
Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/10107/1/ASYATES_-_THESIS.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf

For more information, please contact eprints@nottingham.ac.uk
Fluorescent cannabinoids:
Strategies towards the synthesis of fluorescently labelled
CB₂ receptor ligands

Andrew Stephen Yates
BPharm MRPharmS AMRSC

School of Pharmacy, The University of Nottingham
Nottingham
UK

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy

November 2004
“A chemist dabbling in his lab
Felt his project was a little drab

So embarked to discover fluorescent weed
Citing a greater scientific need

Soon had friends with glowing lips
Funded his life on their grateful tips

Checked his spectra, in disbelief
When his friends got no relief

He made an error in his reaction
That gave his friends no satisfaction

In desperation he hid away
Improving his creation day by day

His project done, his girlfriend’s plea
Was to write it up as a PhD

This is what I submit to you
To read, to marvel, to hold as true”

- A. S. Yates
Table of contents

Abstract ...i
Acknowledgements ..ii
Abbreviations ..iii
1. Introduction..1
1.1 Fluorescent labelled ligands as a tool to study G-protein coupled receptors.2
1.1.1 Principles of fluorescence ...4
1.1.2 Fluorescent techniques ...5
1.1.2.1 Confocal microscopy ...5
1.1.2.2 Single molecule detection ..6
1.1.2.2.1 Fluorescence correlation spectroscopy ...7
1.1.2.2.2 Other single molecule detection techniques8
1.1.2.3 High throughput screening applications ...9
1.2 Cannabis...10
1.2.1 Historical overview of cannabis ..10
1.2.2 Therapeutic use of cannabis ...14
1.2.2.1 Multiple Sclerosis ..15
1.2.2.2 Analgesia ...16
1.2.2.3 Nausea and vomiting ...17
1.2.2.4 Appetite modification ...17
1.2.2.5 Other therapeutic areas ...18
1.3 The cannabis receptors..20
1.3.1 GPCR receptors ..20
1.3.2 $G_{i/o}$ cell signalling ...23
1.3.3 The CB$_1$ receptor system ..25
1.3.4 The CB$_2$ receptor system ..28
1.3.4.1 The distribution of the CB$_2$ receptor ...29
1.3.4.2 Immune functions of the CB$_2$ receptor ..32
1.3.4.3 In-vitro bioassay systems ...33
1.3.4.3.1 Binding assays ..33
1.3.4.3.2 [35S] Guanosine-5’-O-(3-thiotriphosphate) ($[^{35}$H] GTP-γ-S) binding ...34
1.3.4.3.3 Inhibition of cyclic AMP production ..34
1.3.4.3.4 Practical difficulties ...34
1.3.4.4 Therapeutic indications of the CB$_2$ receptor ..35
1.3.4.4.1 Pain ...35
1.3.4.4.2 Multiple Sclerosis ...35
1.3.4.4.3 Immunomodulation ...36
1.3.4.4.4 Cancer ...36
1.4 Ligands for the cannabis receptors ...38
1.4.1 Nomenclature ...39
1.4.2 Classical cannabinoids ...41
1.4.2.1 The side chain ..42
1.4.2.2 The phenolic group ..43
1.4.2.3 The 9-methyl group ...44
1.4.2.4 CB$_2$ selective classical cannabinoids ..46
1.4.3 Non-classical cannabinoids ...47
1.4.3.1 CB$_2$ selective Non-Classical Cannabinoids ..50
1.4.4 Arachidonic acid derivatives ...52
1.4.5 Pyrazole cannabinoids
1.4.5.1 CB₂ selective pyrazoles
1.4.6 Indole based cannabinoids
1.4.6.1 Modeling studies on indoles
1.4.6.2 CB₂ selective indoles
1.4.7 Japan Tobacco ligands
1.5 Research Aims
2 Fluorescent CB₂ ligand based on a modification to the benzamide ring of a Japan Tobacco compound
2.1 Background to designing a GPCR fluorescent ligand
2.1.1 Fluorescent adenosine agonist ligands
2.1.1.1 Synthetic strategy used for fluorescent adenosine agonists
2.1.2 Fluorescent serotonin ligands
2.1.1 Summary of the design and synthesis requirements of fluorescent ligands
2.2 Designing a fluorescent cannabinoid CB₂ ligand
2.2.1 Selection of a suitable CB₂ ligand
2.2.2 Selection of a suitable site upon JTE2-6 for conjugation
2.2.3 Determining a suitable linker
2.2.4 Selection of a fluorophore
2.2.5 Synthetic strategy
2.3 Chemistry results
2.3.1 Conjugation with amine reactive dyes
2.4 Pharmacology results
2.5 Use of Dansyl-JTE2-6 and BODIPY-JTE2-6 in fluorescence confocal microscopy
2.6 Discussion
2.7 Conclusions
3 Molecular modelling of the CB₂ receptor and docking of JTE2-6
3.1 Computational modelling of G-protein coupled receptor
3.1.1 Crystal structure template
3.1.2 Sequence alignment
3.1.3 Energy minimisation and molecular dynamics
3.1.4 Ligand docking
3.2 Previous modelling of the CB₂ receptor
3.2.1 Mutational analysis
3.2.2 Molecular modelling studies
3.2.2.1 Results from previous CB₂ models
3.3 Experimental results - molecular modelling of the CB₂ receptor
3.3.1 Sequence alignment
3.3.2 Homology modelling to Bovine Rhodopsin
3.3.3 Docking JTE2-6 into the CB₂ receptor
3.4 Discussion
3.5 Conclusions
4 Fluorescent CB₂ ligand based on a modification to the phenol ring of a Japan Tobacco Compound
4.1 Interrogation of the ‘phenol-up’ JTE2-6-CB₂ model
4.2 Designing a fluorescent CB₂ ligand based on molecular modelling of JTE2-6 docked into the CB₂ receptor
4.2.1 Synthetic Strategy

4
Index of fluorescent ligands

I.D name - Dansyl-JTE2-6 **99**
Design and synthesis - Chapter 2 page 67
Chemistry – Section 2.3 page 84
Pharmacology – Section 2.4 page 90
Chemical analysis Chapter 8 page 194

I.D name - Bodipy-JTE2-6 **100**
Design and synthesis - Chapter 2 page 67
Chemistry – Section 2.3 page 84
Pharmacology – Section 2.4 page 90 & section 5.3 page 144
Chemical analysis Chapter 8 page 195

I.D name - Dansyl-JTE2-3 **120**
Design and synthesis - Chapter 4 page 124
Chemistry – Section 4.3 page 129
Pharmacology – Not tested
Chemical analysis Chapter 8 page 212

I.D name - Bodipy-JTE2-3 **121**
Design and synthesis - Chapter 4 page 124
Chemistry – Section 4.3 page 129
Pharmacology – Section 4.4 page 132 & section 5.3 page 144
Chemical analysis Chapter 8 page 211

I.D name - 3-Gly-NBD-JWH015 **132**
Design and synthesis - Chapter 6 page 154
Chemistry – Section 6.4 page 166
Pharmacology – Section 6.5 page 168
Chemical analysis Chapter 8 page 220
Abstract

An increased understanding of the peripheral cannabinoid receptor (CB$_2$) is required due to the CB$_2$ receptor’s emerging involvement in a number of disease states. New fluorescent technologies are capable of generating information about the CB$_2$ receptor systems that has been unachievable using existing pharmacological methods i.e. radioisotope techniques.

Our work, to develop fluorescently labelled CB$_2$ receptor ligands, will provide cannabis researchers a unique pharmacological tool to use in conjunction with these emerging fluorescent technologies. This will aid the understanding of cellular actions of cannabinoids and accelerate the discovery of novel CB$_2$ selective drugs.

We report on the design, synthesis, and biological evaluation of novel fluorescent ligands targeted towards the CB$_2$ receptor. The fluorescent ligands were designed and synthesised by conjugating recognized high affinity selective CB$_2$ ligands (JTE2-3, JTE2-6 & JWH015) to appropriate fluorescent dyes via a chemical linker. Positioning of the fluorescent dye upon the pharmacophore was guided using established SAR data and supplemented by in-house molecular modelling experiments.

Our results showed that modification of JTE2-3 and JTE2-6 with dansyl and BODIPY® fluorophores resulted in fluorescent ligands which displayed poor affinity to the CB$_2$ receptor and consequently were unsuccessful when used in fluorescent confocal microscopy experiments. Furthermore, our studies revealed important species selectivity, associated with JTE2-3, which was previously unrecognised.

Using de novo drug design on JWH015, we synthesised and tested a 3-naphthyl modified fluorescent conjugate, 3-Gly-NBD-JWH015. The compound retained limited affinity to the CB$_2$ receptor, but fluorescent confocal microscopy did not reveal specific receptor membrane binding. Further experiments using 3-naphthyl precursor compounds, displaying less bulky 3-substituents, demonstrated that limited modification to the 3-naphthyl position of JWH015 was tolerated and provided a first insight to the SAR at this position.
Acknowledgements

Many thanks to my supervisors Barrie Kellam, David Kendall, Weng Chan and Stephen Doughty for their invaluable advice and support throughout this work.

For specific contributions, I would particularly like to thank Stephen Briddon for his guidance on confocal microscopy and fluorescence matters, Tim Self who was able to give up his valuable time to help me in the practical aspects of microscopy and Diane Hall who cultured all of the CHO cells used within these experiments.

To all the people who have given their time, their knowledge and their resources in the chemistry, pharmacology and molecular modelling laboratories, I extend my deepest gratitude. In particular I would like to mention Richard Middleton (chemistry), Paul Smith (chemistry), Rudesh Toofany (molecular modelling), Paul Millns (pharmacology) and James Leggett (pharmacology), without whom I could not have submitted this thesis.

I would also like to acknowledge the help and resources received from Professor Debra Kendall and her group in the University of Connecticut, Storrs, USA, who conducted all of the experiments in human embryonic kidney cells expressing the hCB\textsubscript{2} receptors.

Thanks Mum for pulling a haemorrhagic stroke out of the bag in my final year of studies (by the way I asked her if she minded this going in!). The six week break from the lab certainly left me feeling refreshed!

Finally a big thank-you to my eagle-eyed proof-reader, and long suffering girlfriend Katrina T. Bird.

This work was gratefully funded by the BBSRC.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>adenylate cyclase</td>
</tr>
<tr>
<td>AAI</td>
<td>aminoalkylindole</td>
</tr>
<tr>
<td>ABNR</td>
<td>Adopted-Basis set Newton-Raphson</td>
</tr>
<tr>
<td>AcCl</td>
<td>acetyl chloride</td>
</tr>
<tr>
<td>Ala</td>
<td>alanine</td>
</tr>
<tr>
<td>Arg</td>
<td>arginine</td>
</tr>
<tr>
<td>Asp</td>
<td>aspartic acid</td>
</tr>
<tr>
<td>AP-MS</td>
<td>atmospheric pressure mass spectrometry</td>
</tr>
<tr>
<td>Atm</td>
<td>Atmospheres</td>
</tr>
<tr>
<td>B_{max}</td>
<td>binding site density</td>
</tr>
<tr>
<td>BMS</td>
<td>Bristol Myers Squibb</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert butoxycarbonyl</td>
</tr>
<tr>
<td>BR</td>
<td>Bovine Rhodopsin</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>cAMP</td>
<td>adenosine 3',5'-cyclic monophosphate</td>
</tr>
<tr>
<td>Calcd.</td>
<td>calculated</td>
</tr>
<tr>
<td>Cbz</td>
<td>benzyloxycarbonyl</td>
</tr>
<tr>
<td>CC</td>
<td>classical cannabinoid</td>
</tr>
<tr>
<td>CDI</td>
<td>N_1,N_1'-Carbonyldiimidazole</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese Hamster Ovary</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>conc.</td>
<td>concentrated</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>CPA</td>
<td>N^6-cyclopentyladenosine</td>
</tr>
<tr>
<td>D$_2$O</td>
<td>deuterium oxide</td>
</tr>
<tr>
<td>DC-FCCS</td>
<td>dual colour fluorescence cross correlation spectroscopy</td>
</tr>
<tr>
<td>dec.</td>
<td>decomposition</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DCC</td>
<td>N, N-dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DEAD</td>
<td>diethylazodicarboxylate</td>
</tr>
<tr>
<td>dil.</td>
<td>dilute</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DMAP</td>
<td>dimethylaminopyridine</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DMF</td>
<td>N, N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DPAT</td>
<td>2-dipropylaminotetralin</td>
</tr>
<tr>
<td>EC$_{50}$</td>
<td>concentration of drug evoking half maximal effect</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EL</td>
<td>extracellular loop</td>
</tr>
<tr>
<td>ES-MS</td>
<td>electrospray mass spectrometry</td>
</tr>
<tr>
<td>ESP</td>
<td>electrostatic surface potential</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>EtOEt</td>
<td>diethylether</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>FAB-MS</td>
<td>fast atom bombardment mass spectrometry</td>
</tr>
<tr>
<td>FCS</td>
<td>fluorescence correlation spectroscopy</td>
</tr>
<tr>
<td>FIDA</td>
<td>fluorescence intensity distribution analysis</td>
</tr>
<tr>
<td>FGI</td>
<td>functional group interconversion</td>
</tr>
<tr>
<td>FTIR</td>
<td>fourier transform infra-red</td>
</tr>
<tr>
<td>fs</td>
<td>femtosecond</td>
</tr>
<tr>
<td>GDP</td>
<td>guanosine diphosphate</td>
</tr>
<tr>
<td>Glu</td>
<td>glutamic acid</td>
</tr>
<tr>
<td>Gly</td>
<td>glycine</td>
</tr>
<tr>
<td>GPCR</td>
<td>Guanosine binding protein coupled receptor</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>GTP-γS</td>
<td>guanosine 5’-$[\gamma$-thio]triphosphate</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>hCB$_2$</td>
<td>human CB$_2$</td>
</tr>
<tr>
<td>HEK</td>
<td>human embryonic kidney</td>
</tr>
<tr>
<td>His</td>
<td>Histidine</td>
</tr>
<tr>
<td>HPLC</td>
<td>high pressure liquid chromatography</td>
</tr>
<tr>
<td>HTS</td>
<td>high throughput screening</td>
</tr>
<tr>
<td>Ile</td>
<td>isoleucine</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Kcal</td>
<td>kilocalorie</td>
</tr>
<tr>
<td>K_d</td>
<td>equilibrium dissociation constant</td>
</tr>
<tr>
<td>K_i</td>
<td>equilibrium affinity constant</td>
</tr>
<tr>
<td>KJ</td>
<td>kilojoule</td>
</tr>
<tr>
<td>Lit</td>
<td>literature</td>
</tr>
<tr>
<td>Lys</td>
<td>lysine</td>
</tr>
<tr>
<td>λ_abs</td>
<td>wavelength of maximum absorption</td>
</tr>
<tr>
<td>λ_em</td>
<td>wavelength of maximum emission</td>
</tr>
<tr>
<td>M</td>
<td>molar (mol L⁻¹)</td>
</tr>
<tr>
<td>M+</td>
<td>molecular ion (+ vely charged)</td>
</tr>
<tr>
<td>M-</td>
<td>molecular ion (- vely charged)</td>
</tr>
<tr>
<td>MeCN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>MD</td>
<td>molecular dynamics</td>
</tr>
<tr>
<td>MEK</td>
<td>methyl ethyl ketone</td>
</tr>
<tr>
<td>MeOD</td>
<td>deuterium labelled methanol</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>Mesyl</td>
<td>methanesulphonyl</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>MH+</td>
<td>protonated molecular ion</td>
</tr>
<tr>
<td>MHRA</td>
<td>Medicines and Healthcare Products Regulatory Agency</td>
</tr>
<tr>
<td>MMFF</td>
<td>Merck Molecular Forcefield</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter(s)</td>
</tr>
<tr>
<td>mmol</td>
<td>milli moles</td>
</tr>
<tr>
<td>mol</td>
<td>moles</td>
</tr>
<tr>
<td>m.p.</td>
<td>melting point</td>
</tr>
<tr>
<td>MRC</td>
<td>Medical Research Council</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple Sclerosis</td>
</tr>
<tr>
<td>NAH</td>
<td>northern aliphatic hydroxyl</td>
</tr>
<tr>
<td>NBD</td>
<td>7-nitrobenzofurazan</td>
</tr>
<tr>
<td>NCC</td>
<td>non-classical cannabinoid</td>
</tr>
<tr>
<td>NECA</td>
<td>5’-(N-ethylcarboxamido)adenosine</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>nM</td>
<td>nanomolar</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NSB</td>
<td>non-specific binding</td>
</tr>
<tr>
<td>OMs</td>
<td>methanesulphonate (mesylate)</td>
</tr>
<tr>
<td>OSu</td>
<td>succinimidyl ester</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerise chain reaction</td>
</tr>
<tr>
<td>PET</td>
<td>photoinduced electron transfer</td>
</tr>
<tr>
<td>Pd/C</td>
<td>Palladium on charcoal (10%)</td>
</tr>
<tr>
<td>PG</td>
<td>protecting group</td>
</tr>
<tr>
<td>Phe</td>
<td>phenylalanine</td>
</tr>
<tr>
<td>PKA</td>
<td>protein kinase A</td>
</tr>
<tr>
<td>ps</td>
<td>picosecond</td>
</tr>
<tr>
<td>Pro</td>
<td>proline</td>
</tr>
<tr>
<td>q</td>
<td>quantum yield</td>
</tr>
<tr>
<td>Q.S.</td>
<td>quantity sufficient</td>
</tr>
<tr>
<td>rCB₂</td>
<td>rat CB₂</td>
</tr>
<tr>
<td>RMSD</td>
<td>root-mean-square-derivative</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>RTF</td>
<td>rich text format</td>
</tr>
<tr>
<td>SAH</td>
<td>southern aliphatic hydroxyl</td>
</tr>
<tr>
<td>SAR</td>
<td>structure activity relationship</td>
</tr>
<tr>
<td>sat.</td>
<td>saturated</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>Ser</td>
<td>serine</td>
</tr>
<tr>
<td>SMD</td>
<td>single molecule detection</td>
</tr>
<tr>
<td>SPAP</td>
<td>secreted placental alkaline phosphatase</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetra-(n)-butylammonium fluoride</td>
</tr>
<tr>
<td>TBDMS</td>
<td>(t)-butyldimethylsilyl</td>
</tr>
<tr>
<td>(\Delta^9)-THC</td>
<td>(\Delta^9)-tetrahydrocannabinol</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>Thr</td>
<td>threonine</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TM</td>
<td>transmembrane</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Trp</td>
<td>tryptophan</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>VDW</td>
<td>Van Der Waals</td>
</tr>
</tbody>
</table>
1. Introduction

There are currently a limited number of in-vitro assays available to study receptor-ligand interactions. The techniques that are used, such as radioligand binding and reporter-gene assays, are not ideal due to the speed, cost and technical implications associated with these assays. We are interested in developing an emerging technique which can be used to study receptor-ligand interactions using fluorescent-labelled ligands. Fluorescent ligands with specificity towards GPCRs are promising to be extremely useful tools in the field of pharmacology and drug discovery\(^1-3\). They offer advantages to most of the problems associated with existing techniques; however few fluorescent GPCR ligands are known, which presently restricts the use of this technique. Our group is interested in studying the peripheral cannabis receptor (CB\(_2\)), which is a member of the GPCR class of receptors. We aim to develop novel fluorescent ligands that act at the peripheral cannabis receptor (CB\(_2\)), for use in both fluorescent-based biological experiments and in the screening of novel synthetic cannabinoids from combinatorial chemical libraries. Thus potentially providing data on both the cellular actions of cannabinoids and providing a tool to enhance the opportunity of discovering new selective cannabinoids.

Cannabis and the active pharmacological agents acting at the cannabis receptors, the cannabinoids, have long been of interest to scientists who wished to use the compounds in alleviating suffering caused by human disease. From its beginnings as a crude preparation used in China 2000 B.C., through to its current clinical trials in the United Kingdom by the company GW Pharmaceuticals, the use of cannabis for medicinal purposes has long been the subject of controversy. Primarily, this has been the result of an association of cannabis with a ‘drug of abuse’, compounded by the lack of scientific data available on how cannabis elicits its effects. The recent discovery in 1993 of the peripheral cannabis receptor (CB\(_2\))\(^4\), which is unrelated to the psychoactive effects of cannabis, in conjunction with a general softening of societies’ attitudes to the use of cannabis\(^5\), has provided cannabis research groups a unique opportunity of providing quality scientific data and novel synthetic cannabinoid compounds which may provide relief to suffering patients.

\(^*\) The licensing of UK clinical trials for cannabis medicines and the downgrading of cannabis to a class C drug under the Misuse of Drugs Act 1971 are viewed by the author as a ‘softening of attitudes’ towards the use of cannabis.
1.1 Fluorescent labelled ligands as a tool to study G-protein coupled receptors

G-protein coupled receptors (GPCR) are widely expressed in the body and play a fundamental role in the physiology and the pathophysiology of disease (see section 1.3.1 for further details of GPCRs). Agonists and antagonists towards the GPCRs are the most successful class of drugs, in terms of therapeutic benefit and commercial sales, with GPCR ligands accounting for 50% of the modern drug arsenal\(^5\), and approximately 9% of total global pharmaceutical sales worth $23.5 billion dollars in 2000\(^6\). An example of some of the best selling therapeutics targeted at GPCRs, demonstrating the diversity in receptors and indications that GPCR agonists and antagonists can be used to treat are shown in Table 1-1.

![Table 1-1](image)

<table>
<thead>
<tr>
<th>Trade name (generic name)</th>
<th>GPCR targeted</th>
<th>Agonist or Antagonist</th>
<th>Indication</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claritin(^®) (Loratidine)</td>
<td>Histamine H(_1)</td>
<td>Antagonist</td>
<td>Rhinitis or allergy</td>
<td>Eli Lilly</td>
</tr>
<tr>
<td>Imigran(^™) (sumatriptan)</td>
<td>Serotonin 5-HT(_{1B/1D})</td>
<td>Agonist</td>
<td>Migraine</td>
<td>Glaxosmithkline</td>
</tr>
<tr>
<td>Cozaar(^®) (Irbesartan)</td>
<td>Angiotensin AT(_2)</td>
<td>Antagonist</td>
<td>Hypertension</td>
<td>Merck and Co.</td>
</tr>
<tr>
<td>Serevent(^®) (Salmeterol)</td>
<td>(\beta)_2 Adrenoreceptor</td>
<td>Agonist</td>
<td>Asthma</td>
<td>Glaxosmithkline</td>
</tr>
<tr>
<td>Singulair(^®) (Montelukast)</td>
<td>Leukotriene BLT(_1)</td>
<td>Antagonist</td>
<td>Asthma</td>
<td>Merck and Co.</td>
</tr>
</tbody>
</table>

Table 1-1 Selection of the best selling therapeutics targeted at GPCRs in 2000. Adapted from reference 6.

Despite their importance as drug targets, techniques to investigate the pharmacology surrounding the ligand-receptor interactions are limited to studying the interactions of the receptor with radioactively labelled receptor-specific-ligands or analyzing ‘downstream processes’ of receptor activation, such as reporter genes, GTP-\(\gamma\)-S and cAMP assays.

Studying the receptor using a radioactively labelled ligand has been the primary and most established method for studying ligand-receptor interactions. Use of a \(^3\)H or \(^125\)I radioactive ligand specific to the receptor of interest can be used to determine the dissociation constant \((K_d)\) of the radioactive ligand and the binding site
density \((B_{max}) \) when saturation binding experiments are used\(^7\). Alternatively, competition experiments are capable of determining the equilibrium constant for a competitive inhibition of the receptor \((K_i) \) when studying the displacement of the radiolabelled ligand by a non-radioactive ligand\(^7\). The technique can be extended to mapping the distribution of receptors in a section of tissue by using a technique called autoradiography (see section 1.3.4.1). Use of radioligand techniques suffer from a number of problems. The technique relies on equilibrium between free ligand and receptor bound ligand and is not capable of easily studying binding kinetics.

Equilibration takes time to achieve and this is mirrored in the relatively long assay times associated with radioligand binding techniques. Separation of the bound and free ligand, using filtration or centrifugation, is another time consuming step in the assay, and finally the filtered matter (representing the bound ligand component) must be allowed to incubate with scintillation fluid long enough for the tritium to diffuse out and interact with the scintillator. Therefore the process of using a radioligand to study ligand-receptor interactions takes a significant amount of time which is a serious problem for users of this technique wishing to perform thousands (high throughput screening (HTS)) and up to a one hundred thousand (ultra high throughput screening (uHTS)) assays a day screening new chemical entities for receptor affinity\(^8,9\). Finally the assay produces significant quantities of radioactive and flammable scintillation effluent which has an associated high cost for its disposal.

Other techniques using radioactive reporter elements, such as intracellular cAMP and GTP-\(\gamma\)-S binding, are able to give information on the efficacy of a ligand upon binding to a GPCR. These techniques, specifically GTP-\(\gamma\)-S binding, have been developed into a HTS assay format \textit{i.e.} Scintillation proximity assay (SPA) beads or Flashplates\(^10\). However the technique still employs radioactive substances and suffers from sensitivity problems discussed in section 1.3.4.3.

Development of non-radioactive, homogenous, miniaturized assays for GPCRs has been slow\(^11\). Recently, however, reporter-gene systems for the study of GPCRs have offered an alternative to biochemical and binding assays\(^12\). The reporter-gene is a sequence of DNA whose product is synthesized in response to a cellular change occurring within the cell, \textit{i.e.} an increase in cAMP. Examples of the reporter elements produced include enzymes, and Luciferase (a luminescing compound)\(^12\). By choosing the correct promoter and reporter elements the assays can; allow the ligand-
receptor interaction to be studied and quantified in living cells, can elucidate signalling pathways associated with the receptor and can be used in HTS applications12. However the assays’ drawbacks are the need to stably transfect a cell line with the appropriate genetic code, and the 4-6 hour incubation required to express the reporter gene product12. Therefore new techniques to study ligand-receptor interactions avoiding some of the problems stated above would be a welcome development in the pharmacology and HTS laboratories.

The use of fluorescent ligands to study GPCRs interactions promises to be a valuable addition to the techniques discussed above in the field of pharmacology and drug discovery1-3. Fluorescence assays offer the advantages of high sensitivity, reduced sample volumes, low effluent disposal costs, fast assay times and an ability to detect a wealth of biological phenomena in a real time aqueous environment1-3,13. The development of fluorescent ligands with affinity towards a specific GPCR of emerging importance, the CB\textsubscript{2} receptor (see section 1.3.4), will allow this system to be interrogated with all of the advantages fluorescence assays offer.

1.1.1 Principles of fluorescence

Fluorescence is described as the emission of light energy as a molecule relaxes from an excited electronic state to a lower energy state14,15. A fluorescent dye is capable of absorbing a discreet package of energy (E_{abs}), in the form of electromagnetic radiation, which can promote an electron from the ground state (S_0) up to a first excited singlet state (S_1). The emission phase of fluorescence is represented by the loss of energy from S_1 to S_0 (E_{em}), typically over a lifetime of 10^{-8}s. Due to loss of energy within the S_1 state, via non-radiative pathways, the emitted fluorescence will be of lower energy and hence longer in wavelength than that of the electromagnetic energy absorbed. This phenomenon is described as the red or Stoakes shift and allows the user to detect the emitted light over the background of the light source used to excite the fluorescent dye14.

Competing with emission is a number of other mechanisms which are capable of transferring the energy from S_1 to S_0 through non-radiative pathways.
• **Internal conversion** occurs from the S\(_1\) of one molecule to the S\(_1\) of another molecule. Quenching of fluorescence by this mechanism can occur over relatively long distances of up to 10 nM\(^{14-16}\).

• **Intersystem** crossing involves the formation of a triplet state. Magnetic perturbations caused by environmental factors such as solvent, paramagnetic ions and atoms with a large atomic radius (heavy atom effect) are capable of changing the direction of spin of the electron in S\(_1\)\(^{14}\). The resulting triplet state is of lower energy than the corresponding S\(_1\) and possesses a much longer lifetime (10\(^{-2}\)-10\(^{-2}\) s)\(^{15}\). This stability makes it vulnerable to loss of energy through non-radiative processes such as collisions with solvent and the quenching of triplet states in the solution phase is always observed.

• **Photobleaching** may occur in susceptible dyes if a high energy excitation light source (i.e. Laser) is used. The fluorophore undergoes a chemical reaction, which is usually initiated from the triplet state and is free radical in nature, to yield a non-fluorescent product\(^{17,18}\).

These quenching effects are measured as the fluorescent dyes quantum yield (\(\eta\)), and are important factors when choosing the fluorescent dye that will be conjugated to the biological ligand. Many of the sensitive fluorescent techniques used with fluorescent ligands are negatively affected if the dyes are subject to these quenching mechanisms.

1.1.2 Fluorescent techniques

We intend to use our novel fluorescent CB\(_2\) ligand in a number of different fluorescent applications which will be considered briefly below.

1.1.2.1 Confocal microscopy

Fluorescent labelled ligands have found use in confocal microscopy experiments reporting on biological functions such as intra-cellular binding events\(^{19}\), uptake mechanisms and subsequent cell storage\(^{20}\), and receptor localization, internalization and density measurements\(^{21-25}\). The optical principles are outside the scope of this report but for further information readers are directed towards two excellent
Confocal microscopy confers advantages over conventional wide field light microscopy by only reporting on a small percentage of the total fluorescence observed. Thus confocal microscopy is capable of providing information on thin slices (0.5 µm) of a cellular structure under investigation resulting in increased resolution compared to wide field microscopy whose depth of field is between 2-3 µm16. An important consideration in designing fluorescent ligands for confocal application is that due to the optical principles behind the technique large excitation energies from laser sources must be used which can increase the photobleaching of the ligands used26. Visualization of fluorescent derivatives of the α\textsubscript{1} adreno-receptor agonist prazosin21, the D\textsubscript{1} dopamine antagonist SCH 2339022, the β-adrenoreceptor antagonist CGP 1217723, the adenosine antagonist XAC24 and the adenosine agonist N6-aminobutyladenosine25 by confocal microscopy have been used by researchers to comment upon the localization, distribution and internalization of receptors at the single cell level.

1.1.2.2 Single molecule detection

Single molecule detection (SMD) is a term used to describe a number of different techniques, which are capable of distinguishing fluorescence bursts caused by a molecule of interest and background fluorescence. In contrast to bulk fluorescent techniques (such as confocal microscopy) which studies the average values generated from a system over time, SMD techniques are capable of studying fluctuating systems under equilibrium by generating very small detection volumes (sub-femtolitre (10-15 L)) and using small concentrations of fluorophore (sub-nanomolar (<10-9 M))27,28. SMD is therefore an ideal approach to reducing the amounts of scarce and expensive materials used in biomedical research (such as enzymes, receptors, cells, solvent and ligands) which makes it a powerful tool in both biological assays and HTS28.

There are several different methods for studying time-dependant fluorescence fluctuations and the following is a brief introduction concerning their application in studying fluorescent receptor ligands.
1.1.2.2.1 Fluorescence correlation spectroscopy

The philosophy and experimental realisation of fluorescence correlation spectroscopy (FCS) was first published in the early 1970s29,30, but it is only recently through advantages in laser technology and confocal microscopy that the technique is gaining influence in biological chemistry28. The in-depth principles of FCS are outside the scope of this thesis and readers are directed to comprehensive reviews on this topic28,31,32. In brief, however, FCS is capable of generating information on the rotational and translational diffusion and the life time of the excited state of a fluorophore by deciphering the random fluctuations of fluorescence observed using autocorrelation mathematics28,32. FCS can therefore give information upon the binding state of a fluorescent ligand without the need for physical separation. FCS has been used in conjunction with fluorescent derivatives of the 5HT_{3} receptor antagonist GR119566 to show the binding constants of the fluorescent ligand, the stoichiometry of the ligand-receptor interaction and the mass of a 5HT_{3} receptor33. This methodology has also been used to demonstrate that 5HT_{3} receptors are found in different environments within a cell membrane34. It has subsequently been shown by our research group that the interactions of a fluorescent adenosine agonist and antagonist with the adenosine A\textsubscript{1} receptor can be studied using FCS to provide data on receptor environment within the membrane24,25. Taken together it is clear that FCS can provide useful biological information on receptor-ligand interactions occurring dynamically upon live cells when combined with a fluorescent ligand specific to the receptor being studied. The experimental conditions and the process of autocorrelation mathematics used in FCS demand that the fluorescent dyes used have a high quantum yield33, high photostability34, do not form triplet states easily33 and exhibit an emission wavelength which is far separated from the background cellular autofluorescence34.
1.1.2.2 Other single molecule detection techniques

The application of other SMD methods for biological monitoring is beginning to be used; however most of these techniques have not yet been used with fluorescent receptor ligands to date. The following SMD methods have been reported to have the potential to be used to study ligand-receptor interactions using a fluorescent labelled ligand.

- **Dual colour fluorescence cross-correlation spectroscopy (DC-FCCS)** is a technique designed to study two spectrally separated fluorophores (i.e. green and red dyes) interacting in the same confocal detection volume\(^{35}\). Thus, we can envisage labelling the CB\(_2\) receptor with Green Fluorescent Protein\(^{36}\) and labelling a CB\(_2\) ligand with a red fluorescent dye and detecting the binary species, as would occur in ligand-receptor binding. DS-FCCS confers advantages over FCS as the simplified data analysis of this technique allows for high confidence millisecond determination of a binary species, occurring within the detection volume making it highly suitable as a high throughput screening assay\(^{37,38}\).

- **Image correlation spectroscopy** combines confocal scanning microscopy with FCS measurements. This method generates high-resolution images, which can be used to characterize a variety of cell features of both dynamic and structural nature. Thus, the numerical data extracted from FCS measurements can be overlaid onto a real image of the structure under study to allow easier interpretation of the data\(^{39}\).

- **Fluorescence intensity distribution analysis (FIDA)** is a technique that discriminates between different fluorescent species according to their specific molecular brightness. It is a development of the analysis performed on the data from a classical FCS experiment. In classical FCS, the system under investigation requires large changes in the molecular weight of the fluorescence species to influence the observed diffusion coefficient (a doubling of the diffusion coefficient requires an 8-fold increase in molecular weight). The diffusion coefficient can then be used to determine parameters
such as bound versus unbound ligand concentrations. However the emission characteristics of the fluorophore can also change upon binding or when several ligands aggregate together giving rise to bright species which dominate the autocorrelation curves. These problems are overcome when using FIDA analysis, which is capable of distinguishing fluorescent molecules on the basis of their molecular brightness. FIDA analysis has been used successfully to study the binding of a fluorescent 5HT receptor ligand to an unspecified 5HT receptor over expressed in *E. Coli*\(^{40}\). This method was capable of demonstrating that the addition of the high affinity 5HT\(_{1A}\) ligands 8-hydroxy-DPAT (agonist) and NAN-190 (antagonist) inhibited the binding of the fluorescent ligand, shown as a reduction in the number of “bright spikes” observed\(^{40}\). Thus, FIDA appears capable of generating “yes” or “no” decisions on whether an unlabelled ligand is capable of competing with a fluorescent ligand for occupancy at a receptor, something that is of great interest to researchers in high throughput screening laboratories looking to discover new receptor ligands.

1.1.2.3 High throughput screening applications

One of the main aims of this research was to design a fluorescent CB\(_2\) ligand which could be used in a fluorescent-based HTS assays, enabling screening of new lead compounds with affinity to the CB\(_2\) receptor. HTS is the primary engine driving lead discovery in most pharmaceutical companies and currently involves performing several million assays per year\(^1\). The testing of vast numbers of synthetic and natural compounds against a receptor target of therapeutic interest imposes great demands for both faster and smaller volume assays without compromising data quality\(^{1,11}\). SMD based HTS addresses each of these requirements by offering fast (0.2 – 0.4 seconds per scan) and low volume (often limited by liquid handling capabilities) assays, which are still capable of being highly sensitive and quantitative\(^{13,41}\). The low assay volume required allows cost savings on the amounts of test compounds, biological materials and solvent required for each assay. The non-radioactive nature of the tests also reduces the cost per assay due to the decreased cost of waste disposal. Various research groups have demonstrated SMD to be applicable to HTS\(^{1,13,33,37,38,40,42}\).
1.2 Cannabis

Cannabis is a collective term for a series of preparations derived from the plant Cannabis sativa. There are many regional or colloquial names for the preparations of cannabis but the two most commonly referred to in the United Kingdom are marijuana and hashish (cannabis resin). Marijuana consists of the dried leaves and female flower heads and hashish is the plant secretions compressed into blocks. These preparations can either be heated and the vapour inhaled, or eaten to afford adsorption of the active pharmacological agents present within cannabis; the cannabinoids.

The term cannabinoid was originally used to describe the family of approximately sixty, 21-carbon structures present within the preparations of cannabis. Of these, the most significant in terms of both quantity and psychoactive efficacy, is the compound Δ^9-tetrahydrocannabinol (Δ^9-THC, Figure 1-1)\(^\text{43}\). Recently the term cannabinoid has been used to describe any compound that has activity at the cannabis receptors including synthetic and endogenous compounds.

1.2.1 Historical overview of cannabis

Cannabis, and hence, the cannabinoids have enjoyed a long history of use as a medicinal agent. Cannabis had its first entry in the world's oldest Pharmacopoeia, the Chinese Shen-nung pen-ts'ao ching which was compiled in the first or second century A.D. The list of over 100 ailments which ma (cannabis) was used to treat includes many which cannabis is currently prescribed or undergoing clinical trials for i.e. anti-emetic, pain relief, and rheumatism\(^\text{44}\). Following its first recorded use in China approximately 5000 years ago, cannabis has enjoyed many centuries of medicinal use; which have included the treatment of pain, asthma and dysentery, the promotion of sleep, the suppression of nausea and vomiting and the abolition of convulsions and spasms\(^\text{45}\). Within the United Kingdom doctors could legally prescribe cannabis until 1971, and cannabis still had an official entry in the Pharmaceutical Codex until 1949.

Cannabis cannot be introduced without considering its potential use as a ‘drug of abuse’. Although a thorough review of this subject is outside the scope of this work, the reader is directed to a review of cannabis misuse\(^\text{46}\). The fact that cannabis is
used as an intoxicating drug has been a factor in its prohibition as a medicinal agent. Within the United Kingdom cannabis is the most widely used of the illicit drugs with an estimated 1,503,000 users between 16-24 years old using the drug in 1999. Cannabis is used recreationally because of the euphoria it produces. The adverse physiological effects it produces include psychomotor and cognitive impairment, anxiety, panic attacks, acute psychosis and paranoia. In 1971 this led to its reclassification as a controlled drug, placing it within Schedule 1 of the Misuse of Drugs Act 1971 (drugs without therapeutic value), where it still remains today, hampering its use or evaluation as a medicine.

A thorough scientific understanding regarding cannabis as a drug has only recently started to be compiled. The following discoveries have been fundamental to the current understanding of how cannabis exerts its pharmacological actions.

- **1964** Gaoni and Mechoulam first elucidated the structure of the major psychoactive compound (Δ^9-THC, Figure 1-1) in cannabis resin.
- **1982** Pfizer Central Research synthesised and patented CP 55, 940 (Figure 1-1). This compound demonstrated that the core three ring structure (A, B & C) of the natural cannabinoids could be simplified to two rings (A & C) and still retain potent cannabinoid pharmacology.
- **1990** Matsuda et al. provided the first definitive proof of a central cannabinoid receptor (CB$_1$) by isolating the cDNA of a cannabinoid receptor from a rat brain and expressing it in Chinese Hamster Ovary (CHO) cells. The central CB$_1$ receptor has been shown to be responsible for the euphoric and psychotropic effects of Δ^9-THC.
- **1991** Stirling Research Group discovered a new chemical class of cannabinoid ligand, the indole cannabinoids. These compounds showed no chemical resemblance to the tri or bicyclic classical cannabinoids. The potent cannabinoid Win 55212-2 (Figure 1-1) was developed through this research program.
- **1992** Devane et al. isolated and characterised the first endogenous ligand to the cannabis receptor. Anandamide (Figure 1-1) was extracted from the lipophillic fraction of porcine brain extracts and was shown to bind to...
membranes derived from rat brain homogenate (the standard test for CB₁ receptor binding).

- **1993** Munro et al. discovered a second cannabinoid receptor which was isolated from human myeloid cells. The finding of a second cannabinoid receptor named the peripheral CB₂ receptor was evidence that some of the beneficial therapeutic uses of cannabis are derived from a non-psychoactive pathway.

- **1994** Sanofi introduced the first selective CB₁ antagonist SR141716 which has proved a useful investigative tool into the *in vivo* and *in vitro* functions of the endogenous cannabinoid system. Under the trade name Rimonabant it is now under investigation as a drug in a number of medical conditions.

- **1998** Sanofi introduced the first selective CB₂ antagonist SR144528 (Figure 1-1) which has proved to be a powerful tool in investigating the *in-vitro* and *in-vivo* actions and effects of the CB₂ receptor.

This selected chronology showing the major scientific discoveries associated with cannabis highlights that it has only been in the last decade that scientists have been able to relate cannabis pharmacology to two different receptor sub-types (CB₁ and CB₂), each capable of binding a diverse range of chemical ligands. Researchers are now beginning to exploit this information in developing new treatment strategies for disease. It is envisaged that the addition of a fluorescent labelled ligand, selective to the CB₂ receptor, will give scientists a new tool capable of exploring the less well characterized CB₂ receptor, at a level of detail which is not available using current pharmacological ligands. The renaissance surrounding the use and testing of cannabis in the United Kingdom has arisen since positive recommendations towards medicinal cannabis were made in reports by the House of Lords select committee on Science and Technology. The committee, after studying the available literature and taking statements from eminent scientists, were favourable towards medicinal cannabis as long as a careful scientific approach to its use was adopted. A key conclusion from the 1998 report was that “clinical trials of cannabis for multiple sclerosis (MS) and chronic pain should be mounted as a matter of urgency”; a reflection of the potential benefits that are being ignored by cannabis’s continued prohibition.
Figure 1-1 The chemical structure of a number of selected cannabinoid ligands.
This recommendation has led to both the Medical Research Council (MRC) and a privately owned company, GW Pharmaceuticals, being granted Home Office licenses enabling them to conduct a large clinical trial into cannabis based medicines for the relief of symptoms in MS and pain control. The full results of these trials are still awaited. However, GW Pharmaceuticals have already made their first submission to the UK’s regulatory authority, the Medicines and Healthcare Products Regulatory Agency (MHRA), for their standardised cannabis extract product Sativex® to be used in patients with MS and neuropathic pain.

One of the key reasons cannabis has returned to a status as a drug of medicinal value has been that quality scientific evidence, amassed by cannabis researchers over the last half a century, has become impossible for governmental bodies to ignore. However, further research into cannabis and its actions is essential, if cannabinoids are to find approval with politicians, regulatory authorities and the general public, as an effective therapeutic agent.

1.2.2 Therapeutic use of cannabis

Cannabis’s use as a “cure all” for nearly 5000 years has led to it being evaluated as a medicine in literally hundreds of diseases. Thus, cannabis has been used as an analgesic, anti-spasmodic, anticonvulsant, anti-emetic and hypnotic throughout ancient China, the Middle East, Southern Africa and South America, and was still advocated up until the 19th century by eminent doctors such as W. B. O’Shaughnessy (the medic who discovered the pathology of Cholera) and Russell Reynolds (Queen Victoria’s personal physician). Indeed Reynolds wrote “Indian hemp, when pure and administered carefully, is one of the most valuable medicines we possess.”

In recent years the evidence base to support cannabis as a medicinal product has grown and the prospect of a cannabis-based product is now real. Following the House of Lords Committee report in 1998, cannabis trials are currently underway and reporting on the use of standardized cannabis preparations or synthetic Δ9-THC for use in MS and pain. Cannabinoids have also been evaluated in a number of other conditions and the individual conditions that cannabis is currently being used for as a potential therapy will now be considered.
1.2.2.1 Multiple Sclerosis

Multiple Sclerosis (MS) is the most common disabling nervous system disease of young adults, with an estimated 85,000 people suffering with the condition in the United Kingdom. MS is a progressive, degenerative disease, in which the brain and spinal cord nerves are damaged by the gradual destruction of myelin, the protective insulating layer of fatty tissue that normally coats nerve fibres. Although the precise cause of the disease is unknown, it is thought to represent an auto-immune condition whereby the body's own defences attack and break down the myelin leading to the major symptoms of muscle spasticity (90%), urinary tract dysfunction (90%), tremor (80%) and pain (50%). Anecdotal reports of the beneficial use of cannabis to alleviate the suffering caused by MS have arisen primarily because individuals with MS constitute the biggest users of illicit cannabis for medicinal purposes. Controlled clinical trials have tried to establish a product license for cannabis medicines by showing them to be efficacious and safe.

A review of the literature up until 1997 indicates that there have been 15 reported trials conducted into cannabis usage and MS. The total number of subjects in the trials however was extremely low; a total of approximately 174 people throughout all the trials. The trials broadly showed that cannabis was generally well-tolerated and patients showed improvement in the subjective assessment of their symptoms, but did not show improvement in their objective assessment of spasticity and tremor. A summary of the details and results of the three largest clinical trials are shown in Table 1-2.

More recently two larger trials using orally dosed Δ⁹-THC or cannabis extract have also proved inconclusive in their support for use of cannabis based medicines in MS. Both trials showed that there was significant improvement in subjective spasticity and pain but there was no significant difference when analysis of the objective assessment of disease markers, such as spasticity, was considered. In both trials cannabis side effects caused by the medication where rated as mild and well-tolerated. In summary, cannabis has not been shown to conclusively provide measurable benefit in MS when trialed in humans. However, patients did report a perceived benefit from the cannabis-based medicines, and many more regularly use illicit forms of cannabis to self-medicate. A major problem in the trials is that the Δ⁹-THC or cannabis extract have been dosed orally. Cannabis absorption
from the gut is variable and slow and this is problematic when finding a correct dose within its small therapeutic window, which if exceeded, results in psychotropic side effects. GW Pharmaceuticals appear to have overcome this problem by formulating the cannabis extract into a sublingual spray. Their medicinal product, Sativex®, is now awaiting regulatory approval for use in MS.

Another approach to avoiding the psychotropic side effects of cannabis is to target the non-psychotropic CB₂ receptor. It has recently been established that the peripheral cannabis receptor (CB₂) is responsible for some of the therapeutic actions of cannabinoids in animal models of MS, possibly through an immunoregulatory pathway. If this evidence of CB₂ receptor involvement can be shown in human MS patients it would enable the development of a non-psychoactive therapy, targeted to the CB₂ receptor, which may be suitable for long-term use.

1.2.2.2 Analgesia

Pain is one of the most common medical symptoms requiring drug treatment. Although the arsenal of analgesics available is extensive, there are certain painful conditions for which conventional analgesics fail to treat effectively. Chronic neuropathic pain arising from damage to neural tissue is usually unresponsive to established analgesic medication. A need for a new effective analgesic to combat neuropathic pain is therefore needed. The results from trials involving pain are mixed. A systematic review by Campbell et al. of nine human trials involving cannabis as an analgesic concluded that cannabinoids are no more effective than codeine in controlling pain, but with the disadvantage of increased central nervous system (CNS) side-effects. A summary of the three largest trials are shown in Table 1-2. It was proven that Δ⁹-THC 1 and the synthetic cannabinoid levonantradol 7 (Figure 1-1) had an analgesic effect, but at the expense of drowsiness and CNS side-effects. The authors do however concede that new and effective agonists at the cannabinoid receptors could reduce the CNS side-effects and that these should be evaluated as an analgesic in neuropathic pain and spasticity. A recent discovery that the CB₂ receptor is implicated in neuropathic pain pathways has made the idea of a cannabinoid analgesic, free from CNS side effects, more of a reality. It is interesting to note that GW Pharmaceuticals product Sativex® is currently awaiting licensing for use in neuropathic pain. A recently published trial using Sativex®
showed that the sublingual formulation was able to significantly reduce pain in patients suffering from a mixture of intractable neurogenic symptoms when assessed by Visual Analogue Scoring assessment\(^7^4\). Although the cannabis treatment group had significantly increased side effects the authors concluded that these were generally well-tolerated.

