sent mainly for landfill. Schrama et a (1995) reported a survey on use of tyres
as asubgtitute fud in the US cement industry. Blumenthd (1996) described the
techniques used for tyre combustion in the US cement industry. Chipped tyres were
injected in to the kiln outlet end and whole tyres were injected in to the preheater
tower a the level of the precaciner. From the experience of companies surveyed by
Schrama et d (1995) in the USA, the maximum fuel substitution for whole tyre cases
was 30% of fuel energy requirement while that for chipped car tyre cases was only
about 10%. The reported experience from both papers showed that combustion of
chipped tyres was more costly than using whole tyres due to the chipping
requirement, despite improved feed control. Other problems associated with
burning scrap tyres that were reported were build up of tyre deposits, maintaining
regular supply of tyres, worsening of akai sdt ring formation in the kiln (due to akdi
sulphate condensation in certain temperature zones within the kiln), and an increased
oxygen supply requirement. The reported benefits were higher cdorific vaue than
cod and lower emissons. The preheeter with precalciner ingtdlations surveyed by
Schrama et d (1995) indicated that when tyres substitute more than 10% of fue,
problems become too large to justify the benefits.

Blumentha (1996) indicated the scde of use in the US cement industry.
Twenty-seven producers at that time used scrap tyres as a partid subgtitute for fossl
fuelsinthe USA. Twenty others had permission to subgtitute and thirteen were
conducting tests. The estimated potential use was projected to be 75-100 million
scrap tyres out of ayearly production of 253 million. 69% of Tyre Derived Fud
(TDF) inthe US had found a useful outlet, suggesting that if the increase in useful
gpplications continued tyre supply for cement plants may become unreliable.

Saito et d (1987) reported on gasification as an dternative to complete
combustion to yield 95% of the fuel asgas. The project, however, was only on a
smdl scae (manufacture less than 1200 tonnes per day - the hourly production of
many large plants). It was reported that this technique is suitable for agpplications
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where combustion of the complete tyre is not practicable due to coloration of white
cement and unwanted excess air ingress, associated with injection of tyres, in smdler
production units. 1t was further suggested that dthough it is apparently cleaner, this
technique would be too costly to apply at alarge-scale plant. An additiond reported
advantage of this technique was the liberation of the sted wire content of the tyresin
arecyclable form.

The emissions from tyre derived fudl have been researched and compared
with equivdent emissonsfrom cod. Levendis and Courtemanche (1997) present a
discussion of the generation of NO, pollutants from tyre and cod. They showed by
experiment that reducing conditions lead to reburn reactions, that at temperatures
less than 1230° C the mgority of NO is from the fuel NO, mechanism. NO,
production was shown to increase as the equivaence ratio in fud rich conditions
increased. Levendiset d (1998) correlated CO and PAH (polynuclear arométic
hydrocarbons) showing that the CO and PAH yield from tyres was greater than that
from cod in the temperature range 1000°C to 1300°C. PAH was reduced to
amost zero at the highest temperature while CO emissions increased with
temperature.

2.4 Limestone

Robert Herman Bogue (accredited with the development of the Bogue cdculation -
familiar to cement manufacturers) provides a good summary of the history of
mankind' s gpplication of limestone in building (Bogue, 1955). It is gpparent that the
discovery of basic cement occurred in prehistory - limestone calcines to lime when
srongly heated; lime forms a paste when mixed with water that hardens when dried.
It was used in congtruction of the monumenta pyramids of Egypt, and was
extensvely and methodically applied to condruction work by Greeks and Romansin
the respective classcal periods.

The search for hydraulic cement (i.e. one that resists decomposition by
water) led to the development of Portland cement (named after the renowned, high
quality limestone found in Portland, Dorset) by adding clay. Limestone and shde are
the naturally occurring minerals that are pulverised and dried and used to make
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cement. Limestone isthe fossilised remains of pre-historic shelfish and shdeis
sedimentary materia formed from decomposed and fossilised vegetation.

When limestone is heated, the cacination reaction producing quicklime and
carbon dioxide occurs:

CaCO, ® CaO+CO, Equation 2-4

This reaction is highly endothermic; a smple cdculation of product and
reactant formation enthalpies shows that the energy consumed is 1770 kJ per kg of
CaCO;. Cement production is therefore an energy intensive process. The process
iswell established and Taylor (1990) gives agood description. The process conssts
of two stages.

On reaching 900 C a atmospheric pressure the limestone completdly calcinesto
quicklime by the dissociation reaction. The reaction within a particle occurs at a
reaction surface interface which movesinwards (Taylor, 1990). To achieve
complete reaction, the high temperature 898° C must be attained throughout. In
modern cement production, the limestone is pulverised before processing to
promote heating efficiency. Taylor (1990) indicates an indudtridly standard
particle sze for the ground raw med of 85% passing through a 90-nmm sze Seve.
Further hesting to the order of 1500 C causes the raw meal mixture to become
semi-molten and the reactions that produce the main minerd congtituents of
cement - Alite, Belite, Ferrite and Aluminate - proceed. Cooling causes nodules
of clinker to form, typicaly having adiameter in the order of 4 cm, which are then
crushed and used to form the familiar cement powder. The congtituents of
cement are indicated in Table 2-1.

Inspection of atypica plant heat balance shows energy consumption in the
order of 3.3 GJ per tonne of clinker produced with process temperatures reaching in
excess of 1500°C in therotary kiln.
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Chemical compaosition

compound chemical formula % by mass
calcium oxide CaO 62-67
silicon dioxide SiO, 18-24
aluminium oxide Al,O5 4-8
iron oxide Fe, O3 1-5
Mineral compaosition
Mineral name Compound name chemical formula
Alite tricalcium silicate 3Ca0.Sio,
Belite dicalcium silicate 2Ca0.Sio,
Ferrite tricalcium aluminate 3Ca0.Al,04
Aluminate tetracalcium aluminoferrite 4CaO.Al,O03.Fe,03

Table2-1 Chemica and minerd compaosition of cemernt.

The therma behaviour of limestone isimportant since it determines how best
to “burn” the limestone to form good quality cement. The chemical behaviour iswell
described by Boynton (1980). The important festures are as follows:

» thepartid pressure of CO, in the furnace amosphere limits cacindion if the
temperature is below 900°C;

» the heat consumed during cacination varies from 1620 to 1955 kJkg depending
on the nature of the limestone;

» therate of cacination depends on the surface areato volume ratio.

From amoddling point of view it isimportant to know the rate of cacination
to determine heat consumption patterns and CO, release patterns. Much of the
work, which forms the basis of current cacination modes, was completed during
mid-1980. Borgwardt (1985), in particular working for the US Environmenta
Protection Agency, developed some key work building on previous research and
producing useful datafor activation energy and the Arrhenius rate equation for
dispersed particles of limestone at temperatures and particle Szes equivaent to those
in precaciner operation. Interestingly, aless obvious use for limestone isin pollution
control from cod fired power generation and Borgwardt (1985) investigated the
kinetics of cacining limestone in order to provide data for new pollution control
research establishing both the rate of calcination and the rate limiting mechanism.

Previoudy established arguments about the calcination rate proposed three

rate-controlling factors:
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» hedat transfer to the surface and then through the CaO product layer to the
reaction interface;

» masstransfer of CO, away from the interface through the product layer;

= thechemicd resction.

In the case of smdl particles, asin thiswork, the resstance due to the
reaction interface is negligible. Borgwardt demonstrated that heat and mass transfer
in the particle determined the reaction rate, but in addition to previous work, that the
surface area available for reaction was much larger than expected due to the
porosity.

Borgwardt performed experiments on an entrained flow reactor and a
differentia reactor. A differentid reactor gpplied to gas/solid reactionsis onein
which the difference between reactant gas concentration at inlet and outlet is not
significantly affected by the reaction. The temperature ranges consdered were
475°C to 710°C in the differential reactor and 775°C to 1000°C in the entrained
flow reactor. Particle Szeswere 1 to 90mm in the differentia reactor and 10 to
90mm in the entrained flow reactor. The gpparent activation energy of particlesin
these Size ranges was estimated to be 2.05" 10° Jkmal.

The Brunauer-Emmett-Teller (BET method) surface area was found to be
very important in determining the rate. A description of the BET method can be
found in the text by Perry and Green (1984). It is used to measure the total surface
areaof aporous materid. Borgwardt described limestone as having a porous nature
with between 3% and 8% porosity. The BET surface areawas found to be up to
five times the area suggested by the externd surface area. The particles studied by
Borgwardt were smilar to the particlesin atypical precalciner and so it can be
expected that amilar behaviour will be exhibited. The reaction rate was found to be
between 1.2 10° and 1.5° 10° mol/cf.s. The rate calculation applicable to the
code used for the work of this thesis was:

dm _

i KMo, Equation 2-5

where meo; is the mass of limestone remaining in the particle that will be liberated as
CO,. kisdetermined by definition of the congtants A and E in the equation
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k = Ae<p(— IVRT) Equation 2-6

The congtants used in this study were chosen to give reasonable agreement
with the results presented by Borgwardt. Borgwardt found that A should be
3.81" 10® s* and E should be 2.05" 108 Jkmol. For particles between 20nm and
90mm, this resulted in equivalent rates of 0.528" 10°° mol/cn?.s for a 20mm particle
and 1.560" 10° mol/cn?.s for a 90mm particle,

Silcox et a (1989) developed amathematica mode of the cacination of
limestone using the data of Borgwardt (1985). Dennis and Hayhurst (1987)
performed experimentsin afluidized bed to find the effect of carbon dioxide partid
pressure, variation of gas pressure above atmospheric, and temperature. They found

areaction rate constant in good agreement with Borgwardt (1985).

2.5 Coal Combustion Modelling

The cod combustion modes available in Huent use heating, devolatilisation and char
combustion. The papers reviewed in this section were used to obtain redistic data
for the modes used in the precaciner and to verify the correct use of the data
available from Huent.

2.5.1 Structure and chemistry of coal

Cod isafossl fud, abundant supplies of which can supply energy at projected
demands for up to 250 years. The structure of the cod is dependent upon the
geology of the region from which it has been extracted. The qudlity of the cod
determines its combustion characteristics and thisisimportant for the smooth
operation of the cement plant. Consequently it iswithin the scope of thisthesisto
understand the nature of the coals used at the Cauldon cement works.

The nature of cod isdiscussed in detal in the editoria compiled by Smoot
(1993). Cod was formed over millions of years from partialy decomposed flora
and faunain svampy environments. Decomposition was arrested by stagnant
conditions as layers of this matter built up. Asthe depth of matter increased,
pressure and temperature increased and firgt petrifaction and then the coal making

process occurred. The structure of coals as we see them now was determined by
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the nature of the congtituent matter that was originaly decomposed and on the
history of the cod. The macera content defines the type of minerds that were
formed and indicates the predominant origind ingredients.

It is not indructive to investigate further the detailed structure of codls here,
but from the combustion engineer’ s point of view cod is cdassfied by ultimate
andyss, dementd anadlysis and proximate andyss. The ultimate andyssisthe
precise chemical composition of the coa in terms of carbon, hydrogen, oxygen,
nitrogen, sulphur, and chlorine since these are the bulk constituent chemicals.
Elementd anayds of the trace metds isimportant when condgdering pollution control.
Elementsinclude arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper
(Cu), mercury (Hg), manganese (Mn), nicke (Ni), lead (Pb), antimony (Sh), tin
(Sn), thalium (T1), vanadium (V), zinc (Zn). The behaviour of cods when heated is
determined by the volatile content, the char or fixed carbon content, and the ash
content which is the mineral matter that does not decompose when heated to flame
temperatures. The classfication, or ranking, of cod typesis summarized in the Fg.
2-3 reproduced from Smoot (1993).

The oxidation of asolid fuel can be understood by considering the separate
processes. Devolatilisation occurs as the temperature increases, by which
components of the coa that change state from solid to liquid and from liquid to gas
are yielded un-oxidized into the gas phase. Thisisfollowed by oxidation of those
chemica species. Oxidation of the char component follows this. Char isthe fixed
carbon content of the fuel in the case of solid fuels. When devolatilisation occurs

without combustion it is termed pyrolyss.

2.5.2 Devolatilisation

The devoldilisation of cod is described quditatively and chemicaly in Smoot
(1993). Heating the fuel causes the release of gases and tars, which then oxidize
separately from the cod particle. The behaviour can include bresking hydrogen
bonds to form a plasticised component caled metaplast dong with liquid
components, evaporation of tars, further bond breaking to yield further tars and
gases, and repolymerization to form char. Cod rank determines the behaviour
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during devoldtilization, and this has been investigated extensvely. Research
concerning devoldilization rate was of interest for this thesis and prominent papers
are presented in this section.

Solomon et d (1992) produced a summary and cataloguing of experiments
to determine the rate limiting factors. Experimenta techniques were described which
determine the rate of devolatilisation using hested grids, entrained flow reactors,
thermo-gravimetric analyss and radiative heating, amongst others. The important
parameters to monitor are the hesting rate, the temperature attained, the sze of the
particles, and the ultimate and proximate andyses of the cod. Variation in the data
of different researchers was found to vary by afactor of up to 1000 times, and
possible causes of thiswere investigated. 1t was apparent that ranks of the coal and
mass trandfer effects were not the cause of the variation in devoldtilisation rate. The
essentid factor in explaining rate kinetics differences between experiments was found
to be the temperature history of the heated particle. All data presented in the paper
is gpplicable to cod in the pulverised size range and the experiments were discussed
criticaly to determine the potentia error sources. The experimental results revealed
characterigtics of the composition and hegting behaviour of the cods. These
included rate of mass loss, and andysis of gases and tars evolved from the
devolatilisng particles. Detailed description of the mechanism of devolatilisation
were presented including the authors own theories. Primary pyrolysis occurs after
400°C. Intheregion 200°C to 400°C the chemistry of the cod changes as bonds
change. Gases and lighter tars evolve first and then as the bond disruption proceeds,
larger tar molecules are released.

There are many mathematical models of the devoldtilization process and
Solomon et d (1992) presented a summary of some that are used, including those
used by Huent. The devolatilization modds rely on empiricaly determined
constants. Those of Badzioch and Hawkedey (1970) and Kobayashi et a (1976)
are used by Fluent. The experiments done by these researchers used entrained flow
reactors (drop tube furnaces) and high heating rates in the order of 10,000 to
200,000°C/sec. The cods andysed were bituminous and lignite. The heeting retes
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and particle Szes were smilar to those of the cod particles in the precaciner vessd,
so that the devolatilization models should be gpplicable to the current study.

2.6 Tyre Combustion Rate Modelling
This section describes previous research work into the products and characteristics
of tyre combustion.

Williams et d (1990) performed a detailed study of the pyrolysis products of
tyre chips when heated in a nitrogen atmosphere. The results of that study showed
the complex nature of product evolution as the tyre chip materid reaches different
temperaures at different rates of heeting. The cdorific vaue of the tyre materid was
assessed and the ultimate and proximate analyses were presented. The details are
reproduced in the Table 2-2 together with the dementa compaositions of Conesa et
a (1998) and Schrama et a (1995). The proximate analyss and Gross Cdorific

Vaue were determined without accounting for the stedl-wire-core present in tyres.

El I PN Proxi IvSis
Williams Schrama Williams
et al et al Conesa et et al

(1990)  (1995) & (1998) (1990)
carbon 85.9 83.5 78.4 Volatiles 66.5
hydrogen 8 7.8 6.6 Fixed carbon 30.3
nitrogen 0.4 0.4 0.2 Ash 24
sulphur 1 15 1.2 Moisture 0.8
oxygen 2.3 6.8 1.2
ash 2.4 8.2 11.7 Gross calorific value 40.0 MJ/kg

Table 2-2 Composition of scrap tyres from various researchers.

It isinteresting to note that the calorific value (assuming removed sted wire) is
greater than that for cod and that the sulphur content is smilar to codl.

Using thermo-gravimetric andysis, Leung and Wang (1999) investigated the
pyrolysis of tyre materid in a nitrogen atmosphere for particle sizesisin the range of
0.5mm to 2.36mm. The tyre material was heated at a constant heeting rate and the
rate of weight loss as a function of temperature recorded. Figure 2-4a shows a
sample result for the case where the heating rate was 10° C per minute and illustrates
that mass loss rate occurred in three digtinct regions. The size of the particle was

found to not affect the pyrolysisrate, and the hesting rate was found to have a smdl
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effect. The cause of the three peaks was thought to be due to the behaviour of
different components. The temperature range 150°C to 350°C caused evolution of
ail, plastisizers and additives. The range up to 600°C causes evolution of the naturd
rubber, butadiene rubber and styrene-butadiene rubber, giving two characteristic
peaks at 400°C and 470°C. The Arrhenius rate modd that the researchers gpplied
to the pyrolysis rate was therefore broken into three sections with three different rate
controls for natural rubber, butadiene rubber and styrene-butadiene rubber. The
data used and the results obtained from this modd are seenin the Fig. 2-4aand
show good agreement of the experimenta data with the rate model applied.

The rate & which the tyres oxidise and how they will behave as they heet up is of
particular interest to the work presented in thisthesis. Experimentsto find akinetic
model for combustion of tyre wastes were performed by Conesa et d (1998). Their
work showing the effect of oxidation of the tyre materid in 10% to 20% volume
oxygen amospheres with helium composing the remainder of the aimosphere, is of
particular interest Snce it indicates the oxidation behaviour of the tyre materid. Tyre
particle Sze was lessthan 1 mm. Aswith Leung and Wang (1999) the characteristic
mass |oss was attributed to loss of naturd rubber, butadiene rubber and styrene-
butadiene reubber. Figure 2-4b shows a comparable result of Conesa et d to the
work of Leung and Wang for 10°C/min hegting in an inert atmosphere (Helium).
Although the graph isinverted and the scale is different, the characteristic three
regions can be seen. The reason for the difference in the two pesk sizes between the
two sats of resultsisnot clear. It isimportant to observe the difference between the
weight lossrate in an inert amosphere and that in oxidizing atmosphere as seen by
comparing Fig. 2-4b and Fig. 2-4c. It isclear that there are more pesks and that the
temperature rate is no longer uniform due to the heet generated by combustion.
Conesa et d (1998) dso determined the rate of decomposition of the mass by
cdculaion. A 4 step reaction scheme was employed, in which the ail fraction, then
the natura rubber then the styrene-butadiene rubber decompose followed by the
mineral components (i.e. char). The rate equation used for each of the fractions was

of the Arrhenius form:;
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a ko e

aw =3 Equation 2-7
dt

Where w isthe total mass, kg is the rate constant, E; is the activetion energy and w;
is the mass of the fraction and nis the reaction order. The data used is presented in
Table 2-3 below with each of the F numbers representing on of the four reactions
identified. The congtants were determined by adjustment until the calculated weight
loss curve matched the experimenta result.

F1 F2 F3 F4
Kg (59 2.84" 10° 464 10 |4.15 10% | 379 10°
E (k¥md) | 83.6 245.6 201.7 223.2
n 2.445 3.905 1.456 0.692

Table 2-3 Rate congtants for decomposition of tyre materia from Conesaet d.

More recent work by Giugliano et a (1999) determined the combustion
behaviour of tyre chips by holding them in suspension insde a precaciner in azone
having temperature 1050°C to 1150°C and oxygen 5 to 9% with a mean velocity of
20 to 22m/s. Tyre chip average weightswereintherange 3.1to 15.2g. Therate
of weight loss of the tyre chips was determined by assuming thet it isinitidly by
devolatilization only. Thisassumption is reasonable consdering the gas conditions
and the high volatile content of the tyre materid. The calculated time for complete
devolatilization of the chips was between 40 sand 100 s. The devoldtilization
process was completed in an average of 30 sin the experiments.

The chip sizes used at Cauldon arein therange of 5gto 100 g. Inassessing
arate of devolatilization, the most gppropriate research regarding size of chip isthe
work by Giugliano et d (1999). Despite the more rigorous scientific approach
determining Arrhenius rates with tyre granules szed in the order of millimetres it is
important to use like Szed particles. The research reported in thisthesis suggests
that further experiments should be performed to determine the combustion behaviour
of the tyre chipsin the precaciner.
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2.7 Non-spherical particle modelling

In order to modd tyre chip aerodynamics, it isimportant to understand the

mechanism of fluid forces on large non-sphericad particles. No work specificaly

related to large chips with non-isometric (i.e. not regular) shapes was discovered in

the literature, but the issue of predicting non-spherica smdl particle termind velocity

has received consderable attention.

Thetext by Crowe et a (1998) presents the basic principles of particle-gas

interaction. For the momentum of the tyre chips, it is sufficient here to consider

cdculation of the drag force and gravity force only since other forces were not

conddered to have sufficient magnitude to merit attention for the following reasons:

pressure gradients, buoyancy forces, unsteady Basset and virtual mass forces are
al negligible because of the high ratio of particle dendty to gas dengty (in the
order of 10,000)

drag due to rotating particlesin velocity gradient, lift forces due to Saffman and
Magnus effects, and torque applied to the particle are not consdered since they
apply to spherica particles or iso-metric particles. Tyre chips are highly non-
isometric and other techniques are required. For this reason, the non-spherica
particle modification to drag is not consdered.

forces due to plasma effects and thermaophoretic effects are negligible since the
gasisnot at plasma temperatures and temperature gradients are very smdl in the
length scale of the particle diameter (25 mm to 150 mm in a 6.9 m diameter
vessH.

the Coulomb effect is negligible snce there is no gpparent eectric fied

the “blowing” effect of reacting particles is conddered negligible in dl cases

drag force due to dengity of the particle cloud is negligible due to the low volume
fraction of the particles

Drag force on spherica particles has been well documented (e.g. Massey,

1989). Three regions defined by Reynolds number have been identified as affecting
the behaviour of the drag coefficient. The Stokes' region (describing laminar flow
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and named after George Stokes, 1819-1903) isthe low Reregion <0.05. The
Trangtion region (describing the trangtion from laminar to wholly turbulent flow) is
the intermediate Re region, 0.05<Re<2000. The Newtonian region (named after
|ssac Newton, 1642-1727) isthe initia fully turbulent region, 2 10°<Re<2” 10°.

Although the tyre chips are highly non-isometric, it is useful to consder the
approach of researchersinto isometric non-spherica particles to get the relevant
terms that are commonly used to describe the behaviour.

Consderable work has been done by other researchersin the determination
of empirica datafor isometric non-spherica particles. Hartman et d (1994) includes
asummary of the work of severa research papers describing the important

arguments. A baance of forces when aparticleisin free-fal resultsin the equation:
C,Re? = (%)Ar Equation 2-8

where Ar isthe Archimedes number, the ratio of buoyant forcesto viscous

forces, defined as:
Ar =1 p3g( ) Equation 2-9
r—F Salr -y quation 2-
f
Cp isrelated to Reynolds number and afactor that describes the shape of the

particle. The most appropriate measure of shape is the sphericity developed by
Wadell (1934):

f=_> Equation 2-10

sph

Where sisthe surface area of the particle and Sy is the surface area of the
sphere having the same volume. Severd researchers have developed empirical
correlations for the relationship of Cp, to sphericity, (f ), Reynolds number (Re).
Haider and Levenspie (1989) developed a generdly gpplicable formula, in which the
form of the drag coefficient was found to be:

-
Re

C (1+ ARe® )+ Equation 2-11

D
1+—
Re
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Where A, B, C and D are empirica functions of the sphericity determined by
applying non-linear regression fitting software to experimentd deta. The sphericity is
useful for consideration of particles that are isometricaly shaped.

The important features of aerodynamic behaviour can be described by two
parameters — the response time and the Stokes number, which are both clearly
described by Crowe et a (1998). The momentum response time is developed from
the equation of motion of the particle. It has the units of time and is shown in

equation 2-12:
2
t,= L Equation 2-12
18m

Crowe et d (1998) show that the response time is the time taken for a particle to
reach the free stream velocity when released from rest. Stokes number is defined as.

S=-* Equation 2-13

tr isachaacteridic time of the flow fidld and is calculated usng the velocity of the
fluid and the length of a sengble cross section of the flow at the point a which the
response time was caculated. If S>>1, then the particle will not be much affected
by the momentum of the flow. If St<<1, then the particle will respond very quickly
to momentum changes of the flow.

The FHuent software used in this thes's makes use of the work of Mors and
Alexander (1972) to caculate the drag coefficient of spherical particles. Thedrag
coefficient is dependent on the Reynolds number of the particlein theflow. The
equations developed for their work are presented in Table 2-4.

Ritter (1995) in previous work on the subject of this thes's, performed wind
tunnel experiments on tyre chipsto find the drag coefficient. Having the drag
coefficient in a particular orientation of the chip and using the results of Mors and
Alexander, he was able to specify equivaent spheresto model tyre chips which had
the same drag coefficient and mass asthe tyre chip. Thiswork will be built uponin
thisthess.
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Re a a as

<0.1 0 24 0
0.1<Re<1.0 3.69 22.73 0.0903
1.0<Re<10.0 1.222 29.1667  -3.8889
10.0<Re<100.0 0.6167 46.5 -116.67
100.0<Re<1000.0 0.3644 98.33 -2778
1000.0<Re<5000.0 0.357 148.62 -4.75 10"
5000.0<Re<10000.0 0.46 -490.546 -57.87° 10*

10000.0<Re<50000.0 0.5191 -1662.5 5.4167" 10f

Table 2-4 Mors and Alexander equations for variation of sphere drag coefficient
with Reynold’ s number.

Since the moddling of tyre chips must assume a highly non-isometric shape, it
is questionable how accurately the drag coefficient can be determined by caculation.
The research to date assumes ether isometric shapes or Smple geometries such as
disks. It was therefore necessary to investigate aerodynamic behaviour of the tyre
chips by experiment to determine drag and trgjectory behaviour.

2.8 Radiant heat transfer modelling

At Cauldon it is possible to open an access port and ook into the precalciner. On
visud inspection it is gpparent that radiant heeat transfer within the vessd is significant.
No more than afew centimetres depth is visible from any of the access ports before
the sight becomes athick, blurry-orange glow. The reason for thisisthe high particle
loading and the concentration of gases, which absorb and scatter radiant heat
energy.

Siegell and Howell (1992) describe the radiant heet transfer mechanismsin
absorbing, emitting and scettering media. The following terms are ussful for the
description of the effects:
= extinction coefficient, K, combines the attenuation effects of absorption and

scattering coefficients, units of reciproca length;

K (. ,T,p)=a (,T,p)+s4 (,T,p) Equation 2-14

= penetration distance, which isthe reciproca of the extinction coefficient;

[, = Ki Equation 2-15
|
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= optica thickness, which isthe product of extinction coefficient and path length
and indicates the relation between the opacity of the medium and the dimensions
of the boundary;

k (S =K, S Equation 2-16

Using the derivation of scattering coefficient for particle load, shownin
equation 2-18 taken from Siegell and Howell (1992), it is possible to determine the
scattering coefficient related to the particles in the Cauldon precaciner. The
scattering coefficient can be caculated from the scattering cross section, 5 and the
number of particles per unit volume, N:

Sq=SN Equation 2-17

In the preclaciner, N is approximately 1229 cri® since the mean gas density isin the
order of 0.3 kg/m?® and the mass fraction of particles to gasis approximatdly 1:1.
From Segdl and Howell, 5 depends on wavelength and the particle diameter. The
waveength of interest isthe visible and near infraredi.e. | =107 to 10* m, and the
diameter of the partidesisin the order of 5.5 10° m so that 2 10° <I /D,<2. For
| <<D,, scattering isby Fraunhofer and Fresnd diffraction plusreflectionand s is

determined by the formula
S _2®D29 Equation 2-18
a5

Therefore, s = 4.75 10° n?, and s¢ = 5.84 m*. Thisindicates a penetration
distance of 17 cm. In addition to this, the work of Siegell and Howdl indicates that
for the Cauldon precaciner, surrounding particles will have no effect on scattering.
Independence is determined by the particle Size and the volume fraction in the gas
and data for pulverised cod isdisplayed in Fig. 2-5. Since the combustion in the
Cauldon precdciner issmilar to pulverised cod combustion, the independence of
scattering on surrounding particles can be inferred from this data.

The type of scattering is determined by the Sze parameter, x:
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X = IT_D Equation 2-19

m

In the Cauldon precaciner, D, » 55mm and so 1.6<| <1600. For asize parameter
of this magnitude, according to the data of Siegdll and Howdll (1992), diffraction
does not have asgnificant influence and scattering is by reflection, mogdtly in the
forward direction.

Absorption and emission in the precaciner gases have been considered asa
secondary hest transfer effect compared when compared to that of the particles
snce the extinction due to particles is significant across al waveengths of interest.
Siegdl and Howell (1992) described the vibrationa and rotationd trangtions of the
gas atoms and molecules in the moderate temperatures encountered in typica
engineering agpplications. Gases absorb radiant energy at specific wavelengths. By
Kirchoff’s law, the emitted energy must equd this and be at the same frequency.
Emisson from agas dement is isotropic so the combined effect isto diffuse the

radiant energy.