1.2.2.3 Nausea and vomiting

Nausea and vomiting are the only indications that presently have a cannabinoid containing medicine available to patients. These are the orally administered synthetic cannabinoids Dronabinol (Marinol\(^\circ\)) and Nabilone \(^8\) (Cesamet\(^\circ\), Figure 1-1). Dronabinol is the trade name for synthetic \(\Delta^9\)-THC \(^1\) and is licensed in the United States for nausea and vomiting associated with cancer chemotherapy and as an appetite stimulant to overcome the devastating cachexia often observed in AIDS and cancer patients. For a thorough analysis on the uses, efficacy and side effects of Dronabinol, readers are directed to the clinical review by Plasse \(et\ al.^{7^5}\).

Nabilone \(^8\) is a synthetic cannabinoid that was developed by scientists at the Eli Lilly Company, who were looking to modify the natural cannabinoids (i.e. \(\Delta^9\)-THC \(^1\)) to have improved separation of the desired therapeutic effects from the psychotropic side effects. Although it still possessed a psychotropic side-effect profile, it was thoroughly tested in clinical trials and received a license in the United Kingdom for use in nausea and vomiting caused by cytotoxic chemotherapy unresponsive to conventional anti-emetics. A thorough review of the clinical trials involving Nabilone \(^8\) was conducted by Ward and Holmes\(^7^6\).

1.2.2.4 Appetite modification

Anecdotal evidence and early published work on the effects of cannabis have reported that users show an increase in appetite\(^7^7\). Cannabis agonists such as \(\Delta^9\)-THC \(^1\) (Dronabinol, Figure 1-1) are used as an appetite stimulant and can significantly reverse the weight loss observed in cancer and AIDS, with 47% of the patients trialed reporting a subjective increase in appetite\(^7^5\). Recent evidence has shown that the
endogenous cannabinoid system e.g. anandamide 4 (Figure 1-1) may tonically activate the CB₁ receptor, maintaining food intake²⁸. The same authors of this study showed that if the CB₁ receptor antagonist SR141716 5 (Figure 1-1) was administered to mice it reduced their food intake. This has led the company, Sanofi-Synthelabo, to trial SR141716 5 (Rimonabant⁶⁰), which is currently in worldwide phase III trials, as an anti-obesity agent. This is the first example that we are aware of where a cannabis antagonist is undergoing a clinical evaluation and demonstrates that synthetic cannabinoids are beginning to find uses in clinical settings.

1.2.2.5 Other therapeutic areas

Cannabis has also been evaluated as a medicine in a number of other disease states. For example, epilepsy, glaucoma, asthma, mood disorders and as a sedative. These conditions are likely to derive their benefit from activation of CB₁ receptors, and there is no current evidence to suggest any CB₂ receptor involvement and readers are directed to some excellent reviews on the trials already conducted⁴⁵,⁶¹,⁷⁹. As the scope of this thesis wishes to examine the usefulness in directing research towards the peripheral CB₂ receptor these therapeutic areas will not be examined in any further detail.
Table 1.2: A summary of some of the major human clinical trials involving MS or pain symptoms

<table>
<thead>
<tr>
<th>Indication</th>
<th>Number of subjects</th>
<th>Drug and dose</th>
<th>Type of study</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>13 patients with MS</td>
<td>Oral Δ^2-THC 1 2.5-15mg once or twice a day</td>
<td>Double blind, placebo controlled</td>
<td>Significant subjective improvement in spasticity at doses of 7.5mg Δ^2-THC 1 and above, but no change in objective measurements of weakness, spasticity, coordination, gate or reflexes. Side effects in 12 patients on Δ^2-THC 1 and 5 patients on placebo.</td>
<td>77</td>
</tr>
<tr>
<td>MS</td>
<td>10 patients with MS 10 normal controls</td>
<td>Smoking cannabis. 1.54% Δ^2-THC 1 per cigarette single dose</td>
<td>Double blind, placebo controlled</td>
<td>Cannabis impaired posture and balance in all subjects, causing greater impairment in MS patients. No other objective neurological changes but subjective improvement in some patients. “High” experienced with cannabis.</td>
<td>78</td>
</tr>
<tr>
<td>MS</td>
<td>112 patients with MS</td>
<td>Smoking cannabis - dosage not known</td>
<td>Questionnaire survey</td>
<td>Improvement in muscle spasms and pain, depression, tremor, anxiety, paraesthesiae, weakness, balance and constipation. No information on adverse effects.</td>
<td>79</td>
</tr>
<tr>
<td>Pain</td>
<td>10 patients with cancer pain</td>
<td>Oral Δ^2-THC 1 5, 10, 15, 20mg in random order</td>
<td>Double blind, placebo controlled</td>
<td>Significant pain relief with 15 and 20mg Δ^2-THC 1 compared to placebo. Drowsiness and mental clouding common</td>
<td>80</td>
</tr>
<tr>
<td>Pain</td>
<td>36 patients with cancer pain</td>
<td>Oral Δ^2-THC 1 10 and 20mg vs oral codeine</td>
<td>Double blind, placebo controlled</td>
<td>Δ^2-THC 1 20mg and codeine 120mg gave equivalent and significant pain relief compared with placebo. Δ^2-THC 1 caused sedation and mental clouding.</td>
<td>81</td>
</tr>
<tr>
<td>Pain</td>
<td>56 patients with post-operative pain</td>
<td>Intra-muscular levonantradol 7 (a synthetic cannabinoid) 1.5-3mg</td>
<td>Double blind, placebo controlled</td>
<td>Significant pain relief with both doses of levonantradol 7 compared with placebo. Drowsiness common with levonantradol 7.</td>
<td>82</td>
</tr>
</tbody>
</table>
1.3 The cannabis receptors

Two cannabis receptors have been identified and cloned, the central CB$_1$ and the peripheral CB$_2$ receptor 80. Both of these receptors belong to the larger super family of the Guanosine Binding Protein Coupled Receptors (GPCR). In order to appreciate the complexity and importance of the cannabinoid receptor, it is important to understand the nature and workings of the GPCR family to which it belongs.

1.3.1 GPCR receptors

The GPCR super family has a common protein structure embedded within the phospholipid membrane. The distinguishing feature of the GPCR is that the protein chain winds back and forth through the membrane seven times - hence GPCRs are also known as seven transmembrane (TM) receptors. The receptor comprises of 7 α-helices that are lipophilic on their outside face, which transverse the lipid membrane, connected by intra-cellular and extra-cellular loops (Figure 1-2). The α helices are numbered from 1 (I) through to 7 (VII) and are clustered together in a barrel type structure.

GPCRs are difficult to study at the molecular level due to their intrinsic association with the cell membrane. They are difficult to purify due to the reliance upon the lipid membrane encasing the receptor to stabilize their structure and hence cannot be crystallised. These difficulties have partially been overcome recently by using a 2.8 Å X-ray crystal structure of a related 7-TM protein called Bovine Rhodopsin (BR) as a template for the individual amino acid sequence of the GPCR81. Evidence that the crystal structure of BR is a satisfactory model for the GPCRs has been generated by a number of researchers$^{82-84}$.
The 3D structure of the GPCR is important as it dictates how an external ligand interacts with the receptor and how the receptor translates this stimulus into a cellular event. Ligand binding to the GPCR can occur either in a deep binding pocket within the TM regions (type A); to the top of the TM regions (type B); or involve interaction with the extra-cellular loops (type C). When a ligand binds to the GPCR a cascade of events are initiated that result in a signal being passed from the extra-cellular surface to the intra-cellular domain where cell processes can be regulated. Upon activation with an agonist ligand the GPCR undergoes a conformational change allowing a membrane bound protein, called a G-protein, to bind to the receptor ligand complex. G-protein coupling is the first level in the signalling cascade (see Figure 1-3). The coupling event is able to propagate the signalling process due to the heterotrimeric structure of the G-protein which consists of three separate subunits (α, β, and γ). When un-coupled from the receptor the α subunit binds guanosine diphosphate (GDP)\(^9\), Figure 1-4). Upon ligand induced receptor coupling, the α subunit changes conformation and its guanyl binding pocket now preferentially binds guanosine triphosphate (GTP)\(^{10}\), Figure 1-4) instead of GDP. The expulsion of GDP by GTP causes further conformational changes in the G-protein trimer and causes it to separate into an α subunit binding
GTP 10 and a βγ complex. The activated receptor-ligand complex is capable of activating several G-proteins in this way, leading to signal amplification.

Figure 1-3 A cartoon description of the events following the agonist stimulation of a GPCR.

Figure 1-4 Guanyl nucleotide analogues GDP 9, GTP 10, and GTP-γ-S 11

A further consequence of receptor activation of a GPCR, which adds to the difficulty in studying these receptors in any intimate depth, is the possibility that activation of the receptors leads to desensitisation or internalization, via the action of a cellular protein β-Arrestin86. As a consequence of this there may be decreased receptor availability or desensitisation of the receptor to the ligand, resulting in the reduction of the signal amplification process.
However for a functioning GPCR, activation yields both an α-GTP complex and a $\beta\gamma$ complex which form the second level in the signalling cascade. The α, β, and γ subunits are not homogeneous in any single cell system. There are at least twenty different α (i.e. α_s, $\alpha_\text{i/o}$, α_q), five β, and six γ subunits that have been described87. A receptor can only couple to certain G-proteins available within the cell, and thus activate specific α, β, and γ subunits exclusive to the receptor type. It is the type of subunit which is activated that determines the cellular effect of the receptor. The effects of G-protein cell signalling is an extremely large field of biology and will not be explored in depth, instead readers are directed towards excellent reviews on this topic$^{87-89}$. However an example will be given of the mechanisms by which the α_i subunit affects cell function in-order that the reader has an understanding of the cellular actions of activation of the cannabinoid receptor which couples to $\alpha_\text{i/o}$ G-proteins ($G_{i/o}$)80,90.

1.3.2 $G_{i/o}$ Cell signalling

The active $\alpha_\text{i/o}$ subunit, formed, by the GTP10 replacing bound GDP9, has a finite lifetime in which it can carry out signalling duties91. This is due to an intrinsic GTPase activity of the α subunit which cleaves the terminal phosphate group of GTP$^\text{10}$ generating GDP9 which returns the α subunit to its inactive form in which it can recombine with a $\beta\gamma$ unit to form the original trimeric G-protein (see Figure 1-3 and Figure 1-5). An interesting observation, that forms the basis of a functional GPCR assay, is that when synthetic GTP analogues, such as GTP-γ-S$^\text{11}$ (Figure 1-4), are present the GTPase function within the α subunit is unable to hydrolyse the guananyl analogue and the α unit is trapped in the active state89 (Figure 1-5). Within the lifetime of its activation, the $G_{i/o}$ protein is capable of eliciting a number of responses within the cell. The action of the α subunit with secondary effector systems has been studied in the greatest depth and it is these effects that will be considered further. Free $\beta\gamma$ subunits are also emerging as possessing an important role in the cell signalling following GPCR activation but will not be considered in this report92.
The first discovered and most studied response of the $\alpha_{i/o}$ subunit was its ability to inhibit the membrane bound enzyme Adenylate Cyclase (AC), which catalyses the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). Thus activation of an $\alpha_{i/o}$ protein leads to a decrease in the intra-cellular cAMP levels in the cell (Figure 1-6). The secondary messenger cAMP is responsible for the activation of another cellular enzyme, Protein Kinase A (PKA), which causes phosphorylation of further cell specific enzymes leading to a cellular response. The $\alpha_{i/o}$ unit is also capable of attenuating ion channels located within the cell membrane causing an increase in K^+ (via GIRK channels) and a decrease in Ca^{2+} entry (via N-type channels) into the cell \(^{89,93}\) (Figure 1-6). This leads to a reduced neurotransmitter release through reduced intra-cellular Ca^{2+} and a hyperpolarized membrane potential resulting in a higher depolarizing stimulus required for the cell to “fire”. Thus the overall effect of activating a GPCR which is coupled to a $\alpha_{i/o}$ protein is to apply a biochemical “brake” to the functions of the cell.
1.3.3 The CB₁ receptor system

As the focus of our work is dedicated to the development of CB₂ selective fluorescent ligands only a brief introduction, regarding the role of the CB₁ receptor system will be given. Readers who wish to understand the CB₁ receptor system in further depth are directed to two excellent reviews on the subject. The central cannabis receptor was the first cannabis receptor to be discovered in 1990. It is named the central receptor as it is mainly located within the central nervous system (CNS), although Northern blot analysis of CB₁ mRNA has found evidence of the receptor in many peripheral tissues, including the heart, liver, kidney, spleen, small intestines, testes and ovaries. The distribution of the CB₁ receptor in the CNS is not homogenous and is most densely located within the cerebellum, basal ganglia, hippocampus, and the cerebral cortex. The CB₁ receptor is a type A GPCR receptor which couples to Gαᵢ/o proteins leading to the expected cellular responses explained in section 1.3.2. (i.e. a decrease in cellular cAMP etc). The human CB₁ receptor contains 472 amino acids and the mouse and rat CB₁ receptor contains 473 amino acids. Overall these three receptors have a high amino acid sequence homology of between 97-99%. The

Figure 1-6 The main cellular effects of activation of a GPCR linked to an αᵢ/o containing G-protein. AC adenylate cyclase, cAMP cyclic adenylate monophosphate, PKA Protein Kinase A, MAP Mitogen-Activated Protein, PLC Phospholipase C.
pharmacology of the CB$_1$ receptors has been extensively studied. *In-vitro* assays can be performed on membrane homogenates derived from rat or mouse whole brain and on transfected cell lines expressing the CB$_1$ receptor (human or rat). It is noteworthy to comment that when using a transfected cell line, the preparation will only contain the CB$_1$ receptor, however this is not necessarily the case when using primary tissues that express dense populations of the CB$_1$ receptor such as the brain. This is because the CB$_2$ receptor, expressed on microglia73,96, and possibly a new type of cannabinoid receptor yet to be identified may also be present within the brain97. The different *in vitro* assays available for CB$_1$ receptors are also the same tests used to investigate the CB$_2$ systems and will be covered in section 1.3.4.3.

The complex array of behavioral effects exhibited by the cannabinoids acting at the CB$_1$ receptor have been characterized in numerous animal species, including humans. Drug discrimination tests, dog static ataxia, mouse tetradmodels and many others have been used in order to demonstrate the psychoactive effects of the CB$_1$ cannabinoids. Table 1-3 describes the main observations and outcomes of the *in-vivo* bioassays used in CB$_1$ pharmacology. These assays are evidence that the CB$_1$ receptor is responsible for the bizarre and complex psychoactive effects of the cannabinoids as blockade using the CB$_1$ antagonist SR141716 5 negates the effect.

It is notable that the bulk of the cannabinoid literature has focused ultimately on the CB$_1$ receptor and its pharmacological responses51,80. This has been a result of a number of factors. Primarily since the discovery of Δ^9-THC 1 in 1964 the activity of cannabis has been associated with the psychoactive effects it produces. With the discovery of the CB$_1$ receptor in 1990 and its expression throughout the CNS, scientists were able to quantify the effects of cannabis to this receptor and much work was, and still is, being undertaken on this system. The discovery in 1993 of the CB$_2$ receptor gave scientists a new avenue of exploration in cannabinoid research. Since the discovery of the CB$_2$ receptor, the literature has remained heavily biased towards the understanding and exploitation of the CB$_1$ receptor. For example, an ISI Web of Science database search under the search terms “CB1” or “CB2” afforded results from 1993-2003 of 1570 and 569 papers respectively7. This bias towards CB$_1$ research is despite the fact that the CB$_1$ receptor by its very nature gives rise to the detrimental

1 Web of Science search (http:wok.mimas.ac.uk) conducted on 22nd December 2003
psychoactive side effects which have caused problems in the use of cannabis medicines as detailed in section 1.2.2.

<table>
<thead>
<tr>
<th>Name of test</th>
<th>Description</th>
<th>Observations</th>
<th>Evidence of CB<sub>1</sub> receptor involvement</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog static ataxia</td>
<td>A range of cannabinoids and other CNS acting drugs are administered.</td>
<td>Psychoactive cannabinoids produce an effect where the dog weaves to and fro whilst remaining in one spot. This is not repeated when other CNS active drugs are used.</td>
<td>SR141716 5 a potent CB<sub>1</sub> antagonist blocks ataxia effects of Δ<sup>9</sup>-THC 1.</td>
<td>98</td>
</tr>
<tr>
<td>Mouse tetradmodel</td>
<td>A range of cannabinoids and other CNS acting drugs are administered. The test is also know as the Billy Martin test after the Professor who discovered the response.</td>
<td>Psychoactive cannabinoids produce sedation, hypothermia, anti-nociception and catalepsy. Other CNS acting drugs produce these effects but not in the same dose range.</td>
<td>SR141716 5 blocks the tetrad effect for most cannabinoids indicating CB<sub>1</sub> involvement.</td>
<td>99</td>
</tr>
<tr>
<td>Rat drug discrimination</td>
<td>Rats are trained to press a lever for a food reward when under the influence of a psychoactive cannabinoid (Δ<sup>9</sup>-THC 1 etc). They are then administered a range of cannabinoids and other CNS acting drugs.</td>
<td>If fed an investigational drug that is perceived by the animal to be a psychoactive cannabinoid the animal pushes the lever to indicate this to the investigator.</td>
<td>When rats trained on CP 55,940 2 or Δ<sup>9</sup>-THC 1 were co-administered SR141716 5 and a psychoactive cannabinoid the lever pushing reaction was blocked.</td>
<td>100</td>
</tr>
<tr>
<td>Human assay</td>
<td>Humans volunteers are administered cannabinoids and asked to rate how they feel under the influence of the drug (i.e using visual scale analogues)</td>
<td>Psychoactive cannabinoids such as Δ<sup>9</sup>-THC 1 were described as giving a “drug high”, getting them “stoned” and volunteers were able to assess the “drug strength” and distinguish placebo.</td>
<td>Doses of 90mg of oral SR141716 5 produced ~40% reduction in the visual analogue ratings of the high experience using inhaled cannabis.</td>
<td>101</td>
</tr>
</tbody>
</table>

Table 1-3 A summary of in vivo bioassays used to determine the activity of compounds at the CB₁.
1.3.4 The CB₂ receptor system

The peripheral CB₂ receptor was discovered in 1993 by Munro et al.⁴ and is the second and last cannabinoid receptor discovered to date. Being the newest of the cannabinoid receptors the CB₂ receptor system has been subject to less investigation than the CB₁ system. However the CB₂ system is emerging as an attractive target for drug therapy¹⁰²,¹⁰³.

The peripheral CB₂ receptor was discovered by accident during work to identify novel GPCRs expressed in human myeloid cells (human promyelotic leukaemic line HL60). One of the receptors discovered was 44% homologous (rising to 68% in the transmembrane regions) to the previously discovered CB₁ receptor⁴. The sequence identity although significantly lower than the usual 70-80% homology observed in other GPCR families, was enough to lead to the discovery of the second cannabinoid receptor. The receptor is mainly located in the peripheral cells of the immune system and has led to the speculation that the CB₂ receptor is implicated in immunological control⁴,⁵¹,⁸⁰. The cellular distribution (and the methods used to determine this) of the CB₂ receptor will be discussed in section 1.3.4.1. Following its discovery in human tissue, the CB₂ receptor has been cloned from the mouse (mCB₂)¹⁰⁴ and the rat (rCB₂)¹⁰⁵,¹⁰⁶. The sequence homology between the mouse and human CB₂ is only 82% and the homology between rat and human is lower at 81%¹⁰⁵, or 57%¹⁰⁶ in the more recent model. There is obviously a discrepancy between these two rCB₂ receptor clones. The differences are believed to be derived from the different primers used in the Polymerise Chain Reaction (PCR) amplification step used to generate the cDNA. Griffin et al. generated a receptor that contained 360 amino acids (the same number as in the human CB₂ receptor and 81% homologous) which when cloned in Human Embryonic Kidney (HEK) cells bound the specific CB₂ antagonist SR144528 ⁶, and other non-specific agonists (i.e. Win 55212-2 ³ and Δ⁹-THC ¹) and showed a decrease in cAMP production upon agonist stimulation¹⁰⁵. The other receptor generated by Brown et al. contained 410 amino acids (and was 57% homologous to human CB₂ receptor) and when transfected in CHO cells was stimulated by Win 55212-2 ³ to produce an increase in MAP Kinase¹⁰⁶ (Figure 1-6).
They further demonstrated that their cloned receptor was expressed in native rat spleen. Brown explained the discrepancy between the two cloned rat receptors was due to Griffin using a PCR primer that was expressed from an intron piece of rat cDNA. As a result the receptor expresses 18 amino acids not actually present, and is missing 54 amino acids that arise from an exon piece of DNA located upstream. The disparity between the two rat sequences occurs in the carboxyl tail of the receptor which is not involved in ligand binding; hence both receptors are capable of binding cannabinoids. The carboxyl tail of the human CB$_2$ receptor is involved in the process of receptor desensitisation through a mechanism of phosphorylation of a terminal serine residue (residue 352) promoting β arrestin internalisation107.

From this observation it was noted that the rat receptor having a different carboxyl tail may act differently to the human receptor and researchers should be wary of extrapolating data from a rat model to human systems. Indeed, we report in chapter 5 that we found large differences in binding affinity between the rat and human CB$_2$ towards a particular cannabinoid ligand.

1.3.4.1 The distribution of the CB$_2$ receptor

The original work of Munro et al. assayed different organs of the rat for the CB$_2$ receptor and showed the presence of a cannabinoid receptor that was located on cells and tissues of the immune system. Their techniques involved Northern blot analysis of the mRNA expressed within a tissue and in-situ hybridisation of CB$_2$ DNA. The hybridisation was achieved using a β emitting radioactively labelled oligonucleotide (containing 35S-dATP) complementary to CB$_2$ receptor DNA, followed by autoradiography (exposure of the tissue slice to a β sensitive film). Both of these experiments showed that the CB$_2$ receptor is located in the spleen; the autoradiography gave spatial information identifying CB$_2$ receptors in the macrophage containing marginal zone of the spleen. Just after Munro et al. published their groundbreaking work, Lynn and Herkenham published work confirming the presence of a cannabinoid receptor in multiple lymphoid organs of the rat immune system including the spleen108. The technique they used was to equilibrate a β emitting radioactively labelled non-selective cannabinoid ligand [3H] CP 55,940 with a tissue of interest. The tissue was then subjected to autoradiography which highlighted areas of lymphatic tissue that bound CP 55,940 in a dose responsive and blockable manner.
The conclusion of their work was that binding was confined to organs that were rich in B lymphocyte cells i.e. the marginal zone of the spleen, lymph nodes and Peyers patches. These techniques and other similar published experiments106,109 are extremely useful in establishing the presence of the CB\textsubscript{2} receptor and its location within a piece of tissue. However, in order to examine the location of the CB\textsubscript{2} receptor on individual immune cells, fluorescent based immunocytochemistry experiments have been conducted96,110,111. In these experiments antibodies were raised in rabbits against the carboxyl terminus end (intra-cellular) of the rCB\textsubscript{2} receptor (known as rabbit anti-rat CB\textsubscript{2} antibodies). These antibodies were then labelled with a fluorescently labelled secondary antibody raised against the primary rabbit antibodies, and fluorescent confocal imaging (section 1.1.2.1) was used to visualise and quantify the CB\textsubscript{2} receptors (Figure 1-7).

\textbf{Figure 1-7} Immunocytochemistry to visualize the rat CB\textsubscript{2} receptor. Cells are permeabilised to allow the large Mw antibodies to gain access to the intracellular side of the receptor. CB\textsubscript{2} receptors are visualized by using primary antibodies raised against the rat CB\textsubscript{2} receptor terminal carboxylic acid sequence (these antibodies are collected by injecting rabbits with a peptide sequence corresponding to the terminal carboxylic amino acid sequence) and secondary labelling using fluorescently conjugated antibodies raised against a rabbit.

Using this immunocytochemistry approach Carayon \textit{et al.} were able to identify that the CB\textsubscript{2} receptor was located in tonsil tissue and was restricted to areas of the tonsil that expressed B-cells. They were also able to estimate (from the fluorescence per cell) that there were approximately two thousand CB\textsubscript{2} receptors per B-cell110. Walter \textit{et al.} demonstrated, using the same technique, that CB\textsubscript{2} receptors were located in the
lamellipodia of activated microglial cells (an immune cell) of the CNS which was the first reported detection of CB₂ receptors within the CNS\(^9\). It has been shown by both authors that the use of fluorescence visualization of the CB₂ receptor can give much more detailed information on the location and abundance of the receptor than can be obtained using any other technique.

The disadvantage of this technique is that the antibodies against the CB₂ receptor are difficult to produce. Rabbits must be injected with the carboxyl tail antigen for many months before they produce the CB₂ receptor antibody. The other disadvantage of using antibodies is that they are large molecular weight immunoglobulins (IgG) and cells must be fixed and permeablised in-order for them to gain access to the carboxyl terminus of the receptor. Therefore the technique is unable to detect real time processes (such as receptor re-location or internalisation) in living cells.

Our approach of designing a fluorescent ligand to the CB₂ receptor would overcome these problems and would combine the same ease of conducting an autoradiography experiment using \([\text{³H]}\) CP 55, 940 “out of a bottle”, with the sensitivity of immunocytochemistry experiments on living cells/tissue.

Many different techniques have been used to determine the location of the CB₂ receptor. A summary of CB₂ receptor tissue distribution is shown in Table 1-4 and it can be seen that the locations are exclusively cells and tissues involved in immune regulation.

<table>
<thead>
<tr>
<th>Cell type/Tissue</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B lymphocytes</td>
<td>Human</td>
<td>110,111</td>
</tr>
<tr>
<td>Macrophages</td>
<td>Human</td>
<td>111</td>
</tr>
<tr>
<td>Microglia</td>
<td>Rat</td>
<td>96</td>
</tr>
<tr>
<td>Natural Killer cells</td>
<td>Human</td>
<td>111</td>
</tr>
<tr>
<td>Peripheral mononuclear cells</td>
<td>Human</td>
<td>111</td>
</tr>
<tr>
<td>CD4 lymphocytes</td>
<td>Human</td>
<td>111</td>
</tr>
<tr>
<td>CD8 lymphocytes</td>
<td>Human</td>
<td>111</td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>Human</td>
<td>111</td>
</tr>
<tr>
<td>Peyer’s patches</td>
<td>Rat</td>
<td>108</td>
</tr>
<tr>
<td>Spleen</td>
<td>Human, rat</td>
<td>4,108,111</td>
</tr>
<tr>
<td>Tonsils</td>
<td>Human</td>
<td>111</td>
</tr>
<tr>
<td>Thymus</td>
<td>Human</td>
<td>111</td>
</tr>
</tbody>
</table>

Table 1-4 Location of the CB₂ receptors in immune cells and tissues.
The immune distribution of the CB2 receptor has lead to its immunological effects being studied and will be discussed in the following section.

1.3.4.2 Immune functions of the CB2 receptor

Having established that the CB2 receptor is located on the cells and tissues of the immune system it is hardly surprising that many investigations into the immune effects of the cannabinoids have been conducted. It is outside the scope of this report to detail the exact mechanisms involved in CB2 immune regulation, other than to comment that many authors have concluded that the action of cannabinoids acting at the CB2 receptor induce changes in the levels of important signalling molecules. Thus cytokines (TNF-α, IL-2 etc), nitrous oxide and prostanoid production have all been shown to be attenuated by the action of cannabinoids and this results in downstream changes in immune function\[^{102,103}\].

Three selected examples from the literature demonstrate the link between the CB2 system and immune regulation.

- **CB2 knockout mice** have been used to show that CB2 receptors are involved in immuno-regulation. It was demonstrated that the non-specific agonist Δ⁹-THC \(^1\) (Figure 1-1) inhibited helper T-cell activation in wild type mice, but did not inhibit T-cells derived from the CB2 knockout mice\[^{109}\].

- **Increased cytokine levels in human MS patients being treated with cannabis extract** and Δ⁹-THC \(^1\) has been reported\[^{112}\]. The likely mechanism of action of cannabinoids in treating MS is via attenuating immune function (MS is an autoimmune disease – see section 1.2.2.1). A small study of 16 patients demonstrated that cannabis based treatment significantly increased levels of TNFα and IL-12 in whole blood and plasma respectively compared to control. Although no direct involvement of the CB2 system was shown (i.e. using CB2 selective antagonists) it was suggested by the authors that changes in cytokine levels observed were due to cannabinoid activation of the CB2 receptors located on immune cells\[^{112}\]. This evidence is supported by other investigations using murine models of MS. These investigations show CB2 selective agonists alter immune function by altering cytokine production,
immune cell recruitment and pathohistology, all direct markers in MS disease controf68,69.

- **CB\textsubscript{2} selective agonists are effective in reducing pain72,113**. The mechanism of action remains unclear but it is postulated that it is dependant upon the ability of CB\textsubscript{2} agonists to alter inflammatory states, such as Nerve Growth Factor induced mast cell degranulation, neutrophil accumulation in inflammatory models113, and cytokine release from activated microglia in neuropathic pain73. This evidence is included to draw the reader’s attention towards a common problem – the lack of any definitive mechanisms available for CB\textsubscript{2} mediated immune regulation. Both Zhang \textit{et al.}73 and Nackley \textit{et al.}113 make reference to exploring the phenotype of cells expressing the CB\textsubscript{2} receptor as crucial to elucidating the mechanism of action. However “due to the low CB\textsubscript{2} mRNA levels and the lack of specific CB\textsubscript{2} antibodies, it is not possible to perform double labelling experiments to identify conclusively the phenotype of nerve injury-induced CB\textsubscript{2} expressing cells”73. A selective CB\textsubscript{2} fluorescent ligand would allow researchers to achieve CB\textsubscript{2} labelling and generate further evidence on the mechanism in which CB\textsubscript{2} receptors participate in immune function.

1.3.4.3 \textit{In-vitro} bioassay systems

A number of well established and defined \textit{in-vitro} assays are available to test experimentally whether a compound has affinity and activity at the CB\textsubscript{2} receptor.

1.3.4.3.1 Binding assays

The classical displacement binding assay is capable of determining to what degree a know concentration of a test compound is capable of displacing a know concentration of radiolabelled cannabinoid from a preparation containing CB\textsubscript{2} receptors. The most widely used commercially available radiolabelled cannabinoid is [3H] CP 55, 940 (Figure 1-13) and has approximately equal affinity for both CB\textsubscript{1} and CB\textsubscript{2} receptors (it is also the probe of choice in CB\textsubscript{1} binding assays)80. It is noteworthy that there is no radiolabelled CB\textsubscript{2} selective agonist or antagonist currently commercially available. Due to the unspecific nature of CP 55, 940 \textbf{2} the membrane used for binding must
contain only CB₂ receptors. For this reason the spleen (see 1.2.4.1) is chosen when using primary tissue or transfected cell lines can be used that express a specific species (i.e. rat or human) of CB₂ receptor. Common cell types for this purpose are Human Embryonic Kidney (HEK)105,114 or Chinese Hamster Ovary (CHO) cells106.

1.3.4.3.2 [35S] Guanosine-5'-O-(3-thiotriphosphate) binding

The [35S] Guanosine-5'-O-(3-thiotriphosphate) ([35S] GTP-\textgamma-S) bioassay exploits the coupling of CB₂ receptors to G-proteins (section 1.3.1). It relies on the increase in G-protein affinity for GTP10 (and hence GTP-\textgamma-S11, Figure 1-4) that is triggered by agonist occupation of the CB₂ receptors. The measured response is the net agonist-stimulated [35S] GTP-\textgamma-S11 binding to the G-protein10. The assay, when investigating CB₂ receptors, is performed on membrane homogenates from transfected cells (CHO or HEK) expressing high levels of receptor. GTP-\textgamma-S11 binding for the CB₁ receptor can be performed on brain homogenate115 or using whole brain tissue sections (giving spatial information of receptor localization via autoradiography)116 to determine CB₁ receptor activation in primary tissue. However, there are no documented literature examples where spleen (or any immune tissue) membrane homogenate or tissue sections have been used to determine GTP-\textgamma-S binding for the CB₂ receptor in primary tissue.

1.3.4.3.3 Inhibition of cyclic AMP production

The decrease in cellular cAMP production can be exploited for the quantitative, functional bioassay of cannabinoids in-vitro51. CB₂ receptor assays are performed using transfected cell lines expressing the CB₂ receptor clone. Cells expressing CB₂ receptors naturally (e.g. mouse spleen cells and human lymphocytes) are relatively insensitive to cannabinoid induced inhibition of cAMP production80.

1.3.4.3.4 Practical difficulties

One practical difficulty in conducting assays using cannabinoid compounds is their high lipophilicity and low water solubility. As such compounds first have to be dissolved in either ethanol or dimethyl sulphoxide (DMSO) to give a stock solution, which can be diluted in the final aqueous test solutions containing Bovine Serum
Albumin (BSA) which acts as a solubilising agent and reduces non-specific binding of the cannabinoids.

1.3.4.4 Therapeutic indications of the CB$_2$ receptor

As previously discussed in section 1.2.2 the CB$_2$ receptor has emerging importance in a number of disease states. These disease states and the evidence of CB$_2$ involvement will be briefly introduced.

1.3.4.4.1 Pain

It is well documented that cannabinoid agonists exert antinociceptive effects (section 1.2.2.2 and Richardson et al.117). The majority of these effects are thought to be mediated by CB$_1$ receptors as the effect can be blocked by CB$_1$ selective antagonists117. Recently, new experiments have shown that analgesic nociception is additionally mediated via CB$_2$ receptors. Mice deficient in CB$_1$ receptors display a hypoalgesic state when treated with Δ^9-THC 118 and the analgesic effects of the endogenous cannabinoid ligand Palmitoylethanolamide can be blocked using the CB$_2$ selective antagonist SR144528 6 (Figure 1-1119). The work on CB$_2$ participation in pain control has recently been accelerated by the discovery of the selective CB$_2$ agonist AM1241 58, (Figure 1-21). This agonist has been demonstrated to inhibit experimental neuropathic pain (spinal cord ligatures)72,73, and experimental inflammatory pain (carrageenan evoked thermal and mechanical stimuli)113,120 without producing the problematic CNS effects associated with non-specific cannabinoids120.

1.3.4.4.2 Multiple Sclerosis

As discussed in chapter 1.2.2.1 cannabinoids are being trialed for the treatment of multiple sclerosis (MS). Two recent discoveries have indicated that by selectively targeting the CB$_2$ receptor system disease symptoms and underling pathology may be controlled. The debilitating symptoms of MS, such as tremor and spasticity, were shown to be decreased in an autoimmune disease model of MS by using the CB$_2$ selective agonist JWH 133 27 (Figure 1-12)121 and increased when the animals were
treated with SR144528 (which indicated that the endogenous cannabinoid system has tonic activity in MS). Using a different autoimmune model of MS, Arévalo-Martin et al. demonstrated that the selective CB2 agonist JWH015 was able to significantly improve neurological defects in a long lasting manner. Improvements in the neurological defects observed were mirrored in an improvement in motor function.

1.3.4.4.3 Immunomodulation

The location of CB2 receptors on immune cells combined with evidence that cannabinoids can suppress the immune system serve as strong indicators that they may be a useful target for novel immunomodulatory drugs. Direct evidence of non-specific cannabinoids (i.e. Δ9-THC) causing immunosuppression has been demonstrated by the increased susceptibility towards the herpes simplex virus in mice. Whilst susceptibility to herpes virus is not a positive effect, there are many disease states that do require management using immunosuppressive therapy e.g. rheumatoid arthritis, psoriasis, organ transplant patients etc. Recent evidence has shown that the CB2 receptor can be targeted to give clinical effects of immunosuppression. A key paper that demonstrated the link between immune regulation and CB2 receptors described the use of CB2 receptor knockout mice previously discussed in section 1.2.4.2. The use of CB2 selective ligands for investigating clinically relevant immune regulation has been lacking. However, Iwamura et al. has recently shown that the CB2 selective ligand JTE 907 and SR144528 were capable of reducing the swelling associated with carrageenan-induced mouse paw edema in a dose dependant manner. Furthermore many of the patents protecting novel CB2 selective ligands are purported to be useful as anti-inflammatory, anti-allergic and immunoregulator agents.

1.3.4.4 Cancer

Following the discovery that anandamide inhibits the proliferation of human breast cancer cell lines in vitro, via a CB1 receptor mediated mechanism, researchers have become interested in exploiting cannabinoids as novel anticancer agents. The first reported CB2 mediated anti-tumor activity was reported by Sánchez et al. They
were able to show that the highly aggressive glioma tumor could be inhibited by intratumourally administered JWH 133 \textit{27} (Figure 1-12), and this effect was blocked by SR144528 \textit{6} but not by SR141716 \textit{5}. They also demonstrated a correlation of the severity of biopsied human tumours with CB\textsubscript{2} receptor expression within the tumor, using immunofluorescence techniques discussed in 1.3.4.1. The authors comment that that the CB\textsubscript{2} receptor might serve as a diagnostic marker of glial cell proliferation/malignancy. Hence any fluorescent ligand generated via our own research could be evaluated for this role. Further work using the selective CB\textsubscript{2} agonist JWH015 \textit{53} (Figure 1-21) in treating cancers of the immune system (i.e. leukemia and lymphomas) has shown that it was effective at causing significant apoptosis in these immune cell lines132. The non-specific agonist Δ^9-THC \textit{1} (Figure 1-1), which also caused apoptosis, was partially blocked by the co-administration of SR144528 \textit{6} (Figure 1-1) adding evidence that the effect was mediated at least partially via CB\textsubscript{2} receptors. Others have demonstrated that the over expression of the CB\textsubscript{2} receptor in leukemic cell lines acts as an oncoprotein and postulate that further work into the role of the CB\textsubscript{2} receptor may open new ways into the treatment of acute myloid leukemia133. Although the evidence is sparse and the mechanisms unclear the potential of the CB\textsubscript{2} receptor mediated anticancer actions is an area worthy of further exploration.
1.4 **Ligands for the cannabis receptors**

In considering a suitable CB\(_2\) selective ligand that can be successfully labelled with a fluorescent dye it is necessary to consider the cannabinoids that already exist, and review them in terms of their suitability for conjugation with a large molecular weight fluorescent dye. The final construct should also retain a high affinity to the CB\(_2\) receptor, retain selectivity towards the CB\(_2\) over the CB\(_1\) receptor, and be chemically suitable in terms of the conditions employed in the *in-vitro* biological environment. The consideration for the fluorescent dye will be considered in section 2.2.4.

To fit these criteria the CB\(_2\) selective ligands were considered for their following properties.

- High affinity towards the CB\(_2\) receptor (i.e. \(K_i \leq 20 \text{ nM}\))
- High CB\(_2\)/CB\(_1\) selectivity (\(\geq 20\))
- Chemically stable to hydrolysis, light and enzymatic degradation
- Structure Activity Relationship (SAR) that provides evidence that the ligand can tolerate molecular extension and bulky substituents
- Structure that allows its synthesis outside the Misuse of Drugs Act

There are a number of different chemical types of ligands that have affinity towards the cannabinoid receptor and some of these chemicals have been mentioned previously (1–8, Figure 1-1). For the purposes of this review it is useful to segregate cannabinoids into one of five chemical classes using a method modified from Khanolkar *et al.*\(^{134}\) which is illustrated in Figure 1-8 using some examples of drugs already discussed.

For each class of compound the principal ligands will be introduced, general SAR will be discussed and the CB\(_2\) selective ligands will be considered in greater detail with a view for modification with fluorescent dyes. For a more thorough review of CB\(_1\) selective ligands cannabinoid readers are directed towards some excellent review articles\(^{134-140}\).
1.4.1 Nomenclature

The naming of cannabinoid compounds can be extremely confusing, as often historical trivial names are used over the systematic IUPAC\(^1\) names and many of the chemical ligands with biological activity are known by codes (i.e. SR144528 6) given by their discovering inventor/company.

The naming of compounds in this report will use the common trivial and code names most often found in the majority of the scientific literature, as even the IUPAC itself concedes that trivial names “…are useful, and in many cases indispensable”\(^{441}\). Some examples of the complexity of the systematic name and their trivia/code name equivalent are given in Table 1-5.

\(^{1}\) International Union of Pure and Applied Chemistry.
Trivial/code name	IUPAC name
\(\Delta^9 \)-THC 1 | (6aR)-6,6,9-trimethyl-3-pentyl-(6ar,10ar)-6,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol
Win 55212-2 3 | (R)-(+)\{-2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo(1,2,3-de)-1,4-benzoxazin-6-yl\}(1-naphthalenyl)methanone
SR144528 6 | N-[(1S)-endo-1,3,3-trimethyl bicyclo[2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxymide

Table 1-5 Examples of trivial and code names and their systematic equivalent. The systematic name was obtained by searching for the structure of the compound in the Beilstein database BS0304AE and using the systematic IUPAC name found.

The similarity between abbreviated coded names only relates to the discovering inventor/company and not to the chemical or pharmacological class of compound. Thus JWH015 (53, Figure 1-21) is a member of the indole class whilst JWH133 27 (Figure 1-12) is a member of the classical cannabinoid class. Similarly SR141716 5 is a CB\(_1\) antagonist whilst SR144528 6 is a CB\(_2\) antagonist. A list of the common abbreviations and their origins are given in Table 1-6.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>AM</th>
<th>CP</th>
<th>HU</th>
<th>JTE</th>
<th>JWH</th>
<th>O</th>
<th>SR</th>
<th>Win</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Alexandros Makriyanis, University of Connecticut, Storrs, USA</td>
<td>Central Pizer</td>
<td>Hebrew University, Jerusalem, Israel</td>
<td>John W. Huffman, Clemson University, South Carolina, USA</td>
<td>Organix Inc, USA</td>
<td>Sanofi Recherche. Later Sanofi Winthrop now Sanofi-Synthelabo</td>
<td>Stirling Winthrop Inc. Later Sanofi-Winthrop now Sanofi-Synthelabo</td>
<td></td>
</tr>
</tbody>
</table>

Table 1-6 Common abbreviations used to name cannabinoid compounds and the explanation of the abbreviation.

The numbering of cannabinoid compounds is shown in Figure 1-8 and is used as an important descriptor when describing the SAR of a compound. In this report a semi systematic approach is taken when dealing with derivatives of known compounds. For example the addition of a nitro group to the 3’ of Win 55212-2 3 would result in a compound named 3’-nitro-Win 55212-2 12 (Figure 1-9).
Finally in cannabinoid medicinal chemistry a term which is frequently employed in the literature and within this report in discussing compounds, is the notion of North (being at the top of the page) and South (being at the bottom of the page) to describe certain functional groups or ring systems within a compound. Thus in CP 55, 940 2 (Figure 1-13 A) the secondary hydroxyl at position 1 is known as the North Aliphatic Hydroxyl (NAH) and the primary hydroxyl terminating the propyl chain is known as the Southern Aliphatic Hydroxyl (SAH)137.

1.4.2 Classical cannabinoids

The classical cannabinoids (CC) are based around the core tricyclic dibenzopyran structure, shown by the rings A B and C of Δ^9-THC 1 (Figure 1-10). Other common examples of CC compounds include Δ^8-tetrahydrocannabinol (Δ^8-THC 13) and HU210 14 (Figure 1-10).

\textbf{Figure 1-10} Structures of common classical cannabinoids and their K_i values (or ranges of K_i values reported)80.
These CC are not selective ligands and show nanomolar affinity to both CB₁ and CB₂ receptors. Researchers concur that the SAR of the CC can be dealt with by considering three key sites upon the pharmacophore.⁸⁰,¹³⁷,¹³⁸

- The C3 alkyl side chain domain.
- The C1 phenolic group domain.
- The C9 methyl group domain.

Each will be considered separately with particular reference given to modifications that increase CB₂ affinity or involve a large bulky substituent (mimicking a fluorescent dye). It should be noted that analogues of Δ⁸-THC ¹³ will be considered due to their ease of synthesis and enhanced stability relative to their Δ⁹-isomers ¹⁴² which is an important consideration when extrapolating the data for intended synthetic purposes.

1.4.2.1 The side chain

The hydrophobic alkyl side chain is a key pharmacophore in the CC. An alkyl chain of between 3 to 7 carbon units is required for activity ¹³⁸. The addition of dimethyl groups (located at position (1’,1’) or (1’,2’)) on a heptyl chain is optimal for overall activity, although no selectivity between CB₁ and CB₂ receptors is gained ¹⁴³. This is clearly demonstrated in the case of 3-(1’,1’-dimethylheptyl)-Δ⁸-THC ¹⁶ where the \(K_i \) falls from 22 to 0.49 for the unsubstituted heptyl compound ¹⁵ at the CB₁ receptor ¹⁴⁴ (Figure 1-11). Other approaches to modify the side chain are detailed below and in Figure 1-11.

- **Halogenated alkyl chains**, such as a 5’-iodopentyl chain ¹⁷ have led to modest increase in affinity to CB₁ receptors ¹⁴⁵.
- **Unsaturated bonds and 1’ substituents** have been used to conformationally define the alkyl chain. Thus, Papalatis et al. have shown that dithiolane at 1’ ¹⁸, and later a 1’cyclopropane derivative of 3-heptyl-Δ⁸-THC increased the affinity to both the CB₁ and CB₂ receptors but showed no enhancement of selectivity ¹⁴⁶,¹⁴⁷. Dithiolane at position 1’ also increased affinity to the cannabinoid receptors when pentyt derivatives of Δ⁸-THC were assessed ¹⁴⁸.
Although the derivatives were synthesised to impart rigidity to the side chain, the increased cannabinoid affinity observed maybe due to 1’ steric bulk interacting with a binding domain present within both receptors.147

- **Constraining the side chain**, using two or three carbon bridges to lock C1’ or C2’ of the side chain to C2 or C4 of the phenolic ring, lead to a decrease in activity at both CB\textsubscript{1} and CB\textsubscript{2} receptors and gave no selectivity towards either receptor.149,150

- **Replacement of the alkyl chain with bulky cyclic groups** has been demonstrated to increase receptor affinity, whilst producing a moderate increase in CB\textsubscript{2} selectivity.148,151 Use of a cycloheptyl group 19 or a phenyl group 20 gave a 4 fold and 13 fold selectivity towards the CB\textsubscript{2} receptor respectively.

In conclusion, side chain manipulations often result in compounds with enhanced affinity towards both cannabinoid receptors. The most promising modification, with respect to finding a lead compound with CB\textsubscript{2} selectivity, incorporates a bulky substituent (mimicking a fluorescent dye), comes from compounds 19 and 20. However, to date only simple hydrocarbon groups have been evaluated and not larger heterocycles (of which most fluorescent dyes are chemically similar to – section 2.2.4), and the resulting CB\textsubscript{2} selectivity is not as large as would make the compounds useful for our purposes.

1.4.2.2 The phenolic group

Use of the 3-(1’,1’-dimethylheptyl) group provides the “magic bullet”4,37 for improving receptor affinity and therefore the majority of phenolic modifications have been conducted upon 1’,1’-dimethylheptyl-\textsubscript{Δ8}-THC 15 analogues.

Until recently it was thought that the phenol group at C1 was essential for cannabimimetic activity80. It is now accepted that the phenol group can be removed (in 1-deoxy analogues) or masked as the ether/ester and still retain an affinity towards the cannabinoid receptors, often with increased affinity towards the CB\textsubscript{2} receptor.137 Gareau \textit{et al.} demonstrated that the 1-methoxy and 1-deoxy analogues of 1’,1’-dimethylheptyl-\textsubscript{Δ8}-THC (21 \& 23, Figure 1-11) displayed less affinity to the
cannabinoid receptors but enhanced selectivity towards the CB₂ receptor (1-methoxy
21 \(K_i \) CB₁ = 16 µM & CB₂ = 20 nM and 1-deoxy 23 \(K_i \) CB₁ = 250 nM & CB₂ = 21 nM)\(^{144}\). Larger groups such as the diacetoxyphosphate ester 22 (Figure 1-11) however lowered the affinity at the CB₂ receptor. At around the same time Huffman et al. reported that 1-deoxy versions of HU210 14 and 3-(1’,1’-dimethylheptyl)-\(\Delta^8 \)-THC 15 also exhibited CB₂ selectivity. Further work by, Song and Bonner, and Huffman et al., used 3D molecular modelling to postulate that the residue Lys192, present in TM 3, of the CB₁ receptor forms important interactions with the phenol group present in CC and non-classical cannabinoids (section 1.4.3) and if this residue is mutated, or the phenol group is removed or masked, then the binding to the CB₁ receptor is reduced\(^{152,153}\). The analogous lysine residue in the CB₂ receptor (Lys109) has been shown by mutational analysis not to be involved in important interactions with the phenolic group of the CC and hence the compounds still show high affinity to this receptor\(^{154}\). The application of modifying the phenol group to produce selective CB₂ ligands will be discussed in 1.4.2.4. Modifications to the phenol group introducing bulky substituents have been published\(^{155}\). Derivatives of \(\Delta^8 \)-THC include biphenyl 24, aminoalkyl chains 25 and morpholinoalkyl ethers 26 (Figure 1-11). Work was carried out in 1991, before existence of the CB₂ receptor was confirmed and hence the compounds were assayed only against the CB₁ receptor (using rat brain homogenate). All of the compounds suffered large decreases in binding affinity with EC\(_{50}\) (concentration of compound capable of displacing 50% of the radiolabelled CP 55, 940 2) in the µM range. To the best of our knowledge the compounds have never been assayed in CB₂ receptor assays.

1.4.2.3 The 9-methyl group

The main observation relevant to this report is that when the 9-methyl group present in \(\Delta^9 \) or \(\Delta^8 \)-THC is oxidized to the hydroxymethyl group (as occurs during human metabolism of \(\Delta^9 \)-THC 1) the affinity of the resulting compound is increased\(^{80}\). The most common demonstration of this effect is with the compound HU210 14 (11-hydroxy-(1’,1’-dimethylheptyl)-\(\Delta^8 \)-THC).
where R = 1',1'-dimethylheptyl & R' = OH

\[
K_i (\text{nM})^a
\]

<table>
<thead>
<tr>
<th>R''</th>
<th>CB₁</th>
<th>CB₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃OH</td>
<td>0.06-0.73</td>
<td>0.17-0.52</td>
</tr>
</tbody>
</table>

Figure 1-11 SAR of Δ⁸-THC analogues modifying the C1, C3 and C9 position. Abbreviations - a ref. 80 b ref. 156 c ref. 144 d ref. 134 e ref. 146 f ref. 148 g ref. 151 h ref. 155 ND not determined.
It incorporates the “magic bullet”437 of the 1’, 1’ dimethylheptyl side chain and gains increased affinity to both the CB₁ and CB₂ though the hydroxyl group at C11 (range of reported \(K_i\) CB₁ 0.06-0.73 & CB₂ 0.17-0.52 nM437. Further oxidation of the methylene to the aldehyde abolishes all cannabinoid activity437.

1.4.2.4 CB₂ selective classical cannabinoids

The work generated by Gareau et al. and later by Huffman et al. showed that \(\Delta^8\)-THC analogues devoid of a C1 phenol group led to compounds with high CB₂ selectivity and good CB₂ affinity144,153. The compound 3-(1’,1’-dimethylheptyl)-1-methoxy-\(\Delta^8\)-THC (L759633, 21) (Figure 1-11 & Figure 1-12) displayed the best CB₂ profile with a \(K_i\) of 15850 & 20 nM at CB₁ & CB₂ respectively144. The actual \(K_i\) and large selectivity shown by L759633 21, has been disputed by other authors, where lower CB₂ affinity and selectivity have been reported (\(K_i\) CB₁ 941 & CB₂ 65 nM121 and \(K_i\) CB₁ 713 & CB₂ 57 nM157), however they have all demonstrated that it was CB₂ selective compound.

Work by Huffman and co-corkers to further exploit these findings led them to synthesise a number of 1-deoxy-(1’,1’dimethylalkyl)-\(\Delta^8\)-THC analogues to explore the nature of the side chain requirements to improve CB₂ affinity121. This study revealed that short alkyl chain lengths decreased CB₁ binding at little or no expense to CB₂ binding affinity whilst the opposite was true for longer alkyl chain lengths121. The optimum compound for affinity and selectivity was found to be 3-(1’,1’-dimethylbutyl)-1-deoxy-\(\Delta^8\)-THC (JWH133, 27, Figure 1-12) which displayed a \(K_i\) of 677 & 3.4 nM at CB₁ & CB₂ receptors respectively121. In a later study Huffman assessed the effect of introducing C11 hydroxyls (known to increase cannabinoid affinity – section 1.4.2.3) and masking the C1 hydroxyl group of 3-(1’,1’-dimethylalkyl)-\(\Delta^8\)-THC157. The resulting 11-hydroxy analogues gave higher affinity compounds at both CB₁ and CB₂ receptors as expected, but with no overall gain in terms of CB₂ affinity versus selectivity157. Again side chain SAR demonstrated that shorter alkyl chains were optimum for CB₂ affinity. The optimum compound selected from the 16 different analogues was 3-(1’,1’-dimethylpentyl)-1-methoxy-\(\Delta^8\)-THC (JWH229, 28, Figure 1-12) which exhibited a \(K_i\) at the CB₁ receptor of 3134 nM and at the CB₂ receptor of 18 nM157.
It was shown that in both of these studies affinity and selectivity for the CB$_2$ receptor could not be quantitatively assessed by opting for a specific C3, C1 and C9 substituent, but rather each of these groups affected the other. As Huffman himself comments in his thorough review of this topic “…development of preliminary SAR for 1-deoxy-cannabinoids, was achieved, although to a limited extent”.135

![Chemical structures](image)

Figure 1-12 The structures of selective CB$_2$ classical cannabinoids

The evidence presented highlights that CC’s attain a high selectivity and affinity towards the CB$_2$ receptor with analogues containing short C3 alkyl side chains and simple C1 deoxy- or methoxy- motifs. There is little evidence to convince us that a large bulky fluorescent dye could be incorporated onto a CC to produce a CB$_2$ selective ligand. Combined with the need to acquire a Home Office license (and the associated strict working guidelines) for working with Δ^8-THC it was felt that the CC template would be unsuitable for the initial work into generating fluorescent CB$_2$ ligands.

1.4.3 Non-classical cannabinoids

The Non-Classical cannabinoids (NCC) are a group of CC like compounds that lack the pyranoid B ring (Figure 1-1). In their quest for improving the analgesic properties of cannabinoid compounds, scientists at Pfizer started to modify the dihydropyran ring of THC type compounds. The resultant compound, Levonantradol (CP 50,556, 7, Figure 1-1), which entered into human clinical trials (section 1.2.2.2), demonstrated that the pyran ring of THC was not required for cannabinoid activity. Subsequently the Pfizer group synthesized a number of compounds lacking the pyranoid B ring.48 Two compounds emerged from their endeavors that are of interest; CP 55,940 2 and CP 47,497 29 (Figure 1-13 A). CP 47,497 29 represents the prototypical compound of
the A-C bicyclic series and CP 55,940 \(2\) (in its tritiated form – see Figure 1-13 B) is
the most widely used radiolabelled cannabinoid used to study CB\(_1\) and CB\(_2\) receptor
binding.

It is well established that CP 55,940 \(2\) (and its radiolabelled counterpart) have
high affinity at both the CB\(_1\) and CB\(_2\) receptor with \(K_i\) values of between 0.5-5.0 and
0.69-2.8 nM respectively\(^{51,80}\). However despite extensive SAR studies conducted on
analogues of CP 55,940 \(2\) and CP 47,497 \(29\) concerning \textit{in-vitro} and \textit{in-vivo} CB\(_1\)
pharmacology the ability of the these analogues to interact with CB\(_2\) receptors
remains to be established\(^{80,158}\).

![Chemical Structures](image)

Figure 1-13 (A) The structures of two typical NCC. NAH Northern Aliphatic Hydroxyl. SAH Southern
Aliphatic Hydroxyl. (B) The synthesis of tritiated CP 55,940, the most common radiolabelled
cannabinoid\(^{159}\).
The SAR conducted on NCCs for the CB₁ receptor shows very similar trends to those found for CC ligands (see - 1.4.2).

- C4’ 1’,1’-dimethyl substituted side chain of between 5 and 7 carbon units is optimal for CB₁ binding158.
- The 2’-deoxy analogues still retain affinity at the CB₁ receptor although it is decreased by ~40 fold158.
- The NAH at C1 can be removed with the compound retaining cannabinoid activity \textit{in-vivo}158.
- Other SAR explored the cyclohexanol ring size and the substituent at C4 of CP 47,497 \textbf{29} analogues. Of the 26 analogues examined, CP 55,940 \textbf{2} remained the most potent analogue, however ring sizes up to cyclooctanol and C4 short chain alkyl groups (up to a butyl chain), with or without functionalized termini (ether, 1° amine, amide, hydroxylamine), were all well tolerated with little affect upon CB₁ affinity (all analogues retained CB₁ affinity of <15 nM)158.

To the best of our knowledge, the effect of modifying NCCs with bulky substituents has not been published, however it is prudent to comment that due to the NCCs exhibiting structural and SAR similarities to the CC the placement of bulky substituents on an NCC is likely to have similar effects to those shown by the CC (section 1.4.2). The stereochemical requirements for the NCC are the same as for the CC with the natural stereochemistry of Δ⁹-THC (6a\textit{R}, 10a\textit{R}) being required in NCCs (3\textit{R}, 4\textit{R}) to give optimum CB₁ binding 80,158. A further stereochemical requirement that is present within the NCC pharamacophore is the requirement of the NAH to be β to the cyclohexane ring134. The likely biological binding conformation of CP 55,940 \textbf{2} (and conformationally restricted analogues of it), determined by NMR and computational studies, has been postulated to have the NAH, the SAH and the phenol hydroxyl all on the upper face of the conformer giving the molecule an amphipathic nature (Figure 1-14)160,161. Therefore to be on the same face as the other two hydroxyls the NAH must be in the equatorial conformation.
1.4.3.1 CB₂ selective non-classical cannabinoids.

The first report of a CB₂ selective NCC ligand appeared in the literature in 1999 from the Mechoulam group based at Hebrew University. The compound, code-named HU308 (30, Figure 1-15), showed agonist properties at the CB₂ receptor with a K_i of 23 nM. HU308 30 exhibited little affinity to the CB₁ receptor ($K_i > 10 \mu M$). The compound was first synthesized 9 years previously as part of the group’s investigations into the stereochemistry requirements/synthesis of Δ⁸-THC derivatives. Thus, their rational for designing this type of compound to be CB₂ selective is not included in the 1999 report other than to say that the dimethoxy groups in HU308 30 are based on the increase in CB₂ selectivity shown by the methyl ether derivatives of CC such as L759633 (21 Figure 1-12); a CB₂ selective ligand. Later Huffman et al. synthesized a pyridone analogue of CP 47,497. The resulting distereoisomers of the pyridone analogue 31 and 32 (Figure 1-15) were found to have similar high affinities at the CB₂ receptor (31 56 & 32 50 nM) and lower affinities at the CB₁ receptor (31 973 & 32 1054 nM). This result was surprising as it was known that an α-NAH in NCCs does not bind as well as the β conformation and yet both of these compounds (31 and 32) bound equally well (section 1.4.3). This result may be explained by these novel compounds adopting a different binding confirmation to that of CP 55,940 2 and CP 47,947 29 in the receptor. The CB₂ selectivity of 31 & 32 described may be attributed to them being equivalent of 1-deoxy-Δ⁸-THC analogues such as JWH133 (27, Figure 1-12) and possess selectivity for similar reasons as described in section 1.4.2.4.
Figure 1-15 The structure and in-vitro binding affinity of CB_2 selective NCC. a ref. 162, b ref. 164, c ref. 165.

One large study into the SAR of NCC at the CB_2 receptor used phenol and resorcinol benzenoid rings with various carbo/heterocyclic moieties to generate 41 analogues which were subjected to pharmacological testing165. The two examples shown in Figure 1-15 are the potent CB_2 selective compound O1966A 34 and its phenol equivalent O1826 33. The authors acknowledge, for compound 34, that there was a mixture of distereoisomers but gave no further details. These two compounds convey the main findings of this study, \textit{i.e.} masking of the phenol groups as methoxy ethers 34 had the biggest effect on CB_2 selectivity. Of the range of carbo/heterocyclic groups assessed, the cyclohexane ring with a methyl group at C3 and a hydroxyl at C1 (compound 34) gave the optimum compounds with respect to CB_2 affinity and selectivity132.

Overall the NCCs show a similar SAR to those observed for the CC ligands (section 1.4.2). It is therefore with similar reasoning that we feel that this class of compound is not suitable to modify with bulky fluorescent dyes to generate high affinity CB_2 selective ligands.
1.4.4 Arachidonic acid derivatives

Arachidonic acid derivatives are the natural ligands for the cannabis receptor. Anandamide 4 (Figure 1-16) was isolated and discovered in 1992 and was shown to be the first of the endogenous ligands to the cannabis receptors. Subsequently a further four arachidonic acid based natural ligands, 2-arachidonoylglycerol 35, 2-arachidonyleglycerol ether (Noladin ether, 36), Virodhamine 37, and N-Arachidonoyldopamine 38, have been postulated as endogenous cannabinoid ligands (Figure 1-16). The roles, biosynthesis and deactivation of this family of endocannabinoids is outside the scope of this thesis and readers are directed to an excellent review on these topics. All of the endocannabinoids are ligands at both the CB1 and CB2 receptors with a preference of affinity towards the CB1 receptor. The published literature concerning synthetic analogues of arachidonic acid have all reported compounds which show selectivity towards the CB1 receptor. Combined with the fact that anandamide is photolabile, this class of compound is not suitable for labelling with fluorescent dyes to generate CB2 selective fluorescent ligands.

![Chemical structures of arachidonic acid cannabinoid ligands.](image)

Figure 1-16 Chemical structures of arachidonic acid cannabinoid ligands.

8 Although no experiments investigating the photodegradation of Anandamide have been published the commercial suppliers of Anandamide (Tocris) advise in their summary of Product Characteristics “Protect from light”. This appears prudent advise when considering that Polyene systems such as Anandamide are well known for their ability to absorb light (i.e. the pigments Retinal & β Carotene)
1.4.5 Pyrazole cannabinoids

The pyrazole class of cannabinoids exhibits the only known antagonist/inverse agonist behavior upon binding to the cannabinoid receptors\(^8\). The prototypical members of this class are the Sanofi compounds SR141716 5\(^5\), a potent CB\(_1\) ligand, and SR144528 6\(^6\) a potent CB\(_2\) ligand (Figure 1-17 A & C). SAR studies on the pyrazole pharmacophore, using SR141716 5 as the lead structure, have been extensive, concentrating on CB\(_1\) receptor binding, and have concluded the following points:

- 3° amides, like compound 43 (Figure 1-17, B), and the replacement of amide functionality by other H-bonding acceptors/donors strongly decrease CB\(_1\) binding affinity compared to 2° amides such as displayed by compound 42\(^176,177\).
- The optimum group at N1 is 2'',4''-dichlorophenyl. Replacement of this group with cycloalkanes\(^178\), 4''-alkylphenyl moieties\(^177\), or monochlorinated phenyls 39\(^176\) diminishes CB\(_1\) binding (see Figure 1-17, A).
- The C3 amido group can tolerate replacement of the N-piperidine group present in SR141716 with related 5-7 membered rings or cyclohexane without altering binding affinity. Replacement of cyclic groups with linear alkyl chains led to a decrease in affinity in one study\(^177\) but did not alter CB\(_1\) binding in another\(^179\).
- A bulkier substituent than hydrogen (i.e. methyl, bromine or iodine) increases CB\(_1\) affinity in position C4\(^176,177\).
- Para (4’) substituted alkyl- or halo- phenyl groups all give enhanced CB\(_1\) binding when positioned at C5\(^176\) (Figure 1-17 A & B). However 4’-nitro, 4’-amino and 2’-substituted phenyls at C5 all lead to a decrease in affinity\(^176\). The potent CB\(_1\) antagonist AM251 41 was prepared by a simple replacement of the 4’-chlorophenyl group of SR141716 5 with a 4’-iodophenyl moiety\(^176\). This useful analogue allows the inclusion of radioactive forms of iodine (I-123) into the synthesis of AM251 41 which can be used for in-vivo imaging.

Unfortunately there are no published SAR studies on the CB\(_2\) selective ligand SR144428 to date. We are therefore left with relatively little information to the nature
of the CB₂ affinity/selectivity exhibited by SR144528 6 and this will be explored in section 1.4.5.1.

1.4.5.1 CB₂ selective pyrazoles

The current knowledge of the limited SAR for the CB₂ receptor is as follows:

• 3° amides decrease CB₂ affinity (Figure 1-17 B)\(^{176}\).
• \(N1\) substituents consisting of 4’’-monosubstituted phenyl 6 and 3’’-methylcyclohexyl 40 rings show an increase in CB₂ binding and a decrease in CB₁ binding\(^{176}\) (Figure 1-17, A & C). This observation is shown in the structure of SR144528 6 with a 4’’-methylbenzyl group replacing the 2’’, 4’’-dichlorphenyl of SR141716 5.
• Hydrogen at position C4 is optimal for CB₂ binding as shown in the structure of SR144528 6. However it has recently been shown that a methylene bridge connecting C4 to the neighbouring aromatic residue at C5 significantly increases CB₂ affinity and selectivity\(^{180}\). This is likely to be due to increased rigidity within this molecule, rather than steric factors (see below)\(^{180}\).

The SAR for the CB₂ selective pyrazole cannabinoids has been extremely sparse. There have been no published accounts of any modifications which have incorporated bulky groups or alkyl linker chains. The most interesting set of compounds that incorporated these features, required in fluorescent dye conjugation, were unfortunately not tested with CB₂ receptors\(^{177}\).

The most important discovery since SR144528 6, was published in 2003 by Mussinu \textit{et al.} after we had concluded our own studies\(^{180}\). Their group reported the synthesis and pharmacological testing of a number of novel 1,4-dihydroindenol[1,2-c]pyrazole based CB₂ selective ligands (Figure 1-17 D). They used a common medicinal chemistry approach of introducing a conformational restriction into analogues of SR141716 in an attempt to permit the ligand to bind with high affinity and selectivity to a desired receptor\(^{181}\).
Figure 1-17 The structure and in-vitro pharmacology of the pyrazole cannabinoids. A) The effect of the N1 substitution. B) The effect of amide substitution and halogen exchange. C) The prototypic CB₂ ligand SR144528. D) The novel 1,4-dihydroindenol[1,2-c]pyrazole CB₂ selective cannabinoids. a. ref 176 b. ref 178 c. ref 57 d. ref 180.

Their discoveries were evidence that the rigid 1,4-dihydroindenol derivatives showed extensive selectivity towards the CB₂ receptor even when the substituents at N1, C3 and C5 were previously thought to confer CB₁ selectivity. Thus the rigid analogue of SR141716 44 has >6000 fold CB₂ selectivity with a sub-nanomolar K_i of 0.34 nM and their 6-methyl analogue 45 is the most potent and selective CB₂ ligand described to date (Figure 1-17 D). Unfortunately molecular modelling studies undertaken with SR144528 6 showed that the 1,4-dihydroindenol methylene bridge would be located deep within CB₂ receptor binding pocket, pointing down towards the intra-cellular...
side. This is an unsuitable locus for manipulation since the fluorescent dye should be located away from the receptor (i.e. on the extracellular face) so as to minimise perturbation of ligand-receptor interactions. According to Gouldson’s model the site with most potential for modification would be the 4’’-benzylic methyl group of SR144528 which lies towards the top of the receptor pocket.

However, up until we concluded our studies, the lack of CB₂ receptor SAR for the pyrazoles meant that using the template of SR144528 as a lead compound for conjugation with a fluorescent dye would be difficult in regards to fluorescent dye placement.

1.4.6 Indole based cannabinoids

The indoles were the first class of cannabimimetics that were not structurally related to Δ⁹-THC. Researchers at Stirling Winthrop reported a new family of indoles which possessed cannabinoid properties. Constrained analogues of the non-steroidal anti-inflammatory drug Pravadoline were synthesized which exhibited reduced inhibition of the cyclo-oxygenase enzyme but increased affinity to the CB₁ receptor. R-(+)-Win 55212-2 has been the most studied compound arising from this program. It displays high stereospecific affinity for both the CB₁ and CB₂ receptor with a K_i range of 1.89-123 nM and 0.28-39.3 nM respectively. Most studies show that Win 55212-2 exhibits a modest selectivity in favour of the CB₂ receptor. The key structural features necessary for high CB₁ binding have been summarized by the authors in a large SAR study which evaluated 125 non-constrained analogues of Win 55212-2. They concluded:

- A bicyclic (preferably 1-naphthoyl) substituent is required at C3 of the indole.
- A small substituent (or better no substituent) is required at C2 of the indole.
- An aminoethyl (preferably morpholinoethyl) substituent is required at N1 of the indole which lead to the early generic name for this series of compounds to be aminoalkylindole (AAI).

Compound 47 (Figure 1-18) is the resultant compound which has nanomolar displacement values at the CB₁ receptor.
However this model SAR has now been superceded by other developments which have shown that the N1 aminoethyl group can be replaced with simple \(n \)-alkyl chains\(^{184} \) such as JWH007 \(48 \) and the indole structure can be simplified to a pyrrole \(49^{185} \) or an indene \(50^{186} \) structure with the compounds retaining cannabinoid properties (Figure 1-18).

![Chemical Structures](image)

Figure 1-18 The structures and *in-vitro* pharmacology of indole based cannabinoids. a ref. 187 b range of values given ref. 80 c ref. 122 d ref. 188 e ref. 189. NR not reported.
1.4.6.1 Modeling studies on indoles

The intimate ligand-receptor interactions of the indole cannabinoids has been studied to a greater depth than for any other class of compound and this makes them an interesting class of cannabinoids to interrogate using molecular modelling to guide the choice of fluorescent dye placement. A short summary of the modelling studies performed to date will be considered.

Early studies simply superimposed the AAI pharmacophore over the structure of Δ⁹-THC by aligning the naphthyl ring of the AAI over rings B & C of Δ⁹-THC, the carbonyl group of the AAI over the C1 phenol of Δ⁹-THC, and the N1 substituent of the AAI was aligned with the C3 side chain of Δ⁹-THC, illustrated in Figure 1-19. From the proposed model, indole analogues with simple N1 n-alkyl chains instead of aminoalkyl chains and simplified pyrrole analogues were synthesized and screened and showed that binding to the CB₁ receptor was retained¹⁸⁴,¹⁸⁸.

Later receptor mutational¹⁵² and docking¹⁹⁰ studies indicated that there could be divergence within the binding site of Win 55212-2 from that of other classes of cannabinoid ligand, therefore the structural superimposition of AAI with Δ⁹-THC giving rise to the cannabimimetic 1-n-alkyl indoles and the pyrrole series may have been serendipitous.

The binding conformation and the amino acid residues involved in indole-receptor interactions have been reported. The bioactive conformation of the indole cannabinoids was determined in one study by Reggio et al. to be in the s-trans form. The s-trans form results in the aryl system lying close the indole C2 and the carbonyl
oxygen lying near to the indole C4 (Figure 1-20). They demonstrated that the rigid AAI mimic \((E)\)-Naphthylideneindene (which is the rigid \(s\)-trans form of Win 55212-2 3) bound with greater affinity to the \(\text{CB}_1\) and \(\text{CB}_2\) receptors than the \((Z)\)-isomer\(^{189}\) (Figure 1-20).

Directly contrasting this result was a later publication by Xie \textit{et al.} which used 2D NMR and molecular dynamics experiments to demonstrate that the low energy conformation of Win 55212-2 3 in solution was in fact the \(s\)-cis form\(^{191}\) (Figure 1-20). We will report in chapter 6 our findings concerning the binding conformation of Win 55212-2 3 obtained from molecular modelling studies.

Many independent studies have demonstrated that the indoles bind to the cannabinoid receptors primarily by aromatic stacking interactions. SAR determinations detailed in 1.4.6 show that 3-naphthoyl indoles \textit{c.f.} 3-benzoyl indoles and indoles \textit{c.f.} pyrroles exhibit increased binding to the cannabinoid receptor mirroring the increase in aromatic character exhibited by these compounds\(^{183,188}\). Further SAR studies involving the \((E)\)-Naphthylideneindene\(^{186,189}\) and the completely hydrocarbon based 1-pentyl-indene\(^{192}\) demonstrate that the major interactions of binding at the cannabinoid receptor are aromatic and Van Der Waals. Molecular modelling has also been used to show the type and location of the interactions taking place between the indole cannabinoids and the receptor. Chin \textit{et al.} was able to determine that TM 3 plays an important role in the selectivity of some of the indole cannabinoids for the \(\text{CB}_2\) receptor by generating a hybrid \(\text{CB}_1\) receptor that contained TM 3 of the \(\text{CB}_2\) receptor. These hybrid receptors were capable of binding the indoles
Win 55,212-2 3 and JWH015 (53, Figure 1-21) with greater affinity than the wild type CB\textsubscript{1} receptor193. A single point mutation experiment which altered a non-conserved CB\textsubscript{2} Phenylalanine residue (F197) to the corresponding CB\textsubscript{1} amino acid Valine demonstrated through computer modelling analysis, that F197, as part of an aromatic cluster in TM 3-4-5, was crucial in the selectivity of Win 55212-2 for the CB\textsubscript{2} receptor194. Molecular modelling experiments using the global minimum energy conformations of several 3-Indolyl-1-naphthylmethanes and 3-(1-naphthoyl)indole compounds, into an activated CB\textsubscript{1} receptor model, have also shown that these molecular structures bind by aromatic stacking interactions with residues present in TM 3-4-5-6192.

In summary, molecular modelling and SAR techniques have been used by a number of independent researchers to give a model of the indole cannabinoids binding to the cannabinoid receptor. The models show that 3-substituted indoles bind primarily through aromatic stacking interactions with residues within TM 3-4-5-6. In addition, the CB\textsubscript{2} selectivity of these compounds may be inferred by a phenylalanine residue (F197) only present in the CB\textsubscript{2} receptor which can form an extra aromatic-aromatic interaction with the indole structure.

1.4.6.2 CB\textsubscript{2} selective indoles

The first indole cannabinoid ligand which showed significant CB\textsubscript{2} selectivity was the prototypical compound Win 55212-2 3135. Although most published data demonstrates that Win 55212-2 3 is selective towards the CB\textsubscript{2} receptor, the results also show that the compound has high affinity for the CB\textsubscript{1} receptor80,135. Further exploitation of the SAR generated two compounds L768242 51 and JWH015 53 (Figure 1-21) which demonstrated high affinity and selectivity for the CB\textsubscript{2} receptor. Gallant \textit{et al.} generated several compounds of the L768242 51 type by switching the substitution pattern of the aroyl and morpholino groups from the established 3-aroyl-1-aminoalkyl to 1-aroyl-3-aminoalkyl195. They demonstrated that the N1-(2, 3-dichlorobenzoyl) group had as high an affinity to the receptors as N1 naphthoyl substitution, suggesting that the dichlorophenyl was isosteric to the naphthyl system. The Huffman group synthesized JWH015 53 (Figure 1-21) in 1994 based on the alignment of indole with Δ9-THC shown in Figure 1-19, however it was only shown
to be CB₂ selective in 1996 when it was first tested in membranes containing CB₂ receptors. SAR of this type of \(N\)-alkylindole has been extensive; however no bulky substituents have been evaluated for effects on the pharmacophore scaffold. The SAR on this type of compound can be summarized as follows:

- The optimum \(N_1\) substituent for CB₂ selectivity is \(n\)-propyl. Smaller alkyl groups abolish binding at both receptors, whilst extending the chain length up to \(n\)-hexyl increases \(\text{CB}_2\) affinity but at the expense of selectivity. This can be shown in the compounds 48, 52, and 53 (Figure 1-21). Heptyl chains, as in 55, start to decrease affinity at both receptor types. This trend fits the hypothesis that the nitrogen of the indole is equivalent to the C3 side chain of CC as shown in Figure 1-19, as in the CC a short C3 side chain is optimum for \(\text{CB}_2\) selectivity (see - 1.4.2.4).

- Methyl substitution at C2 of the indole leads to compounds with increased affinity at the \(\text{CB}_2\) receptor. This is illustrated by the difference between JWH015 53 and compound 54 which lacks the methyl group and shows a 10 fold loss in \(\text{CB}_2\) affinity (Figure 1-21). Larger \(n\)-alkyl chains and branched alkyls at C2 however attenuate binding at both receptors.

- Substitutions on the 3-naphthoyl moiety (4-methoxy- & 7-methyl-1-naphthoyl substituents were evaluated) gave compounds with similar selectivity and affinity to the unsubstituted naphthoyl analogues.

Other \(\text{CB}_2\) selective indoles have recently been published in the literature. Bristol Myers Squibb developed a range of 3-amido substituted indoles based on evidence of \(\text{CB}_2\) selectivity shown by the indole cannabinoids and the amide containing Japan Tobacco cinnamides. Their studies produced a number of \(\text{CB}_2\) selective ligands shown in Figure 1-21 and generated some interesting SAR for the purposes of designing fluorescent labelled \(\text{CB}_2\) ligands.

- The C3 amido aromatic amino acid of 56 could be replaced with non-aromatic amide groups retaining \(\text{CB}_2\) affinity (although \(\text{CB}_1\) affinity was not reported).
Chiral discrimination was observed in compound 56 as its enantiomer showed minimal CB₂ binding.

Inclusion of a C7 methoxy group in 56 increased CB₂ affinity from 250 nM to 8 nM.

The C3 amido functionality was further developed to contain the bulky (S)-fenchyl group (as used in SR144528 6, Figure 1-17). Compound 57 demonstrated that the molecular space within the receptor at C3 was able to accommodate large bulky substituents (Figure 1-21).

Derivatives of 57 where the substitution at N1 was varied indicated that simple n-pentyl chain gave the highest CB₂ affinity (5 nM). CB₁ binding was not reported as the compound showed little activity in an in-vivo inflammatory model.

C₂ derivatives of 57 showed that the methyl or hydrogen substituent was optimal for CB₂, with larger alkyl groups reducing CB₂ affinity.

An interesting CB₂ selective indole AM1241 58 (Figure 1-21), with in vivo activity, has recently been reported in a patent and in subsequent pharmacological papers. The compound has shown promising results in various pain models when used in vivo (see - 1.3.4.4.1). The compound has a bulky 2-iodo-5-nitrobenzoyl substituent at C3 and utilizes a N-methylpiperidinyl group at N1. In order to retain CB₂ binding the stereochemistry of the N1 substituent must retain the R configuration which is also a requisite in Win 55212-2 3.

Overall the indole cannabinoids represent an excellent class of compounds for our purposes of conjugation to fluorescent dyes. Indole based cannabimimetics have nanomolar affinity and appear to show a natural selectivity towards the CB₂ receptor. They are chemically simple and stable, and appear to tolerate bulky substituents in the C3 position. We planned to exploit the established knowledge regarding ligand-receptor interactions to build an in-silico model which can be interrogated to provide guidance in the synthesis of novel CB₂ selective fluorescent ligands and will report our results in chapter 6.
1.4.7 Japan Tobacco ligands

This set of compounds consisting of benzamides, cinnamides and heterocyclic structures (Figure 1-22) are set aside from the other categories of cannabinoid ligand due to their chemical structure not fitting any of the other cannabimimetic classes detailed in section 1.4. First reported in 1997, 391 compounds, mainly consisting of substituted aromatic amides were cited. Pharmacological data demonstrating high CB2 selectivity and affinity was reported for 32 of these compounds. The patent gives...
limited pharmacology data but includes K_i binding values from rat cerebellum and spleen membranes. Detailed pharmacology on compound JTE907 (66, Figure 1-22), which is similar in structure to compounds from their original patent, was reported elsewhere in which JTE907 66 was shown to have inverse agonist properties at the CB$_2$ receptor. In addition, it displayed a variable K_i value in human, mouse and rat CB$_2$ receptors of 36, 1.6, and 0.4 nM respectively125. Independent testing of the binding affinity of one other member of the Japan Tobacco compounds was reported by the Bristol Myers Squibb company in 2002. Compound 61 (R=OH) exhibited a 100 fold increase in K_i value in their human CB$_2$ receptor assay compared to the K_i obtained from the rat CB$_2$ receptor reported in the original patent (Figure 1-22)197. These patterns of receptor species differences in the Japan Tobacco compounds were not evident when we embarked on our investigations however we will be reporting on these differences in chapters 4 and 5.

The Japan Tobacco compounds possessed excellent diversity in the chemical structures and groups tolerated whilst retaining high CB$_2$ selectivity and affinity. The compounds still remain today the most selective and high affinity ligands to the CB$_2$ receptor reported. The key SAR to these compounds can be summarized as follows:

- Amide type functionality attached either directly to a benzenoid ring (as in 62-65, Figure 1-22) or positioned through a 2 carbon linker which allows conjugation between the amide and benzenoid ring (as in cinnimides 59-61, & 66, Figure 1-22) is observed in each of the compounds.
- An n-pentyl chain which is meta to the amide connection to the benzene ring is observed in all of the active compounds. The n-pentyl chain is connected to the benzene ring through a heteroatom (O, N and S).
- The position para to the amide connection to the benzene ring can accommodate long chain alkyls attached to the ring through a heteroatom.
- An N-ethyaromatic moiety is a preferred substituent on the amide group. The aromatic group observed was mainly tyramine based although in compounds 60, 61 (R=H), 65, and 66 show that the phenol group is not essential for binding.
The Japan Tobacco compounds represent a lead set of compounds for derivatisation with fluorescent dyes. Their large CB$_2$ affinity and selectivity should allow modifications with fluorescent dyes resulting in fluorescent CB$_2$ ligands. The SAR they display shows tolerance to long alkyl chains on the benzamide ring as demonstrated by compound 62 and 65, and they can tolerate a wide range of structural diversity on the N-amide substituent as demonstrated in compounds 61, 64, 65, and 66. It is for this reason that the Japan Tobacco compounds represent the class of compounds that we feel most likely to tolerate modifications to allow conjugation to fluorescent dyes and we will report on our investigations in chapters 2, 4 and 5.

![Chemical structures](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ki (nM)</th>
<th>CB$_1$</th>
<th>CB$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>400</td>
<td></td>
<td>1.8a</td>
</tr>
<tr>
<td>60</td>
<td>3700</td>
<td>44a</td>
<td></td>
</tr>
<tr>
<td>61 (R = OH)</td>
<td>480</td>
<td>1.4a (rat receptors)</td>
<td></td>
</tr>
<tr>
<td>61 (R = H)</td>
<td>>1000</td>
<td>120a (human receptors)</td>
<td></td>
</tr>
<tr>
<td>JTE2-3 62</td>
<td>>3300</td>
<td>0.4a</td>
<td></td>
</tr>
<tr>
<td>JTE2-6 63</td>
<td>500</td>
<td>1.1a</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>650</td>
<td>1a</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>2600</td>
<td>1.8a</td>
<td></td>
</tr>
<tr>
<td>JTE907 66</td>
<td>2370</td>
<td>36a (human receptors)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1060</td>
<td>1.6a (mouse receptors)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1050</td>
<td>0.4a (rat receptors)</td>
</tr>
</tbody>
</table>

Figure 1-22 The structure and in-vitro pharmacology of the Japan Tobacco ligands. a. ref 126, b ref. 197, c ref. 125.
1.5 Research aims

We aim to design and synthesize novel CB$_2$ ligands which are conjugated to fluorescent dyes making them suitable for use in confocal microscopy and SMD applications. By using both classical SAR and molecular modeling approaches we will interrogate cannabinoid lead structures in-order that we can locate the fluorescent dye upon the pharmacophore whilst retaining cannabinoid activity. From our extensive literature search conducted on the cannabinoid ligands we will be using the Japan Tobacco ligands and the indole cannabinoids as lead structures for conjugation to fluorescent dyes. We will report the design, synthesis and pharmacology of these ligands in subsequent chapters. As the nature of our work is directed towards the greater understanding of the CB$_2$ receptor we will also be reporting serendipitous results, relating to ligand-receptor binding at the CB$_2$ receptor, obtained through our molecular modelling and pharmacology findings. These specifically relate to an unusual species selectivity encountered with a Japan Tobacco compound and a hypothesis to how it occurs.
2 Fluorescent CB$_2$ ligand based on a modification to the benzamide ring of a Japan Tobacco Compound.

2.1 Background to designing a GPCR fluorescent ligand.

A review of the literature quickly determined that only one fluorescent cannabinoid ligand, SK-4-45-1 67, had previously been reported. The ligand was a fluorescently labelled derivative of anandamide and displayed no detectable binding to the CB$_1$ receptor (Figure 2-1). SK-4-45-1 67 was however recognised by the anandamide transporter system and was subsequently used to track the re-uptake of anandamide into intracellular compartments.

Due to the inability of SKM 4-45-1 67 to bind to the cannabinoid receptor, and the reported photo-instability and CB$_1$ selectivity of anandamide derivatives previously discussed in section 1.4.4 it became obvious that a novel approach to designing a fluorescent CB$_2$ ligand was required.

Several fluorescent ligands which bind to GPCRs have previously been reported, alongside their pharmacological data and use in various fluorescent assays. A short discussion of adenosine and serotonin fluorescent ligands will be given to introduce the reader to the concepts and decisions taken during the work described.

2.1.1 Fluorescent adenosine agonist ligands

The adenosine receptors are a class of three (A$_1$, A$_2$, A$_3$) GPCR receptors that have important roles in physiology and the pathology of disease. They are therefore important receptors to understand and as a result selective adenosine fluorescent
ligands have been designed for use in fluorescent applications. Original work by Macchia et al. was able to show that attachment of a Dansyl fluorescent dye, via an alkyl linker, to N^6 of the adenosine agonist NECA 68 (Figure 2-2) proceeds with retention of A_1 receptor binding200. The rational in attaching the fluorescent dye in this way came from previous SAR which demonstrated that alkyl linkers, terminating in a bulky substituent at N^6 led to compounds with high affinity and selectivity at the A_1 receptor199,201. Macchia et al. assessed the effect of different alkyl chain lengths (from C3 to C12) used to tether the Dansyl molecule to the NECA ligand (69a-f, Figure 2-2). They found that the C6 alkyl chain 69c was optimum for A_1 binding affinity with a K_i of 27 nM determined using radioligand binding. Chain lengths of C3 69a and C4 69b gave compounds with a K_i of < 100 nM, but increasing the alkyl chain length above C6 led to incremental decreases in binding affinity; with the C12 linker compound 69f having a binding affinity of 3400 nM. The group were able to use 69c to visualize the A_1 receptor in rat cerebellar cortex using fluorescence microscopy. As an extension to their work they acknowledged in a subsequent publication that the Dansyl-NECA ligands could be improved by altering the fluorophore to one with a longer λ_{abs}. The short λ_{abs} (340 nm) necessary to excite the Dansyl dye is known to cause problems in biological experiments due to cells and tissues autofluorescing at this wavelength203. Their solution was to substitute the Dansyl dye with the longer λ_{abs} dye 7-Nitrobenzofurazan (NBD, λ_{abs} 465 nm) to give compounds 70a-e (Figure 2-2). By changing the dye the reported pharmacological profile of the compounds surprisingly changed from being A_1 selective using Dansyl to A_3 selective using NBD (see table in Figure 2-2). This result was not commented upon by the authors, but it does suggest that the choice of fluorescent dye can significantly affect the pharmacology of the conjugated ligand. An alternative explanation was that the binding assay used to determine the K_i of the NBD ligands 70a-e utilised a radiolabelled antagonist instead of a radiolabelled agonist, which was used for the Dansyl compounds 69a-f. Antagonists are known to switch A_1 receptors to their low affinity binding state204 resulting in the lower K_i observed. The NBD series also demonstrated that increasing alkyl linker length resulted in compounds with increased binding affinity towards the A_3 receptor. This is opposite to the Dansyl series and may be due to differing modes of binding mechanism displayed by the two
differing fluorophores. The NBD ligand 70d was used to visualise the A3 receptor in CHO cells using confocal microscopy.

Our research group was interested in generating fluorescent adenosine agonists that were more suitable for use with SMD applications. Using the N6 alkyl NECA compounds 69 & 70 discussed above as a lead molecule the boron containing fluorophore BODIPY® 630/650 was chosen as a substitute dye for Dansyl or NBD. The BODIPY® 630/650 dye was chosen as it has an λabs of 633nm producing much lower levels of cellular autofluorescence. It also displays high molecular brightness, is subject to low photobleaching rates and has a low percentage of triplet states; important factors in SMD (section 1.1.2.2.1). Commercially available BODIPY® 630/650 is only available with a C6 alkyl chain already incorporated onto the dye, therefore a short alkyl linker of 4 carbon units was incorporated at the N6 position and conjugated to the BODIPY® 630/650 dye to produce 71. This ligand was shown in a reporter gene efficacy assay, quantified through Luciferase expression, to have equivalent potency to the high affinity A1 agonist N6-cyclopentyl adenosine (CPA). Initial displacement binding studies on this ligand at the A1 receptor has shown it to have a biphasic binding curve with a detectable low affinity binding Ki of 22 µM. This is 100 fold less potent than NECA, but due to the antagonist radioligand binding assay used it is likely to be reporting on the binding to A1 receptors in the low affinity binding state - in a similar way to the results from the NBD series of drugs. The BODIPY-NECA compound 71 has been successfully used in SMD and single cell applications.

We have successfully applied the same methodology used for 71 to fluorescently label the endogenous ligand adenosine. Thus adenosine was modified with a N6 aminobutyl tether and conjugated to BODIPY® 630/650 to give 72 (Figure 2-2). This ligand shows similar efficacy to the agonist NECA 68 using a cAMP sensitive secreted placental alkaline phosphatase (SPAP) reporter gene assay. Agonist activity of adenosine was retained and the results from radioligand competition binding studies are awaited. The BODIPY-adenosine ligand 72 has been used in confocal microscopy and FCS experiments to report on the location and function of the A1 receptor.
In-vitro Radioligand binding data

<table>
<thead>
<tr>
<th>Compound</th>
<th>n</th>
<th>Ki (A<sub>1</sub>, nM)</th>
<th>Ki (A<sub>2</sub>, nM)</th>
<th>Ki (A<sub>3</sub>, nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>N.A</td>
<td>200<sup>a</sup></td>
<td>15<sup>a</sup></td>
<td>8.2<sup>a</sup></td>
</tr>
<tr>
<td>69a</td>
<td>3</td>
<td>42<sup>a</sup></td>
<td>4300<sup>a</sup></td>
<td>1800<sup>a</sup></td>
</tr>
<tr>
<td>69b</td>
<td>4</td>
<td>70<sup>a</sup></td>
<td>9500<sup>a</sup></td>
<td>2000<sup>a</sup></td>
</tr>
<tr>
<td>69c</td>
<td>6</td>
<td>27<sup>a</sup></td>
<td>4300<sup>a</sup></td>
<td>3600<sup>a</sup></td>
</tr>
<tr>
<td>69d</td>
<td>8</td>
<td>111<sup>a</sup></td>
<td>>10000<sup>a</sup></td>
<td>252<sup>a</sup></td>
</tr>
<tr>
<td>69e</td>
<td>10</td>
<td>234<sup>a</sup></td>
<td>>10000<sup>a</sup></td>
<td>1100<sup>a</sup></td>
</tr>
<tr>
<td>69f</td>
<td>12</td>
<td>3400<sup>a</sup></td>
<td>>10000<sup>a</sup></td>
<td>2500<sup>a</sup></td>
</tr>
<tr>
<td>70a</td>
<td>2</td>
<td>>10000<sup>b</sup></td>
<td>6750<sup>b</sup></td>
<td>56<sup>b</sup></td>
</tr>
<tr>
<td>70b</td>
<td>4</td>
<td>>10000<sup>b</sup></td>
<td>>10000<sup>b</sup></td>
<td>381<sup>b</sup></td>
</tr>
<tr>
<td>70c</td>
<td>6</td>
<td>>10000<sup>b</sup></td>
<td>6083<sup>b</sup></td>
<td>24<sup>b</sup></td>
</tr>
<tr>
<td>70d</td>
<td>8</td>
<td>3476<sup>b</sup></td>
<td>5096<sup>b</sup></td>
<td>7.4<sup>b</sup></td>
</tr>
<tr>
<td>70e</td>
<td>10</td>
<td>6350<sup>b</sup></td>
<td>6100<sup>b</sup></td>
<td>28<sup>b</sup></td>
</tr>
<tr>
<td>71</td>
<td>4</td>
<td>22000<sup>c</sup></td>
<td>N/D</td>
<td>N/D</td>
</tr>
</tbody>
</table>

Figure 2-2 The structure and K_i values of fluorescent adenosine agonists. a ref. 200, b ref. 202, c ref. 208
2.1.1.1 Synthetic strategy used for fluorescent adenosine agonists

Compounds 69-71 were synthesised by an amine substitution of a common 6-chloropurine 73 intermediate. The differences in the synthesis of the Dansyl, NBD and BODIPY® ligands relate to when the fluorescent dye was introduced into the molecule as shown in Scheme 2-1.

In the synthesis of the Dansyl ligands the Dansyl dye was pre-conjugated with the alkyl linker and the amine group of the alkyl linker was reacted with the 6-chloropurine 73 to give the acetonide intermediate. The acetonide was hydrolysed using aqueous acid to yield the final ligands 69a-f (Scheme 2-1, A). The disadvantage of this technique is that in-order to displace the 6-chloropurine 73 the fluorophore is exposed to the forcing conditions of refluxing in EtOH. Also this method relied upon deprotecting the acetonide using acid hydrolysis in the presence of the fluorophore. This method is inappropriate for labelling with labile fluorophores.

The methodology used to synthesise the NBD ligands 70a-e overcame the synthetic flaw of exposing the dye to forcing chemical conditions by using mono-Boc protected diaminoalkyl linkers. The linker was installed without the fluorophore, and de-protection of the Boc group exposed the 1° amine which was conjugated to the NBD fluorophore(74, Scheme 2-1, B). The acetonide protection was kept in place during the conjugation as NBD-Cl can react with hydroxyl functional groups. Acetonide de-protection, was carried out in the presence of the NBD fluorophore, however this procedure would affect acid sensitive fluorophores if they had been used.

The synthesis of the BODIPY® ligand 71 (Figure 2-2) utilised methodology that produced intermediate 75, which was suitable for conjugation with any amine reactive fluorescent dye and avoided the need for further chemical manipulation (i.e. de-protection) once the fluorophore was installed. By using the commercially available BODIPY® 630/650 activated as the succinimidyl ester (OSu) we were able to label selectively at the 1° amine without affecting the free hydroxyl groups present on the molecule209,210. Compound 71 was purified by preparative TLC. Similar methodology was also employed successfully in the synthesis of the fluorescent adenosine ligand 72 (Figure 2-2)25.
Scheme 2-1 The different synthetic methodology used to install the fluorescent dye onto the NECA based fluorescent adenosine agonists.
2.1.2 Fluorescent Serotonin ligands

Various fluorescent agonists and antagonists have been prepared against 3 of the 14 known Serotonin (5HT) GPCRs. The methodology used in both the design and the synthesis of these 5HT ligands is very similar to that used in the synthesis of the fluorescent adenosine agonists (section 2.1.1) i.e. a 1° amine terminating alkyl chain is installed at a position upon a 5HT ligand known to tolerate molecular extension and conjugated to an appropriate fluorescent dye in the final synthetic step.

Wohland et al. was able to label an experimental Glaxo Wellcome 5HT3a antagonist GR-119566X 76 (Figure 2-3) which already possessed an aminopropyl chain installed in the drug molecule. They simply reacted GR-119566X 76 with different fluorophores and following purification, tested the ligands for affinity at the 5HT3 receptors. GR-119566X 76 was labelled with 4 different dyes, fluorescein (λabs 494 nm, λEm 518 nm) 77a, NBD (λabs 465 nm, λEm 535 nm), Rhodamine 6G (λabs 556 nm, λEm 578 nm) 77b and Cy5 (λabs 649 nm, λEm 670 nm) 77c, which spanned a range of absorption and emission wavelengths (Figure 2-3). They reported that ligands 77a & b both exhibited sub-nanomolar Kd values whilst the Cy5 containing ligand 77c had an increased Kd of 18 nM, which they attributed to the increased steric hindrance of the dye. The authors went on to use these fluorescent ligands in Fluorescence Correlation Spectroscopy experiments and were therefore able to comment upon the suitability of the 4 fluorescent dyes evaluated in this SMD application. They concluded that the Cy5 and the Rhodamine dyes were the most suitable for SMD applications due to the high count rate, high photostability, and high signal to noise ratio of the dyes. Finally the group concluded with a statement that should be considered when designing fluorescent ligands suitable for SMD work “…a suitable ligand for FCS has to weigh between the higher accuracy of a high count fluorophore and the presumed disturbance of the ligand-receptor interaction by this label.”