2.9 Survey of precalciner modelling research

2.9.1 Mathematical Models.

The ability to predict the behaviour of gases and particles ingde a precaciner will
contribute towards effective design of new calciners and improvement of existing
ingdlations. Early predictions were based on smple mathematica modd s and these
have increased in complexity as modelling sophigtication has progressed. The
modelling approach culminates with Computational Huid Dynamics (CFD), which
was used for the work reported in thisthes's, but it isimportant to examine the
development of the mathematica technique to understand what information can be
drawn from the current modd!.

Rosemann (1986) consdered reaction kineticsin aplug flow modd of a
typica precaciner vessd. Kinetic datafor the raw med cacination was based on
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gastemperature and partia pressure of CO,. Coa combustion was modelled as
devolatilisation and oxideation of volatiles followed by oxidation of the char
component. Datafor the rate of raw medl ca cination was used from previous work
(Kainer, 1982). An investigation was performed on the effect of staging raw medl
addition (i.e. injection at more than one height in the precaciner) and it was found
that the temperature of the gasesin the vessd might be controllable using this
technique. The one-dimensiond model provided a useful indication of reaction
progression but did not consider the fluid dynamics and detailed reaction kinetics.

Kolyfetis and Vayenas (1988) built upon the ideaof Rosemann (1986) by
including the effects of the cod pyrolysis, adding a char reaction rate scheme taken
from Govind and Shah (1984), and caculating the rate of coa devolatilisation
according to the modd of Badzioch and Hawkedey (1970). A one dimensiond plug
flow modd was used, divided into three sections. heating and mixing; pyrolyss,
combustion and calcination. Comparison was made between the model results and
temperature measurements from an existing ingtdlation and good agreement was
observed. Fluid dynamics was not accounted for and the radia temperature field
was not described. The effect of nine different types of cod on the process was
assessed and this showed that increasing volatile content enhances coa combustion
but creates lower temperatures and therefore reduces calcination.

Belot et d (1993) performed amathematica analyss of the globa process
and used it to optimise process control and to consider the materid flow and
reection kinetics. The modd dlowed analysis of the effect of staging injection of raw
mesdl to the precaciner.

Mullinger and Jenkins (1996) used a mathematical hest transfer modd,
originaly developed by Hottel (1961) for radiant heet transfer in awdl-tirred
reactor, to predict temperatures to consider the effects of heat transfer in a
precaciner. The modd was used in conjunction with other techniquesto give the
overdl behaviour of the precaciner. The work is discussed further in the next
Section.
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2.9.2 CFD modelling

Very little CFD moddling of precalciners has been reported in the literature. Belot et
a (1993) reports work, in which a preca ciner was moddled usng CFD. The
modelled precalciner operated in downflow mode with cod and raw med inlets. A
2-D schematic of the precaciner, which had been developed for use with liquid fuels
and only subsequently changed to burn cod, is shown in Figure 2-6a. Using Huent
verson 3 athree-dimensiond modd of the precalciner was created, with
modification for modeling two reacting species, the cod and theraw med. Asthe
grid was not body-fitted, steps are gpparent at sections that are inclined to the grid
axes. Combustion was modelled using the eddy breakup modd and stochastic
tracking was used to include the effects of loca turbulence on the particle tracks.
The results obtained showed close agreement with physical measurements made on
ste. However, Belot (1993) concluded that the computational method was too
expendve in terms of the time required to get results, despite its usefulnessas a
diagnogtic toal.

In another study of interest, Mullinger and Jenkins (1996) used three
modelling approaches — mathematical, CFD and scale — to modd a precaciner and
the results were used to argue that no one model aone was sufficient to indicate the
full picture of reactions and flows within the precalciner. The CFD modd employed
the commercial CFD code PHOENICS to investigate particle tracks and residence
timesin aprecaciner. A 2-D schematic of the precalciner is shown in Figure 2-6b.
Thegrid, aswith Belot et a (1993) was not body-fitted. The results were used to
resolve ingtability in the flow pattern, where switching between two flow patterns
was observed; the problem was resolved by repositioning the burners. Mullinger
and Jenkins (1996) argued that CFD should be used to optimise particle trgectories,
concentrations and residence times by suitable adjusment of modelling variables.
The andytical modd of Kolyfetis and Vayenas (1988) had previoudy shown that
fud characteritics affect the performance of a precaciner. Thisresultswas
confirmed by thework of Mullinger and Jenkins (1996) who aso found that this
effect could be modelled computationaly.
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2.9.3 Installation Measurements and Scale Modelling

It isboth difficult and costly to obtain measurements on a precalciner indtalation as
illustrated by Belot et a (1993). Two types of water-cooled probe were used - a
suction pyrometer (Smoot, 1996) for the temperature profile and a gas sampling
probe for CO, CO,, O, and unburned gases. The probes were inserted through 5
holesin the precalciner wall at 3 different haights.

Mullinger and Jenkins (1996) used an acid/dkdi scde model made from
Perspex to show the generd form of the combugtion flows. Thisisawell-
established technique for combustion modelling, and is used for prediction of the
mixing of the oxidizing stream with the fud. Modds are expensive to construct and

extracting results is time consuming.

2.10 Conclusions from the literature review

Cement processing efficiency was significantly improved by introduction of the
prehester tower and the precaciner vessd of which there are various configurations.
The Cauldon precalciner can be defined as Air-Separate, since it has atertiary air
inlet, and combines air from the clinker cooler with the kiln gases. Thereis no swirl
mechanism in the Cauldon precaciner.

Severd problems associated with combustion products were identified.
Notably, the recognition of the need to control combustion pollutants has improved
with increesingly drict legidation by governments world-wide. Pollution controlsin
the cement industry address al key pollutants including CO, NOy, SOy, PAHs and
particulates. A great dedl of attention has been addressed to the issue of NOy
production and control. There are saverd methods of control available, and
interestingly using tyre materid as a support fud is one of them.

Scrap vehicle tyres pose adisposd problem. The literature indicates large
volumes of scrap tyres sent to landHfill, and that this disposd route is not sustainable
in the environment. Tyre materid has a higher caorific vaue than cod and disposd
by incineration provides ameans of recovering the energy of the materid. The

cement process provides ideal combustion conditions for digposal by this route.
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In order to develop afully representative model of the precaciner, the
chemical reactions must be redigicaly modelled. Limestone cacination reactions
can be smulated using an Arrhenius rate equation for the liberation of CO,. Data
was found from relevant work for usein the model. Coa combustion behaviour
depends on the characteristics of the particular cod. It isimportant to correctly
represent the rate of release of the volatile materia. Datawas found in the literature
in support of the model cod used for the work described in thisthesis. Tyre materia
has particular combustion characteristics dependent on the composition.
Researchers have identified three distinct peaks in the mass loss versus temperature
behaviour of tyre materia. The features correspond to the yield of oil, natura rubber
and styrene-butadiene rubber. The smdl size of the granules tested in the literature
indicated the need for some experimenta work to determine the behaviour of larger
tyre pieces.

The literature provided no direct research into the aerodynamic properties of
objects smilar to tyre chips. Much work has been done with regular shaped non-
spherical particles, but the characteristics of random shaped, flat objects have not
been described. Previous work on this research project indicated that the tyre chip
drag may be modelled in two orientations — face and side presentation to the flow.
The lack of literature indicated the need for experimenta investigation in this area.

Radiative heat trandfer is Sgnificant in the precaciner. Informeation was found
in the literature that indicated scattering by the suspended particles caused the
medium to be optically thick so that the mean free path of radiation was quite short.
The estimate of path length was used to model radiant heet transfer in the
precalciner.

In order to demongtrate the uniqueness of the project, other modelling work
in the cement industry was reviewed. Although research was done on precaciners,
the type of precalciner at Cauldon has not been modelled. The geometry and grid
used were not body-fitted since the agpproach had not been developed at the time
and s0 inclined wdls in the computational mesh were not smooth but had stepsin
them. No work was done with block-structured or fully unstructured meshes. The
modelling of tyre chip combustion and aerodynamic characteristics have not
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previoudy been attempted according to this literature survey. The work is therefore
origind.
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Fig. 2-1 Schematic of the Cauldon preheater tower. The components have
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to preheater
fan
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\
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Pre- S
calciner, v
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N ‘“«—Position of temperature

A

and pressure measurement

Stage I'V material
drop

been exploded for clarity to show the flow of gases and raw meal. Raw meal
enters at the top of the tower in cyclones |A and IB. Hot gases rise from the

kiln and from the tertiary air duct, which both draw air through the clinker

cooler. Individual cyclones act as co-current heat exchangers, but the overall
operation of the tower is as a counter-current heat exchanger. The precalciner

islocated just before the kiln. It recelves coa and raw meal and serves to

complete the calcination reaction of the calcium carbonate in the limestone of

the raw medl.

2-34



T~

Material out to
Stage IV

Stage III material
drop inlet

Tyre chip nlet
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Stage [V material
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Fig. 2-2 Schematic drawing of the Cauldon precalciner vessel. Connections to
the surrounding vessels are indicated. Raw meal falls from the stage 111
material drop inlet at the rate of 200 t.p.h. Gases from the kiln at 18 m/s and
1100°C carry the raw meal up the lower section of the precalciner before the
tertiary air injection at 30 m/s and 900°C. The material is supported in the
cylindrical section whilst calcining and heat is added by injecting coa at two
inlets and tyre chips a a higher position. The overall height of the precalciner
is 26m and the diameter of the cylindrical section is 6.9m. The gases and
reacting particle cloud proceed out of the top of the precalciner to the stage IV
cyclone before entering the kiln.
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Fig. 2-3 Proximate analysis and heating value of various grades of coal
reproduced from the American Society of Testing Materials Classification
(21974) in Smoot (1993). Coadl is characterised by the Gross Calorific Value
and the proportions of fixed carbon (char), volatile matter, and moisture
content. The type of coa used at Cauldon is similar to medium or high-volatile
bituminous.
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3  Application of Computational Fluid Dynamics (CFD)

The complex, non-linear fluid flow equations developed by C.Navier (1785-
1836) and G.Stokes (1819-1903) are difficult to solve and “until now only a
few particular solutions have been found” (White, 1991). These equations are
solved using numerical techniquesin CFD. The finite-volume technique is
used. Thisinvolves dividing the volume of the subject fluid in to discrete
volume cells in which simpler, linear algebraic equations are solved to
approximate fluid flow parameters (velocity etc.) at discrete pointsin the flow
region. A system of finite-difference equations is developed relating the
changes in variables between cells according to the partial differential
equations describing the transport of propertiesin the flow. The equations are
formulated from the Navier-Stokes equations for continuity and momentum,
from the energy balance equation based on the first law of thermodynamics and
upon transport equations for scalar quantities such as chemical species and
turbulence. The equations have been highly developed and the techniques for
solving them in practical situations are continuously being developed. An
indication of the equation formulation is presented in Appendix 1. The theory
was clearly stated by Tannehill et al (1997). Versteeg and Malalasekera (1995)
published a good introductory text.

CFD solutions to fluid flow behaviour is performed in three stages -
pre-processing, solving and post-processing.

» Pre-processing defines the physical domain of the flow, developing a
realistic geometry in a2 or 3-dimensional coordinate system which is then
divided into a number of volumes (cells) at which the flow parameters (eg
pressure, velocity) can be calculated and related to surrounding cells. The
boundary conditions (at inlets and walls and outlet) are specified at the start
of the calculation. The solution of the set of second-order partial
differential equations is parabolic when time dependency is not considered.

» Solving calculates the flow parameters numerically at each cell, using the
finite volume method, which is an adaptation of the finite difference
method.

» Post-processing analyses the results of the solution.
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Notation for Chapter 3

Cp  specific heat at constant pressure (Jkg'K™)

h height above datum (m)

g acceleration due to gravity (ms?)

I turbulence intensity

k turbulent kinetic energy (nfs?)

L characteristic length (m)

Pe Peclet number

Repn  Reynold's number based on hydraulic diameter

t time (9

u velocity component (m/s)

u velocity component fluctuation (m/s)

U fluid velocity (m/s)

vV fluid velocity vector (m/s)

G characteristic viscosity (kg/ms)

e turbulent kinetic energy dissipation rate (nf's®)

r fluid density (kg/nt)
rop  Operating density (kg/nt)

3.1 Mesh generation

Structured and unstructured meshes were developed during the course of the
work. Body fitted co-ordinates were used, which follow the exact contours of
the physical geometry of the model using spatial relation functions to map the
cells from the computational co-ordinates to the physical co-ordinates.

A structured mesh has grid lines on 3-coordinate directions, which
although they are unlikely to be orthogonal in physical space are orthogonal in
computational space. Each cell istopologically a hexahedron. This can make
mesh generation practically impossible for meshes that are required for other
than smple geometry. An unstructured mesh is not restricted in this way and
cell shapes can be hexahedral, tetrahedral or wedge shaped since the
computational domain is not orthogonal. Structured meshes are less
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computationally intensive than unstructured meshes, so it is advantageous to
use them where possible. The multi-block approach is a sensible compromise
that uses a block structured grid, i.e. made of blocks of structured grid regions
that are joined together to make the whole. It is thus possible to develop
meshes for complex shapes that are structured in blocks, which are joined
together and solved using an unstructured solver.

Three geometries were generated for this work. To simplify the first
model created, the mesh was constructed in the block-structured form as
illustrated in Fig. 3-1. Six blocks were used; five in the main vertical section
with a cross section as illustrated which persists throughout the height. The
‘view A’ shows the position of the inlets and the outlet duct on the model. One
coal inlet is not visible, but it is located directly opposite the coa inlet that is
visible on the conical section.

The grid in the region of the coal inlets was “refined”; i.e. the cell
density was increased. This was necessary due to the rapid changes of gas
velocity and temperature in that region. Coal secondary air enters at 25 m/s
directly across the flow in the precalciner at 75°C compared to the mean
temperature of 900°C of the precalciner gases at that point. Increasing the
number of cells in the region reduced the gradient of each field variable from
cell to cell. The hanging node method was used to refine the cells in that
region. The method divides each hexahedral cell in the region in to eight new
hexahedral cells asillustrated in the schematic at the top left of Fig. 3-1. The
cells were refined in the region encompassed by three concentric spheres with
coincident centres at the centre of the coal inlet. The three refinement regions
are distinctly visible on the surface of the model.

The ‘view B’, from the top of the precalciner, shows the connection of
the five blocks that were used to construct the model, and the addition of the
outlet duct. The connectivity of the five main blocks of the model persisted
throughout the entire length, changing in shape in proportion to the outside
boundary. A total of 48,000 cells were used in the mesh. The height of the
model was 25.84 m and the diameter of the main cylindrical section was 6.9 m.

The outlet duct was added to allow the flow to develop before the exit.

It was found in development of the initial models that the pressure and velocity
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field near to the outlet of the cylindrical section was unrealistic without a duct.
In addition to this problem, using a structured mesh throughout on the model
without the duct was unreliable since it resulted in highly skewed cells (cells
which deviated significantly from orthogonal) at the walls at the four corners of
the computational mesh mapped using body fitted co-ordinates. With the duct
added it was impossible to make a structured mesh without highly skewed

cells.

Using an advanced mesh generation package, a fully unstructured mesh
was constructed on a precalciner geometry with more faithful representation of
the actual geometry of the physical installation. In Fig. 3-2 the features of this
mesh can be seen to include an improved tertiary air duct and coal pipes. The
exit duct was included as in the earlier model to achieve near-fully-developed
flow at the outlet. The fully unstructured nature of this mesh can be seen from
the surface mesh.

It was discovered during the generation of the unstructured model that
the outlet duct on the initial model was 25% too high, a misinterpretation of
drawings being the cause. An improvement was made to the initial model
when a new feature was added to the vessel in accordance with plant
modifications. The duct was modified at the same time and the solutions
compared. The third model, which was block structured, isillustrated in Fig.
3-3.

3.2 Solution technique

Solution of the equations governing convected scalars (e.g. temperature,

pressure, species concentrations) requires a discretisation scheme (Versteeg,

1995). The two schemes relevant for thiswork are:

» First Order Upwind, in which cell face values are set equal to the cell-
centre value in the cdll up-stream, and

= Second Order Upwind, in which the cell face values are calculated using a
Taylor Series expansion to give an increased range of influence of the
surrounding cells.

The Fluent User Guide (Fluent Incorporated, 1996) advises that the First Order

scheme will give a stable solution with a good rate of residua convergence,

with the limitation that the accuracy of the solution may not be satisfactory. It
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is subject to numerical diffusion for grids in which cells are not aligned with
the flow. That is aways the case for a mesh that has been built using
tetrahedral cells. Numerical diffusion is the term used for the combined effect
of numerical dissipation (otherwise known as artificial viscosity since it
effectively increases the viscosity of the fluid in the calculation) and numerical
dispersion (Tanehill et a p.106, 1997).

The technique used to obtain convergence with accurate results was:

» useFirst Order Upwind on all variables to start until a convergent solution
was obtained, and
= apply Second Order Upwind to achieve accuracy.

The discretization scheme was specified separately for each variable
caculated. Diffusion termsin the discretised transport equations are always
central difference, second order and accurate to first order. Convective terms
are calculated by a number of schemes available in Fluent: first order upwind,
second order upwind, central, Quadratic Upwind Interpolation for Convective
Kinetics (QUICK), and Power Law. Power law is used when the cell Peclet

number, Pe = r_(L;L is large and is useful for pure diffusion type cases.

For the block structured grid, the discretisation scheme used for
pressure was PRESTO! (PREssure STaggering Option as described in Fluent
Incorporated, 1997) as the flow was considered to be subject to high-pressure
gradients and body forces. This technique is only applicable for models with
hexahedral cells. For the meshes with tetrahedral cells, the discretisation
scheme for pressure was the Body Force Weighted model, which is used for
cases where large body forces are expected.

The solution agorithm applied by Fluent isillustrated in Fig. 3-4. The
key points of the solution technique applying in this case are the settings of
under-relaxation for some variables and the settings of the Algebraic Multigrid.
It was found necessary to do some grid adaption by region, volume and

variable gradient.

3.3 Boundary Conditions.

The details of boundary condition values are presented in Chapter 4, where the

development of the precalciner model with reference to available plant data
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and literature research papersis explained. In this chapter, the type of
boundary condition for each of the physical boundaries of the precalciner

domain is explained.

3.3.1 Inlets

Velocity inlets were specified on all the inlets since the mass flow rate, gas
composition and temperature at each inlet were known from the mass balance
done on the installation. k and e were specified at the inlet and wall boundary
conditions. The specification of k and e was by hydraulic diameter of the inlet
and turbulence intensity. The hydraulic diameter was calculated from

continuity and the turbulence intensity was derived from Equation 3-1, from
the Fluent User Guide (Fluent Incorporated, 1997).

o 4

@016(Re,,, ) " Equation 3-1
avg

where Repy is the Reynolds number for the inlet calculated using the hydraulic

diameter of the inlet area. Usually turbulence intensity isin the range 1% to

10%.

3.3.2 Fluid exit at the duct end
The type “outflow” was specified on all models. It is the appropriate outlet
boundary condition for cases where the flow is fully developed, i.e. where

there is no significant variation of the flow variables in the flow direction.

3.3.3 Walls

Conducting wall condition was used at the solid boundaries of the precalciner,
except for the exit duct wall, which was subjected to adiabatic constraint since
itis not areal part of the geometry.

Two techniques were available in the Fluent software for calculating
the effect of walls on the aerodynamics of the flow. Standard Wall Functions
(developed by Launder and Spalding, 1974) are used when the Reynolds
Number of the flow is expected to be high. The technique is briefly described
in Appendix 1. A fuller description is available in standard texts on CFD (e.g.
Versteeg and Malalasekera, 1995).
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3.4 Models used

In the case of this study, with two reacting particles, gaseous reactions,
combustion and heavy particle loading, to introduce all aspects of the
calculation procedure at once led to an unstable solution. By introducing new
aspects of the physical situation separately, and obtaining a converged
numerical solution for each step, the “picture” of the flow pattern was built up
and the effects of different aspects of the flow were observed separately. The
result of performing the calculation in this way was a converged solution with
meaningful data. It was necessary to build the solution in steps like this to
prove the accuracy of each aspect of the solver introduced. The model was
congtructed in three steps. The first stage modelled the gas phase, setting the
conditions for the continuous phase in the vessel. Several model specifications
were made at this stage to prepare for the development of the successive
models. The second stage introduced the limestone particles as a discrete
phase coupled to the continuous phase. This was done in stages of increasing
mass injection of the particles. The third stage applied a combusting particle
with devolatilization and char combustion and full gas reactions to simulate

coa combustion and limestone calcination.

3.4.1 Turbulence

The k-e turbulence model of Launder and Spalding (1974) was used with the
constants described in that paper. Other turbulence models are available in the
Fluent software: Spalart-Almaras, Renormalization Group k-e (RNG),
Realizable k-e, Reynolds Stress Model (RSM), and Large Eddy Simulation
(LES). Thelast method is a turbulence scale filtering method, the others are
Reynolds Averaged Navier Stokes methods (Fluent Inc. 1997). For the type of
model required in this work only two of the models were considered to be
appropriate: the standard k-e and the Realizable k-e models. For afull
description of these models see the Fluent manual (Fluent Inc. 1997). The
realizable moddl is advantagous for use with separated flows, free jets and
mixing layers. A brief description of the formulation of the turbulence
transport equations for the standard k-e and the Realizable k-e models is given
in Appendix 1.
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3.4.2 Pressure Velocity Coupling

The techniques available in the Fluent code are SIMPLE (Semi-Implicit
Pressure Linked Equations), SIMPLEC (SIMPLE-consistent), PISO (Pressure
Implicit with Splitting of Operators). The SIMPLE pressure-vel ocity-coupling
scheme of Patankar (1980) was used.

3.4.3 Buoyancy

Calculation of the buoyancy effect on turbulence dissipation rate is available in
Fluent software, but the model is not considered reliable. It was not used in
any of the modelsin this thesis.

Buoyancy effects on the flow are modelled by defining the direction of
action of gravity and an operating (reference) density.

The effect of buoyancy is calculated in the momentum equation. The
density of the continuous phase is calculated by the ideal gas law and using an
ideal gas mixing law. The operating density (r op) is defined to allow
calculation of the buoyant effect. In this case the operating density is set to

atmospheric air density at the atitude of the vessel being modelled. Static

Pressure in the continuous phase is then indicated by (r -r op)gh.

3.4.4 Heat transfer

The energy equation used in Fluent is described in Appendix 1.

The conservation form of the energy equation (also known as
conservation law form, conservative form and divergence form, see Tanehill,
1997) was used in order to improve stability of the calculation in regions of
high heat exchange (i.e. where the fastest rates of reactions occur). In thisform
of the energy equation the coefficients of all derivatives are constant, or if
variable, derivatives of the coefficients do not appear elsewhere in the
equation. The non-conservative form may lead to difficulties where the
coefficients are discontinuous. Simply put in terms of the continuity equation,

the forms of the conservation and non-conservation forms are

respectively: 1:1—; +N.(rV) =0 and % +rN.V = 0. The reason for the

effectiveness of this technique is given in the Von Karmen Institute lecture
notes (Anderson, 1990).
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Conducting walls were applied at all solid boundaries except the outlet
duct, which had adiabatic walls. A constant heat flux was determined from the
heat balance of the vessel for the conducting walls as described in Chapter 4.
Fluent makes use of the Reynolds analogy applied to turbulent momentum
transfer for heat transfer with the walls.

Radiative heat transfer was modelled in a sensitivity analysis to observe
the effect on the temperature field. Radiation is modelled in Fluent using four
schemes: discrete transfer radiation model (DTRM), P-1 radiation mode,
Rosseland radiation model and the Discrete ordinates (DO) model. The
Rosseland model was used in thiswork. Since the concentration of particlesin
the precalciner results in a mass loading of approximately 1.2:1 in the main
body of the precalciner, the absorption of heat by the particlesis a significant
heat transfer mechanism. A uniform absorption coefficient was assumed over
the entire domain of the model. The justification of the assumed values for a
are presented in Chapter 6. For abrief description of the Rosseland model as
described by Fluent Inc. (1996), see Appendix 1.

The P1 model can model the effect of scattering by particles and
absorption by gases separately, but it was not used in this case since scattering
was regarded as negligible as discussed in Chapter 2 (section 2-8).

Radiation was not calculated initialy in order to simplify the
calculation. Since the gas and particle mixture is at fairly homogeneous
temperature the ssmplification was a reasonable first assumption. Radiation

modelling was done to check the effects of radiation as described in Chapter 6.

3.4.5 Materials

The constituents of the operating fluid and the material of the solid walls were
specified. Materias were selected from a database stored within Fluent/UNS.
Further properties were required to represent tyre material and Fluent allows
specification of these by the user. The material of the walls in the models was
aluminium since the sengitivity of the flow to heat transfer with the walls was
considered to be small due to the large volume of the gases and the dense

optical thickness.
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The operating fluid was specified as a mixture-template, in whichthe
user defines the component gases. Mixture-template is required where distinct
gases, evaporating species, and user defined gaseous reactions are modelled.

The viscosity was set at a constant value since the domain is essentially
isothermal, at temperatures in excess of 900°C. The reference temperature was
1100K (827°C). Thevaluesof Cp and thermal conductivity were similarly
specified.

The discrete phase materials (coa, raw meal and tyre) were selected
from a database of combusting particles. Standard materials were selected
from the database and altered to correspond to the physical properties of the
desired materials. Details of the raw meal and coal composition are presented
in Chapter 4, and the tyre material is described in Chapter 7.

3.5 Discrete phase model

The Discrete Phase Model (DPM) used by Fluent has 3 particle types: inert,

droplet, and combusting. Six physical laws applied by the code determine

behaviour of the particles. The laws that are applied to the combusting particle

type are:

= Law 1 Inert Heating — which calculates particle heating up to the
continuous phase temperature.

» Law 4 Devolatilisation — which evaporates all the volatile content of the
particle at constant temperature.

= Law 5 Surface (char) combustion —which oxidises the char content of the
particle. A specified proportion of the heat released is absorbed by the
particle to cause particle heating.

= Law 6 Inert Heating — following release of the volatile content of the
particle.

The mass ratio of particlesto gas (1.2:1) and the energy of the reactions
mean that particles will have a significant effect on momentum and enthalpy of
thegas. Thisisaccounted for in the CFD by a coupled solution, in which
interaction of the discrete phase (the particles) with the continuous phase (the
fluid) is considered. The solution technique known as the particle-source in
cell model is described in the paper by Crowe et a (1998).
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The sensitivity of the solution to the discrete phase is dependent on the
mass loading on each particle track calculated. If it istoo high, then the
solution becomes unstable. It was found that increasing the number of particle
tracks, spreading the initial injection and employing stochastic effects helped
stability. The particles in the precalciner are driven upwards against gravity by
the gas velocity. Properly representing dispersion of particles into the gas
stream gives better, more realistic interaction between the phases. It means
that the result is less dependent on many particles following a particular path.
Stochastic dispersal of the particles was employed, using the Fluent Discrete
Random Walk (DRW) model (Fluent Inc., 1996), in which random changes are
made to the turbulent component of the velocity vector, u’, in each
computational cell to alter the trgjectory of the particle track. The total mass
for each injection is then divided equally between the number of stochastic
attempts. In this case 20 stochastic attempts were found to be necessary.

The Rossin-Rammler size distribution was applied to the particles. The
size distribution is described in Chapter 4.

The Fluent software provides under-relaxation on the DPM source to
limit the effect of mass, momentum and heat exchange to the continuous phase.
The default setting of 0.5 was changed to 0.1 to obtain stable solutions.

The distance travelled by a particle before the next calculation of its
trajectory is termed the “characteristic length”. It is possible that particles will
be caught in a recirculating region of the flow. To forestall wasted calculation
time, the “maximum number of steps’ for each particle isfixed. The product
of number of steps and characteristic length is the maximum distance a particle

will travel before its calculation is terminated.
3.6 Combustion model

3.6.1 Gas Combustion

Reaction mechanisms were smulated using the Magnussen-Hjertager (1976)
eddy-mixing model. Six chemical species were included in the model: CO»,
CO, Ny, Oy, H-0 and Iv-val (the volatile of the coal). The tyre chip models

included a volatile species for the tyre material defined as styrene-butadiene
(C4Hs).
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3.6.2 Char Combustion

Coal combustion was included in the moddel. The devolatilisation rate was set
according to the data of Badzioch and Hawkesley (1970) - the standard data

available in the Fluent/UNS code. Combustion of carbon (char) was

considered as atwo step reaction (Borman and Ragland, 1998, explain the

meaning of two step reaction), first to CO, then to CO,. The diffusion-limited

rate was used, whereby the diffusion rate of the gaseous oxidant to the surface

of the particle determines the oxidation rate of the char.

3.7

Methodology for obtaining a stable solution

During the course of the CFD work, problems were experienced in obtaining a

stable solution. Successful modelling was performed in the following steps
once the mesh for the calculation had been generated:

include all gases in the model gas mixture that will be used to model all
reactions to be represented

include all combustible particle materials that will be used

specify al inlet boundary conditions as velocity inlets with gases
representative of plant gases

specify wall heat transfer rate for the precalciner main body

turn off energy, particle tracking and reaction calculations

solve gas flows in non-reacting conditions

specify injection of coa and raw meal for partial load, say 10% of raw
meal

turn on particle tracking and solve coupled solution without reactions

turn on reactions and energy and re-solve

increase raw meal injection rate in steps of say 10% and solve at each step.
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plane A-A indicated in View B. Hanging node cell refinement, shown in the top

indicated in the View A. Results were inspected and compared on the vertical
left diagram, divides each cell into eight smaller cells.
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Fig. 3-3 Block structured model of the precalciner with accelerator

section at the “throat” and corrected outlet duct height.



Update properties

Solve momentum equations

l

Solve pressure-correction (continuity) equation.
Update pressure, face mass flow rate.

l

Solve energy, species, turbulence, and other scalar
equations

l

Converged?

No

Particle
cdculation?

Jve

Particle trgjectory calculation

!

Update continuous phase source terms

Fig. 3-4 Fluent solver calculation routine. Each of the continuous phase
calculation loops is performed a fixed number of times between particle

trajectory calculations. In thisway the continuous phase solution adapts
gradually to the injection of particles.
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4  Boundary conditions, validation, and data collection

Key data for the model are presented in this chapter. Thisincludes the
determination of the boundary conditions for the CFD model, the coal data,
raw meal data and any validation data that was collected from the plant in the
course of the work.

Much of the data referred to in this chapter was derived from the annual
production statistics and the heat and mass balances at the Cauldon plant for
the year 1996. The dataincludes:
= composition and consumption of the coal and raw meal,

» the clinker production rate,
* emissions from the stack,
» heat loss to surroundings.

Since the production statistics and heat and mass balances do not
explicitly define the precalciner boundary conditions, it was necessary to
deduce the mass and heat boundary conditions for the precalciner from the
available information. Since the deduction was not intuitive, it was necessary
to present the method used to ascertain the boundary conditions in this chapter.

Characteristics of coal and raw meal are included in this chapter, since
the behaviour of a particle in the precalciner determines its effectiveness in the
real vessel. A great deal of heat exchange and mass transfer from solid to gas
isinvolved. Correctly defining the characteristics of the particles in the model
will encourage arealistic solution.

A desirable outcome of the project was to validate the data from the
model against whatever features of the precalciner flows were measurable.
Some limited measurements were performed at the Cauldon works and they

are described in this chapter.

Notation for Chapter 4

Bi Biot number

Cl calcination completed in cyclone 1 (kg s%)
C2 calcination completed in cyclone 2 (kg s)
C3 cacination completed in cyclone 3 (kg s1)
C3 calcination completed in cyclone 4 (kg s
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va
hfr

specific heat capacity at constant pressure (J kg K ™)
particle diameter (nm)

Raw meal feed to the preheater tower

Fourier number

volatile fraction of combusting type particle

initial volatile fraction of combusting type particle
enthalpy of formation of reactant species (kJ kmol ™)

enthal py of formation of product species (kJ kmol %)

hvo,v-vol €nthalpy of formation of volatile component (kJ kmol )

IN1
IN2
IN3
IN4
Ktc
Kr
Ks
Mp

4 0

—+

t1
to

raw meal injection to cyclone 1 (kg s%)

raw meal injection to cyclone 2 (kg s)

raw meal injection to cyclone 3 (kg s)

raw meal injection to cyclone 4 (kg s)

thermal conductivity W mt K1

devolatilization rate (s%)

devolatilization rate per unit area of particle (mol cm? s%)
proportion of particle sample by mass having diameter greater than D
mass flow rate (Kg s?)

mass of particle (kg)

initial total mass of particle (kg)

spread parameter of Rosin- Rammler particle size distribution formula
fluid pressure (Pa)

specific gas constant (J kg* K™)

molar gas constant (J kmol* K1)

radius of infinite cylinder (m)

BET surface area of particle (cnf mol'?)

characteristic dimension (m)

temperature (K)

time ()

start temperature (K)

temperature of surroundings (K)

end temperature (K)

ratio of current to initial volatile fraction of particle, f./fyo
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a  thermd diffusivity (nf s?)

r fluid density (kg m®)

hl  separation efficiency of cyclone 1

h2  separation efficiency of cyclone 2

h3  separation efficiency of cyclone 3

h4  separation efficiency of cyclone 4

o temperature difference at end of heat exchange (K)

g temperature difference at start of heat exchange (K)

4.1 Heat and mass balances for inlet conditions of the model

Correct specification of the model boundary conditions to represent accurately
the physical precalciner is essential. This section describes the boundary
condition assessment in detail.

The conditions at the precalciner inlets are not explicitly measured as
part of the plant data analysis. It was necessary to deduce these details from
the balance of mass using the continuity principle. The deduction of this data
was done thus:

» The oxygen analysis measured at the base of the precalciner and at the exit
from the preheater tower was noted.
» The coal delivery to the precalciner and in the kiln was determined from
the operation data.
» Theonly gases that delivered to the precalciner at the kiln gas inlet were
considered as due to the coal combustion and associated excess air.
* Negligible leakage of gasesin the tower was assumed.
= Qveral gas composition at the preheater outlet was cal culated, assuming:
¥, complete coal combustion,
% complete calcination of the raw meal,
¥, the measured oxygen content at the outlet and
¥, the nitrogen induced with the combustion air.
= Combustion product gases in the kiln were calculated, taking into account:
¥ the oxygen content at the kiln back end, which indicates the

excess air requirement and

4-3



% Nitrogen induced with the combustion air.

This directly provided the composition of the gas stream entering the

precalciner at the kiln gas inlet.

= Air supplied to the tertiary air duct was calculated by considering the

difference between the combustion air consumed overall and the kiln and

coal inlet air supplied.

Volume| Cross
0, 0, 0,

T°C | mkgls HC0; | %N | %02 |- e | section

mass | mass | mass 3 2

m°/s | aream
kiln gas inlet 1000 | 18.88 23 74 66.58 3.44
raw meal inlet 827 3.67 23 74 3 11.64 1.29
tertiary air duct 900 31.40 79 21 |106.21| 2.44
coal 70 0.34 79 21 0.34 0.01

Table4-1 Summary of inlet boundary conditions for the model.

Theinlet conditions considered for the calculation of the 1996 operation

case are presented in Table 4-1. These data correspond to plant operation at

111 tonne per hour clinker production rate. The production rate can vary

between 100 and 140 tonne per hour.

The development of the process analysis, which led to this summary, is

detailed in the following sections.

4.2 Dataused for the calculation of boundary conditions

Data from the 1996 plant production summary and heat and mass balances

were used to calculate the precalciner boundary conditions (Appendix 2). The
data used comprised:

»  EXxcess O, at the preheater tower exit, 4.1%.

»  Excess O; a the back end of the kiln, 3.2%.
» Massrate of raw meal delivery to the preheater, 47.71 kg/s.

= Losson Ignition of raw meal (CO; yield), 34%. Thisis the amount of

mass loss of the raw meal when all the limestone has calcined.

» Total process mass rate of coal, 14 tonne per hour.

= Ash content of coa asreceived, 7.9%.
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» Moisture content of coa as received, 10.6%.
» Massratio of O2/N2 in atmospheric air, 3.292.
= ratio of coal supplied to kiln and precalciner 2:3 respectively.

4.3 Cyclone mass balance for raw meal delivery to the
precalciner

The delivery rate of raw meal to the precalciner from the material drop chute

of the stage 1l cyclone is determined by the separation efficiency of the

cyclones. The plant manufacturer supplies an indication of the efficiency of

each cyclone.

Figure 4-1 indicates the flow of raw meal through the preheater tower,
cyclone efficiencies and percentage calcination at each cyclone. Raw meal
feed isF kg/s a the entry to stage 1. Thereisadust loss, which is estimated to
be 15%, from the top of stage 1. The efficiency values are stated on the
diagram for each cyclone. Percentage of calcination at each stage is indicated
by values C1 to C4, but no values are stated. The raw meal flows through the
preheater system were calculated by a ssimple spreadsheet. It isimportant for
the model boundary conditions to know how much raw meal enters the
precalciner and what percentage of that feed has calcined. Calculating the
continuity of raw meal through each of the cyclones and then solving the four
resulting simultaneous equations gave the continuity for the whole circuit. The

equations are:

INL=F + (1- h2)(IN2 - C2)

IN2 =h1(IN1- C1) + (1 - h3)(IN3 - C3)
IN3 =h2(IN2 - C2) + (1- h4)(IN4)

IN4 =h3(IN3 - C3) - C4

Equation 4-1

The solution of the simultaneous equations is quite protracted. The results of

spreadsheet solution is shown in Table 4-2. The Data section describes:

1. theraw meal feed to the preheater tower,

2. the Losson Ignition (i.e. mass lost by calcination of the limestone content),

3. the “decarb” or calcination state at exit from each cyclone and the cyclone
efficiency (i.e. the proportion of particulates that are successfully separated
from the gas stream and fall into the “drop-out” of the cyclone).
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47.47 kg/s corresponds to 170 tph of raw meal, of which approximately 20% is

shale.

Data:

Raw meal feed rate
Loss on Ignition (CO, content)
Shale content (inert)
calcination at stage 1
calcination at stage 2
calcination at stage 3
calcination at stage 4
cyclone 1 efficiency
cyclone 2 efficiency
cyclone 3 efficiency
cyclone 4 efficiency

Initial Calcium carbonate
Loss on Ignition (released CO5,)

CO; release at stage 1
CO; release at stage 2
CO; release at stage 3
CO; release at stage 4

Calculation of mass flow rate:

In to cyclones:
In to cyclone 1
In to cyclone 2
In to cyclone 3
In to cyclone 4

Drop out of cyclone:
Cyclone 1
Cyclone 2
Cyclone 3
Cyclone 4

Escape top of cyclone:
Cyclone 1
Cyclone 2
Cyclone 3
Cyclone 4

Table 4-2 Spreadsheet calculation of cyclone raw meal continuity.

47.47 kgls

34 %
10.8 kg/s
0 %

0 %
11 %
95 %
90 %
85 %
85 %
75 %

36.7 kg/s
16.1 kg/s
0.0 kg/s
0.0 kg/s
1.8 kg/s
14.4 kgl/s

56.4 kg/s
59.3 kg/s
59.0 kg/s
34.3 kg/s

50.7 kg/s
50.4 kg/s
48.6 kg/s
25.7 kg/s

5.6 kg/s
8.9 kg/s
8.6 kg/s
8.6 kg/s

The calculation of composition section presents the initial mass of calcium

carbonate, the potential carbon dioxide release from the calcium carbonate, and
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the expected CO», release at each cyclone. The mass flow rate section shows
the particle mass flow rate into the cyclones, exiting the drop out of the
cyclone (i.e. the separated proportion) and exiting the top of the cyclone (i.e.
not separated out of the gas stream). Calcination at stages1 and 2 is
negligible. The calcination at exit from stages 3 and 4 was measured. It can
be seen from the “Drop out of cyclone” mass flow rate that the amount of
material entering the precalciner (drop out from stage 3) is dightly greater than
the overall raw meal injection to the preheater tower. Thisis despite the 11%
reaction completion (i.e. 11% of the 34% L OI) by entry to stage 3 cyclone.
Sengitivity studies on the cyclone spreadsheet model showed that the
calcination or efficiency at cyclones 1 and 2 did not affect the mass entering
the precalciner. Cyclone 3 and 4 significantly affect the precalciner, especially
the efficiency of the stage 4 cyclone, since it feeds a large proportion of
calcined limestone back into the stage 3 cyclone. The mass flow into cyclones
1, 2 and 3 is sgnificantly larger than the total injection to the tower because of
the cyclone separation efficiencies.

The mass flow rate into the precalciner used in the CFD model was
55kg/s, i.e. 6.4 kg/s or 13.5% more than the cyclone model predicted. This
was due to an early assumption that the 75% efficient cyclone 4 fed 25% of the
calcined feed back into the stage 3. This was shown to be an over-estimate by
the spreadsheet, but the high value was carried through into the CFD work. It
is equivalent to 53.7 kg/s (or 193 tph) of raw meal injection to the tower, which
iswithin the operational capacity of the plant.

4.4 Calcination energy requirement and CO; release rate

determination

The energy consumption of the calcination reaction was incorporated into the
devolatilisation model of the combusting particle type applied to the raw meal
particles. The energy consumption per kg of CO, released from the raw meal
in the model was calculated from cement plant data for the ‘heat of reaction’ of
CaCO;s at 20°C, which is 422 kcal/kg of reactant. This indicates 4.017 MJKkg
of CO; released required to support the reaction. Balancing the formation
enthalpies of the components of the reaction yields a similar figure, as

indicated in the following development:
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CaCOs ® CO, + Ca0

-1,212,079 -393,776 -635,138 kJmol
The reaction energy balance produces —183,165 kJ/mol of reactant. Thisisthe
energy requirement per mole of CO; produced, or 4,162,840 Jkg of CO,. The
discrepancy of 3.5% is probably due to truncating errors in the plant data.

The rate at which the carbon dioxide is released from the raw meal by
the calcination reaction is determined in reality by the temperature and the
partial pressure of carbon dioxide in the surrounding atmosphere (refer to
Boynton, 1980). At temperatures exceeding 900°C, the partial pressure of CO»
does not affect the calcination rate and only the temperature is relevant. The
data for the Arrhenius rate equation used in the Fluent model was determined
by reference to the results of Borgwardt (1985). The effect of the partial

pressure of CO, was considered to be negligible due to the temperature in the

precalciner being generaly in excess of 900°C.

4.4.1 Calculation of the rate determining factors in the limestone

reaction rate

Fluent uses the following formulae for devolatilisation:
dm, .
e =k(m, - @- f,o)my) Equation 4-2

which can be solved as shown in Appendix 3 to give:

In(1- x) =-kt Equation 4-3
Borgwardt contains the relationship:

I(1- x) =-k,S;t Equation 4-4
The equivalence between the two formulae is obvious. Inthisway it is

possible to adapt the results of Borgwardt’s paper to the form that Fluent
requires to perform a sensible rate calculation. The activation energy of the

limestone reaction from Borgwardt is 2.05" 108 Jkmol. Relating this to the
Arrhenius rate eguation:
= e E/L O i -
k Aexp? o Equation 4-5
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with R =8314.5 Jkmol (the universal gas constant) and T is the temperature at
which the reaction occurs. Borgwardt stated the result of experiments
conducted at 670°C. The rate for the model was determined from that data as
shown in Appendix 3. According to the values from Borgwardt’ s paper, then
at 670°C therate is 3.81° 10° s*. At 900°C, in the Equation 4-5, the rate k is
0.28, which results in atime to decompose 95% of the limestone of 10.7 s.

Subsequent to conclusion of the project, the rate value was reviewed and
closer inspection of the results of Borgwardt highlighted an overlooked aspect
of the paper. This new information led to the calculation of a new rate, which
gives atime to decompose 95% of the limestone at 900°C of 14 s. The
determination of thisrate is presented in Appendix 3; it is reasonably
consistent with the rate used in the CFD models.

4.5 Coal analysis

The coal used at Cauldon is frequently analysed to determine whether the
properties are suitable for the process. A typical analysis was used to develop
the characteristics of the model coal. Two model coals were developed with
high and medium volatile contents. The medium volatile coal was based on
Upper Fregport MVD in Smoot (1993), which is a standard coal for the first
models. The high volatile coal was formulated to represent the Cauldon codl
as closely as possible. The technique used to formulate the model coasis
presented in this section. The process was to:
= Calculate consumption rate.
= Caculate the cdorific value.
= Determine the coa compositions.
» Formulate the volatile composition.
= Calculate the volatile formation enthalpy to be consistent with the calorific
value of the coal.

The typical coal analysis was:
» proximate anaysis.

¥ Voldtile 33.7%

¥4 Char 56.5%

¥ Ash 9.8%
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= ultimate analysis.

¥a carbon 71.1%
¥ hydrogen 4.1%
¥, sulphur 1.5%
¥, oxygen 3%

¥, nitrogen 1%

Y2 moisture 10.8%
¥ Ash 8.5%

4.5.1 Consumption rate and calorific value calculation

The coal consumption rate of the precalciner operating without tyresis
approximately 2.03 kg/s and the mean Gross Calorific Vaueis 30.22 MJkg.
These values were determined from the process data for the plant for 1996
adjusting the coal consumption to be moisture free since the coal is dried prior
to firing and using the G.C.V.

In 1996, the amount of as-received coal consumed was 94,640 tonnes in
atotal operation time of 6,896 hours. Thisis equivalent to 13.72 tonnes per
hour (t.p.h.) of as-received coal. Since the moisture content of the coal is
10.8% of the as-received mass, the dry coal consumption rate is 12.24 t.p.h or
3.4 kgls. Of this, approximately 60% is delivered to the precalciner, which is
2.03 kg/s.

The mean value of Gross Calorific Vaue for the dry coal is 7,218
kcal/kg or 30.22 MJkg according to the process data.

4.5.2 Proximate and ultimate analyses of the coals used in the CFD
models

The characteristics of the model coals and the Cauldon coal are compared in

Table 4-3. “Coal 17, the medium volatile coal, was used in the initial stages of

the project before afull analysis of the plant coal had been considered. “Coal

2", the high volatile coal, reflects the change to conform the model to the plant

coal. The G.C.V. isthe dry gross caorific vaue, h° is the symbol for

formation enthalpy and M; is the molar mass symbol.
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Cauldon coal Coa 1 Coal 2

G.C.V. MJkg 30.22 31.0 30.37
Ultimate, % C 90.9 81.4 90.9
(D.A.F.and H 5.2 4.5 52
N and S free) O 39 7.1 39
Proximate, % Volatile 33.7 18.6 34.5
Char 56.5 74.4 575
Ash 9.8 7 8
Volatiles M;, kg/kmol 19.98 99.98
Formula Co625Ha80048  CsgoH1330
h, Jkmol -1.18" 10° -5.89" 10°

Table 4-3 Characteristics of Cauldon coa and the two model coals.

The formulation of the coals used in the models was simplified in order
to make the numerical calculation ssimpler. Sulphur and nitrogen content were
eliminated from the ultimate analysis. Although modelling NOy and SOy is
possible it may detract from more important features of the flow. The gases
modelled for coal combustion included carbon monoxide, carbon dioxide and
water. The coal delivery was therefore modelled as consisting entirely of C, H,
O and ash only at equivaent rate to the real coal (2.03 kg/s). Thereative
proportions of the C, H and O were maintained and the ash content was the
same as the Cauldon coal.

The hydrogen and oxygen content can only be considered asresiding in
the volatile content of the coal since char is composed of carbon only in the
Fluent model. The volatile constituents were determined from this
supposition.

The formation enthalpy of the volatile material was calculated by the
residual energy required from the coa after char combustioin and the

conversioin to CO, and H,O had been accounted for.

Char reaction was modelled as first oxidising to carbon monoxide:

C +%O2 ® CO =-110,530 k¥kmol of C
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or 9.21 MJkg of char.

Then the carbon monoxide oxidises to carbon dioxide:

co +%o2 ® CO,,which yidds - 282,990 kJkmol of CO

or 10.107 MJkg of carbon monoxide.

4.5.3 Volatile composition and formation enthalpy of the medium

volatile coal

The calculation of the formation enthalpy of the volatile component for “Coal
1” was done in the initial stages of the project, and the technique used was
somewhat laborious. It is presented here for compl eteness.

“Coal 1" was assumed 20% volatile and 80% char, ignoring ash at this
stage. The cdorific value of Lower Freeport M.V.D. was taken from Smoot
(1993).

The D.A.F. composition of the coa is87.5% C, 7.7% O and 4.8% H.

74.4% of the codl is char, and this is 80% of the D.A.F. composition.
The relative proportion composition of the volatile was determined by
assuming its mass to be 20% of 1 kg of the D.A.F. composition, thus:

4.8 7.7
= H+
100 100

then: C7_%2H 4'807%6 ® CyersH1500.45 » Which has the molecular mass of

0.2

O+ 1>(;0 C, from which X is 7.5%. The composition was

M;=20.02 kg/kmoal.

The formation enthalpy of this new compound was determined using the
residual calorific value of the coal after char was allowed for.

The energy released by the char from 1 kg of the coal 1 is:
0.744" (110,530 +282,990)/12 = 24.398MJkg

The overall energy in the coa was taken as 30.98 MJKkg (in the range of
high to medium volatile bituminous coal from Fig. 2-3). The remaining 6.581
MJkg of energy must be released from the volatile reactions. The formation
enthalpy of the volatile component was required such that the complete
combustion of the combustion products released from it per kg of coal was

6.581 MJ. The reaction was perfomed in two steps:
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» Enthapy balance of the oxidation reaction of the volatile component, Iv-

vol;
lv-vol + 1.2730, ® 0.625CO, + 2.4H,0
Klv 0 -393,520 -241,830 h° kJkmol

-245,950 -580,392 h° kdkmol of lv-vol
» Therequired energy of volatilesis 6,581 kJkg of coal, or

: _g’i’:é = - 35,380 kd/kg of Iv-vol. Multiply by M, to get -708,308

kJkmol

» the enthalpy balance of the reactionis:
a h, - & h,, = (-245,950+-580,392)-(hp,vvol) = -708,308

p hf07|v_vo| = '118,034 k\J/kmOI

4.5.4 Volatile composition and formation enthalpy of the high volatile
coal

The derivation of the properties of this coal were determined in accordance

with the average properties of the Cauldon coa in 1996. The G.C.V. was

taken as 30.22 MJKkg of coa from Fig. 2-3.

In order to calculate the volatile constituents ratio of C, H and O, it was
necessary to consider what proportions of the elements were attributable to the
parts of the proximate analysis. Table 4-4 shows the ultimate moisture free
analysis, the D.A.F. analysis, the proportion of coal constituents that are part of
the volatile content, the relative proportions of volatile constituents in the

volatile content, and the char content of the coal.

Withash% D.AF.% Volaile% Volatile% Char, %
of coa of volatile

C 81.9 89 24.4 70.7 57.5
H 4.6 5 4.6 13.3
O 5.5 6 5.5 16

Ash 8 0 0 0

Table 4-4 analysis of the model coal 2.
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From Table 4-4, the volatile % of volatile of each element was divided by its
atomic mass to give the relative molecular composition as Cs goH1330. The
molecular mass of this contrived “molecule’ is then 99.98 kg/kmal.
The enthalpy of formation was found by the same method as the
medium volatile cod.
= Char oxidation to CO; produces 32,793 kJ/kg of carbon or 18,856 kJ/kg of
cod.
» Thetotal G.C.V. of thedry coa is 30,370 kJKkg, so the energy required of
the 34.5% volatile component is (30,370 — 18,856) = 11,514 kJkg of coal.

. 0 0
= The reaction enthalpy Hreac = S(h products) - S(hr reactants)
¥, for 1 kg of cod, there is 0.345/99.98 = 0.00345 kmol of

volatiles.

¥ S(hrp) =0.00345 (5.89" "393,530+6.65 "241,830)
="13,545 kJkg coal
% \ S(hg) = 13,545 - 11,514 = 2,034 kJKkg of codl.

= For 1 kmol of volatiles then, the formation enthalpy is:

¥a "2,034° 99.98/0.345 = "588,552 kJkmol of volatiles.

4.5.5 Devolatilisation constants for the coals used in the CFD models
It was important to establish the devolatilisation rate with regard to the
experimental results of other researchers. Referring to the collection of
research by Solomon et al (1992), the closest simulation of the coa
combustion happening in the precalciner was done by Badzioch and
Hawkesley (1970).

Of the model types available for the rate of devolatilisation in Fluent,
the single rate Arrhenius type simulation was used in the work throughout.
This relates to the work of Badzioch and Hawkesley (1970), and the constants
from that paper were used.

The rate equation is:

dm, .
r =k(m, - - f,o)my) Equation 4-6

and the rate constant k is determined by the equation:
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k=Aep(- E/RT) Equation 4-7

where A; (=312,000 s%) is the pre-exponential constant and E (= 7.4° 10" J
kmol'!) is the activation energy of the reaction.

4.5.6 Size distribution of the pulverised coal particles

For the modelling work, two approaches were taken for the coal and raw meal
particle size: a constant size particle, and a Rosin- Rammler size distribution.
The size was based on particle size distribution data for the coal from Cauldon
in Table 4-5.

dia, D Mp, (%) n
(mm)
500 0
250 0.1 1.28
125 4.8 1.35
90 13.4 1.42
63 27.2 1.94
45 40.3 0.48
40 45 0.71
30 53 0.75
20 67 0.90
15 72 0.86
10 80 0.88
5 90 0.94
2 96 0.97
Average value of n, 1.04

Table 4-5 Size distribution of Cauldon coal sample.

In the table, Mp is the proportion of the sample by mass with diameter grester
than D, and n is the spread parameter. These values are defined in Equations
4-8.

- D_)Q
Mo = expE> (A) p
In(- nM ) Equation 4-8
n=—-—F" D
"5
Where the Rosin- Rammler size distribution was used in the modd, the

parameters set were according to data obtained from the cement works:

= minimum diameter, 20mm
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= maximum diameter, 100mm

* mean diameter, 55mMm

» gpread parameter, n, 1.04

and where constant particle size was used, the mean particle size was taken,

55mm.

4.6 Measurements made on the real precalciner

This section describes collection of data from the plant that was used to
provide some validation of the CFD model data. Measurements described in
this section were devised for the project and performed as part of the work for
the thesis.

No routine measurements are performed at the plant within the main
section of the precalciner of gas velocity, pressure or temperature. The data
that is available from the plant is from measurements made at the inlet to the
tertiary air duct and in the stage 4 cyclone, where pressure and temperature are
monitored constantly. These measurements are of limited value to this work.
Some measurements of velocity, temperature and calcination of the limestone
were performed at access ports in the precalciner wall using methods devised

as part of the work of this thesis.

4.6.1 Position of the access ports

There are 6 inspection ports on the cylindrical section of the precalciner, which
are used for inspection during shutdown. The position of the holes is
illustrated in Fig. 4-2.

The figure shows the height of the ports at 11.4m and 20.4m from the
position used as the base of the model. The ports are identified in the plan
view as 1, 2 and 3 and this sense of numbering is maintained throughout this
section. Since the access ports are not regularly used, they had been blocked
by refractory lining so 1¥~inch holes were drilled through the 23 cm of

refractory lining for insertion of measuring probes.

4.6.2 Measurement of velocity and temperature

Velocity was measured approximately with an S-type Pitot tube that was

purged of particle build-up between measurements using compressed air from
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the on site air supply. Figure 4-3 shows the apparatus used to do this. The
Pitot tube length was 1.8m and the inside diameter of the tubes was 3.5mm.
The S-type Pitot tube has apertures facing 180° away from each other.

Calibration was performed in the lab to determine the relationship
between the dynamic pressure measured using the S-type Pitot tube and that
measured by a standard Pitot tube. For the standard Pitot tube, the dynamic
pressure and velocity are related by:

= % ru? Equation 4-9

where p is the pressure difference measured by the Pitot tube, r is the fluid
density, and U is the free-stream fluid velocity parallel to the Pitot probe. The
dynamic pressure for the precalciner measurements were then calculated from
the relationship established in the lab. The gas composition was regarded as
hot air; since the temperature was measured concurrently with the dynamic
pressure, the density was then calculable and so the velocity by rearrangement
of equation 4-9.

Temperature measurement was done using a thermocouple attached to
the Pitot tube, thus getting simultaneous vel ocity and temperature
measurement. The type of thermocouple was industrial mineral insulated
probe type K, 2m long, diameter 3mm and temperature range 0-1100°C.

The measurements from the single campaign attempted are presented in
Fig. 4-4. The error bars indicate the estimated limit of accuracy of the
measurements.

An unusua phenomenon was noticed at Hole Position 1 at the upper
measurement level, in that from time to time the differentia pressure measured
from the S type Pitot probe increased by over an order of magnitude. This
corresponded to a noticeable upward force on the end of the probe and a sound
that suggested that a stream of small particles was bombarding it.

The temperature of the precalciner shell was measured during the same
campaign using an infra-red thermometer. Measurements were made at the
heights of the access ports around the entire circumference of the precalciner.

The measurements are illustrated in Fig. 4-5. The emissivity of the precalciner
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shell surface was assumed to be 0.95, which is acceptable for an oxidised steel
surface. This value was required for calibration of the thermometer.
Discussion of these measurements has been reserved for the validation

sections of succeeding chapters with reference to the CFD model results.

4.6.3 Measurement of the calcination of limestone

The raw meal analysis is monitored at the plant hourly, since it critically
affects the quality of the clinker, which is produced at arate in excess of 100
tonnes per hour. The sample is taken before injection to the process and at the
bottom of the stage 4 cyclone (i.e. just before entry to the kiln from the
preheater tower). The constituents and Loss On Ignition (L.O.I.) are recorded.
The congtituents include: SiO,, AlL,O3, Fex0O3, CaO, MgO, SO3, N&O, K0,
and Cl. The model raw meal constituents were greatly simplified by assuming
an inert Ca0 and shale component and a volatile CO, component.