A separate group utilised SAR data from a series of benzopyran based 5HT1A ligands to design fluorescent 5HT1A agonists. They employed an aminobutyl linker, previously shown to tolerate bulky aromatic substituents, in order to fluorescently label the ligand (78, Figure 2-3).
Figure 2-3 The structures of fluorescent 5HT agonist and antagonists.
They chose to label the ligand with both commercially available NBD dye and a novel “in-house” coumarin based dye which exhibited higher λ_{Em} (550 nm) wavelengths. The NBD labelled ligand 78 actually had an increased affinity and selectivity towards the 5-HT$_{1A}$ receptor when compared to the non-fluorescent ligands from the original SAR study. Ligand 78 was successfully used in a FIDA based experiment40.

The final set of fluorescent serotonin ligands to be considered were designed using the 5HT$_4$ antagonist ML10302 (79, $K_i = 1$ nM, Figure 2-3) as a template213. By utilising a computational based model of ML10302 79 docked into the 5HT$_4$ receptor they were able to predict areas upon the pharmacophore that would tolerate attachment of a fluorescent dye. Their hypothesis was that the piperidine of ML10302 79 was in the vicinity of the top of the receptor binding pocket and that alkyl tethers conjugated to this ring would place the fluorescent dye in a position favourable for binding. By analogy this placed the aromatic ring of ML10302 79 at the bottom of the 5HT$_4$ receptor binding pocket where it was not expected to tolerate a bulky fluorescent dye.

Compounds 80-83 are some examples from their study which helps to clarify their hypothesis (Figure 2-3). A short C1 linker installed at position 4 on the piperidine moiety and coupled to Dansyl, NBD and a naphthalimide derivative gave compounds 80, 81, and 82 which bound to 5HT$_4$ receptors with 7, 7.5, and 64 nM affinities respectively. Compound 82 was used to highlight 5HT$_4$ receptors on C6 glial cells and report on subcellular localisation213. As a negative control to their computational model hypothesis they labelled the aniline nitrogen of ML10302 with NBD and Dansyl dyes as in compound 83. These compounds exhibited no affinity towards the 5HT$_4$ receptors proving that the dye needed to be positioned away from the binding pocket in-order to retain receptor affinity and supporting their original hypothesis.

2.1.1 Summary of the design and synthesis requirements of fluorescent ligands

The series of serotonin and adenosine fluorescent ligands have shown that it is possible to fluorescently label a selection of selective high affinity receptor ligands with a large fluorescent dye, and still retain the high selectivity and receptor affinity exhibited by the non-fluorescent ligand. The key requirements to successfully generating a fluorescent ligand can be summarised as follow;
• The use of an alkyl linker to separate the fluorophore from the pharmacophore.
• The positioning of the alkyl linker must be on an area of the pharmacophore known to tolerate molecular extension using previously elucidated SAR.
• The use of a \(^1 \) amine as an attachment point for the fluorescent dye.
• Careful selection of suitable fluorophore is required to control both the pharmacology and the fluorescent application of the ligand.

These parameters have not only been used successfully to generate fluorescent adenosine and Serotonin ligands but when applied to small ligands to other receptor types have generated useful fluorescent ligands for the Histamine \(H_1^{214} \) and \(H_2^{215} \), the Muscarinic \(M_1^{216} \), the Opioid \(Mu^{217} \), and the \(\beta^{23} \) and \(\alpha_1^{21} \) adrenergic receptor types.

We wish to apply these same principles into the design and synthesis of a fluorescent cannabinoid \(CB_2 \) ligand.

2.2 Designing a fluorescent cannabinoid \(CB_2 \) ligand

From the principles applied in section 2.1 we designed the ligand using the following criteria.

• Selection of a suitable \(CB_2 \) selective ligand.
• Selection of an appropriate site within the chosen \(CB_2 \) ligand to be modified for fluorescent dye conjugation.
• Choice of length and terminating chemical group employed upon the alkyl linker.
• The fluorescent dye to be conjugated to the \(CB_2 \) ligand.
• The synthetic strategy to be utilised in building the fluorescent \(CB_2 \) ligand.

Each of these will be considered separately and the rational of our choices are discussed.
2.2.1 Selection of a suitable CB2 ligand

A thorough review of the available cannabinoid ligands was completed in section 1.4. We concluded that no single CB2 selective ligand possessed every parameter which was required for successful conjugation with a fluorescent dye \(i.e. \)

- A high affinity towards the CB2 receptor (\(i.e. K_i \leq 20 \text{ nM} \)).
- A high CB2/CB1 selectivity (\(\geq 20 \)).
- Chemical stability to hydrolysis, light and enzymatic degradation.
- SAR data providing evidence that the ligand can tolerate molecular extension and bulky substituents.
- Has a structure that allows its synthesis outside the Misuse of Drugs act.

We therefore selected a CB2 ligand which demonstrated as many of the required parameters as possible. As discussed in section 1.4.6 the series of Japan Tobacco compounds were chosen as our primary lead compounds. From this selection of ligands the compound JTE2-6 63 (Figure 2-4) demonstrated a high CB2 selectivity (> 455 fold) and affinity (\(K_i = 1.1 \text{ nM} \)) whilst incorporating different chemical functionalities allowing a selective chemical synthesis. Therefore JTE2-6 63 was selected as a lead molecule to be conjugated to a fluorescent dye.

2.2.2 Selection of a suitable site upon JTE2-6 for conjugation

The successful fluorescent ligands, encountered in section 2.1, each incorporated an alkyl linker that acted as both a spacer and tether to the fluorescent dye. Therefore we planned to incorporate a similar linker onto JTE2-6 63. The alkyl linker needed to be carefully position upon JTE2-6’s pharmacophore in-order that the compound’s CB2 receptor affinity was retained. The pharmacophore of JTE2-6 was interrogated by considering which parts of the structure were communal within all of the active Japan Tobacco ligands (see Figure 2-4).
1. An amide functionality (mainly 2° amides) is present in all of the CB₂ binding ligands.

2. The phenol group can be removed or replaced with alternative hydrogen bond acceptors.

3. A pentyl alkyl chain at position 3 of the benzamide ring linked through a heteroatom of N, O or S was present in all of the CB₂ binding ligands.

4. An alkoxy functionality was present at position 4 of the benzamide ring in all of the CB₂ binding ligands. The length of the alkyl chain was variable and included C1, C2, C5 chain lengths.

Figure 2-4: A breakdown of the SAR data available for the key functional groups of JTE2-63.

Considering the structure of JTE2-63 from Figure 2-4 it was clear that the functionality which demonstrated an ability to tolerate molecular extension with alkyl chains was position 4 upon the benzamide ring. Structures similar to JTE2-363 have been shown to tolerate extension with pentyl chains and still retain excellent affinity and selectivity towards the CB₂ receptor (i.e. compounds 62 & 65, figure 1-22)126. Other groups present on JTE2-63 such as the phenol, amide and aniline functionality that could also be used to conjugate the fluorescent dye were not considered for derivatisation due to the lack of previous evidence demonstrating extension upon these positions.

2.2.3 Determining a suitable linker

Two strategies were considered regarding the length of the linker. The first strategy involved a SAR approach, synthesising a number of ligands with differing alkyl lengths, and testing the pharmacology of all of these ligands conjugated to a single fluorophore to determine an optimum length. This approach was adopted by Macchia et al. in their synthesis of the NECA based adenosine ligands 69 and 70200,202. The second approach involved using one alkyl chain length and conjugating this ligand to different fluorescent dyes and testing the pharmacology of these compounds. This approach has been more extensively used in other receptor systems such as serotonin33,212 and histamine214,215 ligands. The advantage of the latter technique is
that it has been shown that the fluorescent dye may alter the pharmacology and the application of the fluorescent ligands and is therefore more important to evaluate than the length of the alkyl linker alone. Also the Japan Tobacco compounds have shown previous evidence that molecule extension is tolerated at position 4, however there is no evidence that a bulky substituent will be tolerated at the terminal end of the alkyl chain. Thus, it was felt that a short length alkyl chain linker coupled to different fluorescent dyes would determine quickly if this type of derivatisation would be tolerated by the CB$_2$ receptor. Optimisation of the linker length would be considered at a later date.

From section 2.1 it was observed that each of the fluorescent ligands discussed incorporated a 1° amine group which was conjugated with the fluorescent dye. This is advantageous as the high reactivity of 1° amines and the number of commercially available amine reactive dyes will allow for a simpler synthesis. We therefore planned to incorporate a short alkyl linker (between C4 – C8) terminating in a 1° amine functionality at position 4 of JTE2-6 63 (Figure 2-4).

2.2.4 Selection of a fluorophore

The choice of fluorophore which is to be used for the CB$_2$ ligand is of critical importance, if the fluorescent ligand is to retain potent pharmacology and find use in fluorescence confocal microscopy and SMD applications. Previous work discussed in chapter 2.1 evaluated many different types of fluorophore in similar ligands to those we wish to produce. In general, smaller molecular weight dyes were preferred such as Dansyl 84 and NBD 85, presumably chosen for their small steric impact upon the ligand causing less ligand-receptor perturbations (Figure 2-5). The small fluorophores Dansyl 84 and NBD 85 were successfully utilised in a number of GPCR ligands having activity at the adenosine200,202, serotonin33,212,213, and histamine214,215 receptors. These dyes have advantages of being small, and cheap to purchase, however their spectral properties are not ideal for biological applications. The absorption and fluorescence emission spectra and quantum yields of the Dansyl 84 and NBD 85 dyes are markedly dependant on solvent, in particular both dyes suffer from very low (<0.01) quantum yields in water218. The short excitation wavelengths of Dansyl ($\lambda_{\text{abs}} = 340-350$ nm)218 and NBD ($\lambda_{\text{abs}} = 470$ nm)218 are also problematic for biological
applications due to the high energy radiation necessary for excitation, damaging cells and promoting autofluorescence. These factors make them less suitable for SMD applications although both probes have been used successfully in confocal microscopy applications200,202.

Two red-absorbing dyes have been evaluated in fluorescent receptor ligands. The BODIPY® and Cyanine (Cy) dyes (86 & 87, Figure 2-5) have both found use in fluorescent ligands for SMD applications25,33. The BODIPY® dyes have been used extensively in our own adenosine ligands24,25,207 as well as in other receptor ligands such as the muscarinic M1216, the opioid \(\mu\)217 and \(\beta\) adrenergic23 receptors. The reasons cited for using this unusual boron containing fluorophore include high quantum yield (approaching unity), photostability, low pH dependence and low percentage of triplet states25,217. A disadvantage of the BODIPY® dyes commonly cited is a very small Stoakes shift which can cause problems with internal conversion quenching (section 1.1.1) between two dye molecules in close proximity of each other218. However this is only a problem observed when there is the potential to multi-label a molecule with more than one fluorophore (i.e labelling large proteins) and is not a problem in the work we are conducting. The Cyanine dyes also have an excellent \(\lambda_{\text{abs}}\) for SMD applications with little autofluorescence observed218. However due to their structure containing \textit{trans} double bonds, \textit{trans-cis} photo induced isomerization is a problematic factor in FCS experiments205 They also have a considerably smaller quantum yield (~ 0.3) than the BODIPY® fluorophores33.

The BODIPY® dyes are available from Molecular Probes and have a number of spectral properties219. Depending on its structure, a wide range of emission wavelengths can be obtained ranging from 510 to 665 nm. In our previous work with the adenosine receptor ligands BODIPY® 630/650 86 (the dyes are named BODIPY® \(\lambda_{\text{abs}}/\lambda_{\text{em}}\)) was chosen, as its spectrum was optimal for the excitation source (633 nm He-Ne laser) and matched a common optical filter (LP650) of the in-house FCS and confocal microscopy equipment. The long excitation wavelength also resulted in less cellular autofluorescence and damage25,205.

80
For this work we have opted to conjugate our CB$_2$ ligand with the small and cheaper Dansyl dye 84, and utilise the BODIPY® 630/650 86 dye to produce CB$_2$ ligands for confocal microscopy and SMD applications.

2.2.5 Synthetic strategy

A synthetic strategy, enabling the factors discussed in sections 2.2.1 to 2.2.4 to be incorporated into the target molecule, needed to be established. The target molecule was designated fluorophore-JTE2-6 i and was subjected to a retrosynthesis analysis shown in Scheme 2-2.
From Scheme 2-2 two disconnections, A and B, were possible. The fluorophore is required to be conjugated to the ligand in the last step, as this protects it from any chemical and light degradation inflicted by being introduced too early in the synthesis, whilst allowing a ‘generic’ molecule to be synthesised which can be conjugated to a choice of fluorophores. Disconnection A confers more advantages to the synthesis than B due to factors discussed in section 2.1.1.1. Disconnection A allows the commercially available fluorophores Dansyl-Cl 84 and BODIPY 630/650 X OSu 86 (represented by synthon iii) to be installed under mild conditions during the final step. Disconnection B is less efficient and requires the fluorophore to be pre-conjugated with the linker (represented by synthon v) which would expose the fluorophore to the chemical conditions required for conjugation via an ether linkage.

Compound ii can be subjected to further retrosynthesis as shown in Scheme 2-3. Disconnection E is not a valid pathway as it leads to chemoselectivity problems with three nucleophilic groups present in compound x (2 x phenol, 1 x amine). Disconnection C and D are both lead to accessible compounds; vi, vii (tyramine) and viii. The 1\textdegree{} amine group will be protected with a suitable protecting group in order that the chemical steps remain selective. Compounds vi and viii from disconnections C and D will be further analysed in Scheme 2-4.
Scheme 2-3 Possible retrosynthetic routes from compound ii. FGI = functional group interconversion

Two routes were planned for synthetic evaluation from compounds vi and viii converging with a common intermediate xi.

Scheme 2-4 Retrosynthetic analysis on compounds vi and viii. PG = protecting group. FGI = functional group interconversion
The common intermediate xi can be broken down to commercially available 4-hydroxy-3-nitrobenzoic acid xii and a protected aminoalkyl synthon xiii. Evaluation of compounds that would give access to the synthon xiii showed that the aminoalkyl alcohols were commercially available. Protection with the acid labile tert-Butoxycarbonyl (Boc) protecting group followed by $\textit{in situ}$ activation of the alcohol employing Mitsunobu conditions would be used to generate synthon xiii. Considering which aminoalkyl alcohols were commercially available we found that they were restricted to 3-aminopropan-1-ol, 4-aminobutan-1-ol, 5-aminopentan-1-ol, and 6-aminohexan-1-ol. 6-Aminohexan-1-ol 88 was chosen for this synthesis as it fulfilled all of the requirements discussed in section 2.2.3.

2.3 Chemistry results

N-Benzyloxy carbonyl-6-aminohexan-1-ol 89 was synthesised in high yield according to a published procedure using Boc$_2$O in aqueous dioxane220 (Scheme 2-5). The alcohol 89 was activated $\textit{in situ}$ using standard Mitsunobu conditions221 of PPh$_3$, diethylazodicarboxylate (DEAD) and coupled to the commercially available methyl 4-hydroxy-3-nitrobenzoate to afford ester 90. Saponification using LiOH revealed the benzoic acid 91.

![Scheme 2-5](attachment:image.png)

Scheme 2-5 Reagents, conditions and yields: (i) Boc$_2$O, dioxane, NaHCO$_3$, water, rt, 2h, (99%); (ii) methyl 4-hydroxy-3-nitrobenzoate, DEAD, PPh$_3$, THF, rt, 5h, (66%); (iii) LiOH, MeCN, H$_2$O, 50 °C, 30min, (100%).

The carbamate N-H proton of compound 91 displayed an unusual NMR spectrum involving a splitting of its peak between the usual upfield position of 4.64ppm (70% split) and a downfield position of 6.30ppm (30% split) in CDCl$_3$ (Figure 2-6). The proton could be brought into 100% of its normal field alignment (4.64ppm) by the
addition of D_2O (result not shown). The splitting was observed on different concentrations and batches of the acid 91. This effect was also observed in aminobenzoic acid derivatives 92 and 93 (Scheme 2-6) but was not observed with the precursor methyl ester 90 (results not shown).

The benzoic acid derivative 91 was used in two different competing routes towards the target molecule as discussed in the retrosynthetic analysis in section 2.2.5 (route F and G, Scheme 2-4). Following route F the nitro group was reduced using hydrogen and Pd catalysis to afford the aniline 92 in good yield (Scheme 2-6). Reductive alkylation to the substituted aniline 93 with pentanal and NaCNBH_3 proceeded in low yield (24%). Peptide coupling of 93 with tyramine was attempted using a number of coupling reagents including CDI, DCC, and oxalyl chloride/DMF (Vilsmeier reagent), however all attempts to form the peptide bond resulted in complex mixtures and corresponding low yielding reactions.

The alternative route shown by G (Scheme 2-4) involved coupling the nitro-acid 91 directly with tyramine. Thus activation of the acid 91 with CDI followed by tyramine coupling afforded 94 in excellent yield (79%).

![Figure 2-6 1H NMR showing the unusual splitting of the carbamate proton of 91. The proton could be brought into 100% alignment at 4.64ppm by the addition of D_2O.

Carboxylic acid
Carbamate proton 4.64ppm (70%)
Carbamate proton 6.30ppm (30%)
Scheme 2-6 Reagents, conditions and yields: (i) H₂, Pd/C, EtOH, rt, 12h, (76%); (ii) pentanal, NaCNBH₃, MeOH, 4h, rt, (24%); (iii) CDI, MeCN, tyramine, rt, 24h, (no reaction) or oxalyl chloride, DMF, pyridine, DCM, tyramine, rt, 24h, (no reaction) or DCC, DCM, tyramine, rt, 24h, (no reaction) or DCC, DCM, tyramine, rt, 24h, (no reaction); (iv) CDI, MeCN, tyramine, rt, 12h, (79%); (v) H₂, Pd/C, EtOH, rt, (69%); (vi) pentanal, NaCNBH₃, MeOH, rt, 4h, (71%); (vii) AcCl, MeOH, rt, 18h, (65%).
An alternative coupling using the Vilsmeier reagent formed \textit{in situ} (oxalyl chloride/DMF) to form the acid chloride followed by tyramine coupling was assessed. This reaction resulted in a low yield (14\%) involving a difficult work-up to isolate the product.

Nitro group reduction of 94 gave aniline 95 which exhibited the expected loss of the Nitro IR stretch (1559 & 1391 cm\(^{-1}\)) and an upfield shift of the benzamide ring protons. Accompanying the change, from the electron withdrawing effects of the nitro group to the electron rich aniline, was an alteration of the compounds physical properties, such that they exhibited fluorescence under long wave UV light. Compound 96 was shown to exhibit a \(\lambda_{abs}\) 313 nm and a \(\lambda_{em}\) 386 nm.

Alkylation of aniline 95 was evaluated using 1-iodopentane\(^{222}\) and NaHCO\(_3\), or reductive alkylation\(^{223}\) using pentanal and NaCNBH\(_3\). Alkylation using the alkyl halide gave a lower yield (25\%) and a more difficult reaction mixture to purify than the reductive alkylation reaction (71\%) which was used in all subsequent reactions. Acidolysis of the Boc protecting group of 96 using methanolic HCl relinquished the target congener 97 as its corresponding crystalline dihydrochloride salt.

\textbf{2.3.1 Conjugation with amine reactive dyes}

The congener 97 was coupled with the amine reactive dyes Dansyl chloride 84 and BODIPY\(^\text{®}\) 630/650-X OSu 86 (B, Scheme 2-7). In-order to react with both dyes, the free base of congener 97 was generated \textit{in situ} from the hydrochloride salt. The coupling reactions were therefore conducted in a 50:50 MeCN/aqueous sodium bicarbonate buffer (pH 8.3) designed to liberate the free base and promote organic solubility without generating the phenoxide ion (< 2 \% in solution**) which could cause problems with chemoselectivity.

The coupling reaction with Dansyl chloride 84 gave two major fluorescent products. Isolation of these, using preparative TLC, and subsequent mass spectrometry showed that the mono and bis Dansylated products had been formed with molecular weights of 675 and 908 respectively. The desired mono Dansyl product Dansyl-JTE2-6 99 was obtained in 19\% yield and characterised by \(^1\)H NMR using reverse phase HPLC analysis to assess purity.

\(^{**}\) Calculated using the Henderson-Hasselbalch equation using a pKa of 10.0 for phenol.
Chemoselective acylation of the 1° amine of 97 with BODIPY® 630/650-X OSu ester 86 afforded the target molecule BODIPY-JTE2-6 100 in 63% yield, following purification using preparative TLC, verified by mass spectrometry, 1H NMR and reverse phase HPLC.

The chemoselectivity of the 1° amine of 97 towards succinimidyl esters was tested in a model reaction. A pseudo fluorophore succinimido 1-naphthaleneacetate 98 was prepared using DCC coupling of 1-naphthylacetic acid and N-hydroxysuccinimide (A, Scheme 2-7). The use of the pseudo fluorophore avoided the expense and complex NMR spectra associated with BODIPY® 630/650-X OSu 86. Full chemical analysis (MS, elemental, 1H & 13C NMR, 1H-1H & 13C-1H COSY NMR) of the acylated compound 101 isolated from this reaction confirmed that only the desired 1° amine of 97 reacts with succinimidyl esters.

Scheme 2-7 A. The synthesis of succinimido-1-naphthaleneacetate. B. Conjugation reaction of 97 with amine reactive fluorophores and pseudo fluorophores. Reagents, conditions and yields: (i) DCC, DCM, rt, 12h, (47%); (ii) Dansyl-Cl 84 or BODIPY 630/650-X OSu 86 or 98, NaHCO₃ (aq) pH 8.3: MeCN 1:1, rt, 1-12h, (19-63%).
Figure 2-7 1H-1H COSY NMR spectrum of 101 ran in CDCl$_3$ and D$_6$-DMSO. The spectrum shows the coupling of the 4 exchangeable protons present within the molecule to neighbouring protons. The phenol and aniline protons show no coupling patterns whilst amide 1 (6.3 ppm) shows a coupling pattern to the phenyl ethyl moiety (shown by the red line). Amide 2 (5.7 ppm) shows a coupling pattern to the oxygen containing hexyl chain (shown by the yellow line).

The following data provided evidence that the 1° amine of 97 was reacting with one molecule of succinimido 1-naphthaleneacetate under the coupling conditions employed.

- Elemental analysis and ES-MS confirmed that only one naphthylacetyl group was conjugated in the final product.
• 1H-1H COSY coupled with D$_2$O shakes were able to identify each of the exchangeable protons present in 101 (Figure 2-7, D$_2$O shake data not shown) and an interpretation of the data is as followed:

 o 1 phenol proton (singlet, 8.3 ppm) coupled to no other protons.
 o 1 amide proton (triplet, 6.3 ppm) coupled to the phenylethyl moiety.
 o 1 amide proton (triplet, 5.7 ppm) coupled to the oxygen linked hexyl chain (five couplings can be observed in the COSY due to two methylene protons within the chain occurring at the same chemical shift).
 o 1 aniline proton (broad singlet, 4.3 ppm) coupled to no other protons.

2.4 Pharmacology results

The pharmacology of Dansyl-JTE2-6 99 and BODIPY-JTE2-6 100 was assessed by competitive radioligand displacement of the non-selective cannabinoid $[^3]$H CP55, 940 from cellular membranes containing human CB$_2$ receptors and was performed as previously described by Leggett et al.224. Both Dansyl-JTE2-6 99 and BODIPY-JTE2-6 100 failed to displace any of the $[^3]$H CP 55,940 from cell membranes prepared from CHO cells expressing the human CB$_2$ receptor up to a concentration of 10$^{-4}$ mol/L (100 µM) (Figure 2-8). The low affinity of BODIPY-JTE2-6 100 was also confirmed using cell membranes prepared from HEK cells expressing the human CB$_2$ receptor by an independent group at the University of Connecticut, Storrs, USA (Figure 2-8). In all experiments it was clear that the IC$_{50}$, and therefore K$_i$, values were > 10 µM for both Dansyl-JTE2-6 99 and BODIPY-JTE2-6 100.
2.5 Use of Dansyl-JTE2-6 and BODIPY-JTE2-6 in fluorescence confocal microscopy.

The two fluorescent ligands Dansyl-JTE2-6 99 and BODIPY-JTE2-6 100 were used in confocal experiments to demonstrate whether the ligands had the potential to highlight CB2 receptor membrane binding. Known concentrations of fluorescent ligand were incubated with CHO cells expressing human CB2 receptors and images were recorded at various time courses throughout the experiment. To assess whether the fluorescence observed was due to specific CB2 binding, CHO cells were pre-incubated with a blocking concentration of a non-fluorescent cannabinoid ligand (1 µM HU210 14) and the fluorescent ligand 99 or 100 was subsequently introduced. Images collected from this experiment were compared to those conducted without the HU210 14 present, to determine if any fluorescence observed was due to CB2 receptor binding. Various concentrations of 99 and 100 ranging from 10 – 400 nM were used in these experiments. When concentrations of 200 nM or below were used, the fluorescence observed was weak even when laser power and pin-hole aperture was increased. Increasing the concentration of the fluorescent ligand to 400 nM showed intra-cellular fluorescence after 5 minutes; however, this fluorescence could not be blocked or reduced by pre-incubation with HU210 for either Dansyl-JTE2-6 99 or BODIPY-JTE2-6 100 (Figure 2-9). Background fluorescence from the CB2 transfected CHO cells was negligible for both of the excitation wavelengths used (i.e.363 nm (Dansyl) and 633 nm (BODIPY®) - Result not shown).
Figure 2-9 Representative confocal slice images of human CB$_2$ transfected CHO cells incubated with Dansyl-JTE2-6 99 (A & B) and BODIPY-JTE2-6 100 (C & D). Images taken at 10 mins after the fluorescent ligand was introduced using a Zeiss axiovert 100 with LSM510 confocal. Images A & C are for un-treated cells whilst images B & D are of cells that have been pre-incubated with 1µM HU210. Fluorescent ligand concentration in each experiment was 400 nM. Fluorescence was obtained for images A & B by using laser excitation at 363 nm through a Plan-apochromat 63x/1.4NA oil immersion objective and a LP560 emission filter. Pinhole diameter was 166µm. Fluorescence was obtained for images C & D by using laser excitation at 633 nm through a Plan-apochromat 63x/1.3 oil immersion objective and a LP650 emission filter. Pinhole diameter was 79µm.

2.6 Discussion

An efficient eight-step synthesis starting from commercially available materials and utilising established synthetic techniques was used to generate two target fluorescent ligands Dansyl-JTE2-6 99 and BODIPY-JTE2-6 100.

During the compounds’ synthesis a number of interesting discussion points were established and are examined below.
The 1H NMR analysis of the benzoic acid derivatives 91, 92 and 93 (Scheme 2-5 & 2-6) showed an unusual splitting pattern within the spectrum for the carbamate N-H proton that deserves further comment (Figure 2-6). Our initial thoughts were that the erroneous peak observed at 6.30ppm (0.3 protons) was due to contamination. However this peak was consistently observed in the spectrum from a number of different analytically pure samples of 91. A D$_2$O shake upon this sample, to identify exchangeable protons, simultaneously eliminated the erroneous peak at 6.30ppm and increased the area of the peak at 4.64ppm to 1 proton. The peak at 4.64ppm, which is the normal shift for a carbamate proton, slowly decayed as the N-H bond was replaced with the unobservable N-D bond. This result is indicative that the carbamate N-H proton in anhydrous solution is involved in hydrogen bonding which is destroyed upon the addition of D$_2$O. The downfield 6.30ppm shift is likely to represent the carbamate N-H proton whilst engaged in hydrogen bonding, most likely to the carbonyl oxygen of the acid functionality as depicted in Figure 2-10.

![Figure 2-10](image-url) Postulated intra and inter molecular H-bonding of the carbamate N-H proton in the benzoic acid derivative 91.

The precursor methyl ester 90 did not exhibit this carbamate splitting pattern presumably due to the ester functionality not being able to align correctly to evoke hydrogen bonding.

Condensation with tyramine was assessed using both the nitro-acid 91 and the aniline-acid 93. The latter was associated with complex mixtures and low yields, whilst the nitro-acid 91 coupled to tyramine using CDI in high yield. The difference between these two reactions lay in the disparity between the electron withdrawing
The nitro group and the nucleophilic aniline. The aniline was potentially able to react with CDI225, the O-Acylisourea formed with DCC, and the acid chloride formed with the Vilsmeier reagent and hence reduced yields and complex mixtures were observed. The nitro group therefore functioned as a masked amino group, and permitted reactions involving the external nucleophile, tyramine, to proceed unhindered giving intermediate 94.

The change accompanying the reduction of the nitro group, to compounds possessing fluorescent characteristics was investigated to establish if we could use them directly as a fluorescent ligand without the need to label them with a peripheral dye. The fluorescent properties of compound 96 was determined and found to be unsuitable for use in confocal microscopy or FCS (λ_{abs} 313 nm, λ_{em} 386 nm). The low wavelength λ_{abs} would cause problems with cellular autofluorescence, and the small stoakes shift (73 nm) would make detecting the fluorescence over the background difficult (see section 2.2.4).

The selectivity of succinimidyl esters to acylate 1\textdegree amines over other nucleophilic sites was tested in a model reaction between the congener 97 and succinimido 1-naphthaleneacetate 98. Although the literature would suggest that this reaction is selective to the amine, detailed mechanistic reasoning for amine reactivity was sparse, with stronger basicity, lower steric bulk and the hard basic nature of the 1\textdegree amine being shown to increase reactivity with OSu esters210. One report however demonstrated that OSu esters, under appropriate conditions can react with serine, threonine and tyrosine hydroxyls in peptide structures226. Since 97 displayed three potential nucleophilic sites that could potentially react with BODIPY® 630/650-X OSu 86, and that the 1H NMR spectra of the BODIPY® 630/650 conjugate 100 was complicated with unresolved protons, the use of the model reaction was necessary and justified to provide conclusive evidence of selectivity. The detailed chemical analysis of the 1-naphthyl-conjugate 101 confirmed that only the desired 1\textdegree amine of 97 reacted stoichiometrically with succinimido 1-naphthaleneacetate 98. The model reaction when combined with reported amine selectivity of OSu esters, a high yield (63%), correct Molecular ion mass, and correct 1H NMR spectrum led us to conclude that selective acylation of the 1\textdegree amine of 97 by BODIPY® 630/650-X OSu 86 was achieved.
The affinity of Dansyl-JTE2-6 99 and BODIPY-JTE2-6 100 at the human CB$_2$ receptor was demonstrated to be extremely low. Concentrations of 10$^{-4}$ mol/L of the fluorescent ligands were unable to displace any detectable amount of [³H] CP55, 940 from membrane homogenates containing CB$_2$ receptors. Any attempt to test concentrations of the fluorescent ligands above 10$^{-4}$ mol/L resulted in precipitation of the drug from the assay solution. BODIPY-JTE2-6 100 was also screened for affinity towards CB$_2$ receptors in transfected HEK cell lines by an independent group in the USA to confirm the low binding affinity. These results indicate that large molecular weight dyes located on the terminal end of the 4-alkyl chain abolishes binding to the CB$_2$ receptor, in the Japan Tobacco series of ligands. Further work to elucidate a position on the Japan Tobacco that will tolerate conjugation to fluorescent dyes was therefore required and will be discussed in chapter 3.

Although the CB$_2$ binding results indicated that the fluorescent ligands did not bind to the CB$_2$ receptor with any appreciable affinity, it was necessary to confirm this result using a fluorescent based assay. The BODIPY-NECA adenosine agonist 71 showed very low affinity towards the A$_1$ receptor ($K_i = 22000$ nM) in radioligand binding experiments but has been used successfully in both confocal microscopy and FCS experiments (section 2.1.1)25. Therefore, we tested the two fluorescent cannabinoid ligands 99 & 100 to determine if they could show selective binding to CHO cells expressing the human CB$_2$ receptor. Intra-cellular fluorescence was observed for both ligands after 5 minutes at concentrations of 400 nM. This fluorescence was not reduced/abolished when the cells were pre-incubated with the high affinity cannabinoid agonist HU210 14, demonstrating that the fluorescence observed was non-specific. The fluorescence observed is most likely due to leeching of the highly lipophilic molecules into the cell through the phospholipid membrane. These results indicate that the two ligands 99 & 100 had no appreciable affinity towards the human CB$_2$ receptor and were unsuitable as fluorescent CB$_2$ receptor ligands. The following chapter will discuss our continued efforts to use our initial findings of fluorescently labelling JTE2-6 63, to develop modified strategies leading towards a fluorescent CB$_2$ ligand.
2.7 Conclusions

- We successfully synthesised a derivative of the CB$_2$ selective ligand JTE2-6 63, incorporating an alkyl linker which was labelled with the dansyl and BODIPY® fluorescent dyes.
- A model reaction, using a pseudofluorophore, demonstrated that succinimidyl esters react preferentially with 1° amines when other nucleophilic sites are present.
- The two fluorescently labelled derivatives of JTE2-6 63 were found to have lost extensive binding affinity at the CB$_2$ receptor, establishing that bulky substituents at the 4-benzamide position of JTE2-6 63 was not tolerated within the CB$_2$ receptor binding pocket.
- The two fluorescent labelled ligands Dansyl-JTE2-6 99 and BODIPY-JTE2-6 100 were unable to detect membrane receptor binding in CHO cells expressing the CB$_2$ receptor, using fluorescent confocal microscopy detection.
3 Molecular modelling of the CB$_2$ receptor and docking of JTE2-6

Our initial work outlined in chapter 2, concerned modifications to the benzamide ring of JTE2-6. This approach led to compounds with little affinity to the human CB$_2$ receptor. This work was carried out rationally with the knowledge that the Japan Tobacco compounds could tolerate molecular extension from the benzamide ring (section 2.2). Prior to our work it was not clear whether a bulky substituent (such as a fluorescent dye) could be incorporated at the terminal end of the alkyl linkers and still retain binding affinity to the CB$_2$ receptor. Our results with Dansyl-JTE2-6 and BODIPY-JTE2-6, led us to believe that the benzamide ring of the Japan Tobacco compounds may be positioned deep within the receptor binding pocket when bound within the CB$_2$ receptor, resulting in large steric/electrostatic clashes with the fluorophore. To test this hypothesis, we embarked on a methodology inspired by Berque-Bestel et al. who had designed fluorescent serotonin 5HT$_4$ ligands based on ML10302. This process successfully employed computer modelling of the ligand-receptor complex to guide the positioning of the fluorescent dye (section 2.1.2).

3.1 Computational modelling a of G-protein coupled receptor

G-protein coupled receptors (GPCRs) are seven transmembrane (TM) proteins responsible for the transduction of signals from extra cellular ligands into intra cellular secondary messengers (section 1.3.1). The characteristic structure and intimate relationship with the cellular membrane, makes determination of their 3D structure extremely difficult using standard approaches such as X-ray crystallography and NMR. Although over 12000 structures are deposited in the Protein Data Bank (PDB) by the year 2000 only one of them belonged to the GPCR family. Computational methods have therefore been employed by scientists who wish to study the 3D structure of GPCRs.
3.1.1 Crystal structure template

Many of the early techniques used to model GPCRs were based upon the structure of Bacteriorhodopsin, a 7TM protein which is not associated with a G-protein, since this was the only X-ray crystallography data of a 7TM protein that was available\(^2^{27}\)\(^!\) Recently a high-resolution (2.8 Å) structure of a genuine G-protein associated protein, Bovine Rhodopsin, has been published\(^{81,228}\). Comparison of the 3D structures of Bacterio- and Bovine Rhodopsin clearly showed that their 3D structures are significantly different\(^84\). Some authors have stated that using Bacteriorhodopsin, as a 3D template for modelling GPCRs, leads to models which are too poor to be used for ‘rational drug design’\(^2^{27}\).

The high-resolution X-ray data of Bovine Rhodopsin used to construct models of GPCRs has recently replaced Bacteriorhodopsin as the template of choice when modelling GPCRs. This template, based on an actual G-protein coupled receptor, is easier to justify as a model and has received positive support in the field of GPCR modelling\(^{82,83,229}\), however some authors do remain sceptical to the accuracy of the GPCR model generated\(^84,227\). Use of homology modelling to the 2.8Å model of Bovine Rhodopsin has been demonstrated to yield excellent results in the study of a number of GPCR systems including the dopamine D\(_2\) & D\(_3\) receptors, muscarinic M\(_1\) receptor, and vasopressin V1a receptor\(^{82,83,229}\).

3.1.2 Sequence alignment

The generic procedure for producing a homology protein model based on comparative modelling has been described by Andrew Leach\(^2^{30}\). The specific methods (or “…recipe [sic]…) for homology modelling of GPCRs, using the Bovine Rhodopsin template, have been described by Oliveira et al.\(^2^{31}\), and is depicted in Figure 3-1. In brief the primary amino acid sequence of the receptor to be modelled is extracted from a sequence data base \textit{i.e.} Swiss-Prot\(^††\). The primary amino acid sequence can then be aligned against the sequences of other GPCR family members, including Bovine Rhodopsin. The objective of a sequence alignment is to position the amino acid sequences so that the matched stretches of amino acids correspond to common

\(^{††}\) http://ca.expasy.org/sprot/
structural or functional features (such as the TM α-helices of GPCRs). Gaps in the aligned sequence correspond to regions where polypeptide loops are deleted or inserted. Various alignment algorithms may be used to ‘score’ the arbitrary alignments and the objective is to ascertain the alignment with the best score. Scoring can be derived from a number of different factors. The simplest type of score is the percentage sequence identity, which gives a score equal to the number of identical matches between the two alignments. This method can be extended by giving positive scores to amino acid residues that are topologically equivalent i.e. similar shape, electronic, hydrogen-bonding and hydrophobic properties. The more useful and complicated sequence alignment algorithms are outside the scope of this work but readers are directed to an excellent review of the mathematics behind the techniques230. In brief these powerful algorithms use a dynamic programming technique based around matrix problem solving methods. The system uses gap penalties, which introduces a negative scoring into the alignment when the sequence has gaps introduced into it to enhance the sequence identity. To cut down computer processing time and to allow for multiple sequence alignments, heuristic search methods such as, FASTA, BLAST and CLUSTAL W are commonly used by molecular modelling laboratories230,232. These programmes generally work by rapidly identifying regions of potential interest using fast look-up methods and then expand regions locally to identify the alignment. Alignment of GPCR proteins is made slightly easier, over other protein classes, in that they possess a highly conserved residue in each of the seven TM α-helices182. Thus highly conserved residues are matched up first and then the alignment algorithm is allowed to run. Once a satisfactory alignment has been found for the structurally conserved sequences (i.e the TM α-helices), the 3D model of Bovine Rhodopsin can be mutated to the amino acids present in the GPCR to be modelled. The intra- and extracellular loops can be added by searching protein databases for the X-ray coordinates of similar peptide sequences to the loop sequence present in the GPCR sequence. Once the model has been constructed it is refined by using molecular mechanics and molecular dynamics to give an energy minimised representation of the GPCR.
3.1.3 Energy minimisation and molecular dynamics

Energy minimisation techniques use complicated mathematical models to lower the potential energy surfaces of macromolecules. Adjusting the internal or Cartesian coordinates of the atoms in the structure reduces the electronic and steric interactions occurring within the molecule leading to a lower energy structure. Minimisation methods are capable of finding one of the many energy minimums for a structure; however the minima located may not be the overall global energy minimum (Figure 3-2). This is because minimisation algorithms move the energy in a ‘downhill’ direction and thus are not capable of surmounting energy barriers to achieve the global energy minimum.

Figure 3-1 Cartoon schematic of generating a 3D GPCR model from the X-ray crystallography data from Bovine Rhodopsin.
Figure 3-2 A schematic one-dimensional energy surface. The diagram shows that energy minimisation techniques can only move in a ‘downhill’ direction to the nearest energy minimum. Thus A and B will both find the same energy minimum but it would only be the starting structure C that could find the global energy minimum for this structure.

The actual mathematics used for energy minimisation are outside the scope of this work, however for further information readers are directed to Leach’s excellent description of the techniques involved. The main techniques used in energy minimisation are:

- **Steepest decent** – A nonconvergent first-order minimisation. This method uses a displacement opposite to the potential energy gradient which is added to the coordinates at each step. The step size is increased if a lower energy results; otherwise it is decreased.

- **Conjugate gradient** – A convergent first-order minimisation. This method makes use of the minimisation history, as well as the current gradient to determine the next step.

- **Newton-Raphson method** – A second-order derivative method. A very powerful method which uses large amounts of computer memory and is therefore a slow computing process. Due to the memory restrictions this technique is currently limited to systems with about 200 atoms or less.

- **Adopted-Basis set Newton-Raphson (ABNR)** - A convergent method which combines the reduced computing power of first-order techniques with the
increased chance of finding the lowest potential energy state from using the more powerful second order methods.

The choice of which energy minimisation method to use is a balance of a number of factors, including computer processing time, the robustness of the method employed and how far the starting structure is away from the energy minimum. For instance steepest descent is extremely useful in producing initial structures that have had most of their high-energy interactions reduced, in contrast convergent methods are much better once the initial strain has been removed233. The more powerful second-order methods such as Newton-Raphson are not suitable for use in GPCR modelling. However, the ABNR technique can be used (due to its refinements in its computer processing ability) and is the method of choice for most large systems234. Following energy minimisation the GPCR model is ready to use, having had the high-energy steric and columbic interactions removed.

The model can now be subjected to computer simulation methods. The minimised structure represents an individual minimum energy configuration of a system. In the case of macromolecules, such as GPCRs, there are an enormous number of minima which are closely separated to the one found through minimisation techniques. To study how the receptor behaves as it moves through these phases of energy minima, it is necessary to model successive configurations of the system generated by applying Newton’s laws of motion to the system: a technique known as Molecular Dynamics (MD)235. Newton’s laws can be stated as follows:

1. A body continues to move in a straight line at constant velocity unless a force acts upon it.
2. Force equals the rate of change of momentum.
3. To every action there is an equal and opposite reaction.

Thus the whole macromolecule may be simplistically reduced to balls, representing atoms, and springs, representing bonds. If kinetic energy, in the form of heat (300-900K is normal), is introduced into the system then the set of balls and springs are set in motion. The velocities and atomic coordinates, during MD, must be calculated at definitive time points and this is a critical factor in a successful MD. Too small a time frame and the trajectory will only cover a limited proportion of the phase space; too
large and instabilities may arise due to unrealistic collisions between the atoms. The suggested time step for flexible molecules with flexible bonds such as a GPCR is 1.0×10^{-15} seconds (1 fs). Therefore MD simulations comprising even short time frames, limited to a few hundred ps, require large amounts of computing power and need several days of processor time to complete. During an MD simulation the intermediate structures generated can be analysed both in terms of energy functions or observed as a 3D movie simulation to study key interactions. Any of the structures generated from an MD simulation can be subjected to energy minimisation techniques discussed above to give the best possible representation of what the 3D structure of the GPCR may look like.

3.1.4 Ligand docking

Once the initial GPCR receptor has been constructed, a ligand can be docked into the receptor. The docking of a ligand in a GPCR has been recommended to be done using the binding pocket that encases 11-cis-retinal; the covalently bound natural ligand of Bovine Rhodopsin. The retinal molecule, bound in Bovine Rhodopsin, is located within the TM regions; specifically interacting with TM 3, 5 and 6. It has been shown, mainly through site-directed mutagenesis studies, that for other GPCR systems the small-molecule binding site is also located within the TM regions. Thus, TM 3, 5, 6 and 7 are known to interact with agonist ligands in the β_2-adrenergic receptor, TM 3 has been demonstrated to interact with ligands in the 5HT$_{1A}$ receptor, and TM 3, 5 and 7 are involved in the antagonist binding of losartan in the angiotensin II receptor. It is clear from this picture that there is not a common binding pocket for the GPCRs. However, by using the natural retinal binding pocket within Bovine Rhodopsin and using the available site-directed mutagenesis and other ‘common knowledge’ for a particular ligand-GPCR interaction, it is possible to build a useful and predictive model. It is noteworthy to state that once a ligand has been docked into a GPCR, energy minimisation and molecular dynamics can be used to generate energy minima structures as discussed in section 3.1.3.
3.2 Previous modelling of the CB$_2$ receptor

The CB$_2$ receptor, a member of the GPCR superfamily, has been cloned and characterised in human, rat and mouse species$^{4,104-106}$ (section 1.3.4). To date, like all other GPCRs, there is no X-ray crystallography or conclusive NMR data available to help elucidate the 3D structure of the CB$_2$ receptors. Knowledge of the 3D structure would help researchers understand the intimate ligand-receptor interactions occurring within the receptor. Specifically it would allow us to determine the best position to locate a fluorescent dye on the Japan Tobacco pharmacophore.

To allow us to accurately represent the 3D structure of the CB$_2$ receptor we considered work previously undertaken by other researchers, who have examined the molecular pharmacology of the CB$_2$ receptor using mutagenesis and molecular modelling techniques.

3.2.1 Mutational analysis

Studies using single-point mutations and chimeric receptors have been used to locate important binding interactions necessary for selective CB$_2$ binding. A summary of this work is shown in Table 3-1.

In the absence of a 3D-crystal structure, accurate modelling of the integral membrane proteins depends heavily on mutational analysis. This technique can afford information on the key amino acids and regions of amino acids that are important to receptor function. Mutations have concentrated on the suspected binding pockets located within the extra cellular loops (EL) and the transmembrane (TM) regions. Shire et al., commented that the experimental protocol for mutational analysis of the cannabinoid receptors is more difficult than with other GPCRs236. His reasons were based on the low amino acid identity between CB$_1$ and CB$_2$ receptors, particularly in TM 1, TM 4 and TM 5 (section 1.3.4), and that the cannabinoid subfamily are characterised by structural features not found in the majority of GPCRs. Thus, the lack of EL 1/TM 3 cysteines, the absence of a highly conserved proline residue in TM 5, and the unusual 2 cysteine residues found in EL 2 of CB$_1$ and CB$_2$ make extrapolation of previous mutations to GPCRs extremely difficult.

Mutational work has shown there may be different binding pockets for the different sub-classes of cannabinoid ligands154,182,194. The aminoalkylindoles (e.g. Win 55212-2 3), classical cannabinoids (e.g. CP 55, 940 2) and the biarylpyrazole (e.g. SR
have been shown by mutational analysis to form distinct binding interactions with different amino acids within the CB$_2$ receptor.

<table>
<thead>
<tr>
<th>CB$_2$ residue mutated</th>
<th>Mutation</th>
<th>Effect on Ligand Binding</th>
<th>Amino Acid position</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys 109</td>
<td>Ala</td>
<td>CP55,940 (=), Win 55212-2 (=)</td>
<td>TM 3</td>
<td>154</td>
</tr>
<tr>
<td>Lys 109</td>
<td>Arg</td>
<td>CP55,940 (=), Win 55212-2 (=)</td>
<td>TM 3</td>
<td>154</td>
</tr>
<tr>
<td>Ser 112</td>
<td>Gly</td>
<td>CP55,940 (=), Win 55212-2 (=)</td>
<td>TM 3</td>
<td>154</td>
</tr>
<tr>
<td>Phe 197</td>
<td>Val</td>
<td>CP55,940 (=), Win 55212-2 (=)</td>
<td>TM 5</td>
<td>194</td>
</tr>
<tr>
<td>Tyr 190a</td>
<td>Phe</td>
<td>CP55,940 (=), Win 55212-2 (=)</td>
<td>TM 5</td>
<td>237</td>
</tr>
<tr>
<td>Tyr 190a</td>
<td>Ile</td>
<td>Abolished binding</td>
<td>TM 5</td>
<td>237</td>
</tr>
<tr>
<td>Trp 172</td>
<td>Phe</td>
<td>CP55,940 (=), Win 55212-2 (=)</td>
<td>TM 4</td>
<td>238</td>
</tr>
<tr>
<td>Trp 172</td>
<td>Ala</td>
<td>Abolished binding</td>
<td>TM 4</td>
<td>238</td>
</tr>
<tr>
<td>Asp 130</td>
<td>Ala</td>
<td>HU-210 (-), Win 55212-2 (-)</td>
<td>TM 3</td>
<td>239,240</td>
</tr>
<tr>
<td>Ser 161</td>
<td>Ala</td>
<td>CP55,940 (=), Win 55212-2 (=), SR144528 (-)</td>
<td>TM 4</td>
<td>182</td>
</tr>
<tr>
<td>Ser 165</td>
<td>Ala</td>
<td>CP55,940 (=), Win 55212-2 (=), SR144528 (-)</td>
<td>TM 4</td>
<td>182</td>
</tr>
<tr>
<td>Cys 174</td>
<td>Ser</td>
<td>Abolished binding</td>
<td>TM 4</td>
<td>182</td>
</tr>
<tr>
<td>Cys 175</td>
<td>Ser</td>
<td>Abolished binding</td>
<td>EL 2</td>
<td>182</td>
</tr>
</tbody>
</table>

Table 3-1 A summary of the mutational work published on the CB$_2$ receptor, including the amino acid residue mutated, the position within the receptor and the reference. (=) binding is not significantly different from wild type. (-) binding is significantly reduced from wild type. TM transmembrane. EL extra cellular loop. (a) In their publication McAllister et al. refer to this residue as Tyr 191. This was a typographical error confirmed in a personal communication from the authors.