The Loss On Ignition (LOI) is measured from the mass loss when a 1g
sample is maintained at 1000°C for 10 minutes. The LOI is 35% according the
annual process summary. The LOI of the raw medl at the raw meal inlet and at
the exit from the precalciner can be used to set the initial condition of the raw
meal and to validate the data

There is an access port at the bottom of the stage 3 cyclone material
drop chute which alows collection of a sample just before entry to the
precalciner. The next suitable access port in the process is positioned at the
bottom of the stage 4 cyclone material drop chute, which alows sample
collection just before entry to the kiln. These are the closest to the two
required data.

It was important for the reaction of the l[imestone to be arrested as soon
as possible after collection. To do this, the standard sample collection pot was
fitted with a heavy steel insert with a number of holes of small diameter. The
detail drawing of the collection pot is shown in the Appendix 4. The expected
rate of heating of the heavy insert was calculated to be sufficiently low that
less than 50° C temperature rise would occur in the sampling time. The
calculated rate of cooling of the sample of limestone was in the order of one
second to below 500°C when reaction is effectively arrested. The calculation
of the heat exchange in the sample pot is detailed in Appendix 4.
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Fig. 4-1 Schematic showing the preheater tower with 4 cyclones and the
precalciner vessel. The kiln is excluded for clarity. Each cyclone has a
separation efficiency, 7, an influx of particulates, IN, and a degree of
calcination completed inside, C. The solution of the simultaneous equations
was performed in an Excel spreadsheet.
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Precolciner
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[1.4m

]

Fig. 4-2 Position of the access ports in the precalciner cylindrical section. The
height indication is relative to the zero height datum on the CFD models.
Three ports positioned in the same circumferential positions are available at
each level. The diameter of the access hole was 1.5 inches.
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Fig. 4-3 S-type Pitot tube and thermocouple apparatus. The length of the Pitot tube is approximately 1.8m. Compressed air from the plant air
line at low flow rate was used to purge the probe of blockage intermittently. Inset (a) shows the end of the Pitot probe and the tip of the 2m long

thermocouple that was attached to the probe. Inset figure (b) shows the purging air circuit.
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Fig. 4-4 Validation data from the precalciner of velocity and temperature measured at the port positions. Data was collected approximately 30
cm into the precalciner from the inside wall. Graphs of velocity, (a) and (c¢) show the vertical component, positive being upwards velocity.
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Fig. 4-5 Precalciner shell temperature measurement showing surface
temperature measured with an infra-red thermometer. The surface emissivity
was assumed to be 0.95 since the surface was partially oxidized steel.
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5 Block structured mesh using Fluent/UNS version 4.2

The model developed for use with Fluent/UNS version 4.2 is presented in this
chapter. The important features of model development are discussed and the
results of the numerical solution are presented. Comparison is made between
the results collected from the model and the measured features from the real
precalciner.

The chapter presents the development of the initial stages of modelling
with this commercial code. The characteristics observed in this model were
used to develop subsequent improved models using improved commercial
code. Thismodel also formed the basis of the tyre chip models since the

solutions obtained were found to be very stable.

Notation for Chapter 5

I Turbulence intensity

u turbulent velocity fluctuation (m s?)
Uag Mean velocity component in turbulent flow (m s

Repn  Reynolds number calculated using hydraulic diameter

5.1 Features of the model

Fluent Unstructured (version 4.2.5) was used to develop the model described in
this chapter. It is used to solve the steady state, three dimensional, fully
viscous Navier Stokes equations. The k-e turbulence mode of Launder and
Spalding (1974) is used with the constants described in that paper. Reaction
mechanisms are simulated using the Magnussen-Hjertager (1976) eddy mixing
model and finite rate devolatilisation models of Badzioch and Hawkesley
(1970) using the standard Arrhenius-type rate equation. The discretisation
scheme used was PRESTO! (PREssure STaggering Option, Fluent Inc. 1996)
for pressure as the flow was considered to be subject to high-pressure gradients
and body forces. The SIMPLE pressure-velocity-coupling scheme of Patankar
(1980) was used. Radiation was not calculated in order to simplify the

calculation. Since the gas and particle mixtureis at fairly homogeneous
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temperature the smplification is a reasonable first assumption. The mesh is
illustrated in Figure 3-1 and the mesh devel opment was discussed in Chapter 3.

5.1.1 Gas composition

Six chemical species were included in the model: N2, CO-, O,, H,O CO, and
Iv-vol (the volatile of the coal). These are listed in order of decreasing partia
pressure according to estimates of the relative proportions of the gasesin the
precalciner. The sources of these gases were the precalciner inlets and the

reacting particles.

5.1.2 Boundary conditions

The heat and mass balances of the process were used to determine the heat and
mass transfers at the boundaries of the model (Chapter 4). Three boundary
types were modelled: inlets, walls and the outlet. Details of the heat and mass
transfer used in the model at the boundaries are presented in Table 5-1.

Mass | o o
Name Abbreviation Temp. °C flow rate %0, by %N, by %CO, by
volume volume volume
kals
Tertiary Alr TAD 900 274 21 79 0
Duct
Coal inlet on
LHS Cod A 75 0.43 21 79 0
Coal inlet on
RHS Coa B 75 0.43 21 79 0
ﬁfl“é‘;*'\" eal RMI 827 36 21 79 0
Kiln Gas Inlet KGI 1100 16.5 4.7 78 17

Table 5-1Veocity inlet boundary conditions, showing gas flows only.

WALLS

The boundary at the walls of the main section (not including the outlet duct)
was modelled as a conducting wall with wall heat flux, Q=1,293 W/nt as
calculated in section 4.1.4. Considering the interaction of the particle with
walls, the coefficient of restitution at the walls was set to 0.5 in both the

" Note that the Raw Meal Inlet boundary condition is formed from an estimate of the gas bypass through
the stage 3-cyclone dropout duct.
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tangential and normal directions. The outlet duct, as a non-real part of the
geometry, was considered to produce no heat loss and so the duct wall
condition was adiabatic.

OUTLET

The condition at the outlet from the computational domain was set to
OUTFLOW, which allows exit of the gases from the domain without
specification of pressure or velocity. The requirement for this boundary
condition to be applied is that the flow is near fully developed at that point so
that the field variable gradients are near zero for all except pressure; hence the
long duct was added.
VELOCITY INLETS
Turbulence parameters for the velocity inlets were set according to the
hydraulic diameter of each inlet and the turbulence intensity, | calculated from
the standard formula

8

| = ui @0.16(Re,,)

avg

Equation 5-1

5.1.3 Particulate modelling

The two particulate types modelled represent coal and raw meal, and both are
modelled using the Lagrangian frame of reference (Fluent Inc. 1996). The
aspects of particle modelling that are applicable to both types of particle
involved in this model are described in this section.
The mass injection rate of raw meal particles to the domain was 55 kg/s

and the coal injection rate was 2 kg/s. The raw meal was injected at 1056
points across the Raw Meal Inlet. 1t was found necessary to disperse the
particles with diverging velocity components in order to obtain a stable
solution. The dispersionisillustrated in Fig. 5-1.

The coal was injected at 24 points across both of the coal inlets.

The Rossin-Rammler size distribution was applied to the particles. The

parameters were set according to Table 5-2.
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Minimum particle diameter 20m

Mean particle diameter 55m
Maximum particle diameter 100m
Spread parameter 1.04
Stochastic attempts 20
Interval length of tracking steps 10 mm
Number of tracking steps 15,000

Table 5-2 Particle size and stochastic settings.

5.1.4 Calcination modelling

The devolatililisation model of the combusting particle type was used to
simulate the calcination reaction. The single rate model was used of the
Arrhenius form, k = Aexp- (E / RT). The activation energy (E = 2.05" 10

JkgK) and the pre-exponential constant (A = 3.81" 10°®) were determined by
reference to the work of Borgwardt (1985). The amount of reaction estimated
to have occurred prior to injection to the precalciner was 20%; this was
established from the efficiency of the Stage 4 cyclone (post precalciner) which
feeds 25% of the particles entering it back into the Stage 3 cyclone and
therefore back into the precalciner. This condition was subsequently checked
by measurement and found to be 12%. When the new value was used in the
cyclone spreadsheet model described in section 4.2, it gave aflow rate into the
precalciner of 48.6 kg s* compared to the 55 kg s* used in the moddl. The
effects of thiswill be assessed in the subsequent discussion.

5.1.5 Combustion modelling
Coal combustion was included in the model. The devolatilisation rate was set
according to the data of Badzioch and Hawkesley (1970) - the standard data
available in the Fluent/UNS code. Combustion of carbon (char) was
considered as atwo step reaction (Borman and Ragland, 1998), first to CO,
thento CO,. The diffusion-limited rate was used, whereby the diffusion rate of
the gaseous oxidant to the surface of the particle determines the oxidation rate
(Baum and Street, 1971).

Data for the composition of a medium volatile coal was obtained from
Smoot (1993). The coal smulated was based on Upper Fregport MVD. The
composition of the model coal is stated in Table 5-3.
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Model

coal

Proximate andlysis (by mass, | i 18.6
%) '

char 74.4
ash 7

Ultimate analysis (by mass, carbon 87.5
%) '

hydrogen 4.8

oxygen 7.7

Calorific value (kJ/kg) 30,985

Table 5-3 Analysis of coa applied to CFD model.

5.2 Modelling results from the full model

Post-processing the results from the converged Fluent/UNS model showed
some interesting features of the flow, which aided understanding of the
operation of the plant and suggested ways in which the process could be
improved. Some of the more significant features of the flow demonstrated by
the model areillustrated using plots of particle tracks, contours and velocity
vectorsin Figure 5-2a-e. The same views of subsequent precalciner models
will be used for comparison of data in the following chapters. Each figure
shows the same view of the precalciner model, which is described with
reference to the Fig. 3-1 in view B on the section indicated as A-A. The outlet
duct is on the side of the precalciner farthest from the point of observation. All
walls and other boundaries are transparent in order to render the internal
features of the flow visible with only the outline of al boundaries visible. The
inlets are labelled on the Fig. 5-2b for clarity. A brief description of each
figure is as follows:

Fig. 5-2a. Thetrgectory of asingle raw meal particle injected at the centre of
the raw meal inlet. Six tracks are visible, each one representing a
different stochastic attempt. Particles recirculate in the vessel
before exiting through the outlet duct.

Fig. 5-2b. Thetrgectory of eight coa particlesis shown; four are injected
from Coal A on the left-hand side (the same side as the tertiary air
duct) and four injected from Coal B on the right hand side. The
trajectories appear to be smooth because the mean trgjectory of each
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particle is shown without the stochastic attempts that were
calculated.

Fig. 5-2c. Temperature contours on a single plane through the centre of the
precalciner vessdl.

Fig. 5-2d. Discrete phase devolatilisation rate, indicating yield rate of volatiles
from both the coal and the raw meal per unit volume. The model
regarded the calcination of the raw meal as a devolatilisation
reaction; the volatile being released was COs.

Fig. 5-2e. Velocity vectors on ten lines through the centre of the precalciner
vessdl, indicating a maximum vertical velocity of 39.6 m/s.

Further features of the model are illustrated in the following figures:

Fig. 5-3 Details of the raw meal behaviour in the precalciner.

Fig. 5-4 Details of the coal behaviour in the precalciner.

Fig. 55 Raw mea trgectories from groups 1, 11 and 16.

Fig. 5-6  Raw med trgectories from groups 21, 26 and 31.

Fig. 5-7 Mode datafor comparison with plant measurement data.

Fig. 5-8  Data from measurements made on the precalciner.

Fig. 59 Profiles of vertical velocity.

Fig. 5-10 Velocity vectors through the centre line of the TAD.

Fig. 5-11 Raw meal particle track and vertical velocity interaction.

Fig. 5-12 Tertiary air velocity vectors.

Useful data is available from the gas composition at the exit from the

cylindrical section as presented in Table 5-4.

Mass flow
Gas component rate at exit
(kgls)
carbon dioxide, CO, 19.680
oxygen, O, 2.892
|V-V0|, C0.625H4,800,48 0.000
carbon monoxide, CO 0.016
water vapour, H,O 0.801
nitrogen, N»  38.270
Total 61.659

Table 5-4 Gas composition at exit from the cylindrical section.
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5.2.1 Raw meal particle trajectories and calcination

The model shows that particles injected at the raw meal Inlet, (RMI), are
strongly influenced by the gases injected at the Tertiary Air Duct (TAD). Of
the mass of raw meal injected approximately 85% is driven across to the
further side. The momentum of the gases from the TAD (27 kg/s at 30 m/s) is
similar to that of the raw meal (55 kg/s at approximately 15 m/s). Figure 5-2a
shows this behaviour for one particle only. The effect of turbulence in the real
installation tends to disperse the particles in random patterns; this has been
modelled in CFD and is displayed in this figure. CFD shows that the initial
common trgjectory is toward the right hand side of the precalciner in the
conical section, despite turbulence effects. The effect of turbulenceis
significant in dispersing the particles following their passage beyond the throat
of the conical section. Thereis then significant recirculation of some particles
in the main cylindrical section before exit. The single particle with 6 stochastic
attemptsin Fig. 5-2aillustrates this behaviour, showing that particles starting at
the same point are directed to such different destinations that some rise and exit
directly and others recirculate for some time before exiting. The time araw
meal particle will take to traverse from inlet to exit thus varies considerably; an
average of 5 seconds is apparent from Fig. 5-3a, with some taking as little as 2
seconds and as much as 38 seconds. The momentum of the gas mixture drives
the particles. Therefore the model flow field illustrated in Fig. 5-2e by velocity
vectors shows why the particles are observed to behave as they do.
Recirculation of the gas on this plane is strong. On the left-hand side of the
precalciner, the downward velocity reaches 11 m/s and on the right hand side
the upward velocity reaches 20 m/s. An interesting feature shown in the
velocity vectorsisin the region of the RMI in that the vertical velocity is
completely depressed close to the raw meal injection, and next to the inlet there
isasmall downward velocity as particles “fall on to” the gas stream.

Figure 5-3b suggests that the injected raw meal is 74% calcined before
exit from the precalciner. Some care is required in interpreting this value since
the limestone content on injection was considered to be 20% reacted.

Referring to Fig. 5-3a and 5-3b, the residence time and degree of calcination by

exit depend on the release position. The release positions of the groups and the
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trajectories are shown in Fig. 5-5a-f and 5-6a-f. Group 1 (Fig. 5-5a& b) is
furthest from the centre line of the tertiary-air-duct, and Group 31 (Fig. 5-6e &
f) isclosest to it. Particle groups closer to the centre line of the tertiary-air-duct
have longer residence times and hence have calcined more before leaving the
precalciner. No measurement on the real installation has yet been performed
that can verify this. The post-processing available showed (Fig. 5-2d) the
discrete phase devolatilisation rate per unit volume from the coal and the raw
meal in one field variable. Thisincluded the Iv-vol from the coa and the CO;
from the raw meal, which was modelled as a volatile despite the true nature of
the reaction. Since the volatile content of coal was only 2.5% that of the raw
meal, the effect of raw meal volatiles, Iv-vol, can be expected to dwarf the
effect of the coal. Interpreting the Fig. 5-2d with this assumption suggests that
calcination occurs mainly toward the wall at the right hand side of the
precalciner, i.e. on the side furthest from the TAD above the conical section
Since calcination is a highly endothermic reaction, an associated region of
relatively low temperature would be consistent with a high rate of calcination.
Thisiswhat is observed in the model in Figure 5-2c, in which the region
corresponding to high calcination rate in Fig. 5-2d shows a depression to the
range 900°C to 1000°C. Energy supplied by the coal combustion reactions

maintains the temperature until the calcination reaction is complete.

5.2.2 Coal particle trajectories and combustion

The behaviour of the cod illustrated in Fig. 5-2b was consistent with the above
discussion. Coa from the inlet on the same side as the Tertiary Air Duct (Coa
A) rises and exits without recirculating; coal from the other inlet (Coal B) rises
to the ceiling of the precalciner and recirculates in the full length of the main
cylindrical section. Residence times were 0.6 to 1.0 second for coal A and 5 to
18 seconds for coa B (Fig. 4a). Volatiles were released very quickly dueto
the high temperature of the gases into which the relatively cold (75°C) coal air
stream entered, and the conversion to CO and H,O was completed before exit
from the main body of the precalciner. Char oxidation was completed before
exit from the precalciner for Coal B; 20% of the char from Coal A was not
oxidised before exit. Some CO was present at the exit from the precalciner at

0.46 ppm, confirming the presence of reacting char. The effect of the different
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residence times on the coal combustion isillustrated by Fig. 5-4b, in which the
residual mass of coal for inlet Coal A is greater than that for inlet Coal B.

5.2.3 Pressure and temperature validation
The static pressure on the model decreased from the top of the conical section
to the exit from the precalciner by 350 Pa. Measurement on the installation
indicated 400 Pa between the conical section in the precalciner and the vortex
finder (i.e. the gas outlet) of the stage 4 cyclone. The similarity suggests that
the model calculated pressure drop is the correct order of magnitude.
Temperature at the exit from the precalciner was approximately 927°C
on the model. The temperature measured in the stage 4 cyclone was
approximately 870°C under similar operating conditions (see Figure 2-1 for
position of the Stage 4 cyclone with respect to the precalciner. The heat
balance for the model precalciner indicated that there was just sufficient coal to
support the calcination reaction. It can be expected that the temperature at the
outlet from the precalciner will be dlightly higher than 900°C as suggested in

the discussion about calcination in section 5.2.1.

5.2.4 Validation of the CFD results
Validation of CFD results isimportant to give confidence to the modelling.
Limited measurements are made for process control. These do not indicate
how accurately the model has predicted the process inside the precalciner main
body since there are no probes for pressure, temperature or gas composition
installed. The high temperature makes measurement inside the precalciner
difficult and there is heavy particle loading so that probes suffer blockage. A
campaign of measurements was developed to measure flow direction by using
an S-type Pitot, and temperature using high temperature thermocouples as
described in Chapter 4. Another important measure is the state of the raw meal
at the RMI and at the exit from the precalciner. A quenching collection pot
was constructed to collect suitable samples for this purpose in order to arrest
the reaction progression in the collected sample as quickly as possible.

Initial measurements show promising correlation with the model. Six
access ports are present on the cylindrical section of the precalciner as shown

in Fig. 4-2. Three are equally spaced on the circumference at two heights; 0.6
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m above the conical section (elevation 11.42m on the model) and 5m below the
top (elevation 20.42m). The data from the model at these two heightsis
presented in Fig. 5-7. Position of access ports (1,2, and 3) isindicated on the
circumference of the precalciner in the top left diagram of Fig. 5-7a. The outlet
duct is shown bottom left of each contour plot. The view is from the top of the
precalciner. Contours of velocity in the vertical (z) direction (m/s),
temperature (°C), and particle concentration (kg/nT) are shown. Probeswere
inserted approximately 0.3 m into the flow from the edge of the refractory
lining.

All temperature measurements show good correlation to within 60°C
(Fig. 5-8a).

Accurate measurement of gas velocity inside the precalciner is very
difficult on account of the very high particulate loading. However for the
purposes of initial validation, an S type Pitot probe was used to give and
indication of flow direction in the precalciner.

The results of the flow measurements are shown in Fig. 5-8b. Thereis
considerable uncertainty in the actual velocity measurements because of the
time varying nature of the flow although greater relevance can be attached to
the relative magnitude at each measurement port and flow direction asit is
extremely unlikely that these would be wrong. Error bars on the measured
values are used to give an indication of the estimated uncertainty from the size
of the observed fluctuations. The probe blocked up with particles after a few
seconds and had to be cleared by purging with air. There was significant
unsteadiness in the velocity measurements from the probe. Neverthelessit can
be seen from Fig. 5-8b that there is generally good agreement between the
prediction of the flow velocity and the direction and relative magnitude of the
velocity indicated by the measurements.

An unusua phenomenon was noticed at Hole Position 1 at the upper
measurement level, in that from time to time the differentia pressure measured
from the S type Pitot probe increased by over an order of magnitude. This
corresponded to a noticeable upward force on the end of the probe and a sound
that suggested that a stream of small particles was bombarding it. 1t can be

seen from Fig. 5-7f that the measurement point is close to aregion in which a
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high concentration of particles occurs locally. It is possible that this region of
high particle concentration moved from time to time where the probe was
measuring.

The collection of quenched raw meal from the inlet and outlet of the
precalciner showed that the calcination reaction was 11% complete at inlet and
95% complete at the base of the stage 4 cyclone, which isin agreement with
the energy balance for the precalciner assuming complete coal combustion.
The inlet condition for the model raw mea was 20% completed. Although the
degree of completion at the exit from the precalciner was 74 % according to the
model, this is not comparable to the measurement at the base of the cyclone.
The additional path length to the base of the cyclone allows further reaction.
This path length is equivalent to the length of the duct on the model. The
degree of calcination at the exit from the duct is 85%. Predicted calcination at
exit was considered to be acceptable at this stage of the work, although since
the model indicated only 85% calcination, compared with a measured value of
95%, causes of this behaviour were sought. Full discussion of thispoint is
made in Chapter 6, section 6.9.

5.2.5 Further visualisation of the flow

Other interesting features of the model became apparent as the visualisation
techniques available in Fluent improved. These features are illustrated in the
last four figures of this Chapter (Fig. 5-9 to Fig. 5-12).

Figure 5-9a and b show vertical velocity on a selection of planesin the
riser section of the precalciner. The changes to the flow in this region are
significant. The raw meal entering at the raw meal inlet causes a significant
depression of the initial upward flowing gases, which persists up the height of
the riser into the conical section. The higher velocity gases are displaced
toward the wall on the opposite side. When the tertiary air enters, a second
high velocity upward travelling gas stream is introduced. The two high
velocity peaks persist into the conical section. When the gases enter the
conical section, this model shows that in addition to the downward
recirculation from the larger scale flow in the cylindrical section on the same
side asthe tertiary air inlet, there is also a smaller recirculation in the conical

section opposite the tertiary air inlet. Thisis more clearly shown in Figure 5-
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10 where velocity vectors are shown on lines paralel to the tertiary air inlet
centre line at various heights. A third smaller scale recirculation zone is
apparent in the section between the tertiary air inlet and the start of the conical
section.

Figure 5-11 shows how raw meal particles and the vertical gas velocity
relate together. The particles sit neatly in the depression observed in Fig. 5-9
and then are carried up in the fastest upward moving gases and then
downwards on the other side of the precalciner in the highest downward
velocity gases.

Figure 5-12 shows planes inclined at the same angle as the tertiary air
inlet at four heights to show the three-dimensional nature of the recirculation

Zone.

5.3 Discussion of the modelling results

An interesting observation follows from the foregoing analysis of the CFD
results. The coal injected at Coa A and that at Coal B follows very different
trgectories (Fig. 5-2b) and as aresult behaves very differently. Coal B is
directed up the right hand side of the precalciner vessel, in the same region
where the raw meal is seen to react at the highest rate. This coa burns at a
relatively low temperature, 900°C to 1000°C. Coal A rises through the hottest
region of the precalciner, reaching temperatures in excess of 1500°C. It
follows a general trajectory that takes it directly out of the exit and well away
from the right hand side of the vessal where the raw meal is reacting at the
highest rates. Temperatures of this order can lead to production of thermal
NOy. Coa B appearsto “work harder” than Coa A to support the raw meal
reaction. By injecting all coa at one of the two inlets the interaction of the
region of maximum heat release from the coal and the region of maximum
calcination rate of the raw meal might lead to improved heat transfer and more
efficient operation. Sensitivity analysis based on this observation was
performed as described in Chapter 6.

The recirculation of the flow and the particles in the model indicated that
the reaction time within the precalciner might be prolonged by the ensuing
increased gas residence time. Prolonged residence is beneficial for

approaching complete reaction of the raw meal in the precalciner. The rate of
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reaction was determined according to the research of Borgwardt (1985,
described in section 2.4) which was done with similar sized particles and at
similar temperatures. The reaction level of the raw meal going into the
precalciner and at the base of the stage 4 cyclone on the plant was measured.
At inlet the CO, released was 11% and at the stage 4 exit it was 95%. The
model used 20% at inlet and indicated 90% at exit from the duct. The plant
produces 83% of the CO, release and the model produced only 70%. This may
be attributable to the exit duct on the model providing less mixing than in the
cyclone that stands at the exit of the real precalciner. It may aso be

attributabl e to the finite cooling time of the samples collected, which would

alow for further reaction.

5.4 Conclusion and further study
The work done in the model of this chapter demonstrated that CFD can be used
to indicate the likely behaviour inside the Cauldon precalciner vessdl.

Investigating the causes of the behaviour observed in the model
suggested aternative operation of the precalciner by injecting al coa from one
inlet may lead to improvement in NOy reduction. Further CFD models were
thus suggested to test the sensitivity of the model to this and other changes,
which are presented in Chapter 6.

Combining the information provided by the temperature field, the coal
and raw meal trgjectories and the calcination rate produced an interesting
picture of the interdependency of their behaviour. In the model, there was a
temperature field depression opposite the TAD, which was related to the
strongly endothermic reaction of raw meal since 85% of the raw meal passed
through the region. Raw meal will yield CO; to a 100% CO, environment at
900°C. The model temperature field was drawn to 900°C in the region of high
raw meal concentration. The coal in this region, which was released from the
inlet Coal B, burned at alower temperature than the coal released from the
other inlet. The coa inlet on the cooler side supported the most intense region
of raw meal calcination rate.

A large scale recirculation zone was identified in the model in the main
cylindrical section of the precalciner. Coa from the inlet opposite the TAD

and raw meal were carried into this zone and their residence times were
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increased. This zone was directly caused by the tertiary air inlet and it
dominates the flow pattern in the precalciner. Smaller scale recirculation was
observed in the region by the coa inlet on the side opposite the TAD (Coa A
in Fig. 5-2b).

Limited measurements of velocity and temperature in the real
precalciner vessel showed reasonable agreement with the observations made
with the model results. The measurements of velocity in the upward direction
through access ports showed the same trend of behaviour as the model. An
interesting feature was observed during the measurements, which led to the
conclusion that the particle trgjectories might suffer “roping” as observed in
coal conveying pipes.

There was a significant difference between the calcination achieved in
the model precalciner compared to the measured calcination. Full discussion
of this point is made in Chapter 6.

The work in this chapter illustrated some important characteristics of the
behaviour in the precalciner vessel, which cannot be practically measured. The
usefulness of the CFD tool for thiswork is proven in its ability to make clearer
the behaviour of the vessal. Validation of results can be done by making
measurements at key positions through the precalciner wall to verify the

information produced by the model at those locations.
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(b)

Fig. 5-1 Showing the dispersion of the raw meal injections at inlet (a) from the
side and (b) looking up from the kiln gasinlet. The dispersion of the particles
at injection was necessary for stability of the CFD solution, and was considered
to redlistically represent the way that the raw meal enters the real precalciner.
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Fig. 5-3 Behaviour of the raw meal in the precalciner vessel between injection

at the
duct.

raw meal inlet and exit from the main cylindrical section into the exit
Residence time is presented in (a) and the degree of reaction achieved by

exit in (b). There are 33 injection groups across the width of the raw meal inlet
each with 32 injection streams in vertical lines. Group 1 is furthest from the

centre

line of the TAD and Group 33 is closest as illustrated in Fig. 5-5 and Fig.

5-6. Residence times were analysed over each group to show the minimum,
maximum and mean value of the group. Inspection of graph (b) gives an
approximate mean reaction completion of 70%.
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() (d)

Fig. 5-5 Raw meal trgjectories of groups released on the side of the inlet
furthest from the tertiary air inlet centre line viewed from two directions. (@)
and (b) show Group 1, (c) and (d) show Group 11, (€) and (f) show Group 16.
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Fig. 5-6 Raw meal trgectories of groups released on the side of the inlet
furthest from the tertiary air inlet centre line viewed from two directions. (@)
and (b) show Group 21, (c) and (d) show Group 26, (€) and (f) show Group 31.
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Fig. 5-10 Velocity vectors on several lines in the plane through the centre of
the tertiary air inlet. Obvious large and small recirculation zones are apparent
on the same side as and on the opposite to the tertiary air inlet.
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the TAD, which is on the opposite side from the viewpoint and view (b) is
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(b)

(©) (d)

Fig. 5-12 Isometric views of velocity vectors on four planes inclined at the
same angle as the tertiary air duct and progressively higher in the duct from (a)
to (d). The 3-D nature of the small recirculation of Fig. 5-10 can be seen.
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6  Sensitivity analysis

It is important in establishing the validity of the results presented by the model

to ensure that the conditions imposed at the boundary conditions are realistic
and that the mesh that has been used is sufficiently refined. For this case

several sengitivity cases were constructed to test the modelling conditions and
to establish the reliability of the data from the initial model.

Sec. 6-1.

Sec. 6-2.

Sec. 6-3.

Sec. 6-4.

Sec. 6-5.

Sec. 6-6.

Sec. 6-7.

Sec. 6-8.

The mesh was refined and grid independence of the solution
presented in Chapter 5 was established from the data obtained.
The effect of radiant heat transfer was considered to assess the
effect of the particle scattering and gas absorption.

Carbon dioxide yielded from the raw meal was identified separately
from that of combustion products to inspect where the raw meal
reactions were taking place more closely.

Coal was injected entirely at the inlet opposite the tertiary air duct
to test the hypothesis that the core temperature of the flame would
be reduced.

The sensitivity of the solution to the manner of raw meal injection
was checked by injecting all raw meal at the kiln gas inlet with a
velocity equivalent to the gas rising from the inlet.

The coal injection angle was changed to more accurately represent
the real precalciner.

Modifications were made to the shape of the vessel to more closely
represent the shape and to accommodate new developments in the
real precalciner.

An entirely new geometry was developed using new mesh
generation software. This model more accurately represented the
shape of the real precalciner vessel.

The conclusion of the sensitivity analysisis that the first model showed

all the important features of the fluid dynamics, the particle trgjectories and the

reactions inside the precalciner when operating with coal only.
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Notation for Chapter 6

Di’ m
Dp
h;
hio

6.1

diffusion coefficient for oxidant in the bulk (nf/sec)
particle diameter (m)

specific enthalpy of speciesi at final temperature (J kg* K™)
specific enthalpy of speciesi at 25°C (Jkg! K™)
specific enthalpy of combustion at 25°C (Jkg™)
mass rate of fuel (kg s?)

mass rate of speciesi (kg s

local mass fraction of oxidant in the gas

particle mass (kg)

number of particles per unit volume (nm®)

gas pressure (Pa)

heat input from complete coal combustion (W)
specific gas constant (J kgt K™)

stoichiometry of the char reaction equation.

time (s)

gas temperature (K)

particle temperature (K)

free stream temperature (K)

gas density (kg/nT)

particle density (kg m®)

fluid viscosity (kg mt s

Features of arefined mesh on the same geometry

An important feature of good CFD modelling is that grid independence of the
solution is established. If the mesh isrefined (i.e. the cells are made smaller so

there are more of them), then the behaviour observed by the post processing

should not change if the solution is grid-independent.

To establish grid-independence for the precalciner vessel model, afiner

mesh was developed as seen in Fig. 6-1 compared with the initial mesh in Fig.

3-1. Cdlsinthe main section of the precalciner only were refined and the total

number of cellsin the refined model was then 138,717, compared with
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previously 48,000. Mesh refinement was not performed in the exit duct, since
it has no important flow features. Refinement was aso not performed in the
lower section, since the mesh there was already relatively densely packed
compared to the cylindrical section.

Results were compared with the original model. The Fig. 5-2a-e
illustrated the significant features of the flow in the original model. Similarly
comparison of these features with the refined mesh model is presented in Fig.
6-2a-e. Two further comparisons were made considering the gas composition
and the raw meal and coal characteristics at the exit from the precalciner
cylindrical section.

Inspection of the Fig. 6-2e shows the effect of increasing the number of
volume cells in the main body of the precalciner. The velocity vectorsin the
model with refined mesh are denser than on the unrefined mesh. Referring to
Fig. 5-2e, the features of the velocity field have been preserved between the
two models. The same maximum velocity is evident within 1 m/s and the
recirculation noted in the previous section is still very obvious. The maximum
upward components of velocity on the ten lines from each figure are presented
in Fig. 6-3 for comparison and significant differences in the maximum velocity
on some lines can be seen. Line 1 isthe lowest line on Fig. 5-2e and Fig. 6-2e
and 10 is the highest. From the figures there is a dlight difference in the pattern
of velocity vectors on the lower three lines. The larger vectors are
concentrated in to asmaller area on the original model. An obvious conclusion
from thisis that “grid independence has not been proved”. However, using a
second-order “upwind” discretization scheme suggests that since the mesh
refinement is downstream of the conical section, another cause might be
responsible. Another plausible cause is the instability of the raw meal particle
tracks in the lower region as illustrated by comparing the original model in the
Fig. 5-5 and 5-6 to the refined model in Fig. 6-6 and 6-7. Inspection of the
early part of the raw meal trgectories shows significant differences. In
particular, group 16 (Fig. 5-5e,f and Fig. 6-6e,f) is more spread out across the
width of the riser duct in the original model than in the refined mesh model.
This represents the raw meal that arrives in the riser duct across the centre-
plane, so it is reasonable to assume that this behaviour is the cause of the

velocity vector differences across the central plane of Fig. 5-2e and 6-2e.
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The other flow variables in the model indicate that grid independence has
in fact been established since the differences from the original model are not
significant.

Comparing the temperature field, Fig. 5-2c and 6-2c, shows that the
pattern of the temperature field is similar and that the maximum temperatures
differ by only 73°C.

Fig. 5-2a,b and 6-2a,b show that general pattern of raw meal and coal
trajectories are similar. The overall behaviour of the coal and raw meal is best
compared by the summary of all particles' characteristics at the plane where
the cylindrical section meets the outlet duct. These data are presented in Fig.
5-3 and 5-4 and Fig. 6-4 and 6-5. Referring to figures 5-3b and 6-4b, the raw
meal reaction state at this point is similar for each model. Groups 15 to 32
show more reaction due to longer residence times, which are evident from
figures 5-3aand 6-4a. Coal behaviour is apparently identical in figures 5-4a
and 6-5a, showing that coal released from the side opposite the tertiary air duct
has a short residence time of 2 seconds compared to between 5 and 18 seconds
for coal released from the other side. The corresponding level of reaction is
indicated by the mass remaining, 7% being the ash content.

Figure 5-2d and Fig. 6-2d illustrate the raw meal reaction. The release
rate of volatile components is very concentrated on the right hand side of the
figures, showing the same characteristic in each model. The overall level of
reaction in the original model was 74% complete and in the refined model it
was 71% complete. This meansthat 11.0 kg/s of carbon dioxide isreleased in
the original model and only 10.5 kg/s in the refined model.

Useful datais available from the gas composition at the exit from the
cylindrical section as presented in Table 5-4. Comparing the gas composition
at the same plane, Table 6-1 shows little difference between the two models.
The CO; content of the models appears to not balance but the differenceis
accountable by the stochastic attempts. A summary of the mass with al
stochastic attempts shows that the raw meal yields 10.797 kg/s in the origind
moddl.

In conclusion, the observed differences between the models appear to be

due to the raw meal being driven upwards against gravity. Since the changes
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occurred in the unrefined section of the mesh, “upstream” of the refined
section, these results suggest that the original mesh was sufficiently refined to
illustrate the flow features and that the variation between the two models was

due to changes in the raw meal particle flow patterns.

Refined Mass flow
Gas component model rate rate at exit

(kg/s) (kg/s)

carbon dioxide, CO, 8.573 19.550
raw mea CO, 9.540

total CO, 18.113 19.550

oxygen, Oz 2.803 2.945

|V-V0|, C0.625H4.8OO.48 0.000 0.000

carbon monoxide, CO 0.012 0.023

water vapour, H,O 0.693 0.805

nitrogen, N2 38.799 38.482
Total 60.420 61.805

Table 6-1Gas composition comparison at exit plane.

6.2 Features of radiant heat transfer effects
Radiation heat transfer in the precalciner is affected by the high concentration
of particles. Looking into the precalciner through view-ports reveals a short
distance before the limit of vision isreached. Thisis because the particle
suspension is opticaly thick. Thisis aterm from radiative heat transfer theory
described in Chapter 2. The mass ratio of solid to gasis 1.2:1, and the density
of the particle material is approximately 2880 kg/nt. The depth of vision can
be estimated by considering the average volume of gas occupied per particle.
Consider the side of a cube of this volume and find how many particles
arranged side by side would fill the area and assume that each of those particles
is stacked to make the depth of vision. The calculation is done as follows:
* mean gas dengity is from the perfect gas law (assuming air only),
N 10°

¢ RT 287" 1173

= the concentration of particlesis 1.2 0.3=0.36 kg/n.

=0.297kg/ m?,

» the mean diameter of the particles, 55mm,
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» the mass of the particleis

© 2880 =2.51" 10 °kg

pr;r _p’ (551093
6 P 6

__ 036 14100
251" 10°%°

= the number of particles per n? is, N =
= the volume of gas per particleis UN = 697" 102 n?’.
= acube of thisvolume has side 0.9 mm
= dividing the area of the cube face by the projected area of the particle gives
an indication of the number of particles to obscure vision,
(0.9 10%)* 4/(55  10°)* p = 340
= the depth of vision is therefore 340" 0.9mm = 30 cm.
This was considered to be an over-estimate due to the turbulent flow.
Absorption coefficient values were changed in the model to ater the radiant
heat transfer equation in Chapter 3, section 3.4.4 in the form of reciprocal-
mean penetration distances, to see the effect on the temperature field. The
mean penetration distance was assumed to be between 10 and 25 cm, which is
the perceivable distance by looking into the vessel and is of similar magnitude
to the values suggested by the above calculation and in section 2.8. Results
were taken from the 10-cm case.

The temperature field isillustrated in Fig. 6-8a-c and compared with the
origina model in Fig. 6-8d-e. Temperature has been reduced in the hottest
zone at the core of the flame from 1909°C to 1561°C — areduction of 348°C.
The cases with longer penetration distance caused further reduction in the core
temperature. The effect of the absorption coefficient is then to hinder heat
transfer from the central hot core of the flame towards the walls, but to increase
the effective heat transfer between gases and particles. Thisis not surprising,
since radiative heat transfer between the gases and the particles is essential for
effective reactor operation. It is apparent that the radiative heat transfer
reduces the core temperature and so must be modelled in order to predict the
reactor temperature. The temperature at the core of the model with radiation
heat transfer was just lower than that required for therma NOx production,

whereas the previous model showed temperatures suitable for NOy production.
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6.3 Named carbon dioxide issuing from the raw meal

This technique was adopted following the inspection of the original model
results, which had a limitation in the effectiveness to show where and how
much the raw meal CO, was being released. Fluent was able to calculate a
second CO;, species as adistinct gas. It differed from the combustion products
CO- in name only, being called raw-meal-COs.

Figures 6-9a-e illustrate the behaviour of carbon dioxide in the two
models and the difference between the combustion CO, and raw meal CO..
Figure 6-9a is from the original model showing CO, mass fraction in contours
on the centre plane looking in to the outlet duct. The region of high gradient
toward the right hand side suggests that this is where most raw meal CO; is
released. Figures 6-9b and 6-9c show the effect of separating the CO, from
raw meal and combustion and the behaviour suggested by the first model is
confirmed. Comparing the sum of the raw meal and combustion CO, from the
new model to the CO; in the original shows that the total CO» content is
unchanged. |so-surfaces of the raw meal CO, are presented in Fig. 6-9d and 6-
9e. Fig. 6-9e shows that the raw meal CO; is not directly opposite the tertiary
air duct but is displaced to the left. Thisis due to the asymmetry of the raw
meal injection relative to the tertiary air inlet, which caused significant effects

in the velocity field as seen in Chapter 5, section 5.2.5.

6.4 Features of modelling all coal at one inlet
The behaviour of the raw meal reaction illustrated in the original model
showed significant differences between the behaviour of coa injected at the
two inlets. It suggested that the coal injected on the side opposite the tertiary
air inlet was responsible for supporting the majority of the raw meal reaction.
The coa on the tertiary air inlet side did not recirculate and so had a shorter
residence time in the order of 2 seconds. This caused a hot core region with
temperatures up to 1900°C in a nitrogen rich environment, which are suitable
conditions for therma NOx production. The entire injection of coal in the
model was therefore injected from the coal inlet on the side opposite the
tertiary air inlet to see what effect this would have.

The most significant result of this model was to reduce the core

temperature. Inspection of the coal condition at outlet showed that the coal
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consisted of ash only (i.e. it had completed reacting). Inspection of the results
indicates the reason for this behaviour. Looking at Fig. 6-10, the contours of
oxygen mass fraction in the precalciner are presented at several heights with
trgectories of coal released from the inlet opposite the tertiary air inlet for the
origina model (6-10a) and the one-coal model (6-10b). The coa rises through
alow oxygen region from the inlet as volatiles are released and oxidised. It
then passes over the roof and down the other side. The contours show a
significant difference in the oxygen concentration on the coa downside. Since
the contours in 6-10b show higher oxygen content, it can be seen that the coal
oxidises more efficiently in this case than in the original. The CFD code
model s the oxygen consumption of the combusting-particle-char oxidation
equation. The rate of char oxidation depends on the oxygen concentration in
the surrounding fluid:

dmp=-4pD D, myT,r,
dt PO (T, +Ty)

Equation 6-1

In addition to this evidence of changed behaviour in the model, the average
level of calcination of the raw meal at exit is found to be 78%, which isan
improvement over the original model (74%). Fig. 6-11a-e presents the
temperature distribution, volatile release pattern and velocity vectorsin this
model. The temperature (Fig. 6-11 a,b,c) shows a much reduced core
temperature of 1150°C. The iso-surfaces (aand b) show that the hottest part of
the flame is the in the region of maximum raw meal reaction seen in Fig. 6-11
(d). Thevolatile release shows that the raw meal reacts more consistently on
the right hand side of the figure, i.e. on the side opposite the tertiary air inlet.
The velocity vectorsin Fig. 6-11 (e) show the same features as the original
model showing that the flow configuration has not changed.

6.5 Raw meal injection at the kiln gas inlet

Since estimation and best guess determined the pattern of the raw meal
injection, it is unclear whether the solution was then sensitive to the choice
within reasonable limits. An alternative injection strategy was therefore
developed which was significantly different from the initial injection, but still

considered to be realistic. The aternative injection was vertically upward and
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uniformly distributed over the base of the precalciner, i.e. from the kiln gas
inlet, with velocity the same as the kiln gases. This was significantly different
since the initial trajectory of the entire injection was uniform across the inlet so
that there was no initial downward velocity and there was no initial spread of
particles. The particle size for al injections in this case was 55mm.

Figures 6-12a-d show the vertical velocity on profiles. Figures 6-12a
and 6-12b compared with Fig. 5-9a and 5-9b show that the large vertical
momentum change in the inlet region by the raw meal inlet has been
significantly reduced. This shows two things — that accelerating the raw meal
at itsinjection point involves heavy momentum exchange with the gases
entering at the kiln gas inlet, and that the gas injection at the raw meal inlet has
an un-important role in the flow features of the precalciner. Figures 6-12c and
6-12d compared with Fig. 5-11a and Fig. 5-11b show that the flow in the
cylindrical section of the precalciner is not significantly affected by the change
in raw meal injection. Thisis confirmed by the residence time of the raw meal
particles at the exit from the cylindrical section into the exit duct, which is 1.8
sec to 16.8 sec with mean value of 5.0 sec. Thisis similar to the original model
(Fig. 5-3a). Theleve of calcination in this model is 78.7% at the exit from the
cylindrical section compared to 74% in the original model. The differenceis
accountable by the more uniform interaction with the gases at 1100°C entering
from the KGI.

6.6 Alteration of the coal inlet angle

This sensitivity analysis was done following new information about the coal
inlets. In the previous models they were modelled as horizontal injections.
Thereal precalciner coa inlets are angled downwards at 30° to the horizontal.
This can be seen in the photograph in Fig. 6-13 showing the coa inlet that is on
the same side as the tertiary air inlet and the raw meal inlet.

The changes caused by this modification of the physical shape of the
precalciner were small. Figures 6-14a-f show the velocity vectors on the
vertical plane intersecting both coal inlets and near to the wall of the
precalciner in the conical section. Figure 6-14a shows the positions of the coal
inlets. Figure 6-14b shows the typical tragjectories of coal particles released at
thetwo inlets. Little change can be seen compared with Fig. 6-2b, although it
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is clear that there is an initial downward trgjectory on both sides. Figure 6-15
shows the graphs of residence time and mass remaining at exit. Thereisan
apparent anomaly in the behaviour of coa injection “Coal B,1”, which being
released from the same side as the raw meal inlet, should take a short while
only to exit. The residence time of this injection stream can reach the same
time as coa injected from the opposite side. This effect is due to the alteration
of the injection angle. Inspection of the Fig. 6-14b shows that the particles do
have a small recirculation in the middle of the cylindrical section, which did
not previously occur. This suggests that the inclination of the coal inlet on that
side encourages better mixing of the coal with the gases and that the
combustion is more complete prior to exit.

Figures 6-14c and 6-14d show the velocity vectors in the origina model
and 6-14e and 6-14f show the same for the model with the changed injection
angle. The differences between the velocity vectors can be seen. Firstly
referring to Fig. 6-14c and 6-14e, the inlet is on the same side as the downward
recirculation seen in Fig. 6-2f. Figure 6-14e shows that the initial trajectory
has been altered, but that the effect is soon dissipated in the large-scale flow of
the precalciner. On the other side (Fig. 6-14d and 6-14f) asimilar small
change can be seen. In this case the model with the injection inclined at 30°
downwards directly opposes the fast stream of hot gases rising from the kiln so
that the fast jet penetrates less distance towards the core of the precalciner.

Coal particles have a very short response time to the gases rising at the
neck of the precalciner (i.e. the section at the base of the cone). Using equation
2-12 for calculation of the momentum response time:

r,D> _2880" (55" 10°°f

=0.011sec
18m 18" 457 10°

which is the time taken for the particle to attain 63% of the free stream
velocity. Figure 6-14b bears out the evidence of the calculation since the
particle trgjectories at the new angle show only asmall initial downward

velocity before following very nearly the same trgjectory as the origina model.

6.7 Addition of an accelerator at the throat section

To keep up with the changes made at the plant an “accelerator” was inserted

into the original model. Restricting the area at the throat section at the base of
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the cone formed a section that accelerated the gas. The change to the geometry
isillustrated in Fig. 3-3. The purpose was to reduce the amount of tyre chips
falling into the tertiary air duct and so prolong the time between maintenance
shutdowns due to TAD blockage. There were 47,358 cellsin thismodel. In
addition to the change in the throat section, a modification was made to the
outlet duct height to change it from 5m to 3.5m. This restriction was made in
order to adhere to the true shape of the precalciner. The previous dimension
had been used due to error in interpretation of an unclear drawing to which no
clearer drawing was found until the final year of the project. This causes a
reduction in the outlet area of approximately 30%. That means the original
outlet was 43% too big, which means the outlet velocity will be 43% too small.
Despite the apparently worrying magnitude of this error, it should be
remembered that the key features of the flow are determined inside the
cylindrical section and in the lower section. Whether the increased velocity at
the outlet causes significant change to the flow pattern and particle residence
times in the precalciner was assessed and no significant changes were
observed.

Referring to Fig. 6-16 and 6-17, the particle residence times and level
of reaction by the time they exit from the cylindrical section is presented in
graphs for coal and raw meal. Comparing these figures with Fig. 5-3 and 5-4,
it is clear that there is significant change. The coa has hardly reacted
compared to the previous model and this appears to be caused by the reduced
residence time. The maximum temperature in the model is 1140°C. The
response of the raw meal to thisis that the reaction by exit is significantly
reduced, on average it is only about 40% reacted compared to 74% for the
original model. The pattern of the residence timesis similar to Fig. 5-3a except
that the behaviour is emphasised in the accelerator model such that groups 1-14
have dlightly shorter residence and 15-33 dightly longer. The reasons for this
behaviour can be deduced from the flow field. Figures 6-18 show the velocity
profilesin the vertical direction and sample coa and raw meal trgectories. In
the cylindrical section, the accelerator has induced a high-speed jet up to 60
m/s. Thisinduces the strong recirculation zone. Due to the location of the coal

inlets, the coal trajectories are similar to the original model, but travelling
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faster, they exit more quickly. In the case of the raw meal, the sample
tragjectory is from injection group 15, and this shows the borderline condition
between long and short residence times of the raw meal. The injections 1-14
tend to follow the same tragjectory as the particles that exit when they reach the
top of the precalciner. Injections 16-33 tend to follow arecirculation path
above the accelerator.

The effect of the constriction in the exit duct cannot be eliminated as a
cause of the low reaction levels within the vessel in this case, but the evidence
is that the intensification of the recirculation zone in the cylindrical section
results from the accelerator.

When tyre chips were modelled on this grid, the results show much
improvement in the reaction by exit. That model is addressed in Chapter 7.

6.8 Complete geometry and mesh redevelopment

A newer version of the software became available during the course of the
project, which made development of arealistically shaped model of the
precalciner possible. This new model included:

= correct connection of the tertiary air inlet to the precalciner

= correct representation of the coal inlet pipe size

= addition of araw meal “splash box”

The coal pipes were directed horizontally, since the correct cod inlet angle had
not been recognised by this stage. The mesh structure was changed to entirely
tetrahedral. It was constructed from three key sections — the coal inlets, the
central core and the remainder. The model had 191,000 cells. Figure 3-2
shows the new geometry and mesh structure.

Some difficulties were encountered during the solution of this case due
to high field variable gradients of temperature and velocity, and the heavy
particle loading, which had been a problem in the original model. The
problems were not entirely eliminated, and a satisfactory solution was obtained
for areduced flow rate of the raw meal of 60% of the full load. Without
entirely changing the mesh, further improvement to the model was not thought
to be possible. Since mesh development is time consuming, the model was not
developed further.
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The results from the successfully solved case on the new mesh showed
some interesting features not highlighted in the original model. Coal
trajectories (Fig. 6-19a) were observed to be drawn downward on the tertiary
ar inlet side of the model in to arecirculation zone at the neck and the hot
flame core was drawn in to the same flow feature (Fig. 6-19b, c and d). The
temperature range is higher due to the missing 40% of the raw meal, which

would draw energy from the flame.

6.9 Consideration of the raw meal calcination at exit

The foregoing analysis showed incomplete calcination of the raw meal. At the
immediate conclusion of the work, the reason for this was thought to be due to
the rapid exit of some portion of the raw meal. Subsequent analysis has found
afar more likely explanation for this. Scrutiny of the energy balance of the
precalciner with 100% raw meal loading shows insufficient supply of coal to
meet energy consumption. Briefly, the energy balance is presented in Table 6-
2.

Energy source Heating value MW
Energy for calcination -59.652

Coa gas heating -0.478

Raw meal gas heating -0.334

Kiln gas heating 3.207

Tertiary air heating 0

Raw meal heating -8.192

Energy to walls -0.595

Energy from coal 62.537

Sum of energy -3.507

Table 6-2Energy production and consumption in the precalciner.

Calcination energy was calculated from the data in section 4.4, using the
energy required per kg of CO, released. Gas-stream heating requirements were
calculated from inlet mass flow rate, the difference between inlet and outlet

temperature, and the specific heat capacity at the inlet temperature for an
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approximate answer. Thetertiary air was at 900°C at injection and therefore
required no hesat input to heat to the exit temperature. Raw mesal particle
heating was calculated similarly using injection mass, heat capacity, and the
difference between temperature at inlet and outlet. The energy lost to the walls
was calculated using the heat conduction rate determined in Appendix 2 and
the surface area of the conducting walls. Coal provided the energy source to
support the heat consumed. The heat added by the coal was calculated by
equation 6-2. The G.C.V. at 25°C was taken from (Table 4-3).

Q= pré}uc?(h - h,)- reaéan[? (h - h,)+ m,Dh, Equation 6-2
The sum of all the energy produced and consumed, assuming full reaction is
—3.507 MW, implying that insufficient coal was injected to support the
complete reaction of the raw meal. The expected shortfall in reaction is
calculable from the calcination energy: -3.507/-4.017 = 0.873 kg of CO,. For
100% release, 14.85 kg/s of CO, would be produced. The shortage of coal will
cause 5.9% reduction in reaction of the raw meal so that the maximum
attainable reaction is 94.1% of the injected raw meal, or 95.3% total calcination
allowing for the starting 20%.

It is interesting to note that the coa supply calculated from the
production record of 1996 in section 4.5 as 2.03 kg/s is 60% of the total 3.4
kg/s delivered to the entire process. The required extra 3.507 MW would be
made up by additional coal: 3.507/31=0.11 kg/s (approximately 5% of the
supply requirement). The required total of 2.14 kg/s of coal is 63% of the total
mass of coal supplied to the process. In practice at the plant, the balance of
coal delivery between the precalciner and kiln isflexible. The ‘rule of thumb’
is to use approximately /5 of the total coal delivered in the precalciner (as
noted in the literature review section 2.1). The actual balance is determined by
CO and O, concentration at the kiln back end, just below the precalciner. It
could be argued that the value of 60% used in the modelling work was
conservative, and the argument is supported by the calcination deficiency.
Despite the error introduced by this, it is likely that the features of the model
illustrated would not be significantly altered.
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Alternatively, recalling the excess raw meal injection according to the
cyclone spreadsheet balance, the coal would have been sufficient to completely
calcine 51.8 kg/s of raw meal.

6.10 Conclusions of the sensitivity analysis

Results of this section showed that the key features of the real precalciner were
represented well by the origina model. The main characteristics of the flow
observed in the first model were repeated in the sensitivity models.

The refined mesh model showed the same characteristics as the first
model indicating that the initial sizing of the cells and the cell distribution was
suitably chosen. The number of cells was increased from 48,000 to 138,770.
Differences in quantities observed between the two models were attributed to
the *instability’ of the raw meal trgjectoriesin the lower part of the precalciner.
The instability was indicated in the first model, and was the cause of difficulty
in obtaining a stable numerical solution. Supporting the raw meal against
gravity intuitively provides an unstable situation. The particles are likely to
move on the supporting column of fast moving air, which sweepsin to the
main body of the precalciner.

Radiative heat transfer affected the temperature field but other variables
were unaffected. Including radiative heat transfer with an optical thickness
assumed to be 10cm reduced the core temperature in the model by 348°C.
Increasing optical thickness reduced the core temperature. The radiative
scattering and absorption associated with the particles tended to hinder
radiative heat dispersion to the walls. This suggests that modelling without
radiative heat transfer gave areasonable initial indication of the temperature
field. The prediction of core temperature using 10cm optical thicknessis likely
to be more accurate. Measurements to determine the optical thickness using an
infrared pyrometer were suggested toward the end of the project. The time
available did not permit the work to be done.

The CO, release from the raw meal was successfully identified and
illustrated separately from combustion CO,. Most raw meal reaction occurred
in the region by the wall opposite the tertiary air duct as suggested by the first
moddl.
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Injecting coal in the model from the side opposite the tertiary air inlet
only changed the coa combustion characteristics and the oxygen distribution in
the precalciner. The effect was to improve the combustion efficiency. Oxygen
concentration in the region of the coal that supported most of the raw meal
reaction increased, increasing the rate of combustion in that region and thus
promoting faster calcination in the vessel. The temperature of the flame was
reduced and the core of the flame was not so obvious, since the temperature in
the entire cylindrical section was within 200°C. Making changes to the plant
to verify this effect was discussed, but the cost of plant modifications to trial
the effect was prohibitive.

Injection of the raw meal across the kiln gas inlet in the model showed
two important aspects of the injection. The model is not sensitive to the way
raw meal injection occurs, provided the particle streams are well dispersed
from each other. The raw meal injection gas quantity that leaks through the
stage 3 cyclone drop chute has only a minor effect on the flow momentum.

The flow in the cylindrical section was more symmetrical about the centre line
of the tertiary air inlet than the first model, but the change was not sufficient to
cause changes in the reaction behaviour of the coal and raw meal.

Changing the coal injection angle in the model caused a small change to
the velocity vectors in the immediate vicinity of the coal inlets. The effect was
only local and caused no significant change to the overall flow pattern. The
coal trgjectories went down dlightly at inlet but the residence time and reaction
levels by exit were not affected significantly.

The temperature field was sensitive to the addition of the accelerator in
the model and the raw meal and coal behaviour was significantly affected by
this change. This model was further investigated in the tyre chip investigation
(Chapter 7).

Changing the entire model geometry using the fully unstructured mesh
technique affected the large recirculation in the cylindrical section, but the
overal characteristics of the flow were preserved. The high temperature core
of the flame was drawn lower due to intensification of the recirculation
between the tertiary air inlet and the neck below the conical section. Coal from

the inlet on that side was drawn down into this region. The reaction of the coal
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and raw meal could not be assessed since the case was solved successfully for
60% of the raw meal loading before instability in the numerical solution
stopped progress.

Coal supply to the precalciner was found to be short by amost 10% at
the conclusion of the work. Raw meal maximum calcination at exit was 88.5%
of the total due to this. A further interesting sensitivity analysis that should be
done in future work is to check the sensitivity to fuel injection rate.