The binding of Win 55212-2 3, a CB$_2$ selective indole cannabinoid (section 1.4.6), to the CB$_2$ receptor has been shown to involve important aromatic stacking interactions; rather than ionic- or H-bonding interactions194. Experimental evidence for this has involved mutation of the unique Phe 197 found in CB$_2$ to a valine resulting in a 14 fold decrease in Win 55212-2 3 binding194. Other single point mutations of aromatic residues (Trp 172 & Tyr 190) to non-aromatic amino acids have also been shown to significantly reduce the binding of Win 55212-2 3237,238. However, when conservative mutation of these residues to the aromatic amino acid Phe was conducted, binding of Win 55212-2 3 was unaltered237,238. Further evidence of aromatic stacking interactions involving Win 55212-2 3, including SAR data, are discussed in section 1.4.6.1. Furthermore, mutations of H-bonding or ionic bonding residues such as Ser 112154, Ser 161182, Ser 165182, and Lys 109154 within the CB$_2$ receptor failed to alter the binding of Win 55212-2 3. A chimeric receptor generated by replacing the TM 3
region of a CB₁ receptor with TM 3 of the CB₂ receptor, increased the binding of Win 55212-2 \(3^{193}\). This result demonstrated that subtype selectivity of Win 55212-2 \(3\) for the CB₂ receptor may be a result of amino acid residues present in TM 3. Further work by this group pointed to residue Ser 112 in the CB₂ receptor (analogous to Gly 195 in CB₁) as key to the subtype specificity of Win 55212-2 \(3\). This was demonstrated by mutating Gly 195 in CB₁ to Ser \(^{193}\). The four-fold increase in binding of Win 55212-2 \(3\), to this mutant, was attributed to CB₂’s Ser 112 being involved in crucial interactions with Win 55212-2 \(3\). However, later work, mutating Ser 112 to Gly in the CB₂ receptor failed to support this argument\(^{154}\). Chimeric work by Shire et al. has demonstrated that only TM 4-EL 2-TM 5 (Phe 197 is found in TM 5) of the CB₂ receptor is necessary for Win 55212-2 \(3\) selectivity\(^{236}\).

Studies to show the effect of certain amino acids in the CB₂ receptor on the binding of the non-classical cannabinoid CP 55,940 \(2\) have been unclear. It was initially thought that hydrogen bonding interactions would play an important role in binding due to the number of hydroxyl groups present on CP 55,940 \(2\) (figure 1-13). However mutation of Lys 109 (analogous to Lys 192 in the CB₁ receptor) to Ala and Arg, had no effect on the binding of CP 55,940 \(2\) to the CB₂ receptor\(^{154}\). This is in direct contrast to the mutation of Lys 192 in the CB₁ receptor which was shown to be critical for binding of these ligands\(^{152}\). These two results would indicate that H-bond interactions, occurring between Lys and hydroxyls in the cannabinoids, are important in the CB₁ receptor but not required in the CB₂ receptor. A separate study showed that a H-bonding interaction between CP 55,940 \(2\) and the CB₂ receptor was contributing to the ligand-receptor binding\(^{154}\). They mutated Ser 112 present in TM 3 of the CB₂ receptor to Gly and reported that this change significantly reduced the binding of CP 55,940. It was concluded that hydrogen bond interactions between the NAH (Figure 1-13) and Ser 112 in TM 3 was important for CB₂ binding of CP 55,940 \(2\).

SAR work with classical and non-classical cannabinoids has probed the importance of the phenol group and the NAH function of CP-55,940 \(2\) and similar molecules. These studies have clearly shown that the hydroxyl groups present in the molecules are not required for CB₂ binding (sections 1.4.2.4 & 1.4.3.1) and it is likely therefore that hydrogen bonding interactions are not involved in the binding of these cannabinoids in the CB₂ receptor.
Mutational analysis probing the binding interactions of SR 144528 6 has been conducted. Initial work by Shire et al. concentrated on replacing regions of the CB₁ receptor, that has essentially no affinity with SR144528 6, with the analogues regions from the CB₂ receptor and monitoring the binding of SR144528 6 to the chimeric receptor²³⁶. They demonstrated that TM 4-EL 2-TM 5 of the CB₂ receptor was responsible for the CB₂ selectivity of SR144528 6. Further work by the same group, using single point mutations, indicated both Ser 161 and Ser 165 on TM 4 contributed to H-bonding interactions with SR144528 6¹⁸². Mutation of a non-conserved Cys 175 residue in CB₂’s EL 2 abolished binding of SR144528 6, but did not adversely affect CP 55, 940 2 or Win 55212-2 ³¹⁸². This sulphur-containing residue was postulated to form either direct sulphur-π interactions, or an undetermined disulphide bridge, which are considered important to ligand recognition. Other work has shown that independent mutation of Cys 174 and Cys 179 results in receptors that do locate to the membrane, but fail to bind any of the cannabinoid ligands tested²³⁶. A structurally vital disulphide bridge has been proposed between them¹⁸². The highly conserved DRY motif (Asp 130, Arg 131, and Tyr 132 in the TM 3 of the CB₂ receptor) found in the majority of GPCRs has been evaluated for its role in ligand binding. In a CB₂ mutational study it was found that Asp 130 mutations markedly reduced all classical and indole cannabinoid binding²³⁹.

In summary, these data indicates that there are different binding interactions occurring with the different classes of chemical ligands. Specific amino acid changes may affect the binding of just one ligand, such as Ser 112 or Phe 197, or may abolish binding for all of the cannabinoid classes tested, such as Tyr 190 or Trp 172 (Table 3-1). This may be indicative of whether the amino acid involved is associated with key ligand-receptor interactions or is involved in the overall structure of the TM helix and therefore the shape of the binding pocket. The most consistent data discussed regards the binding of Win 55212-2 ³, for which an aromatic-aromatic ligand-receptor binding nature has clearly been established. This has specifically involved the residue Phe 197, present in the CB₂ receptor, and is thought to confer an extra aromatic interaction that results in CB₂ selectivity of Win 55212-2 ³.
3.2.2 Molecular modelling studies

The first computational model of a cannabinoid receptor, conducted in 1995, was for the CB₁ receptor153,190. Their methodology aligned the TM regions of the CB₁ receptor with the sequences of 58 other GPCRs, using the highly conserved amino acids present in each of the TM helices. TM 5 of the CB₁ (and the CB₂ receptor) which does not contain the highly conserved proline used for alignment, needed to be identified using structural alignment based on its hydrophobicity profile. The helices were modelled using the ChemProtein module (Chem-X suite) and aligned to the TM helix bundle present in the X-ray structure of Bacteriorhodopsin. This original model of the CB₁ receptor, was then adapted by researchers interested in the CB₂ receptor by mutating the CB₁ residues into corresponding sequence-aligned CB₂ residues153,154,194. Thus, early modelling of the CB₂ receptor was based entirely on a CB₁ receptor model; which was originally based on the non G-protein associated Bacteriorhodopsin. A later CB₂ model employed similar methodology used above, but mutated a model of the β₂-adrenoreceptor to the CB₂ receptor based on sequence alignment data of the human CB₂ receptor aligned to sequences of the β-adrenoreceptor family182. The original model of the β₂-adrenoreceptor was built using the crystal structure of Bacteriorhodopsin as a template241. Therefore two different methods used to construct the CB₂ receptor were both based on the crystal structure data of Bacteriorhodopsin, which, as discussed in section 3.1, has limitations and has been superseded by Bovine Rhodopsin 227. After we had concluded our own studies, Xie et al. published a further model of the CB₂ receptor242. They were the first to publish a CB₂ receptor model based on the 2.8Å crystal structure data from Bovine Rhodopsin aligning Bovine Rhodopsin with five cannabinoid receptors (including the human CB₂ receptor) and four other GPCRs.

3.2.2.1 Results from previous CB₂ models

Each of the previous models conformed to the classical shape of a GPCR receptor, consisting of seven alpha helical TM regions arranged in a ‘barrel’ formation, which were linked by extra and intra-cellular loops. To provide information on the intimate interactions occurring within the CB₂ receptor binding pocket, three of the CB₂ models were used in ligand-receptor binding simulations with different cannabinoid
The data from these studies, suggested that the binding site within the CB₂ receptor was located within the TM bundles - although the exact combination of TM helices involved was ligand dependent. The results from these three studies are summarised as follows;

Song et al. evaluated the binding of Win 55212-2 \(^{194}\). They proposed aromatic stacking interactions, occurring between amino acids present within TM 3, 4 and 5 and Win 55212-2 \(^{3}\), to be the primary ligand-receptor interactions. They reported that selectivity shown by Win 55212-2 \(^{3}\) for CB₂ receptors is due to an extra aromatic interaction that can be formed between Win 55212-2 \(^{3}\) and Phe 197 on the CB₂ receptor. Phe 197 is not present in the CB₁ receptor and cannot form this extra interaction. Other amino acids shown to form ligand interactions are detailed in Table 3-2.

CP 55,940 \(^{2}\) was docked in a model generated by Tao et al\(^{154}\). They demonstrated that its binding had elements of hydrophobic and hydrogen-bonding interactions with the receptor. The most important of these interactions was established to be a H-bond between Ser 112 and the NAH of CP 55,940 \(^{2}\). Other ligand-receptor interactions associated with amino acids present within TM 3, 6 and 7 were highlighted in their study but were not discussed.

SR 144528 \(^{6}\) was docked in a CB₂ model generated by the Gouldson group\(^{182}\). From their work, they proposed that the interactions of SR 144526 \(^{6}\) with the CB₂ receptor were a mixture of aromatic, hydrophobic and hydrogen bonding. The H-bonds were formed between the pyrazole nitrogen and the carbonyl group of SR 144528 \(^{6}\) (figure 1) and the hydroxyl hydrogens of Ser 161 and Ser 165 located in TM 4. Other contacts made with SR 144528 \(^{6}\) are listed in Table 3-2. The TM helices involved in SR144528 \(^{6}\) binding are 3, 4 and 5. Importantly, this model has several features in common with the one proposed by Song et al. for Win 55212-2 \(^{3}\) binding\(^{194}\), especially the importance of aromatic stacking and the involvement of common aromatic amino acids namely Phe 197 and Trp 194. The similarity in the two models is important, as the two groups produced independent work, and used different sequence alignment protocols. In addition both groups had distinct mutagenesis data which was used as an initial anchor point for ligand docking.
<table>
<thead>
<tr>
<th>Ligand used to explore binding pocket</th>
<th>Key amino acid residues shown to be involved in binding</th>
<th>Type of ligand-receptor interaction involved</th>
<th>TM location of the amino acid residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win 55212-2 3^1</td>
<td>Phe 106 Aromatic</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phe 117 Aromatic</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trp 194 Aromatic</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phe 197 Aromatic</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SR 144528 6^2</td>
<td>Leu 125 Hydrophobic</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leu 126 Hydrophobic</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser 161 H-bond</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser 165 H-bond</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trp 172 Aromatic</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trp 194 Aromatic</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phe 197 Aromatic</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CP 55, 940 2^3</td>
<td>Ser 112 H-bond</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thr 116 H-bond</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Solvent-accessible methods^4</td>
<td>Phe 117 Aromatic</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tyr 190 Aromatic</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phe 197 Aromatic</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trp 258 Aromatic</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-2 Key amino acid residues implicated in forming important ligand-binding from computational modelling studies. 1 ref 194. 2 ref 182. 3 ref 154. 4 ref 242.

The CB₂ receptor constructed using the template of Bovine Rhodopsin, published after we had concluded our work, did not use a ligand docking experiment to investigate the ligand binding pocket^242. Instead they used solvent-accessible surface approaches to determine the amino acids that could form interactions in a ligand binding pocket. The amino acid residues highlighted in their discussion are shown in Table 3-2. Their studies showed that the binding site was amphipathic with a hydrophilic centre located close to the extracellular loop 2 (shown in blue) and a hydrophobic cleft buried deeper in the receptor (shown in yellow) which is ‘framed’ with the aromatic residues Phe 117 (TM 3), Phe 197 (TM 5) and Trp 258 (TM 6) (Figure 3-10). Overall the helices postulated to be involved with the binding pocket were TM 3, 5, 6, and 7.
In conclusion the various modelling studies conducted to date have shown that the ligand binding pocket is located within the TM helices of the CB₂ receptor. The exact TM helices and amino acid residues involved in ligand binding is dependent upon the cannabinoid that was used in the study. TM 3, 4, 5, 6 and 7 have each been shown to be involved in ligand binding. The most consistent interaction demonstrated to be important is aromatic-aromatic in nature, with three of the four models specifically highlighting Phe 197 as an amino acid crucial to ligand binding. Interestingly, the analogous residue to Phe 197 in other GPCRs have also been reported to be an important binding residue in the β-adrenoreceptor and serotonin receptors\(^\text{194}\). The binding models proposing TM 4 as a binding helix are unusual in GPCR modelling. However previous studies implicating TM 4 in binding have been reported for the neuropeptide type receptors \(i.e\). substance P, neurotensin type 1 and neuropeptide Y type 1\(^\text{182}\). The data provided from these studies were used to guide our experimental modelling work.

3.3 Experimental results - molecular modelling of the CB₂ receptor

3.3.1 Sequence alignment

The human CB₂ receptor was initially sequence aligned against human CB₁ and the Bovine Rhodopsin (BR) sequences obtained from Swissprot (Swissprot reference numbers: P34972 (CB₂), P21554 (CB₁), and P02699 (BR)) using the sequence alignment program ClustalW (Version 1.81)\(^\text{232}\). Manual alignment of the CB₂ sequence with Bovine Rhodopsin was conducted to locate the homology aligned regions. Three different alignments were generated by varying the alignment of TM 5 of the CB₂ receptor with the corresponding Bovine Rhodopsin sequence. TM 5 of the CB₂ receptor does not contain the usual conserved proline within its sequence and has been a difficult issue to resolve for each of the groups conducting modelling of the cannabinoid receptors (see section 3.2.2). The three different alignments we used are shown in Figure 3-3.
Figure 3-3 The three sequence alignments used to generate the different CB2 receptor models, which vary in the alignment of TM 5. The TM helices are highlighted in the following colours: 1 (yellow); 2 (green); 3 (turquoise); 4 (magenta); 5 (red); 6 (grey); 7 (blue). hCB2 – human CB2 sequence. BR – Bovine Rhodopsin sequence. Amino acids represented by standard single letter codes.
3.3.2 Homology modelling to Bovine Rhodopsin

The 3D crystal structure of Bovine Rhodopsin (BR) was extracted from the Protein Data Bank and imported into Sybyl® (Tripos). The BR model was modified by removing the B chain and the glycosylations associated with the molecule. Using *Mutate Monomers* each of the BR helices were mutated to the aligned sequences shown in Figure 3-3 to generate the three different alignment models. The remaining loop sections of the CB2 model were completed by searching the PDB database using the *Build Loops* function for matching amino acid sequence to the CB2 loop sequences. The highest scored loops were inserted into the model and manual selection of the best fitting loops was employed. The final models were checked for amino acid chirality, proline ring integrity and were finally screened against the original CB2 sequence for monomer sequence. The three models were then subjected to energy minimisation within Sybyl® using 100 Steepest Descent iterations followed by 500 Conjugate Gradient steps using the standard Sybyl® setup for each minimisation. The three models, produced by the homology modelling described, are shown in Figure 3-4. The amino acid structures displayed in ball and stick style are the key amino acids previously shown to be important in ligand-receptor binding (see Table 3-1 and Table 3-2). The Ramachandran plots for all three receptors were generated using the programme PROCHECK243 and are shown in Figure 3-4. For further details on Ramachandran plots, readers are directed to the original paper by Ramachandran et al.244. The shaded areas of the plots (red, yellow, pink) correspond to the contoured distribution of the ϕ and ψ torsion angles between amide bonds, averaged from the X-ray crystallography data accumulated for 118 protein structures. It is clear from these plots that all three structures have amino acid backbones conformations that are typically found in many other protein structures. Alignment 3, possessed the most favourable conformational space according to the Ramachandran analysis with 74.1% of the residues lying in the most favoured region (22.1% in allowed regions; 2.2% in generously allowed regions; 1.6% in disallowed regions).
Figure 3-4: Representations of the three human CB₂ receptors built by homology modelling to Bovine Rhodopsin. 1a Alignment 1 view from top. 1b Alignment 1 view from side. 1c Ramachandran plot of Alignment 1. 2a Alignment 2 view from top. 2b Alignment 2 view from side. 2c Ramachandran plot of Alignment 2. 3a Alignment 3 view from top. 3b Alignment 3 view from side. 3c Ramachandran plot of Alignment 3. Amino acids shown are Phe 117 (Magenta), Tyr 190 (Cyan), Trp 194 (Yellow), Phe 197 (green). Helix colour: 1, 2, 3, 4, 5, 6, and 7. Ramachandran plot - darker colours represent favourable regions of amide bond torsions with black dots representing amino acids from the CB₂ receptor model.
Alignment 3 also had the key amino acids, implicated in ligand binding, located within the TM regions when compared to the other two models. It was therefore decided to discard Alignments 1 and 2 and continue only with Alignment 3. The model from Alignment 3 was energy minimised using the ABNR minimisation algorithm using CHARMM software234, using the protocol: minimise hydrogens only (100 steps); minimise side chains only (2000 steps); minimise complete structure (25000 steps) until the root-mean-square-derivative (RMSD) reached 0.005 KJmol-1. No C or N end-caps were used and a dielectric constant of 4.0 was utilised to mimic the phospholipids membrane. This model will now be referred to as Alignment 3.

3.3.3 Docking JTE2-6 into the CB\textsubscript{2} receptor

JTE2-6 63 was constructed using Spartan PCPro (Wavefunction Inc.). Geometry optimisation was undertaken using quantum mechanical methods, namely \textit{ab initio} Hartree-Fock calculations at the 3-21G* level. In addition, partial atom charges were calculated using the electrostatic surface potential (ESP) method. JTE2-6 63 was interactively docked into Alignment 3 using Phe 197 as an anchor point for an aromatic-aromatic interaction with the ligand. JTE2-6 63 was docked into the binding pocket in both a phenol-up and phenol-down position as shown in Figure 3-5.

![JTE2-6 in CB2 receptor](image)

Figure 3-5 JTE2-6 63 was docked into the CB\textsubscript{2} receptor in the (A) phenol-up and (B) phenol-down position using Phe 197 as a guiding anchor point.

The ligand-receptor complexes were further optimised using energy minimisation and molecular dynamics. In our studies, we applied the CHARMM force field with an 8 Å
cut-off for non-bonded interactions to optimize the ligand-receptor model. In order to mimic the hydrophobic transmembrane environment we set the dielectric constant to a value of 4.0. The molecular dynamics protocol consists of: i) initial minimisation of 2500 iterations of ABNR conjugate gradients minimisation until the RMSD becomes less than 0.005 KJmol$^{-1}$; ii) MD simulations were performed by placing a harmonic constraint on the 7 backbone α-helices, heating the structure to 300K over 1ps, and running at constant temperature (300K) for 100 ps with a 1fs time step; iii) quenching the structure to 0K over 1 ps, removing all constraints and final minimisation using ABNR conjugate gradients (6000 iterations) until the RMSD became less than 0.005 KJmol$^{-1}$.

The energy of the two complexes was monitored throughout the molecular dynamics experiment at 0.5 ps time intervals. The plot of the total energy of the complex versus time is shown in Figure 3-6.

\[\text{Figure 3-6} \quad \text{Energy profile of JTE2-663-CB$_2$ receptor complex over a 0.1 ns molecular dynamic simulation performed at 300K using the CHARMM force field.}\]

It is clear from the above graph that the energy of both systems increased rapidly during the first ps as the systems were heated from 0K to 300K. Once ‘energised’ both systems energy decrease over the first 40 ps. In the phenol-down complex this lower energy is continued during the rest of the simulation but in the phenol-up
complex the energy is transiently raised at around 40 ps before falling again over the remaining period of the simulation.

The final energy minimised ligand-receptor complexes are shown in Figure 3-7.

From Figure 3-7 it can be seen that the human CB2 receptor can accommodate JTE2-6 63 docked in either position. However, the conformation of the ligand and the absolute binding position of the ligand changes between both models (Figure 3-7, C). The key amino acids involved in ligand-receptor interactions was explored using the programme Ligplot for each model. The results from this analysis are shown in Figure 3-8. It can be clearly seen that the amino acids involved in the binding of JTE2-6 63 differ between the two docked models. In the phenol-up model the amino acids residues involved are residues that have been demonstrated to be involved in the binding of other cannabinoid ligands (see Table 3-1 and Table 3-2); notably Phe 117, Trp 194, and Phe 197. The residues interacting in the phenol-down model have not been implicated in cannabinoid binding in previous studies and include an interaction with an amino acid located in TM helix 2 (His 95) which has previously not been shown to be involved in cannabinoid binding.
3.4 Discussion

The human CB$_2$ receptor was constructed using homology modelling to a high resolution X-ray crystal structure of Bovine Rhodopsin in-order to determine the probable binding position of the CB$_2$ selective ligand JTE2-6 63. Three different sequence alignment models were constructed varying in the alignment of TM 5 with the Bovine Rhodopsin sequence. Helix 5 in the CB$_2$ receptor has previously been highlighted as a difficult helix to align due to it lacking a conserved proline residue within the helix. The three different models constructed were compared using conformational space analysis (Ramachandran plots) and visual inspection of four key amino acids (Phe 117, Tyr 190, Trp 194, Phe 197) which have all been implicated in previous mutational analysis and molecular modelling experiments to be associated with TM ligand binding. Alignment 3 was chosen as the best representation of the human CB$_2$ model for a number of reasons. The Ramachandran plot showed that 98.4% of the amino acids were in a conformation that had been observed from real X-ray crystal structures of 118 other proteins. This was higher than the either alignment.
1 or 2 and represented a ‘high quality model’. Examination of the residues Phe 117, Tyr 190, Trp 194, Phe 197; demonstrated that only in Alignment 3 were all of these residues present within the proposed binding pocket located in the TM bundle. In Alignment 1 & 2 Trp 190, Trp 194 and Phe 197 were all located either at the top of the TM helices or on the extra cellular loops. As previous studies had shown that Phe 117, Tyr 190, Trp 194, Phe 197 were involved with ligand binding within the TM bundle, Alignment 1 and 2 were rejected and further studies were performed on Alignment 3.

After we had completed our studies, the first CB$_2$ receptor model based on Bovine Rhodopsin was published. We took the opportunity to compare the work we conducted to their seminal study. The sequence alignment data was compared for the seven TM helices of each model with Bovine Rodopsin; the results are shown below.

<table>
<thead>
<tr>
<th>Xie et al.</th>
<th>Our study</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helix 1</td>
<td>PQTAVAVLCTILGLSALENVAVLYLIL</td>
<td>WQFSMLAAMYEMLLMLGFPFRNFTLYTVQ</td>
</tr>
<tr>
<td>Helix 2</td>
<td>PSYLFIGSGAGDFLAVFVACSFVFNMVF</td>
<td>PLNYLNIANLAVADLFMVFGGFTTTLYTVQ</td>
</tr>
<tr>
<td>Helix 3</td>
<td>KAVFLLKIGSVMTFTASVGSLLTTAIDRYLCLR</td>
<td>PTGCNLEGFFATLGGEIALWSLVLAIEYVVVC</td>
</tr>
<tr>
<td>Helix 4</td>
<td>RALVTLGIWNLVLASVYVLPM</td>
<td>HAIMGVAFVWVMALACAPPLVVG</td>
</tr>
<tr>
<td>Helix 5</td>
<td>IPDNYLLSWLLFIALFSGIYIYGHVLIW</td>
<td>NESFVIYMVFHFIIPIVIFQGQLVF</td>
</tr>
<tr>
<td>Helix 6</td>
<td>RLDVRLAKTLGLVLAVLLICWFVPVLAGHSLA</td>
<td>KAEKETVNSVIMVIAMFLQSPYAVFAYFT</td>
</tr>
<tr>
<td>Helix 7</td>
<td>KAFAFSMLCLINSMVNPIYAL</td>
<td>IFMTPAFAKTSAYNPVIYIM</td>
</tr>
</tbody>
</table>

Figure 3-9 Comparison of the TM alignments of Xie et al., our study and the Bovine Rhodopsin (BR) sequence.

The alignments made in both independent studies matched exactly in the way the CB$_2$ sequence was aligned to the Bovine Rhodopsin template. The difference in ‘helix length’ was due to the two different methods used to determine what residues constituted the helix. Xie et al. used a hydrophobicity profile to determine the helices.
from the sequence alignment242, in contrast our TM regions were based on those published for the Bovine Rhodopsin sequence in Swissprot. The amino acids proposed to constitute the binding pocket, using solvent accessibility methods, in their model were compared to the same amino acids in our model, viewed from a similar perspective (Figure 3-10).

![Figure 3-10](image)

\textbf{Figure 3-10} Representations of the conformation and relative position of the amino acid residues reported to constitute the binding pocket of the human CB\textsubscript{2} receptor242. (A) shows the amino acid alignment from our study of the human CB\textsubscript{2} receptor (Alignment 3) binding the ligand JTE2-663. The backbone amino acids are shown in simple line form and JTE2-663 is not shown for clarity. (B) is reproduced from Xie \textit{et al.} and shows the binding pocket amino acids as determined by solvent-accessible analysis242.

The model shown in Figure 3-10 (A) is Alignment 3 of the CB\textsubscript{2} receptor binding the ligand JTE2-663 in the phenol-up position. We chose this model, as the ligand-receptor interactions present, would induce the amino acids to adopt a conformation which best represented their binding conformation. Comparing the two models it can be seen that the amino acids shown each occupy the same area of space within both receptors. It is extremely interesting to note that the three aromatic amino acids that form the hydrophobic cleft at the bottom of the binding pocket are roughly in the same conformation in both independent models.

In conclusion, the model we constructed compares favourably to the published model by Xie \textit{et al.} both in terms of their sequence alignments and the position of key
amino acids postulated to form the binding pocket. This comparison, combined with our assessment of three different aligned sequences, gave us confidence that our model of the human CB$_2$ receptor was built to the highest standard of GPCR modelling practice.

Ligand docking experiments conducted using the human CB$_2$ receptor and the Japan Tobacco ligand JTE2-6 63 have shown that the ligand can bind within the receptor in at least two different orientations – phenol-up and phenol-down. In both experiments, JTE2-6 63 was interactively docked using Phe 197 as an initial anchor point and the ligand was docked into the receptor in identical energy minimised structural conformation. Thus both models had a similar starting point except that they were docked with a 180 degrees rotational difference. After 100 ps of MD simulation, the final binding conformations of the two ligands within the models vary considerably (Figure 3-7, C). The ligand within the phenol-up model has remained generally within its initial docked position, whilst the phenol-down conformation has moved away from helix 5 into the centre of the receptor. The conformation of JTE2-6 63 in the phenol-down model has remained very similar to its initial energy minimised conformer. However in the phenol-up system, the phenol ring of JTE2-6 63 has twisted to form strong aromatic-aromatic interactions with Trp 194 (edge-edge) and Phe 197 (face-face) in the phenol-up system (Figure 3-11). This is not unexpected as both the ligand and the receptor are known to influence each others final conformations in the bound state (Koshland’s Theory of Induced Fit181).

Figure 3-11 JTE2-6 63 bound in the phenol-up position (shown in magenta) showing the interactions with the aromatic amino acids Trp 194, Phe 197 and Phe 117.
Phe 197 also forms aromatic interactions (edge-edge) with the benzamide ring as does Phe 117 (see Figure 3-11). Examining the energy profile, of the phenol-up complex throughout its 100 ps MD simulation, revealed that the complex was stable (Figure 3-6). The rise in energy at 40 ps was transient and the complex appeared to be approaching steady-state at 100 ps. Although its total energy was higher than the phenol-down complex this does not imply a less favourable model. The energy function is an arbitrary value and can only be used to study events occurring within systems and not across systems. The energy profile for the phenol-down model achieved a steady-state at around 40 ps and there were no notable fluctuations in the profile, also demonstrating that this complex was stable. The amino acids shown to be involved in interactions with JTE2-6 63, in the phenol-down position, have previously not been implicated in cannabinoid binding. Notably residue analysis showed that TM helix 2 was involved, which is extremely unusual in GPCR ligand binding. The amino acids that were involved in binding JTE2-6 63, in the phenol-up position, are residues that have been described to be important in cannabinoid binding from many other studies (see Table 3-1 & Table 3-2). We are therefore satisfied that we have demonstrated, using computational methods, that JTE2-6 63 is likely to be bound within the CB2 receptor in a phenol-up position. Although theoretically possible to exist, the phenol-down model is not supported by previous experimental evidence. Our experimental data had previously demonstrated that modifying the benzamide ring, located at the bottom of the binding pocket in the phenol-up model, with fluorophores lead to compounds with little affinity to the CB2 receptor (see chapter 2). We therefore conclude that JTE2-6 63 is likely to bind in the phenol-up orientation. This is the first time binding of this unusual CB2 selective cannabinoid has been reported and the utilisation of these results to design a fluorescent CB2 ligand based on the Japan Tobacco compounds are discussed in the following chapter.

3.5 Conclusions

- We generated a 3D computational model of the human CB2 receptor based on homology modelling to the high resolution X-ray crystal structure of Bovine Rhodopsin.
• Analysis of the model showed excellent correlation between our postulated binding pocket and previous experimental data, from molecular modelling and single point mutation, including an identical aromatic region within the binding pocket which contained the residue Phe 197.

• The receptor model was used to identify that the likely binding orientation of the CB₂ receptor ligand JTE2-6 63 was in a phenol-up position, whereby its phenol ring is close to the extra cellular surface of the receptor.

• Computational binding data obtained for JTE2-6 63 will allow us to develop novel fluorescently labelled derivatives based on this type of compound.
4 Fluorescent CB$_2$ ligand based on a modification to the phenol ring of a Japan Tobacco Compound

Our studies, outlined in Chapter 3, concerning the binding of the Japan Tobacco compound JTE2-6 63 (Figure 4-2), to the CB$_2$ receptor, demonstrated that it was likely to bind in a phenol-up orientation. The work reported below combined this modelling data with our previous work described in Chapter 2 to design an alternative fluorescent CB$_2$ ligand based on the Japan Tobacco compounds.

4.1 Interrogation of the ‘phenol-up’ JTE2-6-CB$_2$ model

The ‘phenol-up’ model constructed in Chapter 2 was examined to guide our decision on where to locate the fluorescent dye upon the Japan Tobacco compounds. The phenol ring was clearly shown to lie at the top (extra cellular-face) of the receptor. Further interrogation of the structure clearly showed that the phenol ring was in an ideal position within the molecule to elaborate a linker for fluorophore attachment. This is illustrated Figure 4-1.

Figure 4-1 JTE2-6 63 docked into the human CB$_2$ receptor (Alignment 3). (A) Shows the position of JTE2-6 63 (magenta) within the receptor. The amino acids shown in green (Ile 186, Pro 187, Tyr 190, Ala 270, and Thr 272) form the entrance to the binding pocket. Inter atomic distances between the hydroxyl-carbon on the phenol ring (C$_{-}$OH) to the α-carbon of these amino acids range from 3.40 to 6.61 Å. The model is viewed with TM helices 5 and 6 to the front. (B) Electrostatic potential surface representation of the human CB$_2$ receptor. Red surfaces +ve, blue surfaces –ve, green surfaces are amino acids Ile 186, Pro 187, Tyr 190, Ala 270, and Thr 272 forming the entrance to the binding pocket. The phenol ring of JTE2-6 63 (magenta) can clearly be observed.
It was envisaged that a carbon linker attached to the JTE2-6’s phenol ring (position 2 or 6, or 3 or 5 – see Figure 4-2), would readily exit the binding site thereby allowing attachment of fluorophores without compromising binding of the ligand.

The distances between the amino acids forming the entrance to the binding pocket (shown in green in Figure 4-1) and the ligand was calculated to be between 3.40 and 6.61 Å. This equates to between 3 and 7 atomic distances in the linker chain, using a C-C and C-N bond length of 1.54 Å and 1.47 Å respectively as a guide, to ensure that the entrance of the binding pocket is avoided by the dye.

In light of this data, we embarked upon the design and synthesis of a Japan Tobacco compound, based on JTE2-6, functionalised with a linker covalently attached to a carbon atom of the phenol ring. Different fluorophores could then be installed in a chemoselective manner using methodologies discussed in Chapter 2 to generate compounds for evaluation as fluorescent CB₂ selective ligands.

4.2 Designing a fluorescent CB₂ ligand based on molecular modelling of JTE2-6 docked into the CB₂ receptor

The concepts for the design and synthesis of a fluorescent CB₂ selective ligand have been thoroughly covered in Chapter 2. In brief the key requirements of a lead CB₂ ligand conjugated to a fluorescent dye are:

- A high affinity to the CB₂ receptor.
- A high selectivity to the CB₂ receptor versus the CB₁ receptor.
- Modification of the CB₂ ligand with a linker, functionalised at the terminus, to allow for chemoselective ligation to the fluorescent dye.
- A suitable fluorescent dye must be chosen balancing the requirements of fluorescence spectral properties and the steric size of the dye.

In our initial study the compound JTE2-6 was chosen as a lead CB₂ ligand, since it possessed a chemical structure that allowed a selective chemical synthesis of the benzamide ring system to install a functionalised linker at position 4 on this ring. For this study we chose to incorporate the functionalised linker onto the phenol ring of the ligand and hence chemical selectivity within the benzamide portion of the ligand was
not required. It was with this reasoning that we re-examined the range of Japan Tobacco ligands available, using a similar selection criteria as stated in section 2.2.1, but without the requirement of orthogonal chemical groups on the benzamide portion of the ring. The compound JTE2-3 62 was selected as a lead structure due to its chemical similarity to JTE2-6 63 (Figure 4-2). This we assumed would mirror similar binding conformations in the receptor and we could therefore translate the modelling data for JTE2-6 63 and use this for our new lead molecule. However, JTE2-3’s 62 enhanced CB2 affinity (Kᵢ 0.4 nM) and selectivity (>8250:1) over 63 should increase the chance of its fluorescent conjugate remaining a potent CB2 ligand, whilst its simple benzamide motif will aid in its chemical synthesis.

![Figure 4-2](image)

Figure 4-2 Comparison of the Japan Tobacco Ligands JTE2-6 63 and JTE2-3 62. Numbers indicate the position on the phenol ring.

We designed a derivative of JTE2-3 62 to incorporate an amine functionalised linker at position 2 of its phenol ring. As the entrance to the receptor binding site was between 3.40 and 6.61 Å away from the phenol ring, we chose an aminoethyl linker, incorporating 3 atomic distances, which should position the dye approximately 4.5 Å away from the ligand. This would allow the Dansyl fluorophore, directly coupled to the linker, to be favourably positioned to interact with the aromatic residue Tyr 190 (6.29 Å) (forming the entrance to the binding site) or extend well outside the binding pocket using the pre-installed 10 atom linker of BODIPY 630/650 X. These two fluorescent dyes were used for identical reasons as discussed in Chapter 2.
4.2.1 Synthetic Strategy

A similar strategy to that employed in the synthesis of BODIPY-JTE2-6 100 and Dansyl-JTE2-6 99 was instigated for the synthesis of fluorophore-JTE2-3 I (Scheme 4-1). In brief the key aim of the synthesis was to install the fluorophore in the last synthetic step, using chemoselective ligation to the linker-terminating 1° amine (retrosynthetic step A, Scheme 4-1). This avoids exposing labile and expensive fluorescent dyes (*i.e.* BODIPY® 630/650) to both unnecessary photo- and chemical degradation during chemical synthesis and purification.

The disconnection made at the amide bond in fluorophore-JTE2-3 I (step B, Scheme 4-1), resulted in two synthons; II, a Protocatechuic acid (3, 4-dihydroxybenzoic acid) derivative, and III, a functionalised tyramine. Reagent II was easily accessible from commercial Protocatechuic acid but a literature search established that synthon III was a novel compound. A synthetic route, starting from tyramine, was investigated for III, which would incorporate orthogonal protection for the two aminoethyl moieties to aid selective coupling to both II and the fluorophore dye. The retrosynthetic strategy shown in Scheme 4-2 begins by breaking the carbon-heteroatom bond of the additional aminoethyl functionality on tyramine (Scheme 4-2 step C). The choices of the nitrogen nucleophile V which could be used to create the required 1° amine are numerous; and include ammonia; the azide anion; and the phthalimide anion as examples. Reagents VI and VII (Scheme 4-2) are equivalent reagents to synthon IV with both containing an electrophillic carbon. The leaving group (LG) of synthon VII may be a halogen atom, however if one considers it instead to be an activated alcohol (*i.e.* mesylate), then both the aldehyde VI and
alcohol precursor to VII can be easily accessed by a functional group interconversion (FGI) from the allylic compound VIII using ozonolysis. Compound VIII was simplified, by breaking the aromatic-allyl bond, shown in step D, to give the target starting material (tyramine IX) and synthon X.

Scheme 4-2 Retrosynthetic analysis for the molecule III. LG = Leaving group. FGI = functional group interconversion.

Obviously synthon X could represent the allyl halide, and using Friedel-Crafts alkylation the allyl group could be installed. However chemoselectivity and poly-substitutions were envisaged to be problematic. To avoid these side reactions reagent XI was proposed to undergo a [3, 3]-sigmatropic Claisen rearrangement leading to mono-substituted 2-allyl product. Reagent XI was easily constructed from tyramine and allyl bromide. It should be noted that throughout this synthesis, protecting group chemistry would need to be adeptly utilised in-order for the synthesis to proceed smoothly and to finish with both of the 1° amines orthogonally protected. It is known that the Benzyloxycarbonyl (Cbz) protecting group is both thermo and Lewis acid stable\(^{247}\); conditions which are commonly used to evoke the Claisen rearrangement, and we planned to utilise this group to protect the amine group of tyramine. With this protection present throughout the reactions, we could protect the second amine group
orthogonally with the *tert*-Butoxycarbonyl (Boc) group, which was successfully used in the synthesis of BODIPY- and Dansyl-JTE2-6 100 & 99. The synthesis of un-modified JTE2-3 62 was also undertaken, enabling us to assess the effect of the fluorescent dye conjugation upon the binding affinity. This ligand is not commercially available and a synthesis from II (Scheme 4-2) and tyramine offered an attractive route to the compound.

4.3 Chemistry results

The Protocatechuic acid derivative 105 was synthesised in high yield from commercially available Protocatechuic acid 102 as shown in Scheme 4-3.

![Scheme 4-3](image)

Scheme 4-3 Synthesis of the Protocatechuic acid derivative. Reagents, conditions and yields: (i) MeOH, H⁺, reflux, 2h, (92%); (ii) 1-bromopentane, K₂CO₃, DMF, 90 °C, 1h, (72%); (iii) LiOH, MeCN, H₂O, reflux, 1h, 90%

The 2-aminoethyl tyramine derivative 117 was synthesised in ten steps from commercially available tyramine (Scheme 4-4). Following protection of tyramine’s amino group to its corresponding benzyl urethane 107, phenolic allylation afforded ether 108. The Claisen sigmatropic rearrangement was assessed using thermal and Lewis acid catalysed methods. Lewis acid catalysis using AlCl₃ yielded a chlorinated product (shown by the distinctive mass spectrum, with a 3:1 ratio of the 35Cl and 37Cl isotopes in the product) in overall low yield. Thermal rearrangement was tested by heating the allyl ether in refluxing diphenyl ether solvent (b.p. 258 °C) and by heating to 280 °C neat in a sealed tube. Both methods yielded the desired rearranged product 109 in yields of 56 and 47% respectively. Due to the increased yield and the easier experimental protocol, the Claisen rearrangement was carried out.
in diphenyl ether during subsequent reactions. Benzyl ether protection of the phenol 110 was used to prevent reaction with functional groups, to be installed in subsequent steps, via 5-membered intramolecular reactions. The olefin was oxidised by two different routes to the corresponding aldehyde 111 and alcohol 112. Oxidation to the 1, 2-diol, using catalytic OsO₄ and N-methylmorpholine oxide, as a stoichiometric oxidant, followed by NaIO₄ mediated oxidative cleavage, yielded the aldehyde 111 in high yield. Use of the safer polymer bound OsO₄²⁵₀ was also assessed but produced poor conversion to the diol. Ozonolysis, using a NaBH₄ reductive work-up yielded the alcohol 112. Interesting ozonolysis under milder reductive conditions (using dimethylsulfide (DMS)) failed to yield the aldehyde 111!

Various reductive amination methods were tested to assess whether the aldehyde 111 could be directly modified to the amine in one-pot. However all attempts using ammonia and ammonium salts failed to give any of the desired amine 115. The amine 115 was successfully accessed by sequential activation of the alcohol 112 (to the Mesylate 113), substitution by azide and reduction of the resulting azide 114 using Ph₃P and water. Orthogonal Boc protection of this amine to give 116 and concomitant hydrogenolysis of the benzyl and Cbz groups yielded the ortho substituted tyramine 117 required for coupling. Coupling with the bis-(pentoxyp)rotocatechuic acid derivative 105 using CDI proceeded to give 118. Formation of the HCl salt of the 2-aminoethyl derivative of JTE2-3 119 was afforded by acidolysis of the Boc protecting group of 118 using methanolic HCl. Unlabelled JTE2-3 62 was synthesised by coupling 105 with tyramine 106 using CDI in high yield (75%) (Scheme 4-5).

Ligation of 118 with Dansyl-Cl 84 and BODIPY® 630/650 X OSu 86 (Figure 2.5) was accomplished using methodology used in the successful synthesis of Dansyl- and BODIPY-JTE2-6 (99 & 100) (Chapter 2; Scheme 4-5). The free amine of 118 was liberated and reacted rapidly with the amine reactive fluorescent dyes. The fluorescent products from these reactions were confirmed by mass spectrometry, ¹H NMR and reverse phase HPLC to be the desired structures; Dansyl-JTE2-3 120, and BODIPY-JTE2-3 121.
Scheme 4-4 Synthesis of 2-aminoethyl derivative of JTE2-3. Reagents, conditions and yields: (i) Benzyl chloroformate, DIPEA, DMF, MeCN, rt, 24h, (57%); (ii) allyl bromide, K₂CO₃, MEK, reflux, 18h, (96%); (iii) Ph₂O, reflux, 1h, (56%); (iv) BnBr, K₂CO₃, MEK, reflux, 12h, (80%); (v) OsO₄, NMO, acetone, H₂O, rt. then NaIO₄, H₂O, THF, rt. (79%); (vi) NH₃ or NH₄⁺, NaCNBH₃, MeOH, AcOH, H₂O, rt. (no reaction); (vii) O₃, DCM, MeOH, -78 °C, then NaBH₄, rt, 12h; (viii) MsCl, Et₃N, DCM, 0 °C; (ix) NaN₃, DMF, 60 °C, 5h; (x) Ph₃P, THF, rt 24h then H₂O, rt, 48h; (xi) Boc₂O, H₂O, dioxane, 0 °C, 1h, (overall for vii-xi 34%); (xii) Pd/C, EtOH, EtOAc, H₂ (1atm), rt, 2h (54%); (xiii) CDI, MeCN, rt, (20%); (xiv) MeOH, AcCl, rt, 4h, (43%).
4.4 Pharmacology of JTE2-3 and BODIPY-JTE2-3

The pharmacology of JTE2-3 \(62 \) and BODIPY-JTE2-3 \(121 \), was assessed by competitive radioligand displacement of the non-selective cannabinoid \[^3\text{H}\]CP55,940 from cellular membranes containing human CB\(_2\) receptors and was performed as previously described in section 2.4. BODIPY-JTE2-3 \(121 \) failed to displace any of the \[^3\text{H}\]CP 55,940 from cell membranes prepared from CHO cells expressing the human CB\(_2\) receptor up to concentrations of \(10^{-5} \) mol/L (10 \(\mu \)M) (Figure 4-3 A). Surprisingly the unlabelled JTE2-3 \(62 \) exhibited a much lower affinity than expected, with concentrations of \(10^{-5} \) mol/L (10 \(\mu \)M) displacing only 40% of the bound \[^3\text{H}\]CP 55,940 in the CHO cell membrane assay. The absence of any displacement by BODIPY-JTE2-3 \(121 \) (no displacement observed at 32 \(\mu \)M) and the lower than expected affinity of JTE2-3 \(62 \) were corroborated using cell membranes prepared from HEK cells expressing the human CB\(_2\) receptor by an independent group in the USA (Figure 4-3 B). They determined a \(K_i \) value of 3.11 \(\mu \)M for JTE2-3 \(63 \) in a HEK cellular membrane assay. The results from both the CHO and HEK assays indicated a
K_i for BODIPY-JTE2-3 121 of $>>32$ µM. Binding affinity of Dansyl-JTE2-3 120 was not determined due to the poor solubility of the compound and that the other ligands tested exhibited such poor binding.

Figure 4-3 Radioligand displacement curves for the compounds JTE2-3 62 and BODIPY-JTE2-3 121. The curves show the percentage of $[^3H]$ CP55, 940 displaced from cellular membranes containing the human CB$_2$ receptor. (A) Demonstrates the displacement from cellular membranes made up of CHO cells expressing the CB$_2$ receptor (n=3). (B) Demonstrates the displacement from cellular membranes made up of HEK cells expressing the CB$_2$ receptor (n=4).

4.5 Use of BODIPY-JTE2-3 in Fluorescent Confocal Microscopy

The fluorescent ligand BODIPY-JTE2-3 121 was used in confocal experiments to demonstrate whether the ligand had the potential to highlight CB$_2$ receptor membrane binding. Detailed experimental conditions are included in section 2.5 but in brief known concentrations of fluorescent ligand were incubated with CHO cells
expressing human CB2 receptors and images were recorded at various time courses throughout the experiment. To assess whether the fluorescence observed was due to specific CB2 binding, fresh CHO cells were pre-incubated with a blocking concentration of a non-fluorescent cannabinoid ligand (i.e. 1 μM HU210 14) and the fluorescent ligand was subsequently introduced. Images collected from this experiment were compared to those conducted without the HU210 14 present, to determine if any fluorescence observed was due to CB2 receptor binding. Various concentrations of 121, ranging from 10 – 400 nM, were used in experiments. The fluorescence observed was weak even when laser power and pin-hole aperture was increased. Even at concentrations of 400 nM fluorescence from the CHO cells was negligible (results not shown). Background fluorescence from the CB2 transfected CHO cells was negligible at the excitation wavelengths used (633 nm) (Result not shown).

4.6 Discussion

Synthesis to access JTE2-3 62 and its 2-aminoethyl derivatives 119, 120, and 121 was successfully carried out. The positioning of the 2-aminoethyl linker was guided by molecular modelling results which demonstrated that attachment of a linker at this position should not interfere with the binding of the ligand in the receptor binding pocket.

In order to complete the synthesis of the 2-aminoethyl derivatives of JTE2-3 62 it was necessary to synthesise a novel ortho substituted tyramine derivative 109. By careful selection of the thermo stable Cbz protecting group247, we were able to access 109 via a thermally induced [3,3]-sigmatropic Claisen rearrangement. Oxidation of the olefin using two different oxidants (OsO4 with a NaIO4 cleavage, and O3) gave the aldehyde 111 and alcohol 112 respectively. Repeated attempts to generate the aldehyde 111 using ozonolysis and DMS failed to give the desired product. A literature report detailing this reaction on a similar allylic benzene system did not suggest that there were any problems during this step, however only brief experimental conditions were reported248. It was obvious that the ozonide of 110 could be formed, demonstrated by the successful reduction of this complex using NaBH4. Therefore, we concluded that the problems observed in our synthesis were
due to the DMS reduction step. All attempts to rectify this by altering the conditions of the DMS reduction did not resolve the problem and we had to use the alternative OsO₄ oxidation to generate the aldehyde 111. Unfortunately reductive amination of this aldehyde 111 failed to give the amine required. We assessed the use of NH₃ and NH₄Cl, as a source of ammonium ion, and combinations of these together to form the imine *in-situ* and reducing it to the amine using NaCNBH₃. However we could not detect the 1° amine in any of the attempted reactions. A Beilstein search revealed that other reported experiments using ammonia and aldehydes to give 1° amines often exhibited lower yields (the highest reported was 40%²⁵¹) than the corresponding reaction used to yield 2° and 3° amines. This is presumably due to the fact that once the 1° amine has been formed it is immediately available to react with the aldehyde present and form 2° amines. To produce the amine 115 we therefore had to use a more convoluted route; involving activation of the alcohol to the mesylate and forming the corresponding azide 114. This was reduced under mild conditions using PPh₃ and water to the corresponding amine 115. Boc protection of the amine resulted in a compound that was quantified analytically and we calculated an overall yield from the olefin as a respectable 32% for 5 steps; which represents an average yield of 80% for each step. The subsequent chemical reactions leading to the two fluorescent conjugates Dansyl-JTE2-3 120 and BODIPY-JTE2-3 121 utilised chemistry fully discussed in section 2.6. The unlabelled ligand JTE2-3 62 was synthesised to allow us to test the effect of conjugation to the fluorescent dye using a radioligand binding competition assay discussed below.

The affinity of JTE2-3 62 and BODIPY-JTE2-3 121 to the human CB₂ receptor was assessed using radioligand competition displacement assays against the non-specific cannabinoid \[^{3}H\] CP55, 940. The membrane homogenates used were made up from both CHO and HEK cells stably transfected with the human CB₂ ligand. Concentrations of up to 32 µM of BODIPY-JTE2-3 121 failed to displace any of the \[^{3}H\] CP55, 940 from the receptors. The \(k_i\) value of 3.11 µM obtained for the unlabelled JTE2-3 62 was much higher than that reported in the literature (0.4 nM)¹²⁶. This represented a difference in affinity to that quoted in the literature of a factor of 7500. JTE2-3 62 displayed less affinity to the human CB₂ than was expected. Adulterating JTE2-3 62 with the fluorescent dyes Dansyl and BODIPY effectively abolished any of the human CB₂ receptor binding ability JTE2-3 62 possessed. This
was confirmed in a fluorescent confocal microscopy experiment, because no membrane binding was observed at concentrations of 400 nM.

The significantly lower affinity of JTE2-3 62 observed in our displacement experiments, when compared to the literature Kᵢ value, was unexpected and was a matter of concern. Initially we checked that the binding assay was generating meaningful data by performing a saturation radioligand binding experiment (using [³H] CP55, 940) on the CB₂ HEK membranes which yielded a Kᵦ of 5.1 nM (results not shown), which was well within the reported range of 0.29-7.37 nM for this ligand⁵¹. The analytical data for the compound JTE2-3 62 was checked against that published in the original patent. ¹H NMR and m.p. were identical for our synthesised compound and the literature values (section 8.1). ¹³C and ES-MS, which were not reported in the patent, were consistent with the structure of JTE2-3 62. Finally a fresh stock solution of JTE2-3 62 was made up to check for errors in ligand concentration. We obtained the same results with the new stock solution and this result forms part of the n = 4 analysis shown in B of Figure 4-3. We had ruled out all experimental error in the calculation of the Kᵢ of JTE2-3 62 (3.11 µM) and yet could not explain the 7500 fold difference to that reported in the patent (0.4 nM)¹²⁶. Differences between the two experimental protocols used to calculate the Kᵢ of JTE2-3 62 were checked. The radioactively labelled ligand used and the species of CB₂ receptor tested against differed between the two protocols. [³H] Win 55212-2 and rat CB₂ receptors (derived from rat spleenocytes) were used in the Japan Tobacco publication¹²⁶, where we had used [³H] CP55, 940 and the human CB₂ receptor expressed in HEK and CHO cells. [³H] Win 55212-2 is not commercially available so we were unable to assess the effect of using a different radioligand. However we were able to test the affinity of JTE2-3 62 against the rat CB₂ receptor and discovered that the difference in the different Kᵢ values obtained was due to the species of CB₂ receptor used. A full discussion of this work is reported in Chapter 5.

4.7 Conclusions

- We successfully synthesised a derivative of the CB₂ selective ligand JTE2-3 62, incorporating an alkyl linker which we labelled with Dansyl and BODIPY® fluorescent dyes.
• Computational modelling demonstrated that the optimum position for attachment of an alkyl linker was on the phenol ring, as the phenol ring was located near to the top of the receptor binding pocket.

• Development of novel chemistry was established, enabling the synthesis of orthogonally protected 2-aminoethyl tyramine, required for the synthesis of the fluorescent conjugate.

• Binding data for the BODIPY® labelled compound 121, demonstrated a loss of affinity for the CB2 receptor ($K_i > 32 \mu M$).

• Confocal microscopy experiments showed that BODIPY labelled compound 121 did not bind to human CB2 receptors expressed in live CHO cells.

• Binding data obtained for the unlabelled lead compound JTE2-3 62, demonstrated it had, surprisingly, 7500 times less affinity to the CB2 receptor compared to the K_i value reported in the original patent. Thorough analysis of this anomaly suggested that the difference between the two results was due to the different species (rat and human) of receptor used in the binding assay.
5 Species selective nature of JTE2-3

From our investigations in chapter 4, we discovered that the selective CB$_2$ receptor ligand JTE2-3 displayed a 7500 fold decrease in binding affinity to the human CB$_2$ (hCB$_2$) receptor compared to the rat CB$_2$ (rCB$_2$) receptor, which was originally reported (K_i hCB$_2$ = 3.11 µM, rCB$_2$ = 0.4 nM)126. This substantial species dependant behaviour of the ligand was, to the best of our knowledge, the largest that has been reported for any cannabinoid and the details of our work to understand this unusual phenomenon are discussed below.

5.1 The rat and human CB$_2$ receptor

As discussed previously in section 1.3.4 both the human and rat species of CB$_2$ receptor have been characterised and cloned. The human receptor, first cloned by Munro et al., consists of 360 amino acids4, whilst two independent pieces of research have deduced that the rCB$_2$ receptor contains either 360105 or 410106 amino acids depending on which polymerase chain reaction (PCR) primer was employed. It is extremely difficult to clarify which of the two clones actually represents the rCB$_2$ receptor amino acid sequence, as no independent studies examining the different sequences have been published following the second cloning study. Since being published in July 2002, this most recent study by Brown et al., generating the 410 amino acid containing receptor106, has only been cited 5 times. By comparison, the original study by Griffin et al., who generated a 360 amino acid receptor105, has been cited by 13 other researchers since July 2002‡‡. This would suggest that to date the sequence generated by Griffin et al. has been adopted as the rCB$_2$ receptor of choice with more of the cannabis research community. From the two primary studies, both groups were able to show that their receptors were able to bind the cannabinoid Win 55212-2, and both studies demonstrated that this agonist binding gave a measurable change in a downstream signalling pathway of the GPCR (i.e. decrease in cAMP105, and an increase in MAP kinase106). The difference between the sequence lengths is related to the carboxyl terminus end (intracellular) of the receptor explaining why the Win 55212-2 binding capability of these two different receptors is unaltered106.

‡‡ Web of Knowledge (http://wok.mimas.ac.uk) citation search conducted on 17/06/04
The sequence homology of the rCB2 receptor with the hCB2 receptor depends upon which rat clone is being compared. The 360 amino acid rCB2 clone, is as expected, a closer match to the 360 amino acid hCB2 receptor generating a sequence homology of 81%105. The 410 amino acid clone has a much lower sequence homology to the hCB2 receptor with only 57% identity retained106. With this level of divergence in homology between the two species it is, perhaps, not surprising to discover that cannabinoids may have different affinities and efficacies at the rat and human CB2 receptors. This observation was highlighted by the authors of the two original rCB2 cloning publications, who both commented in their respective discussions that species differences between rat and human could be expected to emerge in future studies105,106. Unfortunately, it appears that other researchers in the cannabinoid field have failed to recognise this potential pitfall in their studies. This can be demonstrated in the relatively few citations that the two rCB2 cloning papers have received (35 in total§§) and that studies conducted on the rCB2 receptor are rarely backed up with a corresponding hCB2 receptor assay***. Fortunately, for human drug research, the advances made in genetic engineering has allowed most new cannabinoid ligands to be screened against the hCB2 receptor stably transfected into CHO or HEK cell lines.

There are a few examples from the literature where cannabinoids have been compared using the same assay conditions, against both the rCB2 and the hCB2 receptor. In the following section we will discuss these examples in terms of their relevance to this work.

5.2 Differences between CB2 ligand binding at the rat and human receptor

There are only three studies directly comparing the affinity of cannabinoid ligands to both the rCB2 and the hCB2 receptor. They are limited to testing eight different cannabinoids57,105,125. Direct comparison of binding affinity is important, as it overcomes the experimental error associated with different techniques employed by different laboratories performing the binding assay. Comparison of the binding affinity of ligands, performed in different independent studies have been reviewed51,80 but due to the variability of these results it is difficult to draw meaningful comparisons from the work.

§§ Web of Knowledge (http://wok.mimas.ac.uk) citation search conducted on 17/06/04

*** Author’s personal observation.
A summary of both the direct and indirect comparative work is shown in Table 5-1. Griffin et al. analysed their affinity data for statistical significance between the rCB$_2$ and hCB$_2$ receptor105. Using this study it was straightforward to determine which of the ligands tested showed significant species differences. Their analysis of seven different cannabinoids demonstrated that only three, JWH051 (classical cannabinoid), Win 55212-2 3, and anandamide 4 had significant differences between the rat and human CB$_2$ receptors105. The differences observed for the three cannabinoid ligands were a 9, 8, and 32 fold decreased affinity to the rCB$_2$ receptor respectively105. The observation that SR144528 6 exhibited little species selectivity was corroborated in a study by Rinaldi-Carmona et al. which reported that the rCB$_2$ and hCB$_2$ affinities were similar57, however work by Iwamura et al. was able to show an 8 fold decreased affinity to the hCB$_2$ receptor (Table 5-1)125. Iwamura et al. also demonstrated that Win 55212-2 3 had a 5 fold decreased affinity towards the rCB$_2$ receptor125, which is in agreement with the results generated by Griffin et al.105.

The results for Win 55212-2 3 and Δ9-THC 1, shown in Table 5-1, highlights how difficult interpreting results obtained from different laboratories can be. Using Win 55212-2 3 as an example, it can clearly be seen that although two studies both examined the same ligand on the rat and human CB$_2$ receptors, they have both produced different K$_i$ values for the two receptor species (rCB$_2$ K$_i$ = 10.4 or 1.30 nM and hCB$_2$ K$_i$ = 1.19 or 0.29 nM). It was for this reason that where possible we tried to compare direct experimental comparisons of K$_i$ values to assess for species’ differences.

The two most significant results relating to our work are for the compounds JTE1-22 61 and JTE907 66 (Table 5-1). These Japan Tobacco compounds were shown to exhibit large species differences in affinity, between the rat and human CB$_2$ receptor. The direct comparison conducted by Iwamura et al. of the compound JTE907 66 demonstrated that the compound had a 95 fold less favourable binding affinity to the hCB$_2$ receptor than to the rCB$_2$ (K$_i$ 35.9 and 0.38 nM respectively)125. This interesting result was attributed to the low sequence homology between the rat and human receptors and to the novel structure of JTE907 66125. The one indirect comparison included in Table 5-1, is of another Japan Tobacco compound, JTE1-22 61, which is of interest to us. The results, are extracted from the original Japan Tobacco patent126 and from a later publication by the Bristol Myers Squibb (BMS).
company who were interested in employing the novel structures as a template for their own CB2 receptor ligands. The original patent reported affinity of JTE1-22 61 in rat splenocyte membranes whilst workers at BMS screened the compound in the hCB2 receptor expressed in CHO cells. It is observed, from Table 5-1, that the binding of 61 at the rat and human receptors differs by a factor of 86. The low K_i observed in the rCB2 receptor (1.4 nM) is altered to a moderate K_i value in the hCB2 receptor (120 nM). Although the BMS workers who tested the compound in human CB2 receptors did not comment on the species difference, this second example of a Japan Tobacco compound exhibiting a large difference in affinity towards the CB2 receptor is noteworthy. Both of the ligand comparisons available for the Japan Tobacco ligands, show large differences (86 and 95 fold) in affinity between the rat and human CB2 receptor, with a higher binding observed at the rCB2 receptor.

We will be demonstrating, in the remainder of this chapter, our own evidence that another of Japan Tobacco’s amide containing cannabinoid also displays a species selective binding, with greater affinity observed for the rCB2 receptor. We will also extend the use of molecular modelling discussed in chapter 3 to explore the intimate nature of ligand-receptor binding to rationalize these findings.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Study type</th>
<th>rCB2 K_i (nM)</th>
<th>hCB2 K_i (nM)</th>
<th>hCB2/rCB2 ratio</th>
<th>Statistical analysis</th>
<th>Reference (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR144528 6</td>
<td>Direct</td>
<td>0.30</td>
<td>0.32</td>
<td>1</td>
<td>NS</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>0.24</td>
<td>1.99</td>
<td>8</td>
<td>ND</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>0.30</td>
<td>0.60</td>
<td>2</td>
<td>NS</td>
<td>57</td>
</tr>
<tr>
<td>Win 55212-2 3</td>
<td>Direct</td>
<td>10.4</td>
<td>1.19</td>
<td>0.1</td>
<td>P < 0.05</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>1.30</td>
<td>0.29</td>
<td>0.2</td>
<td>ND</td>
<td>125</td>
</tr>
<tr>
<td>Δ^2-THC 1</td>
<td>Direct</td>
<td>28.3</td>
<td>44.9</td>
<td>1.6</td>
<td>NS</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>6.80</td>
<td>3.13</td>
<td>0.5</td>
<td>ND</td>
<td>125</td>
</tr>
<tr>
<td>JWH015 53</td>
<td>Direct</td>
<td>269</td>
<td>98.4</td>
<td>0.4</td>
<td>NS</td>
<td>105</td>
</tr>
<tr>
<td>JWH051</td>
<td>Direct</td>
<td>3.16</td>
<td>0.33</td>
<td>0.1</td>
<td>P < 0.05</td>
<td>105</td>
</tr>
<tr>
<td>JTE907 66</td>
<td>Direct</td>
<td>0.38</td>
<td>35.9</td>
<td>95</td>
<td>ND</td>
<td>125</td>
</tr>
<tr>
<td>JTE1-22 61</td>
<td>Indirect</td>
<td>1.4a</td>
<td>120b</td>
<td>86</td>
<td>ND</td>
<td>a = 197 b = 126</td>
</tr>
</tbody>
</table>

Table 5-1 Comparisons of the binding affinity (K_i (nM)) of a selection of cannabinoids towards the rCB2 and hCB2 receptor. ND not determined. NS not significant.
5.3 Pharmacology results

In order to be able to directly compare human versus rat affinities of JTE2-3 it was necessary for us to calculate its K_i value at the rCB$_2$ receptor using a radioligand displacement assays. From the result obtained we could directly compare the rat K_i value to the human K_i obtained in chapter 4. The K_i value is calculated using the Cheng and Prussoff equation which uses the K_d value of the radioactive ligand ([3H] CP55, 940) being displaced. Therefore a standard curve was first produced in order to determine the K_d value of [3H] CP55, 940 in a rat splenocyte assay. A method by DeBlasi et al was followed whereby [3H] CP55, 940 is displaced by cold CP55, 940; which avoids the use of problematic saturation binding experiments252. Full details of the preparation of the rat splenocyte membranes and the binding experiment are given in the experimental section (section 8.2).

Figure 5-1 Graph used to calculate the K_d of [3H] CP 55, 940, showing the displacement of [3H] CP 55, 940 from membranes derived from rat splenocytes by cold CP 55, 940 (n=3).

The displacement graph shown in Figure 5-1 was used to calculate the EC$_{50}$ of 0.91 nM. Using the calculation from DeBlasi et al.252, shown below, we calculated the K_d of [3H] CP 55, 940 to be 0.59 nM.
DeBlasi et al. calculation252: \[K_d = EC_{50} - L \]

\[K_d = 0.91 - 0.32 \]

\[K_d = 0.59 \text{ nM} \]

where:

\(L \) = concentration of radioligand (nM)

\(EC_{50} \) = concentration of CP 55, 940 that displaces half the specific binding of \(^3\text{H} \) CP 55, 940 (nM)

\(K_d \) = equilibrium dissociation constant for \(^3\text{H} \) CP 55, 940 (nM)

Using the calculated \(K_d \) value of 0.59 nM for \(^3\text{H} \) CP 55, 940 we were able to use the Cheng and Prussoff calculations, within GraphPad® Prism3, to determine the \(K_i \) of JTE2-3 62 using a competitive radioligand displacement of the non-selective cannabinoid \(^3\text{H} \) CP 55, 940 from rat splenocyte membranes. The displacement of \(^3\text{H} \) CP 55, 940 by JTE2-3 62 from the rCB\textsubscript{2} receptor is shown in Figure 5-2. From this curve the \(K_i \) value for JTE2-3 62 was calculated to be 5.02 nM (95% confidence intervals 0.85 – 29 nM). This value is 600 fold less than the \(K_i \) of 3.11 \(\mu \text{M} \) calculated for the hCB\textsubscript{2} receptor in chapter 4.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure5-2.png}
\caption{Displacement curve of \(^3\text{H} \) CP 55, 940 by JTE2-3 62 from membranes derived from rat splenocytes (n=3).}
\end{figure}
Due to the species selective nature of JTE2-3 62 (and at least two other Japan Tobacco Compounds), it became prudent for us to retest the two BODIPY® Japan Tobacco fluorescent derivatives synthesised in chapters 2 and 4, against the rCB$_2$ receptor. Thus Bodipy-JTE2-6 100 and Bodipy-JTE2-3 121 were used in competitive displacement assays against [3H] CP 55, 940 using membranes from rat splenocytes. The binding curves from these assays are shown in Figure 5-3.

Figure 5-3 Displacement curve of [3H] CP 55, 940 by Bodipy-JTE2-6 100 (solid) and Bodipy-JTE2-3 121 (dashed) from membranes derived from rat splenocytes (n=4).

Although the K_i for both Bodipy-JTE2-6 100 and Bodipy-JTE2-3 121 could not be calculated from this assay due to maximal [3H] CP 55, 940 displacement not being achieved, it could be shown that at concentrations of 1 µM, 44% and 48% of the bound [3H] CP 55, 940 could be displaced by Bodipy-JTE2-6 100 and Bodipy-JTE2-3 121 respectively. This should be compared to no detectable displacement with these compounds at concentrations \geq 32 µM at the hCB$_2$ receptor.

5.4 Molecular modelling results

We explored the nature of the species selectivity using the molecular model of the CB$_2$ receptor discussed in chapter 3. In-order to investigate the possible differences between the binding of JTE2-3 62 in the rat and human CB$_2$ receptor we first
constructed the rCB2 model by homology modelling to the hCB2 previously generated. This was achieved by changing the non-conserved sequences in the hCB2 receptor to the corresponding rCB2 receptor residue, using similar experimental protocol detailed in section 3.3. The rCB2 sequence was sequence aligned against the hCB2 and mouse CB2 (mCB2) sequences (Swissprot reference number Q9QZN9 (rCB2), P47936 (mCB2), P34972 (hCB2) using the alignment program ClustalW (Version 1.81))232. The alignment generated is shown in Figure 5-4.

\[\text{CB2 sequence alignment}\
\]

\begin{verbatim}
 rCB2 MECTRELPLNGSNLGLFNPYTLMYLSDIAVLALCLMTGLLSALAENAVLYLILES 60
 mCB2 MEGEREELPGLGGLFNPXLYLSDIAVLASAVCLMTGLLSALQENAVLYLILES 60
 hCB2 MEGERELPLGNNLGLFNPXLYLSDIAVLASAVCLMTGLLSALEMMAVLYLILES 60
 rCB2 SQRLRRKPSYLFIGSLAGADFLASVIFACNFVIFHVFHGVDSRFLLKIGSVTMTFTAS 120
 mCB2 SRRLRRKPSYLFIGSVAGADFLASVIFACNFVIFHVFHGVDSRFLLKIGSVTMTFTAS 120
 hCB2 SHQLRRKPSYLFIGSLAGADFLASVIFACNFVIFHVFHGVDSRFLLKIGSVTMTFTAS 120
 rCB2 VGSLLLTAVDRYLCYPYKALVTRGRALVALGVMWVLSALISYLPLMGWTCCPSPCS 180
 mCB2 VGSLLLTADRYLCYPYKALVTRGRALVALGVMWVLSALISYLPLMGWTCCPSPCS 180
 hCB2 VGSLLLTAVDRYLCYPYKALVTRGRALVALGVMWVLSALISYLPLMGWTCCPSPCS 180
 rCB2 ELFPLIPNDYLLGWLLFIAFLFSGIIYTYGYVLWKAHRHVASLTLEHLSVPRGMRMLRD 240
 mCB2 ELFPLIPNDYLLGWLLFIAFLFSGIIYTYGYVLWKAHRHVASLTLEHLSVPRGMRMLRD 240
 hCB2 ELFPLIPNDYLLGWLLFIAFLFSGIIYTYGYVLWKAHRHVASLTLEHLSVPRGMRMLRD 240
 rCB2 VRLAKTLGAVALLICWFPILALMBHSLLTTLSDYKGSFAFCSMLCLAVSMVNPIIYA 300
 mCB2 VRLAKTLGAVALLICWFPILALMBHSLLTTLSDQKEFAFCSMLCLAVSMVNPIIYA 300
 hCB2 VRLAKTLGAVALLICWFPILALMBHSLLTTLSDQKEFAFCSMLCLAVSMVNPIIYA 300
 rCB2 LRSEGIRAHAHCLGKIDGLYRKEEAPSSVTETEAKX1-----SRCSSC 360
 mCB2 LRSEGIRAHAHCLGKIDGLRKEEAPSSVTETEAVKT1-----SRCSSC 360
 hCB2 LRSEGIRAHAHCLGKIDGLYRKEEAPSSVTETEAKX1-----SRCSSC 360
\end{verbatim}

\textbf{Figure 5-4} The sequence alignment of the rat, mouse and human CB2 receptors. Highlighted amino acids are non-conserved between the rat and human CB2 sequence.

From the sequence alignment shown in Figure 5-4, we mutated the non-conserved amino acids highlighted, from the residue contained in the hCB2 receptor, to the corresponding residue present in the rat sequence. The rCB2 receptor sequence was subjected to energy minimisation within Sybyl® using 100 Steepest Descent iterations followed by 500 Conjugate Gradient steps using the standard Sybyl® setup.

JTE2-3 62 was constructed using Spartan PCPro (Wavefunction Inc). Geometry optimisation was undertaken using quantum mechanical methods, namely \textit{ab initio} Hartree-Fock calculations at the 3-21G* level. In addition, partial atom charges were calculated using the ESP method. JTE2-3 62 was interactively docked into both the rat and human CB2 receptor models using Phe 197 as an anchor point for an aromatic-aromatic interaction with the ligand 62 in a similar manor to that depicted in figure 3.5.
The two ligand-receptor complexes were further optimised using energy minimisation and molecular dynamics. In our studies, we applied the CHARMM force field with an 8 Å cut-off for non-bonded interactions to optimize the ligand-receptor model as previously stated in section 3.3.3. It is clear from Figure 5-5 (A and B) that JTE2-3 62 in both the human and the rat receptor occupy very similar positions within the receptor. The overlay of the bound ligand demonstrates that the phenol ring in the hCB2 receptor has rotated into a more planar position relative to the rCB2, which as a consequence, has shifted the amide carbonyl group into a different alignment from that observed in the rCB2 receptor Figure 5-5 (C). The key amino acids involved in ligand-receptor interactions were located using the programme LigPlot for each model245. The results from this analysis are shown in Figure 5-6. It is evident that JTE2-3 62 bound into the rCB2 receptor is associated with four extra amino acid interactions than when bound in the hCB2 receptor. The most striking difference in the interactions observed between the two species is that JTE2-3 62 is capable of forming a hydrogen bond (H-bond), involving its carbonyl oxygen and the residue Thr 173 in the rCB2 receptor but not in the hCB2 receptor. Other contacts made with the ligand, in both receptor species, are hydrophobic and aromatic interactions. It is interesting to note that Phe 117, Phe 197 and Trp 194, important residues in CB2 receptor binding, are shown to form interactions with the ligand in the rCB2 model.

Investigations into why the ligand adopts a different conformation, in the rCB2 and hCB2 receptor, initially concentrated on its contacts made with Thr 173. This residue, present in both receptor sequences, was highlighted and shown to adopt very similar conformations in both receptors (Figure 5-7, A). Investigation of the non-conserved amino acids, highlighted in Figure 5-4, was unable to detect any significant differences in the binding pocket shape which could alter the bound conformations of JTE2-3 62 and therefore evoke the hydrogen bond observed in the rCB2 receptor (results not shown). 3D visualisation of both models, in which the ligand binding amino acids (identified by LigPlot; Figure 5-6) were highlighted, was able to identify a difference in the conformation of Glu 8, located in the extra cellular loop (EL) 1, between the rat and human species. Glu 8, which makes a contact with JTE2-3 62 in the hCB2 receptor, can be seen to adopt a position in the hCB2 receptor that is altered from the corresponding residue in the rCB2 receptor (Figure 5-7, B & C). A distance of 1.42 Å and 4.79 Å was measured between the carboxylic acid group of Glu 8 found within the hCB2 receptor, and the phenol oxygen of JTE2-3 62 in its final bound.
conformation within the rat and human receptors respectively. Therefore the carboxylic acid group of Glu 8, is involved in a clash with the phenol ring of JTE2-3 62 in the hCB₂, but not in the rCB₂ receptor.

Figure 5-5 Representations of JTE2-2 62 docked into the hCB₂ and rCB₂ receptor. (A) Shows the relative position of JTE2-3 62 in its final binding position/conformation in the hCB₂ receptor. Model is being viewed with TM 5 & 6 front and centre. (B) Shows the ligand JTE2-3 62 in its final binding position/conformation in the rCB₂ receptor. Model is being viewed with TM 5 & 6 front and centre. (C) Stereoview of the overlay of JTE2-3 62 in the bound conformation from the hCB₂ (magenta) and rCB₂ (cyan) receptor. The oxygen atoms shown in red are the phenol (top) and the amide carbonyl (lower).
Figure 5-6 Ligplot analysis of the amino acid binding interactions occurring with JTE2-362 docked in the hCB2 (A) and rCB2 (B) receptor.

Figure 5-7 Investigation into the binding conformation of JTE2-362 in the hCB2 (magenta) and rCB2 (cyan) receptor. (A) Shows the similar conformation of Thr 173 in the hCB2 and rCB2 receptor. (B) An overlay image of the ligand bound in both receptors showing the interactions with EL 1 (Met 1 – Gly 12); specifically with residue Glu 8. (C) An alternative view of the bound ligand interacting with Glu 8. EL 1 of the rCB2 is not shown for clarity.
5.5 Discussion

It has been previously shown, in chapter 4, that the ligand JTE2-3 62 binds to the hCB2 receptor with 7500 fold less affinity than the rCB2 receptor. In order to qualify these data we have determined the K_i value of JTE2-3 62 in the rCB2 receptor in our own laboratories. The assay, using membranes derived from rat splenocytes, was validated by determining the K_d value of a known cannabinoid ligand [3H] CP 55, 940. The calculated K_d value of 0.59 nM was within the reported range of 0.29-7.37 nM for this ligand 51 and we were therefore confident in using the assay to calculate K_i values of unknown compounds. Using this assay we determined the K_i value of JTE2-3 62 at the rCB2 receptor to be 5.02 nM (95% confidence intervals 0.85 – 29 nM). Although this value is 12 fold higher than the one reported in the original patent (0.4 nM) 126, it still supports the original hypothesis that a large increase in affinity is observed when the ligand is binding to the rCB2 receptor compared to the hCB2 receptor. Discussion in section 5.2 highlighted work on other cannabinoids, namely JWH051, Win 55212-2 3, and anandamide 4, that have statistically shown a species preference. Other cannabinoids, particularly the Japan Tobacco compounds JTE1-22 61 and JTE907 66 also exhibit a strong selectivity towards the rCB2 receptor. The 600 fold difference in affinity between the rat and human species demonstrated in chapters 4 and 5 is to the best of our knowledge, the largest species selectivity demonstrated by any cannabinoid to date. The authors of the original rCB2 cloning papers, both concurred that due to the low sequence homology between rat and human CB2 sequences, they would anticipate large differences between a ligand’s affinity or potency at the rCB2 and hCB2 receptors to be reported in future pharmacological studies; and warned researchers of the potential pitfalls in extrapolating data derived from the rCB2 receptor into human models 105,106. In this study we have demonstrated that the cannabinoid ligand JTE2-3 62 does not bind with equal affinity to the rat and human CB2 receptor. Extrapolating CB2 data from rat to human models may also have proved unpredictable for Japan Tobacco Inc. as they have withdrawn their benzamide drug, JTE907 66, from phase II human clinical trials for undisclosed reasons †††.

In using the Japan Tobacco compounds as lead molecules in designing fluorescent CB2 selective ligands (chapters 2 and 4) we did not recognise the

††† Information obtained from the Japan Tobbaco Inc. website (www.jti.co.jp) which shows that compound JTE907 did not progress to phase II trials for an anti-allergy compound in May 2003.
importance of species selectivity, as very little literature existed to consolidate previous work and the species selectivity exhibited were not as large as we encountered. Therefore fluorescent conjugation of these ligands with fluorescent dyes, which is normally associated with a reduction in receptor binding, was unlikely to yield high affinity fluorescent ligands for the hCB₂ receptor. In order for the fluorescent probe to fulfil its potential as a tool in molecular pharmacology and drug discovery, discussed in section 1.1, it is highly desirable that the fluorescent ligand should have good affinity towards the hCB₂ receptor.

When we retested the two BODIPY® labelled derivatives, Bodipy-JTE2-6 100 and Bodipy-JTE2-3 121, against the rCB₂ receptor they did demonstrate an albeit moderate affinity, displacing 44% and 48% of the bound [³H] CP 55, 940 respectively, at concentrations of 1 µM. This demonstrated to us that the overall strategy adopted for fluorescently labelling these cannabinoids, appeared to be partially successful. Unfortunately, the CB₂ affinity shown was still too poor for use in fluorescence experiments and it was decided not to pursue them as novel CB₂ selective ligands. Instead we concentrated our efforts in designing a high affinity CB₂ selective fluorescent ligand with affinity for the hCB₂ receptor, and this work is discussed in chapter 6.

Due to the importance and magnitude of the species selectivity exhibited by JTE2-3 62 we used computational methods to determine the nature of the species difference. Analysis of the ligand-receptor interactions occurring in both the rCB₂ and hCB₂ receptors, demonstrated that a key difference between the two species was the presence of a strong H-bonding interaction occurring within the rat receptor and not within the human receptor. It is well known that binding interactions occurring between a receptor and a ligand are crucial to prevent the ligand drifting in and out of the binding site; with stronger binding interactions leading to ligands with higher affinity to the receptor. The rCB₂-ligand complex crucially has four extra amino acid interactions, including a strong H-bond, when compared to the hCB₂-ligand complex (Figure 5-6). These extra binding interactions, especially the H-bonding, may well account for the higher Kᵣ value observed in the rat receptor. The H-bond occurring within the rCB₂ receptor exists between the amide carbonyl oxygen of JTE2-3 62 and the residue Thr 173. The location and conformation of Thr 173 in both species of receptor is almost identical and it is therefore the conformation or position of the
ligand within the binding site that has determined whether a H-bond can form (Figure 5-7, A). Figure 5-5 shows that the conformation of JTE2-3 62 is different in both receptor types; with the phenol ring in the hCB2 receptor being twisted into a more planar conformation. The result of this twist is that the carbonyl oxygen is shifted out of the plane necessary to form the crucial H-bond with Thr 173 (1.8 Å, 120° \(^{230}\)). The receptor interactions that result in the phenol ring twisting in the hCB2 receptor were investigated and we hypothesised that this was due to the conserved Glu 8 residue located in EL 1. From Figure 5-7 (B & C) it is possible to show that Glu 8 within the hCB2 receptor protrudes further into the binding cavity than is observed in the rCB2 receptor. Although Glu 8 is conserved between both species it is located in an EL loop which is only 50% homologous between the two species (Figure 5-4). The different conformations of the EL 1, adopted by both species, may result in the Glu 8 positional differences observed. The consequence of Glu 8 extending into the binding cavity is shown in Figure 5-7 C. One can envisage that when JTE2-3 62 is docked within the hCB2 receptor, the close proximity of Glu 8 (1.42 Å), induces a steric interaction which forces the phenol ring down into a planar position, thus shifting the amide carbonyl into a non-H-bonding position. The Japan Tobacco compounds are by far the most species selective of any of the cannabinoids reported in the literature. By using the data from our study it is possible to hypothesise that the difference in binding is due to the amide group within the structure forming a H-bond in the rat, but not the human, receptor. If this evidence is proven by further studies then compounds such as the Japan Tobacco benzamide 65 (figure 1-22), containing a conformationally restricted amide, may be less susceptible to the species differences.

It is finally worth stating that the CB2 model we have used to study the binding of the Japan Tobacco ligands is a high quality GPCR model, which is comparable to a similar peer reviewed model by Xie et al.\(^{242}\). However, GPCR modelling remains in its infancy and consequently is still limited in a number of areas; namely that water is not present within the molecular dynamics simulation; the template of Bovine Rhodopsin represents the receptor in the ‘off (unbound) state’; and the receptor is not coupled to the G-protein during the simulation. These limitations are likely to cause inaccuracies within any model produced, and may explain why modelling of JTE2-3 62 in the hCB2 appeared to give positive binding results when in reality the ligand had poor affinity to this receptor. There is currently a large interest in overcoming these
limitations in GPCR modelling and we hope to use future developments in this area to refine our own CB₂ model.82-84,227,229,253

5.6 Conclusions

- The K_i value of JTE2-3 62 in the rCB₂ receptor was found to be 5.02 nM which was 600 fold less than the K_i value obtained for the hCB₂ receptor. This difference in species selectivity is the largest reported for any cannabinoid.

- Our use of JTE2-3 62 as a lead molecule for conjugating with fluorescent dyes was unable to take account of this largely unrecognised species difference. It was therefore not surprising to find that conjugating a fluorescent dye to a ligand with low affinity to the hCB₂ receptor, relinquished fluorescent conjugers with associated poor hCB₂ affinity.

- Retesting the affinity of the fluorescent conjugers BODIPY-JTE2-6 100 and BODIPY-JTE2-3 121 in rCB₂ receptors, revealed that they were able to displace approximately 40% of the radiolabelled $[^3]$H CP 55,940 from the receptors, albeit at high concentrations (1 µM). Hence they also mirrored the species selectivity pattern as no displacement was observed when they were tested at this concentration against the hCB₂ receptor.

- Molecular modelling was used to understand the nature of the species selectivity. It was observed that JTE2-3 62 was able to form extra receptor interactions, including a strong hydrogen bond, in the rCB₂ receptor potentially leading to the lower K_i observed.

- The hydrogen bond interaction was investigated and found to form between the carbonyl of JTE2-3 62 and Thr 173 in the rCB₂ receptor. The bond could not form in the hCB₂ receptor due to a steric clash between Glu 8 and the phenol ring resulting in the ligand adopting a different binding conformation in which the ligand’s carbonyl group was twisted away from Thr 173.

- Due to the species selectivity exhibited by the Japan Tobacco compounds we decided to adopt a new strategy to develop fluorescent CB₂ ligands, with affinity at the hCB₂ receptor.
6 Fluorescent CB$_2$ ligand based on a modification to JWH015

Our previous studies have concentrated on the synthesis of fluorescent cannabinoids based on modifications to Japan Tobacco compounds, which have been demonstrated to possess an unusual species preference towards the rat CB$_2$ receptor. As previously discussed in chapter 1, our aim for these fluorescent ligands was to give cannabis researchers a unique tool which could be used to further our understanding of the CB$_2$ receptor system and to allow for the fast pharmacological screening of novel cannabinoid compounds. To fulfil these requirements, the fluorescent CB$_2$ ligand should have an acceptable affinity towards the human CB$_2$ (hCB$_2$) receptor. Our attentions were therefore refocused, upon conjugating a CB$_2$ selective ligand with proven affinity at the hCB$_2$ receptor to a fluorescent dye. The work reported below describes our efforts to design a fluorescent CB$_2$ ligand, using computational de novo design on the hCB$_2$ ligand JWH015 53.

6.1 JWH015

JWH015 53 (Figure 6-1), discussed fully in section 1.4.6, was chosen for the lead molecule in this study for a number of reasons. Previous discussion, in section 2.2.1, outlined the general requirements of a cannabinoid that was required in-order to successfully conjugate to a fluorescent dye. JWH015 53 possessed all of these requirements - shown below;

- K_i at the hCB$_2$ receptor of 14 nM122
- 27 fold CB$_2$/CB$_1$ selectivity122
- Chemically stable, no known light or enzymatic stability issues
- Comprehensive SAR conducted for the molecule122,135
- Is not included in the substances listed in the Misuse of Drugs Act

In addition, JWH015 53 had a number of advantages with regards to the specific strategy we planned to use in this work; de novo drug design. The molecule is structurally similar to Win 55212-2 3 (Figure 6-1), a molecule which had been extensively interrogated by molecular modelling and mutational analysis techniques.
We therefore envisaged docking Win 55212-2 into the hCB2 receptor, generated in chapter 3, using previous published data concerning Win 55212-2 binding. Structural similarities between JWH015 and Win 55212-2, will be used to superimpose common structural motifs (i.e. naphthyl rings) of the two molecules, in-order to generate an accurate model where JWH015 is bound in the hCB2 receptor (Figure 6-1).

Figure 6-1 Structures of Win 55212-2 and JWH015. Dashed lines indicate common structural motifs used in structural alignment of the molecules in molecular modelling. + indicates a grow point used in LigBuilder. Red line indicates a rotatable bond used in conformational analysis.

Using previous SAR data for JWH015 and SAR from similar molecules, described in detail in section 1.4.6, a number of positions upon JWH015 were identified that could potentially tolerate extension and bulky substituents. These positions were selected as ‘grow points’ on the molecule, in-order that the de novo drug design program LigBuilder could interrogate them for their ability to tolerate bulky fluorescent dyes.
6.2 LigBuilder

LigBuilder is a free-ware, multi-purpose programme used for structure-based drug design. The programme utilises a protein structure incorporating a docked ligand to ‘virtually screen’ a large number of molecules to determine if they are able to fit within the binding pocket of the protein. This use of computational methods saves on synthetic effort in developing new ligands towards specific targets. Obviously there are many other software packages, such as DOCK\cite{255}, GRID\cite{256}, LUDI\cite{257} etc., which are also capable of performing similar analysis, however we chose Ligbuilder due to its accessibility, favourable heterocyclic building block library and reliable ‘SCORE’ function (used to predict binding affinity)\cite{258}.

LigBuilder breaks down the components of de novo drug design into separate stages which allows the process to proceed logically from one step to another. Firstly the binding pocket is analysed to determine the size and the nature of key binding interactions. In order to do this a pre-docked ligand must be present within the receptor, so that the programme can identify which area of the protein to probe. The programme then calculates the size of the binding pocket and identifies the key interactions using probe atoms which include; (1) a positively charged sp\(^3\) hybridised nitrogen, as a hydrogen bond donor; (2) a negatively charged sp\(^2\) oxygen, as a hydrogen bond acceptor; (3) a sp\(^3\) carbon atom, probing for hydrophobic interactions\cite{254}. Following scoring and refinement, a computer model of the binding site is stored for use in the second step. The second step is known as a ‘building up’ process. It uses two different fragment-based algorithms that can GROW or LINK fragments onto a predefined seed structure within the receptor. The GROW strategy, which we employed, uses a pre-placed seed ligand (JWH015 \textbf{53} in our work) sited within the binding pocket. Assigned ‘grow points’ upon the pharmacophore are used by LigBuilder to add candidate fragments, from its database, to the selected site upon the seed molecule. The LINK algorithm was not be used in this work and readers are directed to the original reference for further details\cite{254}. The GROW algorithm selects a hydrogen on the user identified grow points and links it with a candidate fragment to form a new bond. The newly formed bond is then rotated using 15° increments and the programme calculates the resulting steric energy, between the ligand and binding pocket, for each of the 24 conformers. The lowest energy conformations are used in the next step. The conformation selected can then be mutated in terms of its carbon,
nitrogen and oxygen atoms to other atoms in the same hybridisation state. This mutation function is not a random event and takes account of the binding pocket analysis performed in the previous step. Thus, if the region of mutation lies within an area where H-bond donors are present it would only mutate the atoms to those of a H-bond acceptor nature. Finally the GROW algorithm has been enhanced by the input from synthetic chemists; which prevents the programme from designing unreasonable chemical structures. The scoring method used by LigBuilder has been shown in one study to be more reliable than that used by other drug design programmes. The SCORE algorithm is a two phase process which takes into account both the energy contributions made by ligand binding, and applies ‘Lipinski rules’ to the algorithm to try to prevent non-drug like molecules from being scored highly. Although Lipinski rules apply to developing bioavailable drugs rather than in vitro fluorescent ligands, our ligands still require good solubility and other ‘drug like’ properties to be used successfully in investigating the CB2 system. We felt that adding this scoring system to our work would generate enhanced fluorescent ligands. Therefore the SCORE algorithm gave each of the tolerated de novo structures a generic score which allowed them to be ranked in order of expected affinity to the receptor. LigBuilder has been demonstrated, using thrombin and dihydrofolate reductase, to generate chemical structures similar to the known ligands for these two enzymes. It is worth noting that LigBuilder treats the protein model as a rigid structure throughout the drug design process. This is a disadvantage in computational de novo drug design in GPCRs as TM 6 has been postulated to adopt a new conformation upon agonist binding. This inaccuracy in the technique is unavoidable using current computer technology and GPCR molecular modelling techniques (see chapter 3), and may lead to the generation of antagonist ligands. However, this was not viewed as a significant problem since all we required was a high affinity fluorescent ligand (agonist or antagonist) and specifically, in the CB2 receptor, studies have demonstrated that the conformational shift of TM 6 is not significant in agonist binding.
6.3 Molecular modelling

Win 55212-2 3 was constructed using Spartan PCPro (Wavefunction Inc) and subjected to a conformational analysis about the four rotatable bonds, highlighted in red in Figure 6-1, using the MMFF molecular mechanics forcefield. The lowest energy conformation, equivalent to the s-cis conformation, was chosen (see section 1.4.6.1 and figure 1-20). Geometry optimisation was undertaken using quantum mechanical methods, namely ab initio Hartree-Fock calculations at the 3-21G* level. In addition, partial atom charges were calculated using the ESP method. The ab initio geometry and charges were used to parameterise the CHARMM force field through generation of an RTF file.

Win 55212-2 3 was used in the s-cis form despite a previous SAR study by Reggio et al., demonstrating that only the rigid (E)-naphthylidine indene (equivalent to s-trans Win 55212-2 3) was the bioactive conformation in the CB2 receptor189 (see section 1.4.6.1 for structures and full discussion). This was decided for a number of reasons detailed below:

- The structure of the (E)-naphthylidine indene (figure 1-20) deviates from the indole structure of Win 55212-2 3 considerably. The (E)-naphthylidine indene posses neither the H-bond acceptor ring nitrogen nor the carbonyl oxygen of Win 55212-2 3 and possess extra π electrons resulting from its extra double bond.
- The binding data presented for the (E)- and (Z)- naphthylidine indenes shows that although the E isomer binds preferentially to the CB2 receptor (K_i = 2.05 nM), the Z isomer (representing s-cis Win 55212-2 3) also demonstrated nanomolar affinity (K_i = 658 nM)189.
- Another study, published after the work conducted on the naphthylidine indenes, using high resolution NMR and molecular modelling clearly established that the favourable conformation of Win 55212-2 3 was s-cis191.
- Our own geometry optimisation demonstrated that there was a difference in energy between the lowest energy state s-cis and s-trans confomers of 2.5 Kcal mol⁻¹ and 62% of the lowest energy conformers resided in the s-cis form (results not shown).
Our major concern about refining the s-cis model, obtained through our own geometry optimisation studies and supported by previous NMR data191, to the s-trans conformation, previously hypothesised by Reggio \textit{et al.} to be the bioactive conformer, was the methodology used in their hypothesis189. Although \((E)\)-naphthylidene indene was clearly shown to have a higher affinity to the CB\textsubscript{2} receptor, it included in its structure an additional double bond whilst it did not have two H-bond acceptors that are present in Win 55212-2 3. Thus; although the indene analogues would suggest that the s-trans form of Win 55212-2 3 was the binding conformation, we felt that the two structures were too diverse to correlate together. Subsequent to their SAR study, Reggio \textit{et al.} published molecular modelling results which showed that only the s-trans isomer of Win 55212-2 3 could bind successfully in the CB\textsubscript{2} receptor194 and concluded that this was proof of their hypothesis that the s-trans conformation being bioactive was correct. We will demonstrate below that in our own work, s-cis Win 55212-2 3 was not only tolerated in the CB\textsubscript{2} receptor, but also displayed very similar binding interactions to those obtained for the s-trans conomer.

Win 55212-2 3 was interactively docked into the CB\textsubscript{2} receptor (Alignment 3 as described in section 3.3.) using Phe 197 (see section 3.3.3 for the importance of Phe 197) as an anchor point for an aromatic-aromatic interaction with the indole ring of Win 55212-2 3, as previously described194. As Win 55212-2 3 was able to dock into the binding pocket in both a naphthyl-up and naphthyl-down position (Figure 6-2) and only limited unsubstantiated evidence existed that the ‘correct’ position was naphthyl-up194, we decided to model and assess both possible complexes.

\textbf{Figure 6-2} Win 55212-2 3 docked in the s-cis conformation to the CB\textsubscript{2} receptor. (A) naphthyl-down and (B) naphthyl-up position using Phe 197 as an anchor point.
Both ligand-receptor complexes were optimised using energy minimisation and molecular dynamics. In our studies, we applied the CHARMM force field with an 8 Å cut-off for non-bonded interactions to optimize the ligand-receptor model. In order to mimic the hydrophobic transmembrane environment we set the dielectric constant to a value of 4.0. The molecular dynamics protocol consisted of: i) initial minimisation of 2500 iterations of ABNR conjugate gradient minimisation until the RMSD became less than 0.005 KJmol\(^{-1}\); ii) MD simulation, placing a harmonic constraint on the 7 backbone \(\alpha\)-helices and heating the structure to 300 K over 1 ps, conducted at constant temperature (300 K) for 100 ps with a 1 fs time step; iii) quenching the structure to 0 K over 1 ps and removing all constraints with a final minimisation using ABNR conjugate gradients (6000 iterations) until the RMSD became less than 0.005 KJmol\(^{-1}\).

The energy of the two complexes was monitored throughout the molecular dynamics experiment at 0.5 ps time intervals. The plot of the total energy of the complex vs time is shown in Figure 6-3.

![Figure 6-3](image)

Figure 6-3 Energy profile of Win 55212-2 3-CB\(_2\) receptor complex over a 0.1ns molecular dynamic simulation performed at 300 K using the CHARMM force field.

The above graph demonstrates that once ‘energised’, the energy function of both complexes stabilises over the first 60 ps. In the naphthyl-down complex equilibrium is
maintained but in the naphthyl-up complex the energy increases at 60 ps and remains approximately 200 KJmol\(^{-1}\) higher than the corresponding naphthyl down model. The final energy minimised complexes are shown in Figure 6-4.

![Figure 6-4](image)

Figure 6-4 Representations of Win 55212-2 docked in the s-cis conformer in the hCB\(_2\) receptor. (A) a naphthyl-up and (B) a naphthyl-down position. Residue shown in yellow is Phe 197.

Figure 6-4 clearly illustrates that the final position of Win 55212-2 in the naphthyl-down model has shifted away from Phe 197; used as the initial anchor point to dock the ligand. The naphthyl-up complex retained close interactions between the ligand’s indole ring and Phe 197. The ligand in both simulations retained its s-cis configuration.