The alternative models performed for this chapter have shown that the
model responded to:
v' radiative heat transfer effects,
v' injecting all cod at theinlet Cod A,
v changing the coa injection angle,
v adding the “accelerator”
but that it was relatively insensitive to:
X mesh refinement in the cylindrical section,
X injecting all the raw meal at the kiln gas inlet,
X change of mesh to refined tetrahedral cells throughout and
X adjusting the shape of the inlets.
The model is sufficiently sensitive to show changes that affect the operation of
the plant, but is sufficiently robust against approximations used in the

numerical analysis.
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Fig. 6-1 Refined grid illustration. The mesh was refined such that cells of the
sizetypicaly found in the cylindrical section only were altered. Each cell was
refined by the hanging node method depicted in Fig. 3-1. The outlet duct was
not refined, since the flow in the duct is not of interest and no complex flow
features were found there in the previous model.
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Fig. 6-3 Comparison of maximum vertical velocities on 10 lines up the height
of the precalciner from Fig. 5-2¢ and Fig. 6-2e. Line 1 is the lowest line of on
each figure and line 10 is the highest. There is significant difference between
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Fig. 6-4 Behaviour of raw meal in the refined precalciner model. Graph (a)
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from entry at the RMI. Graph (b) shows the calcination state at exit from the
main cylindrical section, including the mean state of calcination.
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Fig. 6-5 Coal behaviour in the precalciner model with refined mesh. Coal was
released in 3 groups of 4 particle streams at each of the coal inlets, Coal A and
Coal B. Histogram (a) shows mean, maximum and minimum residence times
from the inlet to the outlet from the cylindrical section and (b) shows the mass
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Fig. 6-6 Raw meal injection trajectories viewed from two directions. (a) and

(b) show Group 1, (c) and (d) show Group 11 and (€) and (f) show Group 16.
Coloured by residence time.
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Fig. 6-7 Raw mesl injection trajectories viewed from two directions. (a) and
(b) show Group 21, (c) and (d) show Group 26 and (e) and (f) show Group 31.
Coloured by residence time.
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Fig. 6-10 Contours of oxygen mass fraction with coal particles from the coa
inlet opposite the tertiary air duct for original case (a) and the one coa inlet
case (b). The effect of removing the second coal sourcein (b) is to change the
oxygen concentration pattern in the cylindrical section, thus making oxidation
of coal injected at inlet Coal A easier.
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velocity close up with the tertiary
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Fig. 6-12 (b) Profiles of vertical
velocity close up with the tertiary
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Fig. 6-12 (c) Profiles of vertical
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Fig. 6-12 (d) Profiles of vertical
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Fig. 6-13 Photograph showing the angle of the coal pipe entering the conical
section of the precalciner wall. This section of the precalciner is approximately
26 m above ground leve.
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Fig. 6-14 Velocity vectors near the coal inlets: a showing the overview, b
shows typical coal trajectories, ¢ and d are from the original model and e and f
are from the angled coal inlet injection model.
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Fig. 6-16 Raw meal behaviour in the model with the “accelerator” section at
the throat of the precalciner. Residence times are shorter than cases without
the “accelerator” and the degree of calcination at exit is less.
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Fig. 6-17 Coal behaviour in the model with the accelerator section. It is clear
from histogram (a) that the mean time coal particles spend in the main body of
the precalciner is significantly less than in cases without the accelerator and
from (b) that they are far less oxidized on exit.
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Fig. 6-18 Showing the vertical velocity profiles ( a and b) in the accelerator
model and the particle trajectories for coal (c¢) and raw meal (d).
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1.0sec

0.5sec

0.0sec

(d)

43m/s
38m/s
33m/s
28m/s
23m/s
18m/s
14m/s
9mis

4dmis

Fig. 6-19 Features of the improved geometry solution. (a) shows typical coal
trajectories, (b) shows temperature iso-surfaces, (c¢) and (d) show profiles of
velocity in the vertical direction. This model has only 60% raw meal load.
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7 Modelling Tyre Chips in the Block Structured Model

Tyre chip modelling was carried out on the block structured model presented in

Chapter 5 and subsequently on the model with the accelerator added, described

in section 6.7. The sections in this chapter describe the modelling work and

experimental work performed to model tyre chip behaviour in the precalciner.

Sec. 7-1.

Sec. 7-2.

Sec. 7-3.

Sec. 7-4.

Sec. 7-5.

Sec. 7-6.

Sec. 7-7.

Information used to develop a good simulation of the tyre chip
injection into the precalciner is presented. This was done by
inspection of the precalciner and feeder mechanism and by
experiment.

Aerodynamic behaviour of the tyre chips was investigated in
previous work and the results are presented here. Further
experimental work was performed to determine the free-fall
behaviour of tyre chips. The results of these experiments were used
to determine the best technique for modelling tyre chip
aerodynamics.

Combustion experiments were performed to see how the tyre chips
react in the conditions likely to be found in the precalciner. The
experimental observations were used to develop devolatilisation and
char combustion models for the tyre chips.

The data for the tyre chips and injection information was used on
the model from Chapter 5 to answer the initial question posed for
the project about tyre chip fates in the precalciner.

Due to developments made on the precalciner by addition of the
accelerator presented in section 6.7, the tyre chips were modelled on
this new geometry.

The accelerator model was used to determine the best alternative
injection point for tyre chips to make decisions about further
aterations to the precalciner.

Conclusions of the tyre chip investigation.

Notation for Chapter 5

A cross section area presented perpendicular to free stream (nf)

Cua,sph drag coefficient of sphere
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Fq  drag force (N)
Re Reynolds number
U  freestream velocity (m s?)

rg gasdensity (kg ni)

7.1 Tyre chipinjection

The tyre chip injection point was determined from drawings and photographs

of the precalciner. The tyre chips are conveyed to the precalciner through a

long delivery system comprising the following:

= tyre chip hopper at ground level, which receives chips from the chipper by
a dumper truck

» bucket elevator to the height just above the conical section of the
precalciner (approximately 28m above ground level)

» screw feeder horizontally to the wall of the precalciner

= drop feed to the inlet chute

= rebound from the wall of the chute into the precalciner.

Initial tyre chip trajectories were predicted from experiment and assumptions

about the inlet chute.

7.1.1 Tyre chip inlet configuration of the precalciner
Visua inspection of the tyre chip injection chute was used to determine a range
of suitable injection velocities for the tyre chips in the CFD model.

The tyre chip delivery chuteis shown in Fig. 7-1a-d. The four
photographs were taken on the floor at the plant just above the conical section
of the precalciner. The important features have been highlighted with yellow
lines. The views shown are illustrated diagrammatically in the Fig. 7-2a-b.
Figure 7-1a and 7-1b show the wedge shape of the delivery chute, which has a
23 cm refractory lining similar to the rest of the precalciner vessel. Figure 7-1c
shows the cover of the screw feeder leading to the precalciner wall. Figure
7-2b shows a schematic drawing of the tyre chip feeder with the top of the
precalciner removed for clarity showing the refractory lining in orange. The
position of the injection point of the tyre chipsisindicated in Fig. 7-2a. The
inclination of the chute wedge is approximately 60° to the horizontal. Tyre
chips are dropped from the end of the feed screw approximately 1 m before
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striking the side of the feed chute and rebounding into the precalciner. The
entry height of the chipsis between 1.2 and 1.6m.

7.1.2 Tyre chip dispersion experiments

Tyre chips enter the precalciner through the wall in the position shown in

Fig. 7-1 and Fig. 7-2. Theinitia trgectory of the tyre chipsis not known since
they are dropped from a screw feeder approximately 1m before bouncing off of
arefractory lined steel plate at 60° to the horizontal. Typical dispersion
characteristics of tyre chips from arefractory lined surface are not available in
the literature.

Assumptions were made about the coefficient of restitution of tyre chips
on refractory, since the “bounce”’ depends on the shape of the chip aswell as
material properties. The coefficient of restitution was divided into components
parallel and perpendicular to the incident surface. The parallel coefficient was
chosen to be 0.85 and the perpendicular coefficient was chosen as 0.9 sinceit is
likely that there is significant friction between the surfaces on impact and that
the impact is elastic. The velocity is only dightly decreased in each direction.
The shape of the tyre chips and the composition with wire and rubber mixed on
the surface makes experimental determination impracticable since no uniform
and realistic criteria can be specified.

Experiments were performed, asillustrated in Fig. 7-3, with a'4” steel
plate inclined at 60° to the horizontal on to which various sized tyre chips were
dropped from a height of approximately 1m before striking the plate. A grid
was marked on the floor immediately in front of the plate. The dispersion of
the chips was determined by repeating drops and recording the point on the
grid where the chip first struck. It isthe angle of injection and the likely
injection velocity that are of interest to determine the initial behaviour of the
tyre chips. The calculation of the horizontal and vertical components of
velocity assuming the 1m free-fall under gravity before striking the plate is
detailed in the Fig. 7-3. The experiment showed the likely spread of the tyre
chips and the random nature of the bounce as illustrated in Table 7-1.
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Drop h (cm) I (cm) a deg

1 10 5 8.4
2 5 10 19.0
3 20 5 6.5
4 10 5 8.4
5 10 10 16.4
6 15 0 0.0
7 10 0 0.0
8 20 5 6.5
9 25 10 11.5
10 15 5 7.3
11 15 5 7.3
12 20 5 6.5
13 15 0 0.0
14 5 5 9.8
15 15 5 7.3
16 10 10 16.4
17 5 10 19.0
18 10 0 0.0
19 30 5 5.3
Average 8.2
Max 19.0
Min 0.0

Table 7-1 Dispersion of the tyre chips in the drop experiment.

Theanglea isindicated in Fig. 7-3. It isthe deflection of the initial
trajectory of the tyre chip from the centre line of release perpendicular to the
plate. It was determined from the point where the tyre chip first hit the ground
at co-ordinates (h,l) from the strike point as indicated in Fig. 7-3.

There are many factors affecting the initial trgjectory of the tyre chips:

» massfeed rate

= freewire on chip edges

» the surface of the delivery chute

= behaviour at the end of the screw conveyor
The modél tyre chips were assumed to behave in two ways — they either
dropped individually from the end of the screw conveyor then bounced off of
the delivery chute, or did down the delivery chute. The velocity after diding
1m down africtionless chute was determined by simple calculation. The
dispersion of the tyre chips indicated by the experiment was used for the
dropped chips. The chips were dispersed across a 34° arc from the chute entry

point and the horizontal and vertical components of the velocity were
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determined by considering the bounce from the 60° inclined plane with

assumed coefficients of restitution in the parallel and perpendicular directions.

7.2 Combustion properties of tyre chips

7.2.1 Analysis of tyre material

The work done for Blue Circle by International Combustion (1993) included
thermogravimetric analysis and trace metal composition analysis. The results
show good agreement with the published data according to Williams et al
(1990), Conesa et a (1998), and Schrama et a (1995) included in Chapter 2
(Section 2.6, Table 2-2). Since the temperatures in the precalciner are not
sufficiently high to decompose the iron wire, it was considered for this work
that the wireis part of the ash content. The ash content was disregarded
altogether and only char and volatile decomposition was considered. The trace
metals analysis is useful for emissions analysis, but was not of interest for this
thesis and was disregarded. The model tyre material comprised 37% char and
63% volatile. The volatile was butadiene, C4Hs.

7.2.2 Combustion air

No air was injected with the tyres in order to simplify the modelling process.
In this way the block-structured mesh developed for Chapter 5 provided a
suitable start point for the tyre chip model. To modify the mesh to add atyre
chute would require remodelling the geometry, which is time consuming. The
assumption of no feed air with the tyre chips is reasonable since induction of
air isrestricted by enclosure of the feed mechanism all the way to ground level
at the feed hopper. A bucket elevator is used to raise the tyre chips 30m and

then an enclosed screw feeder transports them about 5m to the delivery chute.

7.2.3 Physical aspects of tyre chip combustion

As discussed in section 2.6, some there is little experimental datain the
literature to determine a suitable model of tyre combustion rate. Experiments
were performed as part of this work to establish the characteristics of tyre
materia in an environment as similar as possible to the inside of the
precalciner vessal. Small tyre chip samples were analysed using an ashing
furnace. Chips were put into the ashing furnace at 900°C with the door of the
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furnace kept open for the duration of the test to cause circulation of air around
the sample. The progress of the test isillustrated in Fig. 7-4a-e and Fig. 7-5a-c.
It can be seen that for this 7.5-gramme sample, the flame has extinguished at
approximately 2 minutes. The analysis of the material remaining after the test
indicates that the lost fraction corresponds to the evolution of the volatile
fraction of thetyre. A pile of wire and char granules remained. The
disintegration was first to small granules of char of approximately 3-mm
characteristic dimension. The char granules had a density of approximately 70
kg/m?. Further decomposition of the char with a gas-solid reaction was
observed for between 15 and 25 minutes depending on the sampl e thickness.

A sample of a 3.36-gramme chip, which was removed from the furnace
to cool immediately after flame extinction, was inspected. The char granules
were entirely free of the wire and the structure of the initial chip had
completely disintegrated. The char granules are shown in Fig. 7-5(c). The
proximate composition of this chip is detailed in Table 7-2.

chip 3.36g | 100%
wire 0.62g | 18%
char 1.00g | 30%
loss | 1.74g | 52%

Table 7-2 Composition of test piece.

Based on the information from these experiments, the devolatilisation
rate for the tyre material in the model was decided. Using the values of the
devolatilisation constant in the available literature was not realistic since the
size of the tyre chipsin this work was so much larger. The maximum
dimension of tyre material tested in the literature was less than 3-mm (Leung
and Wang, 1999). It was decided to use the experimental observations to set
the rate of volatile yield. Since the volatiles evolved in approximately 2
minutes in arelatively static atmosphere for al chips tested, the devolatilisation
process in the precalciner with turbulent gases would occur more quickly as the
heat transfer would be greater. It was thought that the rate of decomposition
was dependent mainly on the chip thickness, which was usually within the
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range 8 to 15-mm. These ideas suggest further experimentation, but time did
not allow for this during the course of the investigation. The tyre chip
devolatilisation behaviour was modelled as constant rate over 30 seconds for
al chip sizes. Further investigations might involve the following: holding a
tyre chip with tongs through one of the access portsin the precalciner wall and
observing the increased oxidation activity; investigating the behaviour of a
larger sample of tyre chipsin the ashing furnace.

7.3 Aerodynamic properties of tyre chips

The size and shape of tyre chips were expected to determine aerodynamic
behaviour. Samples were taken and analysed twice during the work. In 1996,
the sieve size on the tyre chipper, which determines the maximum tyre chip
Size, was set to two inches. Figure 7-6a-f shows atypica sample of tyre chips
at that time. Each figure shows a 6” rule at the centre (to give an indication of
the scale), the mean mass of tyre chips in that size range, the mass used in the
model and the mass found in the sample. In 1999, the sieve size was reduced
to oneinch. A further sample was taken at that time.

Tyre chip aerodynamic behaviour in the model was determined from
experiment, theory and the features of the mathematical model available in
Fluent. Prior to the commencement of this current work, experimental
investigations had been performed in awind tunnel to determine the drag
coefficient of tyre chips (Ritter, 1995). The data was used in this project to
provide initial modelling characteristics for the tyre chips. Further
experimental work was done during this work to investigate how tyre chips
behave when they are subject to free fall under gravity supported by a vertical
stream of air. A novel technique for simulating the change from whole chip to
char granule aerodynamic behaviour was developed. In the subsequent
sections, the samples are described, previous work presented, char modelling is

defined and the new experimental work presented.

7.3.1 Tyre chip size distribution
A sample of 5 kg of tyre chips was taken in April 1997. The chips had been

cut when the knives on the chipper had been fitted for some time but were still

sharp so that the edges were well defined and overhanging wire was not

77



excessive. The sample was sorted by maximum dimension and the following
table of data was collected.

Tyre chip sizes

. Sample Mass per
Size mass (kg) % No chip (9)
6",48¢g 0.476 12 10 48
5", 31g 0.596 15 19 31
4", 30g 1.36 33 45 30
3", 169 1.222 30 78 16
2", 59 0.326 8 68 5
1", <5¢g 0.094 2
total 4.074

Table 7-3 Tyre chip size analysis

Various chips from each size category are displayed in Fig. 7-6 to indicate the
random shape of the chips. It is clear that the mass of the chips varies from the
mean since they have quite different shapes. The size dataresulted in the
distribution illustrated in Fig. 7-7a.

In addition to this sample data, a further sample in November 1999
resulted in a different size distribution illustrated in Table 7-4.

. Sample Mass per

Size mass (kg) % No chip (g)
6",30g 0.03 0.4 1 30
5",28g 0.056 0.8 2 28
4",199 0.684 10.0 36 19
3",12g 3.562 52.1 294 12
2".6g 2.284 334 386 6
1"2g 0.226 3.3 94 2

6.842

Table 7-4 Tyre chip size analysisin November 1999

and thisdataisillustrated in Fig. 7-7b.
There was an obvious shift toward smaller chipsin the later sample

illustrating the effectiveness of the changes to the tyre chipper. The change
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was made in an attempt to improve the combustion of the tyre chips, to reduce
accumulation of tyre deposits.

This data was used in conjunction with the aerodynamic data to correlate
tyre chip mass to aerodynamic behaviour. The injection rate of differently
sized tyre chips was then determined together with the aerodynamic behaviour
of that group of particles. The size distribution in Fig. 7-7awas used to set the
proportion by mass of tyre chipsin the initial models compared with the actual
asillustrated in Fig. 7-6af.

7.3.2 Previous aerodynamic experiments and models available in

Fluent

Ritter (1995) investigated the drag coefficients of various sized tyre chipsin
previous work on the Cauldon precalciner project. Experiments were
performed in awind tunnel to establish the drag coefficient. The drag was
found to be maximum when the tyre chip was presented with the largest, flat
face perpendicular to the flow (“face on” presentation) and smallest when the
area presented was least (“side on” presentation). The two orientations are
illustrated in Fig. 7-8a. The idea of the equivalent sphere, i.e. one having the
same drag properties, isindicated in the figure. Ritter assumed that spheres
having the same drag as the tyre chip in the two orientations could represent
the behaviour of tyre chips. The density of the sphere was calculated from the
volume to give it the same mass as the tyre chip. The details of the findings of
Ritter’ swind tunnel experiments are included in Table 7-5. The experiment
was conducted for a sample of ten tyre chips. The mass was recorded and the
maximum and minimum cross sections measured and recorded; the samples
were mounted in the wind tunnel in the two orientations and the drag force
measured for each. The terminal velocity of the tyre chip in each orientation is

indicated in the column to the right of each set in blue text.
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face on flow side on flow
nﬂger mass g | secton ;Z?ft diameter i;n:n? M| secion Cd()':?ﬂ diameter i;n:n?
an an an an

6 8 125 134 6.8 48 101 3.0 433 6.1 69 114

84 0 9.0 2 7.7 4 0 64 6 11.1
10 15 192 151 8.9 iy 105

0 4 6 9 119 95 6 8 16.4
9 2 278 148 105 K3} 10.7 83 234 73 107 155
8 5 36.1 106 101 46 11.8 9.0 154 6.3 196 19.6
7 26 6L . \ 14
2 y3] B
1 A »
4 4 3B

Table 7-5Results of the investigation by H.Ritter at The University of
Nottingham.

Equivalent sphere diameters were calculated using the Eq. 7-1.:

Cd,sph:a1+i ag

= + e’ Equation 7-1
e Re

where &, & and az are constants presented in Table 2-3. The drag force on the

tyre chipsin the wind tunnel is represented by the equation 7-2,

F, =C, %r JUZA Equation 7-2
Eliminating Cq from these equations and rearranging yields equation 7-3 for
determining the diameter of a sphere having the same drag coefficient as the
tyre chip (from Ritter, 1995).

2

& 0
i a2m+\/(a2m)2 - dar géasrﬂ- pEFDi
D, = ° 2 Equation 7-3
2a,r U

Ritter’ s results were used in the initial stage of tyre chip modelling.

7.3.3 Tyre chip disintegration modelling

Particles in Fluent trgjectory calculations are considered to be points with no
length dimensions and take no volume in the modelled gas — the diameter is
used only for drag force calculations. A swelling coefficient can be defined
that determines the final size of the tyre chip after complete devolatilisation.
The Fluent particle tracking routine increases particle diameter linearly with

volatile component release. It is not possible using the standard code to
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simulate particle break-up, so an alternative solution was found. Since the
devolatilisation process converts the tyre chip from whole to char granule, the
swelling coefficient can give areasonable simulation of the behaviour. The
char granules remaining after devolatilisation have approximately 3mm-
diameter and 70 kg/n? density. Using the swelling coefficient, the drag
coefficient of the tyre chip was altered to ssmulate the drag of the char granule.

The particle tracking routine caused a relatively high density sphere
representing a single tyre chip to expand to alow density large sphere to
represent the aerodynamic behaviour of asingle char granule, but the mass of
many. The acceleration response to the same flow had to be the same for the
sphere and granule. The following section illustrates the procedure used to
formulate an expression for the swelling coefficient.

Using the drag force and Newton’s Second Law:

F

F :CDErUZAaﬂda:—D

2 m,

Where Fp is the drag force and my, is the particle mass. Equating the

acceleration:

1 .2 1 .2
For _ Foq | Cop5TU A, chger A 5 ConAy _CooA,

m, M m, m, m, m,

Where the suffix g indicates granule and p indicates the swelled tyre chip.
Assuming a swelled diameter of approximately 0.4m as an initial estimate and
approximate conditions of free-stream velocity and density, the appropriate
Reynold’s number for each “particle” was calculated.

rub, _0.3710" 0.003 _
m 5 10°

Granule Re g = 180

rub, 03" 10" 0.4
5 10°

Tyrechip: Re; = =24,000

Drag coefficients were calculated using the appropriate form of the Mors and
Alexander equation for each Reynold's number (Table 2-3):
For the granule, 100<Re<1000,

_9833 2778
Re Re?

For the particle, 12,600<Re<36,000,

C, +0.3644 = 0.8249
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i 1662.5 + 5.4167 10°
Re Re?

The mass of the typical char granule was calculated from the approximate

C, = +0.5191=0.459

density, of 70 kg/nT and the approximate diameter of 3mm.
m, = %0.0033' 70 and A, :%0.0032

The mass of the fully swelled tyre chip is the initial mass minus the volatile
fraction, fyo.

m, =M ,(1- f,) ad A :%D§

Inserting these values in to the equation 1 above:

D, = 16.34M ,,(1- f,,) Equation 7-4

Equation 7-4 is the required formula for calculating the swelled
diameter of atyre chip of initial known mass and volatile content, which gives
the same aerodynamic characteristics as the char granule.

Application of this formula produced the data in Table 7-6 for the tyre
chipsinspected by Ritter (1995). Tyre chips were selected to give a summary
of the behaviour of the range of chips available. From theinitial selection of
ten tyre chips, the properties of five were used (highlighted in yellow/blue in
Table 7-5) to represent each of the size ranges illustrated in Fig. 7-6. The
method assumed that the tyre chip remained in the same orientation throughout
its track history in the model. Although thisis physicaly unredlistic, itisa
simplifying assumption that illustrates the limiting behaviour of the tyre chips.
The chips are arranged in sets of two in Table 7-6 having the same initial mass.
The first of each pair is the face on presented chip and the second is the side on
presented chip. Five groups of six side-on drag and five groups of five face-on
drag tyre chips were injected.
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Model Initial Final Swelling

chip diameter denS|t3y Initial diameter coefficient
identity (mm) (kg/m”)  mass (g) Dp (mm) Sw
tcl 88 23 8.2 209 2.38
tc2 61 69 8.2 209 3.43
tc3 89 56 20.7 332 3.73
tc4 65 142 20.4 330 5.08
tc5 81 102 28.4 389 4.81
tc6 61 230 27.3 382 6.26
tc7 93 80 33.7 424 4.56
tc8 63 255 33.4 422 6.70
tc9 137 40 53.8 536 3.92
tc10 67 344 54.1 538 8.03

Table 7-6 Calculation of tyre chip char granule model diameter and swelling
coefficient.

The final diameter is the diameter after swelling has stopped. The mass
of the char in the model tyre chip is far larger than a single char granule. The
energy contribution to the gases as the char burns required dispersal from the
single chip to simulate the release of many char granules. The issue was
overcome to some extent by using the stochastic dispersal model with twenty
stochastic attempts.

7.3.4 Experimental investigation of the whole tyre chip aerodynamics

Tests were performed in a specially constructed vertical air piperig. The

construction of thisis shown in Fig. 7-8b and photographs of the rig appear in

Fig. 7-9.

The important features of the rig were:

» Thetest section, an 8” diameter perspex pipe, was designed to enable tyre
chip behaviour to be seen

= Anupward air stream velocity of 5to 20 m/s

= A Pitot tube mounted on the top of the perspex section to measure flow
velocity

= A gauze sheet placed near the top of the perspex section, where the flow
was expected to be fully developed to support the tyre chip when the
velocity was lower than the terminal velocity

= A speed controller attached to the motor powering the fan, which was a

pulse-width modulator invertor
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» Video equipment mounted close by to record the behaviour of the tyre
chips.

Six tyre chipsin each of the 6 size ranges illustrated in Fig. 7-6 were selected

and tested in the rig. The results showed terminal velocity and qualitative

aspects of the tyre chip behaviour. The quantifiable features measured are

presented in Table 7-7.

Observed

Maximum Chip  Chip mass Chip Face-on terminal Drag Terminal
dimension number © thickness  surface velocity coefficient velocity at
(inches) (mm)  area (cm?) (m/s) Ca  900°C (m/s)
2 1 8.6 15 55 13.5 1.43 26.7
2 51 12 5 12 1.18 23.8
3 7.4 10 6 13 1.22 25.7
4 6.2 10 6 13 1.02 257
5 8.2 8 10 11 1.13 21.8
3 1 18.7 12.5 15 1.11 29.7
2 116 19 115 0.77 22.8
3 366 25 13.5 1.34 26.7
4 196 16 13.5 1.12 26.7
5 6.1 11.5 10 0.88 19.8
4 1 304 12 26 14 0.99 27.7
2 284 10 26 11 1.50 21.8
3 284 8 28 12 1.17 23.8
4 165 5 23 10 1.20 19.8
5 325 10 29 12 1.30 23.8
5 1 554 15 40 13 1.37 25.7
2 228 5 37 11 0.85 21.8
3 28 5 29 12 112 238
4 293 2 40 12 0.85 2338
5 286 10 30 12 1.10 23.8
6 1 28 3 51 10 0.92 19.8
2 30 7 27 12.5 1.19 24.8
3 423 8 48 115 111 22.8
4 658 10 52.5 12 1.45 23.8
5 393 10 36 11 1.50 21.8

Table 7-7 Results from the tyre chip flotation rig.

Tyre chips were placed on the gauze in the perspex tube and the fan
speed increased until the chip was just supported and floating freely in the air
stream. Table 7-7 shows the velocities that were observed and the drag
coefficients calculated from the velocity and the tyre chip mass and face area.
The face area was used for the calculation of Cy since the chips presented the
maximum area to the flow. The tyre chips “wobbled” on the supporting air
stream, moved around the circumference of the tube and snagged in the gauze.

Despite the instability of the motion, the general trend was that tyre chips
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present the maximum area to the flow. Thisis a useful observation since it
indicates that it is mainly the face area of tyre chips that determines drag in the
precalciner.

Another interesting feature of the results was the terminal velocity range.
The range in each group of tyre chips was the same across the whole size
range, varying between 10 and 15-m/s. The estimated terminal velocity range
in the precalciner at 900°C is 21.8 to 29.7 m/s, assuming air density calculated
using the perfect gas law. The results were used to make predictions of tyre

chip destinations within the precalciner.

7.4 Original model with tyre chips added

The initial model developed to include tyre chips was based on the model
described in Chapter 5. The coa mass injection rate was reduced and tyre
chips were added. The properties of the tyre chips were set according to the
data in the preceding sections. The injection point was set according to

Fig. 7-2. Tyre chip injection velocities were set to the diding tyre chip velocity
in one case and to the dropped tyre chip velocity in the second. The results of
the CFD models showed the likely trajectories of the tyre chipsin the two
orientations with the two injection conditions.

The injection point of the tyre chipsisillustrated in Fig. 7-10a-c. Figure
7-10a shows the point of injection from a side position. Figure 7-10b and ¢
show the initial trajectories of the dropped and dliding injection respectively
from the top. The first models assumed the tyre chips travelled in the direction
of the feed screw. A spread of 34° was applied to the dropped chips to
simulate the behaviour observed during the chip dropping experiment in
section 7.1.2. Chips were injected with the characteristics in Table 7-6. The
proportion of mass injection for each of the five sets of two chips was set
according to Fig. 7-6 to give a size distribution similar to the first samplein

section 7.3.1.

7.4.1 Temperature field effects of tyre chips

The temperature in the precalciner vessel modelled with tyre chips present was
similar to the temperature with coa only asillustrated in Chapter 5. However

the change due to the tyre chip injection is obvious in parts of the vessel. For
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example, a new high temperature region can be seen, referring to Fig. 7-11 a
high temperature region is present directly below the initial release point of the
tyre chipsin both cases with the sliding chips and the dropped chips (Fig. 7-11
illustrates the dliding entry case). The high temperature region is consistent
with the initia trgectories of the tyre chips, which tend to roll around on the
wall in the conical section. Figure 7-11 (c) shows the concentration of the tyre
volatile material on six horizontal levels in the conical section showing that a

large amount of volatilesis released in that region.

7.4.2 Model explanation of tertiary air duct blockage

The most interesting information from the results of the coupled CFD
calculations was the trgjectory history of each of the tyre chip group injections.
Figures 7-12 and 7-13 show the tragjectories of the dropped and dliding entry
tyre chips respectively. For the dropped tyre chip injection, numbers 4 to 10
predicted that one trgjectory entered the tertiary air inlet. Severa other
injection points were assessed using non-coupled tyre trgjectories in order to
determine whether tyre chips entered the tertiary air inlet under other
circumstances. Once the tyre chips had gone past the initia trgectory and
were influenced then only by the gas momentum, no tyre chips entered the
tertiary air inlet regardless of initial injection point in the precalciner. The
deduction from this observation is that tyre chips can only enter the TAD if
they are directed toward it upon injection with sufficient velocity to overcome
the drag of the tertiary air. The result of thisis blockage after three-month’s
operation similar to that illustrated in Fig. 1-5¢c. The model suggested that one
of the six trgjectories of injections 4 to 10 went into the tertiary air inlet. This
represents sizes 4” and above in Fig. 7-7, the amount of tyre chips faling into
the tertiary air inlet is approximately 10.3%, of which about 12% is ash.
Applying aredlistic feed rate of 2 tonne per hour for three months, this
indicates a build up of about 17 tonnes of tyre debris. Assuming thisiswire of
density 7000 kg/nt, the volume is 2.5 n?. With reference to Fig. 1-5¢ in the
1.8m diameter tertiary air inlet, this appears to be a reasonabl e estimation of
the build-up.
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7.4.3 Model explanation of tyre material build-up on walls

Inspection of the inside of the precalciner during shutdown also showed that
tyre chip wire collected in “nest” shaped bundles on the conical section walls.
The CFD mode predicts this behaviour. Initially all dropped tyre chips first
rebounded off of the conical section wall opposite the injection point before
proceeding into the main stream of the precalciner gas flow. In practice, with a
rough refractory surface, sticky, hot tyre chips yielding sticky volatiles might
well stick to the surface until the volatiles were yielded and in this way a nest
may build up. Smaller tyre chips tended to circulate on the conical section
opposite the tertiary air inlet, illustrated in Fig. 7-12, while the volatile
component was released. In the case of drop injected tyre chips, only
injections 1 to 3 behaved in thisway. Of the sliding entry chips (Fig. 7-13), all
the face on presentation chips and the two smallest side on presentation chips
circulated on the conical section wall. The initial trgectory in this case caused
the chips to rebound from the conical section wall directly below the injection
point. Thus there are three regions on the conical section wall where tyre chip
build-up was predicted by the model. Further tyre chip wire deposition was
evident at the exit duct connecting the precalciner to the stage 4 cyclone.
Inspection of Fig 7-12 and Fig. 7-13 shows that thisis likely to be caused by
the tyre chips landing there after being carried upward by the main stream

gases in the precalciner and dropping out into the exit duct.

7.4.4 Model explanation of reduced kiln NOx due to tyre chips

A large proportion of the larger tyre chips penetrate the neck of the precalciner
and fall into the kiln as shown in Fig. 7-12 when the drop tyre chip injection is
considered. Measured NOy level changes at the back end of the kiln indicate
that thisislikely. Process data shows that the introduction of tyre chips to the
process resulted in an improvement of the back end NOy as also noted at other
plants (section 2.2.4). A decrease in NOy measured at the back end is
consistent with tyre chips falling into the kiln directly from the base of the
precalciner. Thisis because of the large amount and rate of volatile release
from each chip, which creates alocal reducing environment, which converts
NOx products produced in the kiln into harmless combustion products (section
2.2.3).
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7.4.5 Effect of tyre chips on calcination of the raw meal

The raw meal reaction level and residence times for the dropped entry

condition are shown in Fig. 7-14 and those for the sliding entry condition in

Fig. 7-15. The residence times are little changed by the addition of the tyre

chips since the aerodynamic characteristics of the flow are not greatly affected

by the changes in combustion. The reaction level in both cases was

approximately the same as the mode without tyre chips, i.e. 74% in the

origina model to 74% in the sliding entry case and 71% in the dropped entry

case. The behaviour is of similar form. Some of the chips exit through the kiln

average

18.6
22.0
16.9
2.6
29
24
5.0
23
9.9
22

QOWwoo~NOO UL, WN -

AN

maximum minimum
time (sec) time (sec)

26.8
30.3
24.7
3.3
4.0
2.7
14.2
2.6
16.4
2.5

start

end mass

volatiles

volatiles

consumed consumed

(a) Dropped entry tyre chips

average maximum minimum
time (sec) time (sec) time (sec) mass (kg)

19.7
61.6
37.1
28.1
24.1
2.8
23.3
2.7
29.1
2.5

QUOWO~NOULDWNPE

[InN

50.0
118.2
52.2
41.8
46.6
2.9
46.5
2.8
45.0
2.6

time (sec) mass (kg) (kg) (ka) (%)
10.0 0.020 0.012 0.008 62%
12.9 0.020 0.011 0.009 73%
3.6 0.083 0.045 0.038 73%
1.2 0.083 0.079 0.004 8%
1.3 0.083 0.079 0.005 9%
1.2 0.084 0.080 0.003 7%
1.3 0.036 0.033 0.003 14%
1.2 0.037 0.035 0.001 6%
1.4 0.029 0.023 0.006 32%
1.2 0.029 0.028 0.001 5%

Overall 0.504 0.079 25%

volatiles  volatiles
start end mass

(kg) consumed consumed
(ka) (%)
11.1 0.020 0.011 0.010 77%
21.0 0.020 0.008 0.012 94%
22.6 0.083 0.033 0.050 96%
14.7 0.083 0.039 0.044 85%
18.0 0.083 0.046 0.038 72%
2.8 0.084 0.079 0.005 9%
14.2 0.036 0.021 0.015 68%
2.7 0.037 0.034 0.002 9%
24.5 0.029 0.013 0.016 89%
2.5 0.029 0.027 0.002 8%

Overall 0.504 0.194 61%

(b) Sliding entry tyre chips

Table 7-8 Datafor tyre chip exit behaviour.

gasinlet (chips 6, 8, and 10 in Fig. 7-13). The release of energy from those

tyre chipsisincomplete. Table 7-8 shows the exit behaviour of the sliding and
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dropped entry tyre chips. Relating this table to the Figs. 7-12 and 7-13, tyre
chip destinations were different in the two cases, and this affected the residence
time, which affected the amount of reaction. Most tyre chips were in the
precalciner for less than the 30 seconds for devolatilisation. The data shows
that the overall volatile release in the precalciner is significantly less for the
drop injected tyre chips. Inspection of the trgjectories shows that more chips
falling into the kiln in that case caused the effect. In practice, the tyre chips
that fall into the kiln deliver their energy into the system as they will burnin
the hearth of the precalciner, at the join with the kiln.

7.5 Accelerator model with tyre chips

The accelerator described in Chapter 6 was added to the plant at the same time
as the alteration to smaller chip size described in section 7.3.1. The mass
injection of the chips was changed in the model to reflect the change in the
chip size distribution. In this case only tyre chips in the smaller size ranges up
to 4” maximum dimension were considered and the size distribution illustrated
in Fig. 7-7b was used in the model. The rate of tyre chip injection to the model
was 1 kg/s with 1.5 kg/s of coal injection.

Operational changes at the plant were noticed when the accelerator was
added and the tyre chip mean size was reduced. Lesstyre chip materia entered
the kiln back end viathe kiln gasinlet. Evidence of this was the reduction in
tyre material build-up at the back end and an increase of the NOy measurement
at the back end probe since back end NOy is effectively reduced by the
presence of tyre material. More char and wire from the tyre chips was
collected in the raw meal sample at the exit from the stage 4 cyclone than
before, indicating greater carry-over of tyre materia from the precalciner to the
stage 4 cyclone.

Results from the model showed that the tyre chip reaction and
aerodynamic behaviour in the vessdl is different from tyre chips in the model
of section 7.4. The table 7-9 compared with table 7-8 illustrates that for the
dropped tyre chips in both models, the accelerator model improves the
residence time and volatile release of the tyre chips. Figure 7-16 supports the
data by showing that the first six tyre chip sizes circulated in the cylindrical
section more than in the previous model illustrated in Fig. 7-12. Figure 7-17a
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and b show how the accelerator tends to prevent tyre chips from entering the
tertiary air duct. The right hand injection group is blocked from directly
heading towards the TAD in Fig. 7-17a. It was found that the only way to get
tyre chipsinto the tertiary air duct was along avery small range of likely
injection trajectories based on the dropped chip data. Once chips were beyond
the effects of the initial trgectory, they did not enter the tertiary air duct.
Figure 7-17b shows that one injection of the group (on the right hand side)
entered the tertiary air duct. Figure 7-16a shows that the chip was prevented
from doing so by the accelerator being in the way.

volatiles volatiles

Average maximum minimum start end mass
consumed consumed

time (sec) time (sec) time (sec) mass (kg) (kg)

(ka) (%)

1 193 40.6 7.6 0.1668 0.105 0.062 59%
2 225 41.2 6.2 0.1665 0.095 0.071 68%
3 279 40.1 171 0.2802 0.126 0.154 87%
4 6.3 121 13 0.28 0.245 0.035 20%
5 59 13.9 14 0.0498 0.044 0.006 19%
6 101 26.8 2.3 0.05 0.040 0.010 32%

Overall 0.9933 0.338 54%

Table 7-9 Reaction of the dropped tyre chips in the accelerator model.

Additional improvement was caused by the shift of mass distribution to the
smaller chips since larger chips were found to be harder to support against
gravity. The carry over of tyre chip trgjectories into the stage 4 cycloneis
improved for the accelerator model, illustrated in Fig. 7-16, compared to the
model without accelerator, illustrated in Fig. 7-12 and Fig. 7-13. Improved
carry-over of tyre chips was indicated by observations at the plant of increased
tyre debris found in the routine collection of raw meal at the base of the stage 4
cyclone.

Raw meal behaviour in the “accelerator” model is shown in Fig. 7-18.
Coal and tyre chip residence times and reaction levels at exit are indicated in
Fig. 7-19. The corresponding reaction and residence time of the raw mea in
this case showed behaviour different to the previous tyre chip model (section
7.4) and the accelerator without tyre chip model (section 6.7 in Fig. 6-16 and 6-
17). The residence times in the accelerator models are similar, but the level of

reaction is quite different. In the cases with the accelerator, reaction is
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significantly increased in the model with tyre chips (70%) compared with 30%
for the model with coa only. The reason for this is the generation of energy
caused by the tyre volatile material in the gaseous phase. The resulting

increase in temperature from 1140°C (in the accelerator model without tyre

chips) to 1470°C caused the cod to react fully in its short residence time.

7.6 Accelerator model with alternative tyre injection positions

The permitted rate of tyre usage at the works was increased by the
Environment Agency during the course of this work, and methods of injecting
increased amounts of tyre chips into the precalciner were sought. It was
thought that an alternative injection position could be found using the CFD
models. A number of alternative injection points for tyre chips were
investigated in order to determine the best point of injection for additional tyre
chipsinto the precalciner. The range of tyre chips described in section 7.5 was
used and the injection was considered as dropped. The points of injection were
decided before testing as follows:

» at the same height as the current tyre chip injection (approximately 1.5m
above the start of the cylindrical section) at 8 equally spaced points on the
circumference of the cylindrical section

» at anincreased height of 5m from the current injection position at 8 equally
spaced points on the circumference of the cylindrical section

= at 10 points on the roof 0.3m from the circumference of the cylindrical
section with a downward velocity of 0.2m/s and a separating velocity
between the first and last injection of each group of 0.1m/s.

These trial positions for the model were selected by considering the physical

limitations of delivering the chips to the precalciner and by inspection of the

CFD results with the current tyre position. The injections were performed un-

coupled from the continuous phase on the model with tyre chips used in section

7.5. Inthisway the likely trajectory of the added tyre chips would be seen

without the effect on the gases. A coupled solution was not attempted due to

the large number of cases it would involve for each new separate injection in
the short time scale of alowed for the work. Since the trgjectory of each new
injection and the resulting residence times were of interest and the total energy

required for the balanced reaction was aready present from the coupled
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solution of section 7.5, the process used was the most efficient for the task. It
was sufficient to show the features of interest, which were to investigate the
likely trgjectory of the chips, to see which would have a good residence time in
the precalciner and would mix well with the raw meal.

Residence times and final destination of the tyre chips for each of the
new injection points were analysed. A full list of the datais provided in the
Appendix 5 to support the information supplied by the following figures.

A cursory examination of injection velocity variation suggested that it is
not critical to final trgjectory within the limits investigated. Further

investigation is recommended.

Behaviour of chips injected at the current height (Fig. 7-20a-f)

Figures 7-20e,f show that the larger chips (about 10% of the tyres by mass)
always enter the kiln. A good proportion of the 3" chipsinjected at points B,
D, and | (Fig. 7-20c,d) escape through the outlet.
The following residence times and destinations were observed:
<2’ chips 7-69 sec al exittoSt4
<3" chips 7-71 sec; D exitsto St 4;

B&I-4of 6exitto St4;
<4" chips N/A All exit to kiln.
Injection at current height indicated that al large tyre chips (10% of chips) exit
to the kiln regardless of circumferential position. If the largest 10% are
ignored then point D is a good injection point and points B and | may be
acceptable.

Behaviour of chips entering at height +5m (Fig. 7-21a-f)

These results show that the 4" chips tend to exit through the kiln except for
injection at points D, and F.
The following residence times and destinations were observed:
<2" Chips 6-50 sec; all exitto St 4.
<3" chips 7-66 sec; D & Jexitto St 4;
H& I -5o0f 6exitto St 4,
B,F& G-4of 6exitto St 4
<4" chips 8-43 sec D exitsto St 4; F- 4 of 6 exitto St4
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Injection at height +5m indicates that all chips exit St 4 from point D and that
point F may be acceptable, including the largest chips. If the largest chips are
ignored then points B, F, G, H, | and J may be acceptable.

Behaviour of chipsinjected at the roof (Fig. 7-22a-f)
The smaller chips (Fig. 7-22a,b) respond quickly to the gas flows; they "fall

over" the high velocity region and head for the throat section. D and F
injections "short circuit” to the exit duct. The results for the other two tyre chip
sizes (3 and 4") show that the positions H, | and J result in chips falling into the
tertiary air and raw meal inlet.
The following residence times and destinations were observed with exception
of D and F injections:
<2" Chips 8-49 sec dl exitto St4
<3" chips 9-83 sec A,B,C G&lexittoSt4

E& J-50f 6exitto St 4

H-4of 6exitto St 4
<4" chips 8-72 sec C& GexittoSt4

B-50f 6exitto St4

| & J-40of 6exitto St 4

E-3of 6exitto St 4

A-lof 6exittoSt4
Roof injection restricted the number of chips exiting via the kiln since the
model shows that chips do not exit to the kiln. The results showed that tyre
chips should never be injected in the region close to the stage 4 cyclone exit
duct at the roof of the precalciner because chips <3" will short circuit to exit in
4-5 seconds. The central position on the roof is impracticable because of the
relatively weak roof structure. Positions H, | and J should be avoided since
chips released there fal to the kiln. The best injection points from the roof
appear to be at G and C since al chips released from these points exit to the
stage 4.
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Injection in the raw meda inlet

Injection of chips at the raw meal inlet results in chips <2" rising to the St 4

exit and al others falling to the kiln.

Stochastic (random turbulence) effects

The height +5m injection was performed with 20 stochastic attempts,
effectively multiplying the number of injections by 20 to 120 chips. The
destination of these chipsis recorded in Appendix 5 and can be compared with
the data for the height +5m injection, to show that the proportion of chips
exiting alternative boundaries is consistent with a larger sample. No residence

times were determined due to time constraint of the project.

7.7 Conclusions

The results of the work described in this chapter demonstrated a successful

technique for modelling tyre chips in the Cauldon precalciner.

= Tyre chip combustion characteristics were investigated experimentally in
an ashing furnace at 900°C. Volatile material was completely yielded
within 2 minutes. Observations suggested that it is the thickness of the tyre
chip that determines the time for complete volatile release. Further
experiments were suggested.

= Aerodynamic behaviour of the initially intact tyre chip was investigated
experimentally using a purpose made tyre chip flotation rig. Observations
showed that it islikely that the tyre chips prefer to face “into the wind”, i.e.
to present maximum area to the flow.

= Tyre chips were added to the initial precalciner model. Several interesting
observations were made including explanation of the reduced NOy level at
the kiln back end when burning tyre chips, the reason for tertiary air duct

blockage and tyre material build-up on the walls.
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= Tyre chips were aso added to the model with the “accelerator” section. The
accelerator improved the residence time of the tyre chips and prevented
tyre chips entering the tertiary air inlet. Observations at the plant following
the concurrent introduction of smaller mean tyre chip size and the

accelerator section indicated good agreement with the model.
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(a) (b)

Fig. 7-1 Photographs of the tyre chip feeder (a) looking from the kiln side (b)
from the opposite side (c) along the screw feeder to the feed chute (d) the top
of the feed chute.
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Kiln centre line.

=1 .2847

~ yre chip
(@) feed.

2.954

Fig. 7-2 Tyre feeder position — showing a plan view drawing and isometric
section of the precalciner vessel with the cylindrical section removed

(dimensions in m).
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Z

|

Drop
point

Plan view

1m

48cm

&

f LI 0
24cm
Floor

Side elevation

Strike

Isometric view

2 Fig. 7-3 Tyre chip drop experiment to assay the likely initial tyre chip trajectories.

Calculation of vertical and
horizontally velocity

Velocity at strike point:

V2 =u? + 2as, v=V(2x10x1)=4.47m/s
Resolve perpendicular and parallel to
the plate:

Vper=4.47sin30°=2.235m/s
Vpar=4.47¢0s30°=3.871m/s

Apply coefficients of restitution:
0.9x2.235=2.011m/s
0.85x3.871=3.244m/s

Resolving horizontally and vertically:
Vhor=2.01c0s30°+3.24sin30°=3.37m/s

Vyer=-2.01sin30°+3.24¢0s30°=1.8m/s




(d) C)

Fig. 7-4 Combustion of tyre chip at 900°C; (a) before test, (b) at ignition, (c) at
ignition + 30s, (d) at ignition + 1 min, (e) at ignition + 2 min. A bright gas-gas
flame was observed while the volatile components were rel eased.
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Fig. 7-5 Final stages of tyre chip combustion experiment (a) at flame
extinction, (b) at complete oxidation and (c) a sample of char granules with

mm scale.
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~25q, <4”, Group 5 and 6
Model 34%, Actual 33%

~59’ <1n
Modd 0%, Actual 2%

~8g, <2, Group 1 and 2
Model 8%, Actual 7%

~350, <5, Group 7 and 8
Model 15%, Actua 15%

~20g, <3, Group 3 and 4 55¢, <6”, Group 9 and 10
Model 30%, Actual 30% odel 13%, Actua 13%

Fig. 7-6 Tyre chip size classification. Chips were grouped by maximum dimension (inches). The 6" steel rule indicates true size.



Sample 1997
(a) %
r 35
r 30
r 25
r 20

r15

% by mass of sample

r 10

1", <6g 2", 59 3", 169 4", 30g 5", 31g 6",48g

Max size and mean mass

Sample 1999

r 60
(b)
r 50
r 40

r 30

r20

% by mass of sample

r 10

1".29 2",69 3"12g 4",199 5",28g 6",30g

Max size and mean mass

Fig. 7-7 Tyre chip size distribution analysis from two samples (a) taken 1997
and (b) taken 1999. The mean mass of tyre chips and maximum dimension in
inches of each group is stated on the horizontal axis.
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Chip mass, m grammes
Drag factor, Cp

Face on Side on

f x Sphere Cp equivalent
& J Density for equivalent mass
(a)

1,788

3,050

1,968

(b) &) -

Fig. 7-8 (a) Illustration of side-on and face-on modelling technique (b) Tyre
chip flotation rig design (dimensions in mm).
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Pitot tube

Fan housi ngs
|

\
()
Air intake

iy Fig. 7-9 Photographs of the tyre chip flotation rig. (a) and (b) show the riser from the fan to the test section and (c) shows the view above the
5'§ test section looking down on the gauze with the tyre chip ready for testing.



SE-L

Fig. 7-10 Initial injection position and trajectories of tyre chips, (a) side view, (b) dropped chip trajectories, (c) sliding chip trajectories.
Dropped chips bounce into the main body of the precalciner before hitting the conical section wall. Chips that have sliding entry
trajectories fall directly on the conical section wall before bouncing into the main upward stream in the precalciner.
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400 900

Fig. 7-11 (a) and (b) show temperature iso-surfaces and (c) shows contours of tyre chip volatile in the sliding tyre chip model. New high
3} temperature regions are apparent compared to the models without tyre chips.
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Residence time (s)

100%
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70%

60%
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% calcination completed
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30%

20%

(a)

—e—avg time
——maxt A
—A&—mint

1 4 7 10 13 1

6 19 22 25 28 31

Injection group No.

(b)

1 4 7 10 13 16 19 22 25 28 31

Injection group No.

Dropped entry condition results.

Fig. 7-14 Behaviour of the raw meal in the precalciner model including tyres
entering with the dropped entry condition. (a) shows the mean, maximum and
minimum time of each group to traverse from RMI to the exit from the
cylindrical section and (b) shows the calcination state at exit.
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Sliding entry condition results.

Fig. 7-15 Behaviour of the raw meal in the precalciner model including tyres
entering with the diding entry condition. (a) shows the mean, maximum and
minimum time of each group to traverse from RMI to the exit from the
cylindrical section and (b) shows the calcination state at exit.
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~ Figure 7-16 Trajectories of tyre chips in the “accelerator” model (tyre chip number shown in captions).
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Fig. 7-17 Initial tyre chip trajectory in the model with the “accelerator” (a),
and in the model without the “accelerator” (b). The “accelerator” tends to stop
the right hand injection group from entering the TAD.
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Fig. 7-18 Behaviour of the raw meal in the model with the “accelerator”. (a)
shows the mean, maximum and minimum residence time of particlesto
traverse from the RMI to the exit and (b) shows the degree of calcination
achieved by exit.
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Fig. 7-20 Trajectory of inj ected tyre chips at current height.
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Fig. 7-21 Trajectory of injected tyre chips at current height plus Sm.
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Fig. 7-22 Trajectory of roof injected tyre chips.
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8 Conclusions

In closing the thesis, this chapter provides a statement of what has been
achieved by the work described in it.

8.1 Statement of the aims and objectives of the work

Blue Circle proposed the project in order to understand better the combustion

of tyre chips that is done in the precalciner at the Cauldon works. The original

statement of objectives for the project was.

= gain understanding of the heat and mass balances of the process

» develop models of the precalciner vessel using computationa fluid
dynamics software

= perform experimental combustion of waste fuels to develop a methodol ogy
to assess alternatives

= validate the models on CFD against plant data

= perform experimental observation of tyre chip aerodynamic behaviour to
develop amodel within CFD to predict likely trgjectories in the precalciner

The expected deliverables were:

= aCFD modé of the precalciner fully representing operation with coal
combustion and raw meal calcination

= aCFD modéd of the precalciner representing the full model with additional

tyre chip aerodynamic and combustion representation

8.2 Level of attainment of objectives

A methodology was developed for successfully modelling a cement plant
precalciner including:

= [imestone (raw meal) reaction

= coa devolatilisation and char oxidation

= heat transfer to the walls of the precalciner

= gasflows representative of the gas flows in the plant

8.2.1 The first model and plant measurements

The first model developed was fully representative of the precalciner with

calcination and coal combustion included. Representing the exact geometry of
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the precalciner was difficult due to the limitations of the block structured grid
generation. Ducts were rectangular instead of round. Connection to the vessel
following the outlet from the precalciner was not modelled. Since the vessel
following the precalciner is a cyclonic gas-particle separator, a great deal of
effort was saved by assuming a much simpler exit condition. For the first
model, an exit duct was attached to the outlet from the precalciner, which had a
length of 10 times the hydraulic diameter. Two features of this arrangement
relate well to the actual outlet configuration. Firstly, the condition at outlet
was near fully developed giving a good relationship between the momentum
and pressure fields in the model and secondly the length to the end of the duct
was equivalent to the likely path length travelled by particles in the cyclone.
Some grid refinement was performed in the region of the coal inlets to reduce
the gradients of temperature and velocity. These changes effected a stable
numerical solution.

A large-scale recirculation was demonstrated which dominated the flow
patterns in the precalciner. The tertiary air inlet induced this feature.

According to the model, coal from the same side as the tertiary air duct
was less well used than coal issuing from the other inlet. Raw meal introduced
just below the tertiary air inlet was conveyed to the far wall of the precalciner
and carried in alarge-scale recirculation up that wall and down the opposite
wall. Coal on that side of the precalciner was used well in supporting the high
rate of calcination occurring there. Coal on the same side as the tertiary air
inlet was carried up the centre of the precalciner and straight to the exit, raising
the core temperature to the region of 1900°C. This temperature is sufficient to
promote NOx production by thermal NOx. It was suggested that injecting all
coal at the inlet on the side opposite the tertiary air inlet might cause a benefit
to NOy reduction. The cost of performing the investigation was prohibitive and
it has not yet been attempted.

M easurements made on the precalciner at Cauldon showed reasonable
correlation with the information presented by the CFD model. The harsh
environment limited the measurements. Some indication of the vertical gas
velocity was obtained by using an S-type Pitot tube periodically purged with

air. The measurements showed the same gas velocity direction as the model
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but the magnitudes were difficult to assess due to the fluctuations observed.
Temperature measurements showed good agreement with the model within
50°C. An interesting phenomenon was observed, which suggested the
possibility of roping of the raw meal particle stream near to the wall directly
opposite the tertiary air inlet. The model supported the evidence by showing
very high concentration of particlesin that region.

The raw meal reaction level at exit from the model was compared to the
level at the exit from the stage 4 cyclone (immediately prior to entry to the
kiln). Production of raw meal CO, was 70% in the model on reaching the end
of the outlet duct. Measurements showed production of 83%. The difference
was attributed to the difference in gas-particle mixing between the duct and the
cyclone. Subsequent analysis at the conclusion of the project showed that the
short fall was most likely due to a 10% shortage of coal, such that calcination
of the full raw meal feed was not possible in the model. The effect of this was
not established by further modelling, since the project had reached its
conclusion. It is proposed that the effect of increasing the coal supply will not

significantly alter the qualitative observations made with the existing models.

8.2.2 Sensitivity analyses using CFD

Severa additional cases were developed from the initial model to determine

the effect of making changes, which represented realistic assumptions used in

the model development. Observations from the sensitivity cases demonstrated

that the initial model provided a good representation of the operation of the

precalciner with coal and raw meal reactions. The features that were inspected

were;

» mesh refinement in the cylindrical section to check for mesh independence

» inclusion of radiative heat transfer in the energy equation to investigate the
effect of opacity caused by the dense particle cloud

= separating the CO, produced by the coal and raw meal to visualise the
regions of greatest raw meal reaction

* injecting coa from the side opposite the tertiary air inlet only to predict the
effect of operating the plant in this way

» injecting the raw meal uniformly across the kiln gas inlet to observe

sendgitivity to raw meal injection technique
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= changing the coal inlet angle to more accurately represent the inlet angle of
the plant coal

= adding an accelerator to represent plant modification

»= mesh development using unstructured mesh with improved inlet
connections to observe sensitivity to the shape of the inlet connections

The unstructured mesh model became unstable as the raw meal mass rate was

increased beyond 60% of the full load. An error in the outlet duct height was

found in the model. This was corrected in the model with the accelerator and

no significant qualitative changes were apparently related to the correction.

8.2.3 Tyre chip experiments and representation in the model

Two sets of experiments were performed with tyre chips during the course of
thiswork. Samples were placed in an ashing furnace at 900°C with the door
open to promote combustion. Combustion tests showed that volatiles were
released in still air within 2 minutes and that it is likely that this rate does not
vary significantly for chips of different size since the thickness of tyre chipsis
limited by the tyre wall. It was assumed that the rate of release would be
increased by a factor of four in the turbulent conditions encountered in the
precalciner. Tyre material decomposed during devolatilisation to leave
granules of char, which had a mean size of approximately 3mm diameter and a
mean density of approximately 70 kg/n?. In the furnace conditions, char
oxidation was completed in approximately 20 minutes.

A rig was devel oped to investigate the aerodynamic behaviour of tyre
chips when suspended in a stream of gas. Tyre chips were supported in a
vertical column of air in an 8" diameter Perspex tube to observe the terminal
velocity and any distinctive characteristics that might be observed. Sizes
varied from 1” to 6” maximum dimension and the terminal velocity varied
between 9 and 15 m/s with no apparent relation to size. Observed tyre chips
moved randomly in the stream of air, but tended to present the maximum area
perpendicular to the flow.