The key amino acids involved in ligand-receptor interactions were explored using the programme Ligplot for each model\(^{245}\). The results from this analysis are shown in Figure 6-5. It was demonstrated that as expected, the shift in the position of the ligand, shown in Figure 6-4, resulted in markedly different amino acids residues that formed interactions with Win 55212-2 in the naphthyl-up and naphthyl-down model. The ligand, docked in the naphthyl-up position, was shown to form hydrophobic and aromatic interactions with a number of residues that have been demonstrated, in previous studies, to interact with cannabinoids (see section 3.2); notably Phe 117, Trp 194, and Phe 197 (Figure 6-6). Further examination of the naphthyl-up model demonstrated that Win 55212-2 was located within an aromatic
cluster formed by Phe 117, Trp 194, and Phe 197 (Figure 6-6). Phe 117 and Phe 197 form face-face aromatic interactions with the indoles ring and Trp 194 forms an edge-edge interaction with the naphthyl ring of Win 55212-2 3 (Figure 6-6). The naphthyl-down complex included a H-bond interaction and three interactions with the EL 1.

![LigPlot analysis of the amino acid binding interactions occurring with Win 55212-2 3 bound in the hCB2 receptor in the naphthyl-up and naphthyl-down position.](image)

In view of the fact that the naphthyl-up model demonstrated many more similarities to previously published data of Win 55212-2 binding, such as an interaction with Phe 197 and predominately aromatic-aromatic and hydrophobic interactions we decided to use this ligand-receptor complex as a template in the de novo molecular design.
Structural alignment, by superimposing the naphthyl, carbonyl and indole ring nitrogens of both JWH015 53 and Win 55212-2 3 (Figure 6-1), and further energy minimisation using ABNR conjugate gradients (6000 iterations) until the RMSD became less than 0.005 KJmol⁻¹, was used to produce a ligand-receptor model where JWH015 53 was located within the binding pocket. The ‘growing points’ for JWH015 53, shown in Figure 6-1, were added and the molecule was subject to de novo design using the programme LigBuilder (section 6.2).

The de novo design results were manually screened for molecules that had high scores and chemical structures that resembled known fluorescent molecules. The resounding trend, within the molecules generated, was the diversity and size of substituents that were tolerated at the 3-naphthyl position of JWH015 53. Figure 6-7 shows an example of four of the two hundred structures generated. Compounds 122a-d show a significant diversity in the type of structure that is tolerated at the 3-naphthyl position of JWH015 53; with unsaturated alkyl chains 122a; carbocyclics 122b &122d; and functionalised branched alkyl chains 122c featuring in the high scoring compounds returned.
Compound 122b was of specific interest to us as the bulky indene group present within the structure resembled the fluorescent dye NBD 85 (see Figure 2-5). To test whether the indene of 122b could be replaced with NBD, and still bind to the CB$_2$ receptor, a NBD equivalent of 122b, incorporating an amine linkage necessary for chemical synthesis, was modelled. The NBD derivative of 122b was constructed using Spartan PCPro (Wavefunction Inc). Geometry optimisation was undertaken using quantum mechanical methods, namely ab initio Hartree-Fock calculations at the 3-21G* level. In addition, partial atom charges were calculated using the ESP method.

The 2D and 3D structure of this molecule, 3-NBD-JWH015 123, is shown in Figure 6-8 (A & B). The molecule was docked into the hCB$_2$ receptor by superimposing the naphthyl groups of 3-NBD-JWH015 123 and Win 55212-2 3, which had already been docked into the CB$_2$ receptor as described above, and the resulting complex was further minimised, using ABNR conjugate gradients (25000 iterations) until the functional tolerance was less than 0.00001 KJmol$^{-1}$, to yield a ligand-receptor model where 3-NBD-JWH015 123 was located within the binding pocket (Figure 6-8, C & D).
Figure 6-8 The 2D and 3D structure of 3-NBD-JWH015 123 (A & B). C and D show 3-NBD-JWH015 123 bound into the solvent accessible surfaces of the hCB$_2$ receptor. C = view from side looking at the benzofurazan ring of 123. D = view from the top looking down at the nitro group of 123.

From the ligand-receptor complex generated it was clear that the hCB$_2$ receptor could tolerate the proposed ligand 3-NBD-JWH015 123. The NBD fluorescent dye was positioned at the top of the receptor binding pocket and was visible when the solvent accessible surfaces were viewed (Figure 6-8, B & C). We therefore concluded that 3-NBD-JWH015 123 could bind to the hCB$_2$ receptor and synthesis of this molecule was undertaken.
6.4 Chemistry results

Synthesis of the fluorescent conjuger was accomplished using modifications to a procedure by Bell et al.52 (Scheme 6-1). \textit{N}-Propyl-2-methylindole 125 was accessed by alkylation at N1 of commercially available 2-methylindole 124 using standard methodology. The commercially available 3-nitro-1, 8-naphthalic anhydride 126 was selectively decarboxylated via the mercuric salt of its di-acid to give the desired 3-nitro-1-naphthoic acid261,262. The \textit{meta} substitution was confirmed by comparative m.p. with literature values and \textit{1}H NMR, which established the presence of two doublets with characteristic meta coupling ($J = 2.4$ Hz249). The acid was converted to its corresponding acid chloride 127 using SOCl$_2$. Lewis acid promoted electrophilic substitution at C3 of 2-methyl-1-n-propylindole yielded the 3-nitro derivative of JWH015 128. Reduction of the nitro group of 128 to the corresponding amine 129 was achieved using catalytic hydrogenation. The two low yielding reactions leading to the acid chloride 127 (22\%) and the 3-aroylindole 128 (19\%) are un-optimised and are comparable with previous literature preparations52,261.

During our synthesis we observed that only non-fluorescent derivatives are formed when NBD is reacted with aromatic amines, due to an internal quenching caused by a photoinduced electron transfer from the aromatic amine to the NBD dye263,264. It was therefore necessary to insert a short C2 amide functionalised linker between the aniline nitrogen and the NBD dye, which had previously been shown to prevent the internal quenching mechanism264. The short linker was chosen after re-visiting the molecular model of 3-NBD-JWH015 123 and establishing by visual inspection that the binding pocket encasing the NBD dye was spacious with no amino acid residues within 8 Å of the dye.

Therefore, established carbodiimide chemistry was used to couple Boc protected glycine with the amine of 129. This was the shortest linker available that produced the required amide bond and contained a functionalised amine group; necessary for conjugation with the dye. Acidolysis of the Boc group of 130 exposed the primary amine 131, which when coupled with NBD-F 85 (Figure 2-5) afforded the fluorescent conjuger 3-Gly-NBD-JWH015 132.

An authentic sample of JWH015 53 was prepared using an alternative preparation for 3-aroylindoles, also modified from Bell et al.52 (Scheme 6-2). 3-Naphthoyl-2-methylindole 134 was prepared from the magnesium salt of 2-
methylindole, prepared in situ, by the action of methylmagnesium bromide on 2-methylindole 124, and subsequent reaction with 1-naphthoyl chloride 133. N-Alkylation of 133 using 1-bromopropane under standard conditions yielded JWH015 53 as an oil. Commercial samples of JWH015 53 have a m.p. supplied with their certificate of analysis‡‡‡, however we were unable to crystallise the sample to determine a m.p., despite numerous attempts from a number of different solvent systems. The JWH015 53 synthesised did however exhibit a 1H and 13C NMR, MS, elemental analysis and a TLC R_f which was consistent with the structure of JWH015 53.

Scheme 6-1 Synthesis of 3-Gly-NBD-JWH015. Reagents, conditions and yields: (i) 1-bromopropane, NaH, DMF, rt, 4h, (97%); (ii) (a) NaOH, water, HgO, AcOH, reflux, 3 days, (b) dil. HCl$_{aq}$, reflux, 4h, (c) SOCl$_2$, reflux, 4h, (overall 22%); (iii) AlCl$_3$, DCM, reflux, 30min, (19%); (iv) Pd/C, H$_2$, EtOH, 1h, (66%); (v) Boc-gly, DCC, DMAP, DCM, rt, 12h, (67%); (vi) MeOH, conc HCl$_{aq}$, rt, 12h, (50%); (vii) NBD-F 85, NaHCO$_3(aq)$, pH 8.3: MeCN 1:1, rt, 1h, (46%).

‡‡‡ Information obtained from Tocris Cookson website www.tocris.com/searchframeset.htm
Scheme 6-2 Synthesis of JWH015. Reagents, conditions and yields: (i) MeMgBr, EtOEt, 0 °C-reflux, 2h, (31%); (ii) 1-bromopropane, K₂CO₃, MEK, reflux, (36%).

6.5 Pharmacology results

6.5.1 Radioligand binding

Compounds 53, 128, 129, 131, and 132 were tested for affinity at the hCB₂ receptor by competitive radioligand displacement of the non-selective cannabinoid [³H] CP 55, 940 from CHO cellular membranes containing hCB₂ receptors and was performed as previously described by Legget et al.²²⁴. The results of the binding assay are shown in Table 6-1.

<table>
<thead>
<tr>
<th>Compound identity</th>
<th>Kᵢ, hCB₂ receptor (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JWH015 53</td>
<td>36 (31-42) (Litₖ 14 ± 5)</td>
</tr>
<tr>
<td>128</td>
<td>143 (56-364)</td>
</tr>
<tr>
<td>129</td>
<td>191 (59-622)</td>
</tr>
<tr>
<td>131</td>
<td>420 (359-492)</td>
</tr>
<tr>
<td>3-Gly-NBD-JWH015 132</td>
<td>25% displacement at 10 µM</td>
</tr>
</tbody>
</table>

Table 6-1 Results of a competitive displacement assay at the hCB₂ receptor. Results in parentheses are 95% confidence intervals for three individual experiments ran in triplicate. (a) ref 122.

Each of the compounds, except 3-Gly-NBD-JWH015 132, exhibited nanomolar Kᵢ values with respect to the hCB₂ receptor. 3-Gly-NBD-JWH015 132 did show an affinity towards the CB₂ receptor (25% displacement at 10 µM) however we were unable to calculate a Kᵢ for this compound as any attempt to increase the concentration of the test solution above 10 µM resulted in precipitation in the assay tubes.
6.5.2 Functional assay

Due to the precursor compounds of 3-Gly-NBD-JWH015 exhibiting nanomolar K_i values, we decided to test these compounds in a $[^{35}\text{S}]$ GTP-γ-S functional assay to determine to what extent the agonist activity of the original JWH015 lead structure had been retained. For further information on the $[^{35}\text{S}]$ GTP-γ-S assay in cannabinoid research, readers are directed towards section 1.3.4.3.2 and a review by Griffin et al.115. The compounds JTE015, 3-nitro-JWH105 and 3-amino-JWH015 were assayed for their ability to stimulate $[^{35}\text{S}]$ GTP-γ-S binding compared to the potent cannabinoid agonist HU210, previously described by Leggett et al.224. The results are shown in Figure 6-9.

![Figure 6-9](image)

Figure 6-9 Agonist-potentiated $[^{35}\text{S}]$ GTP-γ-S binding to CHO cell homogenates containing the hCB$_2$ receptor (significance levels *P<0.05, **P<0.01 compared to basal binding (100%)). Error bars represent the SEM of three individual experiments ran in triplicate.

From Figure 6-9 it is clear that each of the compounds tested were able to significantly increase $[^{35}\text{S}]$ GTP-γ-S binding above basal levels when tested at a concentration of 1000 nM. Only HU210 was able to significantly raise $[^{35}\text{S}]$ GTP-γ-S binding above basal level when used at 10 nM concentrations. Comparison of the three indole based compounds tested, 53, 128, and 129, demonstrated that similar levels of receptor stimulation were observed, and Anova analysis was unable to detect
any significant statistical difference between any of the three compounds at concentrations of 1000 nM.

6.6 Confocal microscopy results

The fluorescent ligand 3-Gly-NBD-JWH015 132 was used in a confocal experiment to demonstrate whether the ligands had the potential to highlight CB₂ receptor membrane binding. A known concentration of 3-Gly-NBD-JWH015 132 was incubated with live CHO cells expressing human CB₂ receptors and images were recorded at various time courses throughout the experiment. To assess whether the fluorescence observed was due to specific CB₂ binding, CHO cells were also pre-incubated with a blocking concentration of a non-fluorescent cannabinoid ligand (i.e. 1 µM HU210 14) and the fluorescent ligand was subsequently introduced. Images collected from this experiment were compared to those conducted without the HU210 present, to determine if any fluorescence observed was due to CB₂ receptor binding. At concentrations of 100 nM, 132 exhibited strong intra-cellular fluorescence after 20 minutes; however, this fluorescence could not be blocked or reduced by pre-incubation with HU210 14 (Figure 6-10). Background fluorescence from the CB₂ transfected CHO cells was negligible for the excitation wavelength used for NBD (488 nm) – result not shown.

![Figure 6-10](image)

Figure 6-10 Confocal slice, taken at 20 min, of the 3-Gly-NBD-JWH015 132 (100 nM) binding to live CHO cells expressing the hCB₂ receptor in HEPES buffered saline at 22°C. (A) Overlay of fluorescent channel (LP 505) and phase contrast with no HU210 14 present; (B) Overlay of fluorescent channel (LP 505) and phase contrast with 1 µM of blocking HU210 14 present. Argon laser excitation at 488 nm. Slice depth 1.1 nm.
6.7 Discussion

A fluorescent conjugate of the selective hCB$_2$ ligand JWH015 53 was synthesised in seven steps following de novo drug design using the programme LigBuilder which suggested that the 3-naphthyl position of JWH015 53 would tolerate bulky substituents, such as fluorescent dyes.

The molecular modelling and subsequent de novo design used a model of JWH015 53 docked into the hCB$_2$ receptor, which was based on a molecular model generated of a similar indole cannabinoid, Win 55212-2 3, bound in the CB$_2$ receptor. Win 55212-2 3 was chosen as the precursor model, having previously been studied by molecular pharmacology194, molecular modelling194 and SAR experiments189 providing information to construct our model and subsequently compare it with. As previously discussed in section 6.3, overall evidence supported docking Win 55212-2 3 in the s-cis conformer, despite the (E)-naphthylidene indene isomer (postulated to represent the s-trans form of Win 55212-2 3189) possessing greater affinity at the hCB$_2$ receptor. Our molecular modelling results, which evaluated Win 55212-2 3 in both the naphthyl-up and naphthyl-down position provided evidence that the s-cis form of 3 was tolerated by the hCB$_2$ receptor when bound in the naphthyl-up position.

Evaluation of the naphthyl-up ligand-receptor complex revealed that the crucial aromatic-aromatic interactions at Phe 117, Trp 194 and Phe 197, demonstrated in other experiments to be important182,189,242, were all present in our model (Figure 6-6). In-fact in our model the ligand’s position, relative to the position of these amino acids, was remarkably similar to that of a previous model generated by Song et al. in which s-trans Win 55212-2 3 was bound in the hCB$_2$ receptor194 (Figure 6-11, A). This is in contrast to their conclusion that the s-cis form of Win 55212-2 was not tolerated in the binding pocket, due to a steric clash with a valine residue in TM 3. This clash was examined in our model, by highlighting the Van Der Waals (VDW) radii of each valine residue in TM 3 and checking that there was no overlap with the VDW surface of Win 55212-2 3 (Figure 6-11, B). It is clear that even the closest valine (Val 164) does not clash with the structure of Win 55212-2 3 in any way. An explanation of the discrepancy between the two results may be due to their hCB$_2$ model being homology aligned to the non-G-protein coupled protein BacterioRhodopsin, which as discussed in section 3.1.1, has now been superseded by the use of Bovine Rhodopsin (which was used in our model) to generate a more accurate GPCR model.
Figure 6-11 (A) The proposed position of Win 55212-23 and binding amino acids (shown in yellow) from the ligand-receptor complex proposed by Song et al.194. F 3.36 = Phe 117, F 5.46 = Phe 197, W 5.43 = Trp 194. (B) The relationship between the VDW radii for each of the valine monomers (shown in green) present in TM 3 and Win 55212-23 from our model of Win 55212-23 bound to the hCB\textsubscript{2} receptor.

An interesting observation regarding the naphthyl-down complex, was that after molecular dynamic simulation, Win 55212-23 was ‘bounced’ out of its initial interactively docked binding pocket (Figure 6-2) into a separate binding pocket which was located towards the extra cellular surface of the receptor (Figure 6-4). This resulted in a lower energy complex, shown in Figure 6-3. However, the amino acids binding the ligand have never been demonstrated in any other study to be important in cannabinoid binding. This was very similar to the observations encountered when JTE2-6 63 was simulated binding in a phenol-down position in the CB\textsubscript{2} receptor discussed in chapter 2.

The model of Win 55212-23 bound both in its s-cis conformer and naphthyl-up position was modified to create a model where our lead molecule JWH015 53 was positioned within the hCB\textsubscript{2} receptor. \textit{De novo} design using LigBuilder was able to determine that bulky substituents were tolerated at the 3-naphthyl position of JWH015 53. The molecule 3-NBD-JWH015 123 (Figure 6-8), incorporating the fluorescent dye NBD at the 3-naphthyl position, was constructed \textit{in silico} and demonstrated, by computational methods, to fit within the binding pocket of the hCB\textsubscript{2} receptor.
During our synthesis towards 3-NBD-JWH015 123, we found that only non-fluorescent species are formed when NBD is conjugated to an aromatic amine such as 123. Literature reports of this behaviour are sparse; however we were able to find two studies in which the mechanism of this fluorescence quenching was investigated264,265. One study demonstrated that a photoinduced electron transfer (PET) from the donor (NBD dye) to the acceptor (aromatic amine) was responsible for the quenching observed265. The second study was able to determine that a linker, placed between the donor and acceptor prevented PET. The length of the alkyl linker used was inversely proportional to the level of quenching, measured as the quantum yield, observed 264. Thus; a nonyl chain (C9) was required to totally negate the PET effect. However they also claimed that an amide group within the linker prevented PET occurring, even when the chain length was reduced to an acetyl (C2) spacer 264. This latter observation became important after we interrogated the 3-NBD-JWH015 123-CB2 receptor model to determine if a linker could be placed in the molecule. The model illustrated that the NBD structure was located in a pocket that could accommodate a short linker of up to three atoms (approximately 4.5 Å in length246). We therefore decided to install an amine functionalised acetyl linker to separate the 3-amino-JWH015 129 and NBD moieties. This was achieved using the amino acid, glycine, as the linker.

The synthesis of the molecule incorporating the glycine linker, 3-Gly-NBD-JWH 132, was achieved in a seven step convergent synthesis from commercially available 2-methylindole and 3-nitro-1,8,-naphthalic anhydride starting materials. The low yielding reactions leading to 3-amino-JWH015 128 (19%) and 3-nitro-1-naphthoic acid (22%) were both comparable with previous literature preparations52,261.

The reaction leading to the 3-nitro-1-naphthoic acid was reviewed due to the fact that there were two carboxylic acid groups which could potentially decarboxylate to give two different products. The mechanism postulated for this reaction (Pesci reaction), by Newman et al., involved the preferential decarboxylation of the acid group in the most electron rich environment (i.e position 8 in 3-nitro-1, 8-naphthalic anhydride), due to the increased stability of the transition state as the aromatic-carboxyl bond is broken and the new aromatic-metal bond is formed (Figure 6-12).
The intermediate anhydrohydroxymericuric acid formed was then treated with acid to afford the desired compound. The compound’s structure was determined using the usual analytical techniques including comparative m.p. compared to literature reference values; however the most compelling evidence regarding its substitution pattern came from the two meta coupled doublets observed in its 1H NMR spectrum, as the spectrum for 6-nitro-1-naphthoic acid would contain only one meta coupled doublet in its spectrum. Following synthesis we were able to test the compounds’ pharmacology.

The fluorescent conjuger 3-Gly-NBD-JWH 132 was found to have low affinity towards the hCB$_2$ receptor in a competitive radioligand binding assay (25% displacement at 10 µM). This reduction in receptor affinity compared to the original unlabelled JWH015 53 was attributed to the addition of the bulky fluorophore and linker system causing steric and electronic clashes within the receptor. However it did still retain some affinity to the hCB$_2$ receptor and we evaluated its use as a fluorescent cannabinoid in a fluorescence confocal microscopy experiment. Unfortunately due to the compound’s low receptor affinity, requiring high concentrations of ligand to be used, combined with the high lipophilicity of the ligand we were unable to detect membrane binding. Instead we observed a non-specific accumulation within the cytosol (Figure 6-10).

The modification to the 3-naphthyl position JWH015 53 was assessed. Having discovered that 3-Gly-NBD-JWH 132 retained some of its affinity to the hCB$_2$ receptor we decided to test three of the 3-naphthyl precursors, 128, 129, and 131 (Scheme 6-1) to determine if the smaller substituents, nitro, amine, and N-glycyl, also retained affinity to the receptor. From the affinity data we obtained it was noted that the binding affinity of the nitro 128, amino 129 and N-glycyl 131 decreased,
compared to JWH015 53, as the steric bulk of the substituent at the 3-naphthyl position increased. Thus the affinity of the smallest substituent, hydrogen 53 exhibited the highest binding, with nitro 128 and amino 129 groups showing a 3.9 and 5.3 fold loss in affinity, the addition of the larger glycine residue 131 decreased the affinity by a factor of 11.6. The glycine-NBD conjugate 132 with the largest substituent at this position demonstrated the largest reduction in binding affinity (K_i of >10 µM).

Receptor efficacy studies, measuring agonist stimulated[^35S] GTP-γ-S binding, comparing JWH015 53 with the two highest affinity compounds, 3-nitro-JWH015 128 and 3-amino-JWH015 129, established that 3-naphthyl substitution, with nitro and amine groups retained agonist activity to similar levels shown by JWH015 53. This study, demonstrating the effect of substitution at the 3-naphthyl position of JWH015 53, has established that limited modification using small substituents is tolerated in terms of receptor affinity and efficacy. This is a notable result for two reasons. (i) to the best of our knowledge it is the first report of the effect of 3-naphthyl modification of JWH015 53 and will contribute a useful addition to the overall SAR surrounding the indole cannabinoids. (ii) the 3-naphthyl modification was chosen using data obtained from *de novo* drug design. Although the computational modelling was speculative in the size of group that was tolerated by the hCB₂ receptor, it was still able to detect an extra binding pocket, in close proximity to the 3-naphthyl position, which can be exploited. This strengthened our belief that using molecular modelling to study the hCB₂ GPCR was justified and was carried out to the highest standards current modelling techniques would allow. Following the completion of our study, the structure of a novel CB₂ selective indole, AM1241 58, was published[^72] (Figure 1-21). AM1241 58 has a 3-(5-iodo-3-nitrobenzoyl)indole core structure, which adds to the evidence that the 3-aryl position of 3-arylindoles may be an important extra binding pocket within the hCB₂ receptor.
6.8 Conclusions

- A computational model, in which Win 55212-2 3 was bound in its \textit{s-cis} conformer, in the hCB\textsubscript{2} receptor, was established. Analysis of it bound in a naphthyl-up and naphthyl-down orientation demonstrated that it preferentially bound in the naphthyl-up position.

- Our model of the bound \textit{s-cis} conformer was in direct contrast to previous work which had established that only the \textit{s-trans} conformer of Win 55212-2 3 was bioactive.

- \textit{De novo} drug design established that the 3-naphthyl position of JWH015 53 tolerated bulky substituents.

- Synthesis of 3-Gly-NBD-JWH015 132 was successfully completed.

- The fluorescent conjuger 132 retained limited hCB\textsubscript{2} affinity (25\% displacement at 10 \(\mu\)M), however the compound was unable to detect receptor membrane binding in live CHO cells expressing the hCB\textsubscript{2} receptor using confocal microscopy.

- Testing of the two 3-naphthyl precursors, 3-nitro-JWH015 128 and 3-amino-JWH015 129, in affinity and efficacy assays, demonstrated that limited modification to the 3-naphthyl position resulted in compounds with retained activity to the hCB\textsubscript{2} receptor. Thus; screening by computational methods was able to successfully predict an area within the hCB\textsubscript{2} binding pocket that would tolerate molecular extension; however it was not able to predict correctly the size of substituent tolerated.
Chapter 7 Conclusions and future work

This chapter is not intended to replace the individual conclusion sections within the previous chapters, but complements them by pulling together the main findings from each chapter. It will also set out our plans for future work we intend to perform.

Overall, this chapter can be divided into three major areas of work:

- Labelling of CB$_2$ ligands with fluorescent dyes
- Molecular modelling of the CB$_2$ receptor
- SAR of the indole cannabinoids.

7.1 Labelling of CB$_2$ ligands with fluorescent dyes

7.1.1 Conclusions

We synthesised five novel ligands, Dansyl-JTE2-6 99, BODIPY-JTE2-6 100, Dansyl-JTE2-3 120, BODIPY-JTE2-3 121 and 3-GLY-NBD-JWH015 132. Unfortunately, despite careful design, using established SAR complemented with in-house computational modelling none retained sufficient affinity to highlight specific hCB$_2$ receptor binding in fluorescent experiments. It was probable that the reduction in affinity observed was due to increased steric interactions between the ligand and receptor. This effect was exacerbated in the Japan Tobacco derivatives, due to the preferential rat selectivity associated with these ligands. Although unable to bind to the hCB$_2$ receptor, retesting of the BODIPY$^\oplus$ labelled derivatives 100 and 121 in the rCB$_2$ receptor showed that limited affinity was retained (displacement of 44 & 48% of bound $[^3]$H CP 55, 940 at 1 µM was observed respectively). This demonstrated that the overall strategy we adopted was partially successful.

The de novo design used in the synthesis of 3-Gly-NBD-JWH015 132 led to a compound which was able to displace 25% of the bound radioligand from the hCB$_2$ receptor when used at a concentration of 10 µM. This is to the best of our knowledge the first report of any fluorescent cannabinoid with affinity to the human CB$_2$ receptor and represents our lead compound for future development.
7.1.2 Future work

The demand for fluorescent ligands with affinity to GPCRs has strengthened during the three years we have been conducting this research266. The case for cannabis research made in chapter 1 remains unchanged. We therefore feel that the need to develop a fluorescent cannabinoid is greater than ever. We plan to use two different strategies which will lead to the generation of the first fluorescent cannabinoid.

- Development of fluorescent conjugates of JWH015 \textit{53}, using 3-Gly-NBD-JWH015 \textit{132} as a lead structure. We plan to exploit, the identification of the 3-naphthyl position as a site capable of modification with fluorescent dyes. Our initial work utilised a small glycine linker to anchor the NBD fluorophore, in order to keep the dye within the binding pocket. In future work we plan to extend the length of the linker in an effort to exit the binding pocket and tether the fluorescent dye outside of the receptor. This work is envisaged to proceed using a classical SAR approach, involving the synthesis of the core scaffold 3-amino-JWH015 \textit{129}, which may then be coupled, using established chemistry, to an array of N-Boc-aminoalkyl acids. Boc deprotection and conjugation with an amine reactive fluorescent dye will give access to a library of compounds for testing. This approach has led to selective fluorescent ligands at the adenosine receptor25,200,202,207 and we hope to emulate its success for the hCB\textsubscript{2} receptor.

- We also wish to exploit information regarding the non-selective compound CP 55, 940 \textit{2} that came to light during the writing of this thesis160,161. Discovery of a postulated binding conformation of CP 55, 940 \textit{2} (figure 1-14), discussed in section 1.4.3, led us to believe that it possible, with minimum synthetic effort, to selectively label each of its three hydroxyl groups, with fluorescent dyes and test the resulting conjugates. Thus by exploiting the chemical differences between the phenol and alcohol (1\textdegree & 2\textdegree) groups present it will be possible to selectively mask (by protecting groups) or activate a specific hydroxyl and thus conjugate each of the hydroxyls to commercially available acid or halo functionalised fluorescent dyes, via an ester or ether linkage. An example of this is shown in Scheme 7-1 in which the 1\textdegree alcohol is selectively protected as the TBDMS silyl ether. The remaining hydroxyls can be orthogonally protected as the acetate ester. Selective cleavage of the silyl ether using the
fluoride ion exposes the 1° alcohol which can be reacted with a fluorescent dye (e.g. NBD-F). We envisage that if the orientation of the hydroxyl groups postulated in fig 1-14 is correct, then the fluorescent dye will exit the top of the binding pocket, thus avoiding steric clashes within the receptor. Obviously the high affinity exhibited by CP 55, 940 2 towards both CB₁ and CB₂ receptors, will result in a fluorescent ligand which is non-specific to either receptor.

Scheme 7-1 Example of selectively labelling the 1° alcohol of CP 55, 940 2 using NBD. Proposed reagents: (i) imidazole, DMF. (ii) Ac₂O, acidic clay (iii) TBAF, THF (iv) NBD-F (v) LiOH
7.2 Molecular modelling of the CB$_2$ receptor

7.2.1 Conclusions

The use of computational modelling of ligand-CB$_2$ receptor interactions, to aid the design of CB$_2$ selective ligands, led to useful information about the possible intimate ligand-receptor interactions occurring at the CB$_2$ receptor. Examination of our model’s structure correlated extremely well with previously published CB$_2$ models and mutational studies in terms of the nature and residues located in the binding pocket and the TM helices involved in ligand binding. The most important residue postulated from previous studies, Phe 197, formed part of an aromatic cleft within our model’s pocket and was used to interactively dock subsequent molecules under investigation.

Use of the CB$_2$ model to investigate ligand binding led to a number of conclusions:

- The ligand JTE2-6 63 was shown to be capable of docking into the hCB$_2$ receptor in a phenol-up and phenol-down orientation. Amino acid residue analysis suggested that the likely orientation was phenol-up.
- JTE2-3 62 exhibited large differences in affinity between the rCB$_2$ and hCB$_2$ receptor ($K_i = 5.02$ nM and 3.11 nM respectively). It was demonstrated using ligand-receptor modelling of both species’ receptor that the difference in affinity was due to extra interactions, including a strong H-bond, that could occur within the rCB$_2$ and not the hCB$_2$ receptor. It was postulated that Glu 8 in the hCB$_2$ clashes with JTE-3 62 causing the ligand to adopt a new binding conformation thus preventing it from forming a H-bond with Thr 173.
- Win 55212-2 3 was able to bind to the hCB$_2$ receptor in the s-cis form (Figure 1-20) despite previous literature suggesting that only the s-trans form was capable of binding189,194.
- The orientation of bound Win 55212-2 3 in the hCB$_2$ binding pocket was determined to be with the naphthalene ring towards the top of the receptor.
- De $novo$ drug design upon the CB$_2$ selective ligand JWH015 53 successfully predicted a previously unrecognised cleft within the binding pocket. The cleft could be accessed by molecular extension at the 3-
naphthyl position of JWH015 \textbf{53}. However, the size of the 3-naphthyl substituent tolerated was overestimated using computational techniques; demonstrated by the decreasing affinity towards the CB$_2$ receptor as the size of the 3-naphthyl substituent increased.

- \textit{De novo} drug design predicted compounds which retained similar agonist activity to the original seed structure JWH015 \textbf{53}. This may be indicative that our model represents the receptor in the activated state. This result is significant as it is generally accepted that GPCR models based on Bovine Rhodopsin represent the receptor in the inactive state.

Our results, obtained using GPCR modelling techniques, are in agreement with a recent publication in which leading GPCR experts concluded that homology models of Bovine Rhodopsin are extremely useful in understanding and exploiting GPCR ligand interactions266. However, the limitations of molecular modelling especially regarding the low homology and the inactive state of Bovine Rhodopsin compared to GPCRs under study are recognised in this work and are highlighted by other advocates of this technique227,253,266.

\textbf{7.2.2 Future work}

We intend to develop the human and rat CB$_2$ receptor models generated by performing single point mutations on hCB$_2$ and rCB$_2$ receptor constructs.

- The hypothesis that Glu 8 in the hCB$_2$ receptor is responsible for JTE2-3 \textbf{62} adopting a less favourable binding orientation will be tested by mutating Glu 8 of the hCB$_2$ to the smaller amino acid Glycine and testing the affinity of JTE2-3 \textbf{62} to this Gly 8 mutant. The expected increase in JTE2-3’s \textbf{62} affinity to this mutant would support the original hypothesis.

- Thr 173 in the rCB$_2$ receptor, which is postulated to form an important H-bond with JTE2-3 \textbf{62}, will be mutated to the isosteric amino acid Valine. Valine’s structure would be unable to form a H-bond with the ligand and we anticipate that a decrease in the ligand’s K_i will be observed.

The benefit in conducting mutational analysis on the rat and human CB$_2$ receptor will provide applied experimental data to a theoretical model. If our hypothesis for the species selectivity of JTE2-3 \textbf{62} is proven by \textit{in-vitro} pharmacological analysis it will
provide researchers a unique understanding of the nature of binding of these unusual cannabinoids and provide confidence in the current techniques used for homology modelling of GPCRs.

7.3 SAR of the indole cannabinoids

7.3.1 Conclusions
We found using computational de novo modelling that the 3-naphthyl position of JWH-015 53 tolerated substituents other than hydrogen. It was found that the nitro 128, amino 129, and 3-glycyl derivative 131 all retained nanomolar affinity and agonist efficacy to the CB2 receptor. Introducing the much larger NBD heterocyclic resulted in a compound 132 with significantly reduced affinity at the CB2 receptor. This work demonstrates that the 3-naphthyl position of JWH-015 can be modified to offer compounds with CB2 agonist properties. This is the first report of this modification and will contribute a useful addition to the overall SAR of the indole cannabinoids.

7.3.2 Future work
We have recently seen that two licence applications for cannabis medicines, in the form of a sublingual cannabis extract (Sativex®), and the CB1 antagonist SR141716 5 (Rimonabant®) have been announced. To the best of our knowledge no CB2 selective ligand has been evaluated for use as a therapeutic agent in man. We intend to exploit our findings concerning the 3-naphthyl position of JWH-015 53 by synthesising a number of 3-naphthyl analogues for testing in affinity and efficacy assays (in-vitro), at the human CB1 and CB2 receptors. The 3-naphthyl analogues will be accessed using established chemistry discussed in section 6.4, coupling 3-naphthoic acid derivatives with 2-methyl-1-n-propylindole. 3-Naphthoic acid derivatives that are not commercially available may be accessed from 3-nitro-1-naphthoic acid 127 by reduction to 3-amino-1-naphthoic acid, diazotisation and replacement with the nucleophile of choice (e.g. Sandmeyer reaction). This approach will hopefully lead to many novel 3-naphthyl derivatives of the CB2 selective agonist JWH-015 53 that may confer advantages as a CB2 selective ligand in terms of selectivity, potency and solubility.

§§§ Personal communication - European Society of Cardiology Munich 30th August 2004
8 Experimental

8.1 Chemistry

All m.p. were determined in a glass capillary using a Gallenkamp 3A 3790 melting point apparatus and were corrected using p-toluene sulphonamide as a standard (m.p. 137 °C). FT-infrared spectra were recorded as thin films or KBr discs in the range of 4000-600 cm$^{-1}$ using Avatar 360 Nicolet FT-IR spectrophotometer. 1H NMR were recorded on a Bruker-AMX 250 operating at 250 MHz. Chemical shifts given in δ values are relative to an internal tetramethylsilane standard. The multiplicity of a signal is designated by one of the following abbreviations. s, singlet; d, doublet; t, triplet; q, quartet; br broad; m, multiplet; dd, doublet of doublets etc. All coupling constants, (J values) are given in Hertz. 13Carbon NMR were recorded on a Bruker AMX 250 spectrophotometer operating at 62.9 MHz. Electron spray (ES) and atmospheric pressure ionization (AP) mass spectrometry were recorded using a Micromass VG platform, and Fast atomic bombardment (FAB) mass spectrometry were recorded using and a VG Micromass 70E. Fluorescence data was obtained using a Hitachi F-2500 FL spectrophotometer using a 1 cm quartz cell.

Microanalytical data were obtained on a Perkin-Elmer 240 D elemental analyzer.

Thin layer chromatography (TLC) was performed using Merck silica gel 60 GF$_{254}$ analytical plates. Preparative TLC was performed using Merck silica gel 60 GF$_{254}$ coated glass plates (1mm). Flash chromatography was performed using Merck Kieselgel 60 (0.040-0.063 mm).

HPLC was performed using a Vydc reverse phase C$_8$ column (150 x 4.6 mm), a flow rate of 1 mL/min and UV detection at 254 nm. Linear gradients were used in all applications. An injection volume of 50 µL, using a 1 mg/mL sample dissolved in HPLC grade MeCN, was used for all samples.
Reagents were all SLR grade or above and purchased through the normal suppliers. Anhydrous grade DMF and EtOEt were used in reactions. The Bodipy fluorophore was obtained via Molecular Probes, Cambridge Bioscience, Cambridge, UK. The 4-fluoro-7-nitrobenzofurazan (NBD-F) fluorophore was obtained via Fluka, Sigma-Aldrich Co. Ltd, The Old Brickyard, Gillingham, Dorset.

pH 8.3 NaHCO$_3$ (aq) buffer used in fluorophore coupling was made by making a 0.1 M NaHCO$_3$ (aq) solution (0.84 g NaHCO$_3$ & Q.S. 100 mL water) and titrating to pH 8.3 using 0.1 M Na$_2$CO$_3$ (aq) solution (1.06 g Na$_2$CO$_3$ & Q.S. 100 mL water).

Preparation of tert-butyl 6-hydroxyhexylcarbamate (88)

A mixture of 6-amino-1-hexanol (2.0 g, 17 mmol) and di-tert-butyl dicarbonate (7.5 g, 34 mmol) was stirred at 0 °C in dioxane (50 mL) and water (10 mL). The reaction was allowed to warm to rt and stirred for 2 h. The reaction was reduced under vacuum to a syrup. The residue was dissolved in ~40 mL of EtOAc, and was washed with sat. NaHCO$_3$ (2 x 20 mL), and brine (20 mL). The organics were dried (MgSO$_4$) and reduced under vacuum to yield ~7 g of yellow oil. Hexane (30 mL) was added to the oil and the solution was cooled and triturated to yield white crystals. The suspension was filtered and the solid was washed with cold hexane to yield the title compound (3.7 g, 99.5%) as a white crystalline material.

m.p. 37-39 °C. Lit 220 39 °C

1H NMR (CDCl$_3$) δ 4.61 (1H, br s, N-H carbamate), 3.62, (2H, q, J 6Hz, CH$_2$-α-O), 3.11 (2H, q, J 6Hz, CH$_2$-carbamate), 2.25 (1H, t, J 6Hz, O-H), 1.6-1.2 (17H, m, C(CH$_3$)$_3$ & CH$_2$ hexyl).
\[^{13}\text{C NMR} \text{(CDCl}_3\text{)}\] 156.2 (4°, C=O Boc), 79.1 (4°, C(CH\textsubscript{3}) Boc), 62.6 (CH\textsubscript{2}, C-α-O), 40.4 (CH\textsubscript{2}, C-carbamate), 32.6 (CH\textsubscript{2}), 30.1 (CH\textsubscript{2}), 28.4 (CH\textsubscript{3} Boc), 26.4 (CH\textsubscript{2}), 25.3 (CH\textsubscript{2}).

ES-MS MH+ calcd for C\textsubscript{11}H\textsubscript{24}N\textsubscript{2}O\textsubscript{3} 218.3 found 218.4 (MH+).

FTIR: 3403 (O-H), 3367 (N-H Boc), 2984, 2934, 2856, 1686 (C=O Boc), 1533, 1364, 1288, 1249, 1171, 1061, 998, 869 cm-1

Preparation of tert-butyl 6-(4-(methoxycarbonyl)-2-nitrophenoxy)hexylcarbamate (90)

A solution of methyl 4-hydroxy-3-nitrobenzoate (2.0 g, 10 mmol), tert-butyl 6-hydroxyhexylcarbamate 89 (2.2 g, 10 mmol) and triphenylphosphine (2.7 g, 10 mmol) was prepared by dissolving the reactants in 60 mL of THF. The mixture was cooled to 0 °C, and a solution of diethyl azodicarboxylate (1.6 mL, 10 mmol) in 10 mL of THF was added. The reaction was allowed to warm to rt and left for 5 h. The solvent was reduced to yield orange oil. The oil was partitioned between CHCl\textsubscript{3} (50 mL) and water (50 mL). The organic layer was washed with water (50 mL), before drying (MgSO\textsubscript{4}) and reduction *in vacuo*. Purification using flash chromatography (50% EtOAc: 50% hexane) yielded the title compound as an off white solid (2.6 g, 66%).

m.p. 99-101 °C.

\[^{1}\text{H NMR} \text{(CDCl}_3\text{)}\] δ 8.48 (1H, d, J 2Hz, 3-H), 8.18 (1H, dd, J 9Hz & 2Hz, 5-H), 7.11 (1H, d, J 9Hz, 6-H), 4.64 (1H, bs, N-H carbamate), 4.17 (2H, t, J 6Hz, CH\textsubscript{2}-α-O),
3.93 (3H, s, OMe), 3.12 (2H, q, J 6Hz, CH₂-carbamate), 1.90 (2H, m, CH₂ hexyl), 1.6-1.3 (15H, m, C(CH₃)₃ & CH₂ hexyl).

¹³C NMR (CDCl₃) 165.0 (4°, C=O ester) 156.0 (4°, C=O Boc), 155.6 (4°, C-4), 139.4 (4°, C-3), 135.2 (C-H, C-6), 127.1 (C-H, C-2), 122.2 (4°, C-1), 113.9 (C-H, C-5), 79.0 (4°, C(CH₃) Boc), 69.9 (CH₂, C-α-O), 52.4 (CH₃, OMe), 40.4 (CH₂, C-carbamate), 30.0 (CH₂), 28.7 (CH₂), 28.4 (CH₃ Boc), 26.3 (CH₂), 25.5 (CH₂).

ES-MS MH+ calcd C₁₉H₂₉N₂O₇ 397.5 found 397.4 (MH+)

Anal calcd C₁₉H₂₈O₇N₂ C, 57.56, H, 7.13, N, 7.07 % Found C, 57.71, H, 7.12, N, 7.05 %

FTIR: 3290 (N-H Boc), 2972, 2936, 2856, 1719 (C=O ester), 1686 (C=O Boc), 1621, 1533, 1437, 1364, 1275, 1252, 1174, 1024, 993, 874 cm⁻¹

Preparation of 4-(6-tert-butoxycarbonylamino-hexyloxy)-3-nitro benzoic acid (91)

A biphasic solution of tert-butyl 6-(4-(methoxycarbonyl)-2-nitrophenoxy)hexyl carbamate 90 (2.0 g, 5 mmol), LiOH monohydrate (1.1 g, 25 mmol), water (20 mL), and MeCN (60 mL) was heated to 50 °C for 30 min. The solvent was removed under vacuum, and the residue was taken up into EtOAc (40 mL) and washed with 2M KHSO₄ (aq) (2 x 40 mL). The combined aqueous layers were re-extracted with EtOAc (40 mL). The organics were combined, brine washed (40 mL), dried (MgSO₄), and reduced under vacuum to yield 2.0 g (quantitative) of a pale yellow solid.

m.p. 100-110 °C.
1H NMR (CDCl$_3$) δ 12.0-11.8 (1H, br s, COOH, exchanges D$_2$O), 8.53 (1H, d, J 2Hz, 2-H), 8.22 (1H, br d, J 9Hz, 6-H), 7.11 (1H, d, J 9Hz, 5-H), 6.3 (0.4H (split), br s, N-H carbamate, exchanges D$_2$O), 4.64 (0.6H (split), br s, N-H carbamate, increases to 1H D$_2$O), 4.18 (2H, t, J 6Hz, CH$_2$-α-O), 3.14 (2H, br d, J 9Hz, CH$_2$-carbamate), 1.90 (2H, m, CH$_2$ hexyl), 1.6-1.3 (15H, m, C(CH$_3$)$_3$, & CH$_2$ hexyl).

13C NMR (CDCl$_3$) 169.0 (4°, C=O acid) 156.5 (4°, C=O Boc), 155.6 (4°, C-4), 139.9 (4°, C-3), 136.1 (C-H, C-6), 128.1 (C-H, C-2), 122.1 (4°, C-1), 114.3 (C-H, C-5), 79.0 (4°, C(CH$_3$) Boc), 70.3 (CH$_2$, C-α-O), 40.4 (CH$_2$, C-carbamate), 30.3 (CH$_2$), 29.0 (CH$_2$), 28.8 (CH$_3$ Boc), 26.7 (CH$_2$), 25.8 (CH$_2$).

Anal calcd C$_{18}$H$_{26}$O$_7$N$_2$ C 56.52, H 6.87, N 7.33 % Found C 56.47, H 6.81, N 7.33 %

FTIR: 3322 (COOH), 3390 (N-H Boc) 2988, 2940, 2871, 1704 (C=O acid), 1644 (C=O Boc), 1617, 1534, 1367, 1269, 1164, 842, 684 cm$^{-1}$.

Preparation of 3-amino-4-(6-tert-butoxycarbonylamino-hexyloxy)benzoic acid (92)

A flask of 4-(6-tert-butoxycarbonylamino-hexyloxy)-3-nitrobenzoic acid 91 (0.5 g, 1.3 mmol) and Pd/C (50 mg) in EtOH (& 2 drops of AcOH) was stirred at rt under a H$_2$ atmosphere (1 atm) for 24 h. The reaction was filtered through a celite pad, concentrated in vacuo, and purified by re-crystallisation from EtOAc: Hexane to yield the title compound as an off white solid (350 mg, 76%).

m.p. 104-106 °C
1H NMR (CDCl$_3$) δ 7.52 (1H, dd, J 8.4Hz & 2Hz, 6-H), 7.43 (1H, d, J 2Hz, 2-H), 6.76 (1H, d, J 8.5Hz, 5-H), 6.37 (3H, br s, NH$_2$ & COOH), 4.64 (1H, br s, N-H carbamate), 4.03 (2H, t, J 6Hz, CH$_2$-α-O), 3.14 (2H, br d, J 6Hz, CH$_2$-carbamate), 1.82 (2H, m, CH$_2$ hexyl), 1.6-1.3 (15H, m, C(CH$_3$)$_3$, & CH$_2$ hexyl).

13C NMR (CDCl$_3$) 172.0 (4°, C=O acid) 156.5 (4°, C=O Boc), 151.6 (4°, C-4), 136.4 (4°, C-6), 122.4 (4°, C-1), 122.1 (C-H, C-6), 116.4 (C-H, C-2), 110.6 (C-H, C-5), 79.0 (4°, C(CH$_3$) Boc), 68.7 (CH$_2$, C-α-O), 40.9 (CH$_2$, C-carbamate), 30.3 (CH$_2$), 29.5 (CH$_2$), 28.8 (CH$_3$ Boc), 26.9 (CH$_2$), 26.1 (CH$_2$).

FTIR: 3347 (COOH & NH$_2$), 2938, 2940, 2871, 1684 (C=O broad), 1617, 1521, 1310, 1227, 996, 760, 645 cm$^{-1}$.

Preparation of 4-(6-tert-butoxycarbonylamino-hexyloxy)-3-pentylaminobenzoic acid (93)

![Chemical Structure](image)

A solution of 3-amino-4-(6-tert-butoxycarbonylamino-hexyloxy)benzoic acid 92 (250 mg, 0.68 mmol), valeraldehyde (73 µL, 1.36 mmol), AcOH (79 µL, 1.36 mmol), sodium acetate (93 mg, 0.68 mmol), and sodium cyanoborohydride (43 mg, 0.68 mmol) was stirred in MeOH (10 mL) at rt for 4 h. The solution was evaporated to dryness and the residue was partitioned between water and EtOAc. The aqueous layer was extracted with EtOAc (3 x 40 mL) and the organics were combined, washed with brine (30 mL) and dried (MgSO$_4$). The organics were reduced *in vacuo* and the crude product was purified using flash chromatography (30% EtOAc: 70% Hexane) to give the title compound as an off white solid (68 mg, 24%).

m.p. 96-98 °C
1H NMR (CDCl$_3$) δ 7.47 (1H, dd, J 8.4Hz & 2Hz, 6-H), 7.29 (1H, d, J 2Hz, 2-H), 6.73 (1H, d, J 8.5Hz, 5-H), 6.90 (1H, br s, N-H aniline), 4.61 (1H, br s, N-H carbamate), 4.03 (2H, t, J 6Hz, CH$_2$-α-O), 3.20-3.00 (4H, m, CH$_2$-carbamate & CH$_2$-aniline), 1.85 (2H, m, CH$_2$ hexyl), 1.6-1.3 (19H, m, C(CH$_3$)$_3$, & CH$_2$ hexyl), 0.97 ((3H, t, J 6.7 Hz, CH$_3$-pentyl).