A suitably representative model of the tyre chips was included in the
precalciner model to determine trgjectories and heat release patterns. Tyre
chips were modelled as spheres of a size and density that gave the same mass

and drag coefficient as the face on tyre chip from previous wind tunnel tests.
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Data for the drag coefficient of tyre chips of different sizesin orientations face
on (maximum area presentations) and side on (minimum area presentation)
were available from previous work at The University of Nottingham.

When these observed effects were included in amodel of tyre chipsin
the precalciner, predicted trajectories showed that tyre chips tended to circulate
on the conical section wall during devolatilisation. In the plant, this
observation was confirmed by the presence of wire build-up on the conical
walls apparent during plant maintenance shutdown periods. It was also
apparent at the plant that a lot of tyre material accumulated in the tertiary air
inlet by the precalciner in a three-month period of operation. The model
showed that this was as a direct result of the configuration of the tyre chip inlet,
which imparted a specific initial trgjectory to some tyre chips that caused them
to fall directly into the tertiary air inlet. Once tyre chips were supported in the
gases in the precalciner model, they did not enter the tertiary air inlet.

Addition of the accelerator to the plant and reduction of the mean tyre
chip size was performed at approximately the same time. Observations at the
site indicated a change in the behaviour of the tyre chips. Previous NOy
measurements at the back end of the kiln had shown a beneficial reduction with
the addition of tyre chips. Addition of the accelerator resulted in an increase of
back end measured NOy indicating that the tyre chips were having less effect
there and in that case that less tyre chips were falling into the kiln from the
precalciner. This observation was supported by the modelling work, which
showed that smaller tyre chips were supported on the gas stream from the kiln
and that larger tyre chips fell into the kiln. The accelerated flow at the neck
section of the precalciner further prohibited tyre chips from entering the kiln
that way. A further observation was the increase of tyre material residue in the
collection of raw meal made routinely at the drop out from the stage 4 cyclone,
indicating an increase in tyre material was being carried over into the cyclone.
The model with the accelerator showed that tyre chips were carried to the exit
rather than to the kiln.

A number of aternative injection positions were assessed using the
model in order to suggest where additional tyre chips might be injected. The
results showed that there were favourable and unfavourable positions to inject

tyre chips depending on height and circumferential position. Favourable

8-5



injections had long residence times and mixed well in the main body of the

precalciner.

8.3 Statement of original contribution of the thesis

The most important novel aspects of the work contributed by this thesis are the
complete modelling of all aspects of the precalciner process with correct
geometry and including a waste solid fuel.

All models generated for this thesis had body fitted meshes. Block-
structured meshing was used to generate a model of the precalciner that was
accurate in al respects except the coal inlets and the tertiary air duct. These
features were square ducts in the model whereas they are round on the plant.
Fully unstructured meshing was used to generate a model that accurately
represented all geometric features of the precalciner. Such geometrically
faithful models were not found in the literature. Some literature was found
regarding modelling cement works precalciners. Grid generation had been
performed with Cartesian meshes and were not body fitted so that inclined
walls had steps.

The type of precalciner with the inlet and outlet configuration has not
been modelled before according to the literature.

No modelling of tyre chip behaviour in combustion vessels has been
attempted prior to this work according to the literature survey. Characteristics
of tyre material combustion have been investigated, but the data produced was
not appropriate to the size of tyre chips used in the precalciner regarding rate of
devolatilisation of the volatile material.

» No similar information about combustion characteristics of tyre chips
produced by the investigation in this thesis was found.

» No similar aerodynamic studies performed on the tyre chipsin this thesis
were found el sewhere.

* No implementation of the aerodynamic and combustion characteristics into
a CFD model has been attempted previoudly.

The concept of determining the trajectories of tyre chips injected at different

positions in the precalciner was entirely novel. The model can be adjusted to

determine the likely behaviour of other waste fuels.
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The code used from Fluent provided practical models to smulate the
precalciner process. Useful visualisation of the complex interaction of
particles and gases was obtained, which significantly improved confidence in
understanding the characteristics of plant operation. Useful numerical data was
available from the post-processing that was not practicably measurable. Some
degree of confidence in the validity of these data was provided by the limited
measurements that were performed. Despite the improvementsin CFD,
validation measurements are necessary to give such confidence. The latter
work with different injection positions of tyre chips and the accelerator section

showed that CFD can be used as an aid in the design process.

8.4 Future work

Directly useful work can be done with the models generated in this work to
determine the characteristics of the Cauldon precalciner with minor
modifications such as changes in geometry or fuel type. Modelling can be used
to predict the likely behaviour in the precalciner of similar waste derived fuels
such as sewage pellets and other briquette-formed wastes. Further
investigation into the relationship between the precalciner and the stage 4
cyclone would be useful to determine the interdependence of the fluid flows
and the combustion characteristics of fuels where the combustion continues in
to the cyclone. Improvements in mesh generation software from Fluent make
it possible generate models quickly. Incorporating the model characteristics of
chemistry and heat transfer described in this work will enable relatively quick
generation of new models. Alternative precalciner designs can thus be
investigated using CFD with the boundary conditions based on this work.
Model predictions must be validated by on site measurements. Development
of cost effective measurement techniques for high temperature dust laden flows
will provide more reliable verification of the model data than has hitherto been

gained.
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Appendix 1

CFD theory used by Fluent

Summary of the derivation of Navier Stokes equations.

This appendix is intended to refresh the reader about the meaning of the
various terms in the Navier-Stokes equations. A full derivation is available in
any Fluid Mechanics text book.

Mathematical definitions:

K=+ J—+ Rl, del or nabla operator
™x "y 1z
div(F) © Ju, v +M, divergence of avector.
> v 1z

All terms are described according to unit volume in this brief summary.
Development of the continuity equation.
Summing the net convection of mass into the fluid cell and allowing for

compressible flow:

1:1—2 +diw =0
Development of the momentum equation in the x-direction.
Only the x-component is considered here; y and z-components are similar in
form.
Rate of increase of momentum in fluid cell = sum of forces on the fluid cell
“Rate of increase of momentum in fluid cell” term is called accumulation.
“sum of forces on the fluid cell” are due to body forces (e.g. gravity) and
surface forces in the form of direct stress and shear stress on the cell surface
and the net convection of x-momentum into the cell
(rwv) , 1(ru®) , 9(ruw)

Ty X 1z

net convection of x-momentum =

body forces will be due to acceleration applied to the field in which the cell
lies. Thisis called f, in this context, a general acceleration term (ms™2).

The direct stress term is derived from the pressure field, the rate of strain in the
x-direction, and an additional contribution to allow for compressibility, which

IS zero in incompressible situations:
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=-p+ Zmﬂ—u- Em(de)
fix

The shear stress terms are determined from the rate of angular deformation:

v  fuo aAw  Tuo Hw  Tvo

—+—='s ~— + — I SYZ=Np—+—=

x Tyg ° éWx Tzg rrEﬂy o

Xy
and it can be proven that Syy = Syx €tC.
So, the source term for the N-S equation is:

e Tu o, 1 &v ‘HUO T aw , ud
|- +2m—-— divW U L e,
*xé b ix (v )z rTg‘ﬂx ‘Hy;a z eﬂx 2o

expanding and collecting terms results in the following expression:

X

for- ﬂp+rrN u+;mj|vv

Ix
So the N-S equation for x-direction momentum is:
‘ﬂ(ru) (ru ) (ruv)+1(ruw):fxr- ﬂp+nN u+= I’TdIVV
fit ‘ITX fz 3

This is the conservative form, in which the fluid may have variable density. If
the density is assumed constant, then by subtracting the continuity equation

from the L.H.S. of the equation the non-conservative form of the equation

results.
rﬂ—u+ruﬂ +rvﬂ+rwﬂ = f,r - ﬂp+rrN u+1mj|vV
fit fix Ty 1z i 3

Theterm nmN?u isreferred to as the diffusion term, since it represents terms
from the derivation of shear and direct stresses on the surfaces of the cell.
Development of theReynold’s stresses.

In turbulent flow, al quantities are time dependent, but in steady flow, the
mean values are constant. Turbulence results in mixing of the fluid between
regions. Schlichting [1952] presents the nature of turbulence and boundary
layers. The turbulent contributions that affect the momentum equation are
found to be added in the convection terms where fluctuating quantities are
multiplied together. Thisis due to the mathematical properties of time varying

guantities when a mean value is taken. |If atypical fluctuating quantity is

represented by a mean and fluctuating component thus: f =f +f ¢, then
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considering all quantities in the N-S equation as fluctuating results in the
following equation:
|[5) 1 (2 )| )|y _ TP NE
r—+r —(0?+0¢ J+r — uv+u¢7l1)+r— aw + u(WlI)— f.r - —+nm\<u
ﬂx( ) ‘Hy( ‘ﬂz( fix

1t
another way of writing this equation collecting the fluctuating components of

velocity is.
LIS (CRP L f.r- P4 iz + 2w
fit ix Ty |4 i 3

L) L) b

The last three terms are equivalent to one normal and two shear stresses, and
they are called Reynold’ s stresses.

Turbulence models.

In attempting to solve the N-S equations in 3 dimensions with turbulence, the
solution cannot be “closed”, i.e. there are more variables than distinct
equations. The development of turbulence modelling occurred in the following
sequence:

Boussinesq (1877) proposed an “ effective viscosity” to relate the stress
in afluid element to its rate of strain.

Prandtl proposed a “mixing length” to describe the distance an element
travels before it dissipates its excess momentum to surrounding fluid. This was
a zero-equation model in that no transport effects were considered. Pranditl
then developed the idea of kinetic energy replacing the velocity gradient, the
kinetic energy being determined from atransport equation. This was a one-
equation model.

Kolmogorov proposed the two-equation model using energy and
frequency. The most popular two equation model is the k-e model which has
transport equations for the turbulence kinetic energy and the dissipation rate of
the kinetic energy.

Reynold' s stress modelling develops transport equations for the 6
independent Reynold' s stresses. The advantage of the Reynold’ s stress model
is that the fully 3 dimensional nature of the flow is represented. The other
models are isotropic in that the turbulence is considered to be equally

distributed in the three coordinate directions.
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Development of the transport equationsfor turbulencein the standard k-e
and the Realizable k-e models.

The standard k-e model makes the assumption that the turbulence behaviour is
isotropic (i.e. the samein all directions), and uses the turbulence kinetic energy
(k) and the dissipation rate of the turbulence kinetic energy (e) as transported
guantities convected with the momentum of the flow. It uses the Boussinesq

hypothesis to determine the turbulence viscosity:

= —(u +v2 +w?)
e= 2veij €
dj=1if i=j,dj=0if it j.
€' isthe fluctuating component of the rate of deformation of a fluid element.

The transport equations for the two equation (k-e) models are:

r— = §e ﬂo‘”—ku+Gk+Gb-re-Ym
Dt ﬂx S
ﬂQE I'T]Oﬂe e ez
+— 2= +C, — (G, +C,.G,)- Cpt —
Dt Wg eﬂﬂxlﬂ :lek( k 3e b) 2 K

For the realizable k-e model, the dissipation transport equation is:

g — +G +G,-r.-Y,
Dt ﬂX1 kraxlg

1 e ofe U e’ e
——+rCSe C,——C,.—C,G
Dt ﬂxg eg‘ﬂxja k+ue k= °

Eh :%, G isthe production of k, G, isthe

é
Where, C, = maxa0.43,——
' go h+5g

production due to buoyancy, which is included in the k equation and is optional

for the e equation. Ym isthe dilation dissipation term for compressible flows.
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In the realizable model the Cmterm isvariable: C = ; The

A+ASE

constants were used as defined in the Fluent User Guide [7].
The models consider a turbulent viscosity by analogy with kinetic

theory, m=r v, where vt is a characteristic velocity and | is a characteristic
-|lu
vl

The Energy equation used in Fluent is stated in the following equation:

length. Prandtl developed thisideato give m = r|

The energy equation.

1 1 L 0
ﬂt(re [U rE+p)] ﬂ fﬂ +uj(1:ij)eff1g+sr]
HAu; ﬂu 2 Tu
“me Mg
( ) ”Lfféﬂx ﬂXJ p 3meﬁ ﬂxi ij
Where k, =k + Co :

t
tjj represents viscous heating and it is formed from the work done against the
stresses on the fluid cell surface as indicated in the formulation of the x-
momentum equation in the Navier Stokes equation in Appendix 3-1. It isnot
included by default in the segregated solver, which was used in thiswork. This
was regarded as a reasonabl e assumption since the source term due to release
of energy from reactions in the domain is several magnitudes greater than
viscous and turbulent viscous work in the low-density gas mixture. This leaves
the simplified energy equation:
1°T
:;t(rE +—[u (rE+ p)] =k "o +S,
Radiant heat transfer is included in the source term of the energy equation, Si.

The radiative heat transfer equation is:

d (drs:S) d (F,3)F (5.5)dW

The Rosseland model was used in the work of this thesis to give an

approximate indication of a uniform absorptivity, a, across the entire
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continuous fluid. It is based on the P-1 model, which is the smplest of the P-N
type models as described by Siegel and Howell (1992). An effective radiative-
conductivity is calculated and used in the energy equation. The effective
conductivity is described by the following equation:

k =16sGT?

Where Gis a parameter from the P-1 model, which without the presence of
scattering is 1/3a. The scattering coefficient (ss) was zero. The refractive
index was assumed to be unity.

The Standard Wall Function for turbulence modelling near to walls.

The Standard Wall Function is described by the following equations:
1
U* ==—In( Ey*)
k
where the dimensionless groups U* and y* are defined as follows:
ORI
=t
f

r /Ky,

*

o
m

Yp = distance to wall, m= dynamic viscosity. The eguations are valid for
y*>30~60 and are applied by Fluent for y*>11.225. For y*<11.225, U*=y*.

The technique is similar for temperature.

Al-6



Appendix 2

Calculation of boundary conditions of the precalciner

Calculation of the overall gasflow at the preheater exit

The calculation of the exit gas stream composition is not directly relevant to
the precalciner boundary conditions, but it is necessary to determine the overall
air requirement for the process. From this the quantity of tertiary air and the
kiln gas stream composition can be determined in subsequent sections.

The combustion products of coal and the carbon dioxide yielded from
calcination of the limestone can be determined from the mass injection rates.
This combined with the oxygen content at the preheater exit can be used to
determine the overall air requirement to support the process.

The raw meal CO; yield was calculated from the Loss On Ignition
(LQI) and the injection rate,

0.34" 47.71=16.22 kg/s

The coal injection rate (Dry Ash Free, DAF) was determined from the

hourly coal consumption converted to kg per second and from the moisture and

ash content,

14,000, 86100' 7.9-1060_5 149 kg/s.
3600 & 100 2

The stoichiometric combustion cal culation was done (Table 4-2) and
combined with the excess air requirement to produce firstly the combustion
product gas data and then the preheater exit-gas-stream composition data. In
this table, the nitrogen associated with consumed oxygen was calculated as the
“total O, consumed” multiplied by the mass ratio of nitrogen to oxygen in
atmospheric air:

8.648 ° 3.292 = 28.472 kg/s
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Coal product calculation (based on DAFelemental

%

88.1
5.0
3.8
1.9
1.2

ZnmnOoOITO

kgls

2.792
0.158
0.120
0.060
0.038

compostion of coal)

(7]
product  product kg/s consumed
kals
CO2 10.237 7.445
H20 1.422 1.264
02 0.120 -0.120
SO2 0.120 0.060
N2 0.038 0.000
total O2 consumed 8.648

Exit gas stream composition

kgls kmol/s

CO, 26.457 0.601
H20 1.422 0.790
02 2.772 0.087
SO2 0.120 0.002
N2 37.599 1.343
total 68.370 2.823

Table Appendix 2-1 Stoichiometry and exit gas stream for the whole process.

The preheater exit O, content was calculated by using the sum of gases

produced by combustion and calcination and using the calculation:

%0, =

(vaume of O, leaving the preheater)

B (total volume of gasesleaving preheater)

Calculation of gas content of kiln delivery to precalciner

The gases entering at the bottom of the precalciner are determined by

combustion in the kiln. Two-fifths of the coal combustion for the overall

Equation Appendix 2-1

process occurs in the kiln. Unreacted limestone entering the kiln from the

precalciner is negligible so no carbon dioxide is attributable to that reaction in

thekiln. Table Appendix 2-2 shows the calculated gas-stream composition

passing from the kiln to the precalciner. The calculation involved data from

Table Appendix 2-1, from the previous section, for coal combustion and the

same method of excess air calculation with 3.2% at the exit from the kiln.

Kiln combustion (based on DAFelemental compostion of

%

88.1
5.0
3.8
19
12

ZnoOxTOoO

ka/s

1.117
0.063
0.048
0.024
0.015

Kiln exit gas stream composition

coal)

Oz
product  product kg/s  consumed kagls kmol/s

kg/s
CO2 4.095 2.978 CO2 4.095 0.093
H20 0.569 0.505 H20 0.569 0.032
02 0.048 -0.048 (o]) 0.644 0.020
SO, 0.048 0.024 SO, 0.048 0.001
N2 0.015 0.000 N2 13.523 0.483
total O2 consumed 3.459 total 18.878 0.629

Table Appendix 2-2 Stoichiometry and gas stream for kiln gas exit.

%

22%
3%
3%
0%

2%
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Since this calculation is for the air requirement to the kiln, the CO contribution

to the exit gas stream has been neglected.

Calculation of theair injected at the coal inlets

The volume flow rate of air to the two coal inletsis 18.8 nt/min at 47°C at the
point of measurement. The supply pipes have internal diameter 3.5”. By using
the gas law, the mass flow rate is given by the following calculations:

p _ 100,000
RT 287" 320
where R is the specific gas constant of atmospheric air mixture;

m=1.089" 18.8 = 0.341kg/s of air.
The proportion of nitrogen to oxygen is 3.929 by mass, which means the

=1.089 kg/n?,

following gas injection at the coal inlets (Table 4-4):

kgls kmol/s

0, 0.080 0.002
N, 0.262 0.009
total 0.341 0.012

Table Appendix 2-3 Coal inlet air composition.

Calculation of gasesentering at thetertiary air duct

The tertiary air is drawn through a duct running parallél to the kiln from the
same source as the kiln air supply. The quantity must be calculated since the
division of air supply to kiln and tertiary air duct is not measured in practise.
The method of calculation is by deduction from the preheater exit gas stream
composition (calculated above) and the kiln gas calculation (above).

From coal combustion, the amount of O, consumed in the precalciner
8.648-3.459=5.189 kg/s

This was calculated from the difference between the overall combustion O, in
Table Appendix 2-1 and kiln combustion O, in Table Appendix 2-2.
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The excess air from the kiln exit was found to be 0.644 kg/s O, in Table
Appendix 2-2 and the excess air at the preheater tower exit was 2.772 kg/sin
Table Appendix 2-1.

Therefore the amount of O, delivered by the tertiary air duct is:
5.189 + 2.772 - 0.644 = 7.317 kg/s
and the associated Ny is therefore:

3.292"° 7.317 = 24.087 kg/s

Calculation of gases entering at the raw meal inlet

The stage 111 materia drop chute (see Fig. 2-2) has a damper flap, which is
opened by the raw meal falling on to it as it passes from stage 111 to the
precalciner. The gases passing through this route are neither calculable (since
no indicative measurements are done in this section of the precalciner) nor
measurable (due to the heavy particle loading). The gas velocity at the raw
meal inlet to the precalciner in the model was 8 and 10 m/s. The assumption
was that there would be a venturi effect caused by the rapidly rising kiln gas
stream passing the inlet, which might well cause a velocity of this magnitude.
The model composition of the raw-meal inlet gas stream was the same as the
kiln gas inlet based on the assumption of similar combustion reactions

upstream of both inlets.

Calculation of thewall heat transfer to the surroundings

Heat transfer from the outside surface of the precalciner takes place by
radiative and convective heat transfer from the steel shell. Heat transfer
through the wall by conduction due to the resulting temperature difference
between the inside and outside walls is easily calculable since the wall
temperatures can be estimated. The inside wall temperature is approximately
900°C and the temperature of the shell is known from measurement using an
infra-red thermometer, approximately 100°C. The conductivity of the
refractory lining of the precalciner was estimated from standard data (Rose and
Cooper, 1977).

The refractory lining of the precalciner is constructed in two layers.
The inner layer is made of arefractory brick, 114 mm thick, with thermal
conductivity approximately 1.67 Wni'K™. The layer in contact with the steel
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shell is made of an insulating refractory, 115 mm thick, with thermal
conductivity approximately 0.209 Wik ™. The steel shell is 12 mm thick

with thermal conductivity approximately 43 Wm*K ™. The rate of heat
conduction was calculated thus:

q =- kAQa@Ttij= L Equation Appendix 2-2
eng o DX
a3

where the calculation has been made per nf. Putting in the values from above:
800

9114 0115 00125
€167 0209 43 g

=1293Wm™?

q
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Appendix 3

Derivation of the limestone calcination rate from Fluent

This appendix presents the calculation of the limestone calcination rate data
used in the CFD models. The discrepancy in the use of Borgwardt’s data
(1985) is also explained and the validity of the of the values used in the CFD
models is judtified.

Starting with the equation used for mass loss rate in a devolatilizing particle:

d
- ?mp =k(m, - (1- f,5)my) Equation Appendix 3-1

the equation can be solved in the following way:

(2 1) Myo dm t

d P =- et

M- @ fmy, g
In(m, - @ f)my)]® ™ = -kt
In[@- f)m,- @- fomy]- Inm,- @- fo)my)|=-kt
Ir( va - fv)mpO - Ir( vampO) = -kt

va_ fv:_kt

In
va

I(1- X) =- kt

Equating the two expressions for the rate:

k =k,S,
ksisfound to be 2.5" 10 mol cmi? st at 670°C by Borgwardt and 1.6" 10® mol
cm? st at 850°C by other research results quoted by Borgwardt. Borgwardt
extrapolated the data to temperatures outside the range of experiments and

derived alinear relationship between the log of the calcination rate constant
and the temperature. The datais reproduced in Fig. A3-1. The significance of
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this figure was not realised until after the conclusion of the project. Itis
important to consider the implications.

Considering first the values at 670°C used in the work described in this
thesis, using the B.E.T. surface area of limestone from Borgwardt of 0.12 nf/g
of limestone and the molar mass of calcium oxide of 56g/mol, then for
Borgwardt’ s value of ks at 670°C:
kS, =2.5" 10°mol.cmr?.s*” 0.12m°g™*" 56g.mol ** 10,000cm’m’? = k
\ k =0.00168s™

Applying these values of k in the Arrhenius expression:

s an8
0.00168 = Ae(p(‘ 20510 foas 943)

\ A=381"10°¢"
for the Borgwardt result. The time to decompose 95% of the volatile

component according to thisrate is:

In(1- x) = -kt
In( 0.05) = - 0.00168t
t=1783s

or 30 minutes. This result is reasonable considering the relatively low
temperature. Using the A and E values at 900°C:

k =3.81" 10° exp(- 2.05" 10°/8314.5" 1173)

k =0.28

which results in atime to decompose 95% of the volatile component of 10.7 s,
showing the accelerating effect of the higher temperature.

At the temperatures encountered in the precalciner, nominaly 900°C
(1173K), the corresponding calcination rate from Fig. A3-1isks=3 10 mol
cm? s, whichisequivalent to k of 0.2016. Thisresultsin A=2.7 108 and a
time to decompose 95% of the volatile component of 14.9 s, which is of the
same order of magnitude as the values used in this thesis and thus the
suitability of the data used in the model is justified.
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Appendix 4

Raw meal sample collection and quenching pot

Design of the collection pot.

‘ 150

Insert
@3.5 x8 hole on circle dia. 56 mm, equispaced, 25 mm deep

Repeat on circle dia. 24 mm

M Repeat on circle dia. 40 mm

cofaoo Insert Lid

i i Dimensionsin mm, UOS
© ‘(’) o s ° Material, high temperature steel
o 0

et

Fig. A4-1 Detail drawing of the sample pot and lid.

Heat transfer calculation.

The rate of heating of the “rods’ of raw meal in the holes of the pot was
estimated using the lumped capacity approach described in Holman (1997).
Properties of calcium carbonate were obtained at 700°C (atemperature
between 900°C and 500°C) from Perry and Green (1984) as follows:

= thermal conductivity, ke = 2.252 W mt K

= heat capacity, Cp = 1,250 Jkg* K™*

= density, r = 2,450 kg m®

= thermal diffusivity, a =kir C, n? s’
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The Biot number, Bi = h s/ ki, provides a measure of the ratio of convective
heat transfer to internal conductive heat transfer. It was considered to be
“large’ in this case since the effective convection of heat away from the
surface is very rapid compared to the interna transfer of heat in the insulating

material surrounded by a conductor. Holman presents a chart of temperature

t, -t . .
Qo _Lo- b , VS. Fourier number (Fo =at / r2) corresponding

differenceratio, a9 1%,
to the Biot number reciprocal. The estimated time to drop from 880°C to
500°C, by which stage the calcination reaction should effectively have ceased,
was 2.2 s. Thiswas considered to be sufficiently fast for the purpose of the
experiment since the calcination rate decreases rapidly as the temperature

decreases from 900°C.
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Appendix 5

Data obtained from the tyre injection position experiments

Injection position experiments.

The data in this appendix refers to the aternative injection point analysis
described in section 7.6. Three tables of data are provided to summarize the
alternative injection point modelling work. Six tyre chips of each size injected
from each position indicated A-J. EXxit through ports other than the exit duct is
indicated in the chart by the rows titled “Alt. Exit”. In that row the number of
6 injected chips, which do not leave through the stage IV exit, is indicated.
The letters indicate the alternative exit port with the following designations:

C —cod inlets

K —kiln gasinlet

T - tertiary air duct

R - raw medl inlet

In each chart, the first row describes chips <2", the second row describes chips
<3", and the third row describes chips <4".

The range of residence times (in seconds) for each set of injections is indicated

in the rows titled “Restime s’.

Figure 7-18a-f: CURRENT HEIGHT INJECTION

Position |A B |C D E F G H I J
Restimes 7-28(10-69 [9-26 11-50 [9-46 |[7-51 [17-33 [6-21
Alt Exit 1C

Restimes 7-22(11-34 [16-71 16 34-36 (14 [19-48 |29
Alt Exit 2K 4K SK,C 4K 5K,R[2K SK,T
Restimes

Alt Exit 6K [BK,1R|6K 6K 5K,1R6K 6K 5K,1R
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Figure 7-19a-f: CURRENT HEIGHT +5M

Position |A B C D [E | G H I Y
Restime s 10-31 [9-50 7-35 10-48 [7-32 |6-50 |10- |14-20
Alt Exit 24
Restimes 23-57 |21 7-56 19-62 |16-24 (12-57 [9- |17-66
Alt Exit 2K 5K, 1R, 1T 2K,1C [2K,1IR[1K 148

1C
Restimes 8-39 18-43
Alt Exit 5K,1R 4K,1R,1C 2K, 1R [1R,5K [1R,5K [6K (6K
Figure 7-20a-f: ROOF INJECTION
Position |A B C E G H I J
Restimes [10-36 [11-49 [8-43 (3-4 [10-28 4-5 [8-27 |12-29 |10-30 8-38
Alt. Exit
Restimes [18-49 [22-64 [12-52 [5-6 [28-47 4-5 [22-60 [9-59 [15-83 |15-32
Alt Exit (1C) |(1C) (1K) (2R) amn
Restime s |22 12-37 [13-38 [9-72 [25-35 (17-40 |13-33 |10 11-32 [8-44
Alt Exit  [(5T,K)|(AT) (3K) (5K) |(2T) |21

Check on the validity of using a small tyre chip sample.

The table in this section represents the results of a check done to ensure that

the 6 chip sample for each aternative injection was representative of the

random effects of turbulence on tyre chip trajectories.

20 stochastic attempts were made resulting in 120 chips injected for

each group.

This table, compared with the results from the previous section for
Figure 7-19a-f: CURRENT HEIGHT +5M, shows that the 6 chips give a good

representation of the average behaviour of the whole sample.
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Group Out Kiln Meal Tertiary Coal
B1 119 1
B3 68 32 3 15 1
B5 100 20
C1 118 2
C3 48 44 7 16 4
C5
D1 120
D3 116 1 2
D5 113 2 4 1
F1 117 3
F3 99 12 5 1 1
F5 85 18 13 4
Gl 118 2
G3 76 31 11 1
G5 9 70 33 8
H1 119 1
H3 93 24 1 2
H5
11 119 1
13 105 5 7
15 117 3
J1 119 1
J3 112 6 2
J5 4 108 1 7

Table Appendix 5-1 Analysis of stochastic attempts for tyre chips at different

injection points.

Table Appendix 5-2 shows the group designation and the number of

chips of the 120 sample exiting each port described by Out (outlet duct), Kiln

(kiln gasinlet), Meal (raw meal inlet), Tertiary (tertiary air inlet) and Coa
(both coal inlets).
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