13C NMR (CDCl$_3$) 172.6 (4°, C=O acid) 156.5 (4°, C=O Boc), 150.8 (4°), 138.6 (4°), 122.4 (4°), 120.3 (C-H), 110.9 (C-H), 109.6 (C-H), 79.0 (4°, C(CH$_3$)$_3$ Boc), 68.7 (CH$_2$, C-α-O), 44.0 (CH$_2$, C-carbamate), 30.3 (CH$_2$), 29.8 (CH$_2$), 29.5 (CH$_2$), 28.8 (CH$_3$ Boc), 26.9 (CH$_3$), 26.2 (CH$_2$), 22.9 (CH$_2$), 14.5 (CH$_3$).

FTIR: 3390 (COOH & NH$_2$), 2940, 2871, 1689 (C=O two signals), 1599, 1521, 1310, 1227, 980, 765 cm$^{-1}$.

Preparation of tert-butyl 6-(4-(4-hydroxyphenethylcarbamoyl)-2-nitrophenoxy)hexylcarbamate (94)

A solution of 4-(6-tert-butoxycarbonylamino-hexyloxy)-3-nitrobenzoic acid 91 (1.01 g, 2.63 mmol) and 1,1-carbonyldiimidazole (0.45 g, 2.77 mmol) was pre-mixed in MeCN (70 mL) for 2 h. Tyramine (0.38 g, 2.77 mmol), was added to the solution. Within 5 minutes the solid had dissolved, and the reaction was left stirring for 18 hours at rt. The reaction was reduced to dryness under vacuum and the residue was dissolved in EtOAc (30 mL), this was washed with water (2 x 15 mL), and 2 M KHSO$_4$(aq) (2 x 15 mL). The combined aqueous layers were re-extracted with EtOAc (20 mL). The organics were combined, dried (MgSO$_4$) and reduced to yield 1.34 g of
an off white solid. The product was purified by flash chromatography (5% MeOH: 95% DCM) to yield the title compound as a white solid (1.04g, 79%).

m.p. 140-141 °C.

1H NMR (CDCl$_3$) δ 8.18 (1H, d, J 2 Hz, 3-H), 7.90 (1H, dd, J 9 Hz & 2 Hz, 5-H), 7.03-7.00 (3H, m, phenol H & 6-H), 6.5-6.3 (2H, m, N-H amide & O-H phenol, exchanges D$_2$O), 4.70 (1H, br t, N-H carbamate, exchanges D$_2$O), 4.10 (2H, t, J 6 Hz, CH$_2$-α-O), 3.62 (2H, q, J 6.5 Hz, CH$_2$-amide, q→ t D$_2$O) 3.10 (2H, q, J 6.5 Hz, CH$_2$-carbamate), 2.81 (2H, t, J 7 Hz, CH$_2$-phenol), 1.80 (2H, m, CH$_2$-hexyl), 1.5-1.3 (15H, m, C(CH$_3$)$_3$, & CH$_2$-hexyl).

13C NMR (CDCl$_3$) 165.5 (4°, C=O amide) 156.2 (4°) 155.4 (4°, C=O Boc), 154.8 (4°, C-OH), 139.2 (4°), 133.2 (C-H), 130.1 (4°), 129.9 (C-H), 126.5 (4°), 124.0 (C-H), 115.8 (C-H) 114.4 (C-H), 79.0 (4°, C(CH$_3$)$_3$ Boc), 70.0 (CH$_2$, C-α-O), 41.9 (CH$_2$, C-amide) 40.4 (CH$_2$, C-carbamate), 34.8 (CH$_2$ C-phenol) 30.0 (CH$_2$), 28.8 (CH$_2$), 28.6 (CH$_3$, Boc), 26.4 (CH$_2$), 25.6 (CH$_2$).

ES-MS MH+ calcd for C$_{26}$H$_{36}$O$_7$N$_3$ 502.6 found 502.4 (MH+), and 524.3 (MNa+).

Anal calcd C$_{26}$H$_{35}$O$_7$N$_3$.0.5 H$_2$O C 61.16, H 7.11, N 8.23 % Found C 61.39, H 6.77, N 8.22 %

FTIR: 3423, 3320, 2937, 1685, 1654, 1637, 1559, 1391, 1321, 1171 cm$^{-1}$
Preparation of tert-butyl 6-(4-(4-hydroxyphenethylcarbamoyl)-2-aminophenoxy)hexylcarbamate (95)

A solution of tert-butyl 6-(4-(4-hydroxyphenethylcarbamoyl)-2-nitrophenoxy)hexylcarbamate 94 (876 mg, 1.75 mmol) and Pd/C (175 mg) in EtOH (20 mL) was stirred at rt under a H$_2$ atmosphere (1 atm) for 6 h. The reaction was filtered through a celite pad, concentrated in vacuo, and purified using flash chromatography (70% EtOAc: 30% Hexane). The solid was recrystallised from 70% EtOAc: 30% Hexane to yield the title compound as a white solid (577 mg, 69%).

m.p. 121-122 °C

1H NMR (DMSO-d$_6$) δ 9.14 (1H, s, O-H, exchanges MeOD), 8.14 (1H, t, J 5.5 Hz, N-H amide, exchanges MeOD), 7.12 (1H, d, J 2.1 Hz, 3-H), 7.04-6.98 (3H, m, 5-H & phenol H), 6.78 (1H, d, J 8.4 Hz, 6-H), 6.71-6.64 (2H, m, phenol H), 4.77 (3H, br s, N-H carbamate & aniline, exchanges MeOD), 3.97 (2H, t, J 6.4 Hz, CH$_2$-α-O), 3.33 (q, J 6.5 Hz, CH$_2$-amide), 2.91 (2H, q, J 6.4 Hz, CH$_2$-aniline, q → t MeOD), 2.67 (2H, t, J 6.8 Hz, CH$_2$-phenol), 1.75-1.62 (2H, m, CH$_2$ hexyl), 1.5-1.3 (15H, m, C(CH$_3$)$_3$, & CH$_2$-hexyl).

13C NMR (MeOD) 170.4 (4°, C=O amide) 158.5 (4°, C=O Boc), 156.9 (4°, C-OH) 150.9 (4°), 137.9 (4°), 131.4 (4°), 130.8 (CH), 128.1 (4°), 118.9 (CH), 116.2 (CH) 114.9 (CH), 111.5 (CH) 119.8 (4°, C(CH$_3$)$_3$ Boc), 69.3 (CH$_2$, C-α-O), 42.9 (CH$_2$, C-amine) 41.2 (CH$_2$, C-carbamate), 35.8 (CH$_2$, C-phenol) 30.9 (CH$_2$), 30.2 (CH$_2$), 28.8 (CH$_3$ Boc), 27.6 (CH$_2$), 26.8 (CH$_2$).

ES-MS MH+ calcd C$_{26}$H$_{38}$N$_3$O$_5$ 472.6 found 472.2 (MH+)
Anal calcd C_{26}H_{37}O_{3}N_{3}.H_{2}O C 63.78, H 8.03, N 8.58 % Found. C 63.85, H 7.80, N 8.28 %

FTIR: 3405, 3300, 2932, 1702, 1677, 1639, 1545, 1228, 1171 cm\(^{-1}\)

Preparation of tert-butyl 6-(4-(4-hydroxyphenethylicarbamoyl)-2-(pentylamino)phenoxy)hexylcarbamate (96)

A solution of tert-butyl 6-(4-(4-hydroxyphenethylicarbamoyl)-2-aminophenoxy)hexylcarbamate 95 (500 mg, 1.06 mmol), valeraldehyde (113 uL, 1.06 mmol), sodium acetate trihydrate (144 mg, 1.06 mmol), acetic acid (121 uL, 2.12 mmol), and sodium cyanoborohydride (67 mg, 1.06 mmol) was stirred in MeOH (10 mL) at r.t for 18 h. The reaction was reduced *in vacuo*. The residue was dissolved in EtOAc (30 mL), washed with water (3 x 15 mL), and dried MgSO\(_4\). After evaporation of solvent the resulting oil was purified using flash chromatography (60% EtOAc: 40% hexane) to yield the title compound as a white solid (411 mg, 71%).

m.p. 159-161 °C

\(^{1}\)H NMR (CDCl\(_3\)) \(\delta\) 7.07-6.99 (3H, m, phenol Hs & 3-H), 6.89 (1H, dd, \(J\) 8.2 & 1.9 Hz, 5-H), 6.83 (2H, d, \(J\) 8.4Hz, phenol H) 6.65 (1H, d, \(J\) 8.3 Hz, 6-H), 6.31 (1H, br t, \(J\) 5.5 Hz, N-H amide, exchanges D\(_2\)O), 4.65 (1H, br s, N-H carbamate, exchanges D\(_2\)O), 3.97 (2H, t, \(J\) 6 Hz, CH\(_2\)-α-O), 3.63 (2H, q, \(J\) 6.5 Hz, CH\(_2\)-amide), 3.12 (4H, m, CH\(_2\)-carbamate & CH\(_2\)-aniline), 2.82 (2H, t, \(J\) 6.5 Hz, CH\(_2\)-phenol), 1.82-1.77 (2H, m, CH\(_2\)-hexyl), 1.56-1.53 (2H, m, CH\(_2\)-pentyl), 1.50-1.35 (19H, m), 0.91 (3H, t, \(J\) 6.7 Hz, CH\(_3\)-pentyl)
13C NMR (CDCl$_3$) 168.5 (4°, C=O amide), 156.3 (4°, C=O Boc), 155.5 (4°, C-OH) 148.7 (4°), 138.5 (4°), 130.0 (4°), 129.8 (C-H), 127.3 (4°), 115.7 (C-H), 115.0 (C-H) 109.4 (C-H), 108.5 (C-H) 79.4 (4°, C(CH$_3$), Boc), 68.2 (CH$_2$, C-α-O), 43.6 (CH$_2$, C-amide) 41.5 (CH$_2$, C-carbamate), 40.6 (CH$_2$, C-aniline) 34.9 (CH$_2$, C-phenol) 30.1 (CH$_2$), 29.4 (CH$_2$), 29.1 (CH$_2$) 28.8 (CH$_3$, Boc), 26.5 (CH$_2$), 25.8 (CH$_2$), 22.5 (CH$_2$), 14.1 (CH$_3$, pentyl).

ES-MS MH+ calcd for C$_{31}$H$_{48}$N$_3$O$_5$ 542.1 found 542.2.

FAB-MS (+ve mode) M+ calcd for C$_{31}$H$_{47}$N$_3$O$_5$ 541.3516 found 541.3528, MH+ calcd for C$_{31}$H$_{48}$N$_3$O$_5$ 542.3594 found 542.3599.

Anal calcd C$_{31}$H$_{47}$O$_5$N$_3$ C 68.73, H 8.74, N 7.76. Found. C 68.46, H 8.85, N 7.81

Fluorescence properties λ_{max} (excitation) 313 nM, λ_{max} (emission) 386 nM (0.8 mg in 10 mL MeCN)

FTIR: 3338 (broad), 2931, 2852, 1686, 1585, 1514, 1365, 1261, 1170 cm$^{-1}$.

Preparation of N-(4-hydroxyphenethyl)-4-(6-aminohexyloxy)-3-(pentylamino)benzamide dihydrochloride (97)

A solution of HCl in MeOH was prepared by the addition of AcCl (400 μL) to MeOH (10 mL). To this solution was added tert-butyl 6-(4-(4-hydroxyphenethylcarbamoyl)-2-(pentylamino)phenoxy)hexylcarbamate (145 mg, 0.268 mmol), and the reaction was stirred at rt for 18 h. The residue after evaporation was crystallised from EtOAc: EtOH to yield the title compound as a white solid (89 mg, 65%).

m.p. 150 °C
^1H NMR (D_2O) δ 7.53 (1H, dd, J 2.2 & 8.7 Hz, 6-H), 7.45 (1H, d, J 2.2 Hz, 2-H), 7.01 (1H, d, J 8.8 Hz, 5-H), 6.81 (2H, d, J 8.8 Hz, phenol H), 6.59 (2H, d, J 8.5 Hz, phenol H), 4.00 (2H, t, J 6.5 Hz, CH_2-α-O), 3.33 (2H, t, J 6.9 Hz, CH_2-amide), 3.12 (2H, m, CH_2-aniline), 2.83 (2H, t, J 7.6 Hz, CH_2-amine), 2.57 (2H, t, J 6.8 Hz, CH_2-phenol), 1.68 (2H, q, J 6.9 Hz, CH_2-β-O), 1.55-1.09 (12H, m), 0.68 (3H, t, J 7.0 Hz, CH_3-pentyl)

^13C NMR (D_2O) δ 168.7 (C=O amide), 154.5 (4°), 154.3 (4°) 131.4 (4°), 130.6 (C-H), 130.0 (C-H), 126.7 (4°), 124.0 (4°), 122.6 (C-H) 115.7 (C-H), 113.6 (C-H), 69.8 (CH_2, C-α-O), 51.1 (CH_2, C-aniline) 41.6 (CH_2 C-amide) 39.8 (CH_2, C-amine), 34.1 (CH_2, C-phenol), 28.3 (CH_2, C-β-O) 28.1 (CH_2), 27.1 (CH_2), 25.3 (CH_2), 25.1 (CH_2), 21.8 (CH_2), 13.4 (CH_3, penty1).

AP-MS MH+ calcd for C_{26}H_{40}N_3O_3 442.3 found 442.3 (MH+)

FAB-MS (+ve mode) MH+ calcd for C_{26}H_{40}N_3O_3 442.3070 found 442.3067.

FTIR (nujol) 3342 (NH_3), 3232, 2923, 1622, 1513, 1462, 1376, 1295, 838, 721 cm\(^{-1}\)

Labeling of N-(4-hydroxyphenethyl)-4-(6-aminohexyloxy)-3-(pentylamino)benzamide with dansyl chloride (99)

A solution of N-(4-hydroxyphenethyl)-4-(6-aminohexyloxy)-3-(pentylamino)benzamide dihydrochloride 97 (15.0 mg, 0.03 mmol) and dansyl chloride 84 (7.9 mg, 0.03 mmol), was stirred at rt in the dark, in MeCN (1 mL) and pH 8.3 NaHCO_3 (aq) buffer (1 mL) for 1 h. The reaction was reduced in vacuo and the residue was partitioned between water and CHCl_3. The aqueous phase was further extracted with CHCl_3 (3 x 20 mL). The organic layers were combined, dried (MgSO_4), and reduced. The resulting oil was purified using preparative TLC (50% Acetone: 50% pet ether 40-60) to yield the title compound as a green oil (3.8 mg, 19%).
\(^1\)H NMR (CDCl\(_3\)) \(\delta\) 8.53 (1H, d, \(J\) 8.4 Hz, 6-H), 8.47-8.22 (2H, m), 7.56-7.48 (3H, m), 7.16 (1H, d, \(J\) 7.1 Hz), 7.05 (2H, d, \(J\) 8.5 Hz), 6.98 (1H, d, \(J\) 2 Hz), 6.89 (1H, dd, \(J\) 2 & 8.2 Hz), 6.82-6.77 (2H, m), 6.66 (1H, d, \(J\) 10 Hz), 6.12 (1H, br t, \(J\) 5.7 Hz, amide), 4.72 (1H, br t, \(J\) 6 Hz, amide), 3.88 (2H, t, \(J\) 6.5 Hz, CH\(_2\)-\(\alpha\)-O), 3.63 (2H, q, \(J\) 6.6 Hz, CH\(_2\)-amide), 3.11 (2H, t, \(J\) 7.2 Hz, CH\(_2\)-aniline), 2.93-2.80 (8H, m, contains s for N(CH\(_3\))\(_2\)), 1.80-1.60 (4H, m), 1.55-1.09 (12H, m), 0.90 (3H, t, \(J\) 7.0 Hz, CH\(_3\)-pentyl)

ES-MS MH+ calcd for C\(_{38}\)H\(_{51}\)N\(_4\)O\(_5\)S 675.9 found 675.4 (MH+), 338.4 (- dansyl and C6 linker).

HPLC – gradient 35% → 100% MeCN in water over 30 min. \(R_t\) 16.40 min (72% using peak area)

Labeling of \(N\)-(4-hydroxyphenethyl)-4-(6-aminohexyloxy)-3-(pentylamino)benzamide with BODIPY\(^{\text{®}}\) 630/650-x, SE (100)

A solution of \(N\)-(4-hydroxyphenethyl)-4-(6-aminohexyloxy)-3-(pentylamino)benzamide dihydrochloride 97 (2.75 mg, 0.0052 mmol) and Bodipy 630/650-x, SE 86 (3.10 mg, 0.0047 mmol), was stirred at rt in the dark, in MeCN (0.5 mL) and pH 8.3 NaHCO\(_3\) (aq) buffer (0.5 mL) for 1 h. The reaction was reduced \textit{in vacuo} and the residue was partitioned between water and CHCl\(_3\). The aqueous phase was further extracted with CHCl\(_3\) (3 x 20 mL). The organic layers were combined, dried (MgSO\(_4\)), and reduced. The resulting oil was purified using preparative TLC (10% MeOH: 90% CHCl\(_3\)) to yield the title compound as a blue solid (2.90 mg, 63%).
1H NMR (CDCl$_3$) δ 8.19 (1H, d, J 3.8 Hz, Bodipy), 7.63-7.52 (2H, m), 7.47 (1H, d, J 5 Hz Bodipy), 7.40-7.19 (2H, m), 7.09-6.81 (14H, m), 6.70 (1H, br t, J 5.7 Hz, amide), 6.62 (1H, d, J 8.2 Hz, JTE), 6.15 (1H, br t, J 5.7 Hz, amide), 5.66 (1H, br t, J 6 Hz, amide), 4.51 (2H, s, benzylic), 4.19 (1H, br s), 3.94 (2H, t, J 6.5 Hz, CH$_2$-α-O), 3.61 (2H, q, J 6.6 Hz, CH$_2$-amide (β-phenol)), 3.32 (2H, q, J 6.7 Hz), 3.18 (2H, q, J 6.5 Hz) 3.11 (2H, t, J 7.2 Hz, CH$_2$-analine), 2.09 (2H, t, J 6.8 Hz, Bodipy) 1.80-1.20 (23H, m), 0.90 (3H, t, J 7.0 Hz, CH$_3$-pentyl)

ES-MS MH+ calcd for C$_{55}$H$_{66}$BF$_2$N$_6$O$_6$S 987.5 found 987.6 (MH+)

HPLC – gradient 35% → 100% MeCN in water over 30 min. R$_t$ 16.52 min (98% using peak area)

Synthesis of succinimido 1-naphthaleneacetate (98)

A suspension of 1-naphthylacetic acid (550 mg, 2.88 mmol), N-hydroxysuccinimide (330 mg, 2.88 mmol) and DCC (590 mg, 2.88 mmol) was stirred in DCM (25 mL) at rt for 16 h. EtOEt was added to the reaction and the precipitate formed was filtered. The mother liquor was reduced in vacuo and the residue dissolved in EtOAc. The organic layer was washed NaHCO$_3$ (aq) (2 x 20 mL) and brine (20 mL) before drying (MgSO$_4$). The residue after evaporation was purified by flash chromatography (50% EtOAc: 50% hexane) to yield the title compound as a white solid (380 mg, 47%).

m.p. 92-95 °C
1H NMR (CDCl$_3$) δ 7.93 (1H, d, J 8.4 Hz, 2-H), 7.85 (2H, m), 7.62-7.41 (4H, m), 4.35 (2H, s, CH$_2$-naphthalene), 2.72 (2H, s, CH$_2$-succinimide)

13C NMR (CDCl$_3$) δ 169.1 (C=O, imide), 166.8 (C=O, ester), 133.8 (4°), 131.7 (4°), 128.9 (C-H), 128.8 (C-H), 128.2 (C-H), 127.8 (4°), 126.8 (C-H), 126.1 (C-H), 125.4 (C-H), 123.4 (C-H), 35.4 (CH$_2$, C-naphthalene), 25.5 (CH$_2$, C-imide)

ES-MS MH+ & M- In both modes a molecular ion was not detected.

Labeling of N-(4-hydroxyphenethyl)-4-(6-aminohexyloxy)-3-(pentylamino)benzamide with succinimido 1-naphthaleneacetate (101)

A solution of N-(4-hydroxyphenethyl)-4-(6-aminohexyloxy)-3-(pentylamino)benzamide dihydrochloride 97 (27.7 mg, 0.05 mmol) and succinimido 1-naphthaleneacetate 98 (13.9 mg, 0.05 mmol), was stirred at rt, in MeCN (1 mL) and pH 8.3 NaHCO$_3$ (aq) buffer (1 mL) for 12 h. The reaction was filtered under vacuum to recover the solid. The solid was re-crystallised from MeOH: water to yield the title compound as a white solid (21.8 mg, 73%).

m.p. 149 °C

1H NMR (DMSO-d$_6$) δ 9.02 (1H, s, O-H), 8.20-8.16 (1H, m, naphthalene), 8.03 (1H, br t, J 5.5 Hz, amide), 7.93-7.87 (1H, m, naphthalene), 7.82 (2H, dd, J 2 & 7 Hz, naphthalene), 7.56-7.40 (4H, m), 7.19-7.12 (2H, m), 7.05 (2H, d, 8.4 Hz, phenol H), 6.81 (1H, d, J 8.2 Hz, naphthalene), 6.73 (2H, d, J 8.8 Hz, phenol H), 4.61 (1H, br t, J 5.7 Hz, amide), 4.01 (2H, t, J 6.5 Hz, CH$_2$-α-O), 3.94 (2H, s, CH$_2$-naphthalene), 3.45
(2H, q, *J* 6.1 Hz, CH$_2$-amide (β phenol), 3.22-3.05 (4H, m), 2.76 (2H, t, *J* 8.0 Hz, CH$_2$-phenol), 1.75-1.31 (15H, m), 0.90 (3H, t, *J* 7.0 Hz, CH$_3$-pentyl)

13C NMR (DMSO-d$_6$) δ 170.8 (C=O amide), 167.9 (C=O amide), 155.8 (4°), 148.3 (4°), 142.5 (4°), 139.0 (4°), 133.9 (4°), 132.1 (4°), 129.7 (C-H), 128.8 (C-H), 128.3 (C-H), 128.2 (C-H), 127.7 (4°), 115.6 (C-H), 114.9 (C-H), 109.2 (C-H), 68.1 (CH$_2$, C-α-O), 43.5 (CH$_2$ C-naphthalene) 41.1 (CH$_2$) 39.3 (CH$_2$) 34.3 (CH$_2$), 29.3 (CH$_2$), 29.1 (CH$_2$) 28.9 (CH$_2$), 27.1 (CH$_2$), 26.3 (CH$_2$), 25.6 (CH$_2$), 22.5 (CH$_2$), 14.1 (CH$_3$, pentyl).

ES-MS MH+ calcd for C$_{38}$H$_{48}$N$_3$O$_4$ 610.4 found 610.3 (MH+), 472.9 (M-tyramine)

Anal calcd C$_{38}$H$_{47}$O$_4$N$_3$ C 74.85, H 7.77, N 6.89 % Found. C 74.52, H 7.67, N 6.99 %

FTIR: 3423, 3301 (OH), 2928, 2856, 1659 (C=O amide), 1633, 1538, 1512, 1454, 1266, 1241, 1217, 777 cm$^{-1}$

Preparation of methyl 3, 4-dihydroxybenzoate (103)

A solution of 3, 4 dihydroxybenzoic acid (2.0 g, 0.013 mol) and conc. H$_2$SO$_4$ (5 drops) in MeOH (80 mL) was refluxed for 4 hours and left to stir at room temperature for 48 hours. The solvent was reduced *in-vacuo* and the residue was neutralized by the addition of solid NaHCO$_3$. The neutralized residue was dissolved in EtOAc and washed with sat. NaHCO$_3$ and brine solutions. The organics were dried (MgSO$_4$) and evaporated to yield 2.0 g (92%) of the title compound as a white solid.

m.p. 132-133 °C Lit267 133 °C
\(^1\)H NMR (MeOD) \(\delta\) 7.46 (1H, d, \(J\) 2.1Hz, \(H_2\)), 7.44 (1H, dd, \(J\) 7.1 \& 2.1 Hz, \(H_6\)), 6.83 (1H, d, \(J\) 7.1Hz, \(H_5\)), 3.86 (3H, s, methyl ester).

ES-MS MH+ calcd for C\(_{8}\)H\(_{9}\)O\(_{4}\) 169.1, found \(m/z\) 169.2 (MH+)

FTIR: 2953, 2871, 1716 (C=O), 1599, 1514, 1436, 1391, 1269, 1132, 1007, 764, 645 cm\(^{-1}\)

Preparation of methyl 3,4-bis(pentyloxy)benzoate (104)

A suspension of methyl 3, 4-dihydroxybenzoate 103 (1.5 g, 8.9 mmol), K\(_2\)CO\(_3\) (3.1 g, 22 mmol) and 1-bromopentane (3.9 mL, 31 mmol) were heated at 90 °C in DMF (40 mL) for 1 h. The reaction was filtered and the DMF reduced \textit{in-vacuo}. The residue was dissolved in EtOAc, refiltered and washed with 2M NaOH (3 x 20 mL) and brine (2 x 20 mL). The organics were dried (MgSO\(_4\)) and evaporated. The title compound was purified from the crude product using flash chromatography (15% EtOAc: 85% hexane) to afford 2.1 g (76%) of colourless oil.

\(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.63 (1H, dd, \(J\) 8.5 \& 2Hz, 6-H), 7.54 (1H, d, \(J\) 2 Hz, 2-H), 6.86 (1H, d, \(J\) 8.5Hz, 5-H), 4.04 (4H, t, \(J\) 6.6Hz, CH\(_2\)-α-O) 3.88 (3H, s, methyl ester), 1.83 (4H, quintet (5), \(J\) 7Hz, CH\(_2\)-β-O), 1.53-1.25 (8H, m), 0.93 (6H, t, \(J\) 7Hz, CH\(_3\)).

\(^13\)C NMR (CDCl\(_3\)) \(\delta\) 167.0 (C=O), 153.2 (4°, C-O aromatic), 148.5 (4°, C-O aromatic), 123.6 (C-H, C-6), 122.4 (4°, C-ester), 114.3 (C-H, C-2), 111.9 (C-H, C-5), 69.3 (CH\(_2\), C-O), 69.0 (CH\(_2\), C-O), 51.9 (CH\(_3\), methyl ester), 28.9 (CH\(_2\)), 28.8 (CH\(_2\)), 28.2 (CH\(_2\)), 22.5 (CH\(_2\)), 14.0 (CH\(_3\)).

ES-MS MH+ calcd for C\(_{18}\)H\(_{29}\)O\(_{4}\) 309.1, found \(m/z\) 309.1 (MH+).
FTIR (thin film): 2953, 2929, 2857, 1686 (C=O ester), 1601, 1523, 1434, 1307, 1226, 1135, 761, 643 cm\(^{-1}\)

Preparation of 3,4-bis(pentyloxy)benzoic acid (105)

Methyl 3,4-bis(pentyloxy)benzoate \textbf{104} (1.82 g, 5.9 mmol) and LiOH.H\textsubscript{2}O (2.48 g, 5.9 mmol) were refluxed for 1 h in 50 mL of 60\% MeCN: 40\% water. Acidification of the reaction (conc. HCl\(_{aq}\)) yielded a white precipitate. The solid was filtered from the reaction and washed with cold water (50 mL) to yield the title compound (1.56 g, 90\%).

m.p. 135-137 \textdegree C Lit268 142 \textdegree C

\(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.73 (1H, dd, \(J\) 8.5 + 2 Hz, 6-H), 7.59 (1H, d, \(J\) 2 Hz, 2-H), 6.89 (1H, d, \(J\) 8.5 Hz, 5-H), 4.07 (2H, t, \(J\) 6.6 Hz, O-CH\(_2\) \((o)\)), 4.06 (2H, t, \(J\) 6.6 Hz, O-CH\(_2\) \((p)\)), 1.85 (4H, m, CH\(_2\) \(\beta\) to ether), 1.43 (8H, m), 0.94 (6H, t, \(J\) 7 Hz, CH\(_3\)).

\(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 172.1 (4\°, C=O), 154.0 (4\°, C-O aromatic), 148.5 (4\°, C-O aromatic), 124.5 (C-H), 121.4 (4\°, C-1), 114.5 (C-H), 111.8 (C-H), 69.3 (CH\(_2\), C-O), 69.0 (CH\(_2\), C-O), 28.8 (CH\(_2\)), 28.7 (CH\(_2\)), 28.2 (CH\(_2\)), 22.4 (CH\(_2\)), 14.0 (CH\(_3\)).

ES-MS MH+ calcd for C\(_{17}\)H\(_{27}\)O\(_4\) 295.2, found \(m/z\) 295.1 (MH+)

FTIR: 3459 (COOH), 3251, 2969, 1688, 1612, 1533, 1443, 1243, 1184, 1099, 984, 764, 623, 591 cm\(^{-1}\)
Preparation of \textit{N}-benzyloxycarbonyltyramine (107)

A solution of tyramine (12.0 g 0.0875 mol) and DIPEA (15.2 mL, 0.0875 mol) in 70 mL of 70\% MeCN: 30\% DMF was cooled to 0\°C. Benzyl chloroformate (10.8 mL, 0.0963 mol) was added dropwise, to the tyramine solution, over 30 min. The reaction was allowed to warm to rt and stirred at this temperature for 24 h. The resulting suspension was filtered. The filtrate was concentrated \textit{in-vacuo} to yield brown oil. The residue was dissolved in EtOAc (100 mL) and washed with 2M HCl (aq) (2 x 50 mL) and brine (1 x 50 mL). The organics were dried (MgSO$_4$), and reduced \textit{in-vacuo} to yield 18 g of white solid. The solid was re-crystallized from water: EtOH to yield the title compound as colourless needle crystals (13 g, 57\%).

m.p. 100-102 \°C Lit269 100 \°C

1H NMR (CDCl$_3$) δ 7.42-7.33 (5H, m, Cbz phenyl), 6.99 (2H, d, J 8.3 Hz, 2-H & 6-H), 6.75 (2H, d, J 8.3 Hz, 3-H + 5-H), 6.37 (1H, s, OH), 5.09 (2H, s, benzylic), 4.87 (1H, br t, N-H carbamate), 3.40 (2H, q, J 6.5 Hz, CH$_2$-N), 2.71 (2H, t, J 7 Hz, CH$_2$-Ph).

13C NMR (CDCl$_3$) δ 157.0 (4\°, C-O, C1), 155.1 (4\°, C=O), 136.7 (4\°, ipso aromatic), 130.2 (4\°, C4), 130.2 (CH, x 2 phenol ring), 128.6 (CH, Cbz phenyl), 128.5 (CH, Cbz phenyl), 115.9 (CH, x 2 phenol ring), 67.2 (CH$_2$, benzylic), 42.9 (CH$_2$ α Cbz), 35.5 (CH$_2$ β Cbz).

ES-MS MH$^+$ calcd for C$_{16}$H$_{18}$N$_3$O$_3$ 272.1, found m/z 272.0 (MH$^+$) 194.1 (M – phenyl)
FTIR: (KBr) 3331 (O-H, N-H), 1686 (C=O), 1612, 1544, 1514, 1268, 1244, 1139, 824, 746, 695, 528 cm

Synthesis of \(O \)-allyl-\(N \)-benzyloxycarbonyltyramine (108)

A suspension of \(N \)-benzyloxycarbonyl tyramine 107 (9.95 g, 0.0367 mol), allyl bromide (4.2 mL, 0.0458 mol), and potassium carbonate (6.33 g, 0.0458 mol) in methyl ethyl ketone (150 mL) was refluxed for 18 h. The resulting fine slurry was filtered and reduced \textit{in-vacuo}. The residue was dissolved in EtOAc (100 mL) and washed with 2M HCl\textsubscript{aq} (2 x 30 mL) and brine (30 mL). The organic layer was dried (MgSO\textsubscript{4}) and reduced \textit{in-vacuo} to yield the title compound as a white solid (10.9 g, 96%).

m.p. 94-95 \(^\circ\)C

\(^1\)H NMR (CDCl\textsubscript{3}) \(\delta \) 7.40-7.30 (5H, m, Cbz phenyl), 7.07 (2H, d, \(J \) 9 Hz, 2-H & 6-H), 6.84 (2H, d, \(J \) 8 Hz, 3-H & 5-H), 6.05 (1H, ddt, \(J \) 17.3, 11.9, 5.3 Hz, C-CH=C), 5.45 (1H, ddt, \(J \) 17.3, 3.0, 1.5 Hz, C=CH \textit{trans}), 5.28 (1H, ddt, \(J \) 11.7, 3.0, 1.5 Hz, C=CH \textit{cis}), 5.09 (2H, s, benzylic), 4.75 (1H, br t, N-H carbamate), 4.50 (2H, m, O-CH\textsubscript{2}-C=C), 3.42 (2H, q, \(J \) 6.5 Hz, CH\textsubscript{2}-Cbz), 2.74 (2H, t, \(J \) 7 Hz, CH\textsubscript{2}-Ph).

\(^{13}\)C NMR (CDCl\textsubscript{3}) \(\delta \) 157.3 (4\(^\circ\), C-O, C1), 156.3 (4\(^\circ\), C=O), 136.6 (4\(^\circ\), ipso aromatic), 133.4 (CH, CH=), 130.8 (4\(^\circ\), C4), 129.7 (CH, x 2 phenol ring), 128.5 (CH, Cbz phenyl), 128.0 (CH, Cbz phenyl), 117.6 (CH\textsubscript{2}, =CH\textsubscript{2}), 114.9 (CH, x 2 phenol ring), 68.8 (CH\textsubscript{2}, O-C-allyl) 66.6 (CH\textsubscript{2}, benzylic), 42.9 (CH\textsubscript{2} \(\alpha \) Cbz), 35.5 (CH\textsubscript{2} \(\beta \) Cbz).

ES-MS MH+ calcd for C\textsubscript{19}H\textsubscript{22}N\textsubscript{1}O\textsubscript{3} 312.41, found m/z 312.1 (MH+), 334.1 (MNa+)
Anal calcd C_{19}H_{21}N_{1}O_{3}.0.25H_{2}O C 72.24, H 6.86, N 4.43 % Found. C 72.39, H 6.58, N 4.40 %

FTIR: (KBr) 3323 (N-H), 3061, 3029, 2944 (CH=CH), 1683 (C=O), 1612, 1542, 1513, 1291, 1244, 1140, 829, 748, 695 cm\(^{-1}\).

Synthesis of 2-allyl-N-benzyloxycarbonyltyramine (109)

\(O\)-Allyl \(N\)-benzyloxycarbonyltyramine 108 (6.44g, 0.0207 mol) and diphenyl ether (20 mL) was heated at reflux, under a \(N_2\) atmosphere, for 1 h. The diphenylether was removed using high vacuum distillation. Purification by flash chromatography using 30% EtOAc: 70% hexane yielded the title compound as a pale oil, which partially crystallized upon standing at 5 °C (3.63g, 56%).

\(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.40-7.30 (5H, m, Cbz phenyl), 6.87-6.82 (2H, m, 3-H \& 5-H), 6.70 (1H, d, \(J\ 8\ Hz\), 6-H), 6.69 (1H, br s, OH, exchanges) 5.96 (1H, ddt, \(J\ 16.8 \& 10.3 \& 6.5\ Hz\), C-CH=C), 5.14-5.04 (4H, m, benzylic \& C=CH\(_2\)), 4.95 (1H, br t, D\(_2\)O exchange, N-H carbamate), 3.42-3.25 (4H, m, Ph-CH\(_2\)-C=C \& CH\(_2\)-N), 2.66 (2H, t, \(J\ 7\ Hz\), CH\(_2\)-Ph).

\(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 156.7 (4\(^\circ\), C=O), 152.9 (4\(^\circ\), C-O, C-1), 139.7 (CH, CH=), 136.3 (4\(^\circ\), ipso aromatic), 130.5 (CH, C-3), 130.2 (4\(^\circ\), C-4), 128.5 (CH, Cbz phenyl), 128.1 (CH, Cbz phenyl), 127.6 (CH, Cbz phenyl), 127.5 (CH Cbz phenyl), 127.0 (CH, C-5), 126.1 (4\(^\circ\), C-2), 116.0 (CH\(_2\), =CH\(_2\)), 115.6 (CH, C-6), 66.8 (CH\(_2\), benzylic), 42.5 (CH\(_2\) \(\alpha\) Cbz), 35.1 (CH\(_2\) \(\beta\) Cbz) 34.6 (CH\(_2\), Ph-C-allyl).

ES-MS MH+ calcd for C\(_{19}\)H\(_{22}\)N\(_{1}\)O\(_{3}\) 312.41, found \(m/z\) 312.1 (MH+), 251.0
Anal calcd C_{19}H_{21}N_{1}O_{3} C 73.29, H 6.80, N 4.50 % Found. C 73.09, H 6.71, N 4.52 %

FTIR: (thin film) 3341 (O-H, N-H), 3065, 3032, 2939 (CH=CH), 1693 (C=O), 1610, 1510, 1133, 819, 737, 697 cm\(^{-1}\).

Synthesis of 2-allyl-O-benzyl-N-benzyloxycarbonyltyramine (110)

2-Allyl-N-benzyloxycarbonyltyramine 109 (1.83 g, 5.9 mmol), benzyl bromide (0.97 mL, 7.3 mmol), and K_{2}CO_{3} (1.01 g, 7.3 mmol) were refluxed in methyl ethyl ketone (50 mL) for 12 h. The reaction was filtered and reduced *in-vacuo*. The residue was taken up into EtOAc (50 mL) and washed with 2M NaOH (2 x 30 mL) and brine (30 mL). The organics were dried (MgSO\(_4\)) and reduced to leave a residue, which upon trituration with cold hexane yielded the title compound as a white solid after filtration (1.88 g, 80%).

m.p. 66-67 °C

\(^{1}\text{H} \text{NMR (CDCl}_3\text{)} \delta \ 7.44-7.30 \ (10\text{H, m, Cbz phenyl & Bn phenyl}), \ 6.98-6.92 \ (2\text{H, m, 3-H & 5-H}), \ 6.83 \ (1\text{H, d, J} \ 6.2 \ \text{Hz, 6-H}), \ 5.98 \ (1\text{H, ddt, J} \ 18.8 \ & \ 10.1 \ & \ 6.7 \ \text{Hz, C-CH=C}), \ 5.14-5.04 \ (6\text{H, m, benzylic & C=CH}_2\text{}), \ 4.76 \ (1\text{H, br t, N-H carbamate, exchanges D}_2\text{O}), \ 3.45-3.37 \ (4\text{H, m, Ph-CH}_2\text{-C=C & CH}_2\text{-N}), \ 2.77 \ (2\text{H, t, J} \ 6.9 \ \text{Hz, CH}_2\text{-Ph}).

\(^{13}\text{C} \text{NMR (CDCl}_3\text{)} \delta \ 156.3 \ (4^\circ, \ C=O), \ 155.1 \ (4^\circ, \ C-O, \ C-1), \ 137.4 \ (CH, \ CH=), \ 136.8 \ (4^\circ, \ ipso aromatic), \ 136.6 \ (4^\circ, \ ipso aromatic) \ 130.8 \ (4^\circ, \ C-4), \ 130.3 \ (CH, \ C-3), \ 129.2 \ (4^\circ, \ C-2), \ 128.5 \ (CH, \ Cbz phenyl), \ 128.1 \ (CH, \ Cbz phenyl), \ 127.7 \ (CH, \ Cbz phenyl), \ 127.4 \ (CH \ Cbz phenyl), \ 127.1 \ (CH, \ C-5), \ 115.6 \ (CH_2, =CH_2), \ 111.9 \ (CH, \ C-6), \ 70.0
(CH₂, benzylic Bn) 66.6 (CH₂, benzylic Cbz), 42.4 (CH₂ α Cbz), 35.2 (CH₂ β Cbz) 34.5 (CH₂, Ph-C-allyl).

AP-MS MH+ calcd for C₂⁶H₂₈N₂O₃ 402.20, found m/z 402.3 (MH+) 358.3 (M – allyl)

Anal calcd C₂₆H₂₇NO₃ C 77.78, H 6.78, N 3.49 % Found. C 77.87, H 6.74, N 3.44 %

FTIR: (KBr) 3325 (N-H), 3066, 3033, 2950 (CH=CH), 2896, 2861, 1691 (C=O), 1607, 1541, 1257, 1140, 914, 812, 734, 696 cm⁻¹.

Synthesis of 2-(2-oxoethyl)-O-benzyl-N-benzyloxy carbonyltyramine (111)

A solution of 2-allyl-O-benzyl-N-benzyloxy carbonyltyramine 110 (500 mg, 1.25 mmol), N-methylmorpholine oxide (292 mg, 2.49 mmol), and 0.1M aqueous solution of osmium tetroxide (1 mL, 0.01 mmol) was stirred at rt in 10 mL of 80% acetone: 20% water for 2 h. The reaction was quenched by adding saturated aqueous sodium sulphite (10 mL). The aqueous reaction was extracted with EtOAc (2 x 30 mL), the combined organics were washed with brine (20 mL) and dried (MgSO₄). The organics were reduced in vacuo to afford the diol product, which was used without further purification or characterization. The diol was dissolved in 10 mL of 50% water: 50% THF and cooled to 0 °C. Solid NaIO₄ (400 mg) was added to the solution and the reaction was allowed to warm to rt. The reaction was diluted with water (30 mL) and the reaction was extracted with ether (2 x 20 mL). The organics were combined, brine washed (20 mL) and dried (MgSO₄). Evaporation of the ether yielded the title product as yellow oil (395mg, 79%).

¹H NMR (CDCl₃) δ 9.70(1H, t, J 2Hz, aldehyde), 7.40-7.30 (10H, m, Cbz phenyl & Bn phenyl), 7.06 (1H, d, J 8 Hz 5-H), 6.97 (1H, s, 3-H), 6.87 (1H, d, J 8 Hz, 6-H),
5.09 (2H, s, benzylic) 5.04 (2H, s, benzylic), 4.94 (1H, br t, N-H carbamate, exchanges D$_2$O), 3.65 (2H, d, J 2Hz, CH$_2$-CHO), 3.40 (2H, q, J 6.6Hz, CH$_2$-N), 2.70 (2H, t, J 6.9 Hz, CH$_2$-Ph).

13C NMR (CDCl$_3$) δ 199.9 (CH, CHO), 156.3 (4°, C=O), 155.4 (4°, C-O, C-1), 136.8 (4°, ipso aromatic), 136.6 (4°, ipso aromatic), 131.8 (C-H), 131.3 (4°, C-4), 129.0 (CH, Cbz phenyl), 128.6 (CH, Cbz phenyl), 128.5 (CH, Cbz phenyl), 128.1 (CH, Cbz phenyl), 128.0 (CH, Cbz phenyl), 127.1 (CH, Cbz phenyl), 121.7 (4°, C-3), 111.9 (CH, C-6), 70.0 (CH$_2$, benzylic Bn) 66.6 (CH$_2$, benzylic Cbz), 45.5 (CH$_2$, CH$_2$-CHO), 42.4 (CH$_2$ α Cbz), 35.2 (CH$_2$ β Cbz).

AP-MS MH+ calcd for C$_{25}$H$_{26}$NO$_4$ 404.5, found m/z 404.2 (MH+) 360.1 (M – CH$_2$CHO)

Synthesis of 2-(2-tert-butoxycarbonylaminoethyl)-O-benzyl-N-benzylxoxycarbonyltyramine (116)

Ozone gas was sparged into a solution of 2-allyl-O-benzyl-N-benzylxoxycarbonyltyramine 110 (1.0 g, 2.5 mmol) in 30 mL of 30% DCM: 70% MeOH, cooled to -78°C, until TLC showed the starting material had been consumed. Sodium borohydride (0.14 g, 3.7 mmol) was added portion wise, over 5 mins, to the ozonide solution and the reaction was allowed to warm to room temperature and stirred for 12 hours. The solvent was reduced in-vacuo and the crude oil was purified using flash chromatography (60% EtOAc : 40% hexane) to yield 0.9g of a colourless oil 112. The oil was used without further characterization or purification in the next step. The oil (850mg) and triethylamine (0.32 mL, 2.3 mol) was cooled and the reaction was stirred at 0°C for 2 h. The reaction was washed with 2M HCl$_{(aq)}$ (2 x 10 mL) and sat. NaHCO$_3$$_{(aq)}$ (1 x 10 mL), then dried (MgSO$_4$) and evaporated to yield 0.81 g of solid 113 which was used
in the next reaction without further purification or characterization. The solid 113 (0.76 g, 1.6 mmol) and NaN₃ (0.15 g, 2.4 mmol) was heated to 60 °C in DMF (15 mL) for 5 h. The reaction was quenched with iced water and extracted with chloroform (3 x 30 mL). The organics were dried and reduced to yield 0.48 g of the azide 114 as a solid, which was used in the subsequent reaction without further purification or characterization. The azide 114 and triphenylphosphine (0.32g, 1.2 mol) was dissolved in THF (10 mL), and stirred at room temperature for 24 h. Hydrolysis was afforded by the addition of 0.5 mL of water and a further period of stirring at rt for 48 h. The reaction was reduced in-vacuo to yield a yellow oil, which was dissolved in saturated MeOH: HCl (g). The solvent was reduced in-vacuo and the oily residue was triturated in ether to yield a 370mg of the amine 115 as a white gummy material. The amine 115 was Boc protected by dissolving the gum in dioxane (15 mL) and 1M NaOH (4 mL). The reaction was cooled to 0 °C and di-tert-butyl dicarbonate (201mg, 0.922 mmol) was added and the reaction was stirred for 1 h. The reaction was reduced in-vacuo and partitioned between water (20 mL) and EtOAc (20 mL). The aqueous layer was extracted with EtOAc (2 x 20 mL), the organics were combined, dried (MgSO₄) and evaporated. The solid was purified by flash chromatography (40% EtOAc: 60% hexane) to yield the title compound as a white solid (350mg, 34% from 2-allyl-O-benzyl-N-benzylxycarbonyltymamine 110).

m.p. 104-105 °C

¹H NMR (CDCl₃) δ 7.43-7.22 (10H, m, Cbz phenyl & Bn phenyl), 6.97-6.78 (2H, m, 3-H & 5-H), 6.80 (1H, d, J 8.7 Hz, 6-H), 5.07-5.01 (5H, m, 2 x benzylic & N-H carbamate), 4.77 (1H, br t, N-H carbamate), 3.42-3.33 (4H, m, 2 x CH₂-N), 2.80 (2H, t, J 6.4 Hz, CH₂-Ph) 2.70 (2H, t, J 6.8 Hz, CH₂-Ph), 1.39 (9H, s, C(CH₃)₃).

¹³C NMR (CDCl₃) δ 156.4 (4°, C=O), 155.9 (4°, C-O, C1), 155.4 (4°, C=O), 137.1 (4°, ipso aromatic), 136.6 (4°, C-4), 131.2 (CH, C-3), 131.0 (4°, C-2), 128.6 (CH, Cbz/Bn phenyl), 128.5 (CH, Cbz/Bn phenyl), 128.1 (CH, Cbz/Bn phenyl), 128.0 (CH, Cbz/Bn phenyl) 127.9 (CH, Cbz/Bn phenyl), 127.6 (CH Cbz/Bn phenyl), 127.2 (CH,
C-5), 111.8 (CH, C-6), 78.9 (4°, C(CH3)3), 70.0 (CH2, benzylic Bn), 66.5 (CH2, benzylic Cbz), 42.3 (CH2 α Cbz), 40.8 (CH2 α Boc) 35.1 (CH2 β Cbz), 30.6 (CH2 β Boc), 28.4 (CH3, Boc).

ES-MS MH+ calcd for C30H37N2O5 505.26, found m/z 527.24 (MNa+), 505.35 (MH+), 405.17 (M – Boc).

Anal calcd C30H36N2O5. 0.5 H2O C 70.15, H 7.26, N 5.45. Found. C 70.09, H 7.10, N 5.45

FTIR: (KBr) 3360 (N-H), 3065, 3032, 2979, 2934, 1693 (C=O), 1687 (C=O), 1531, 1453, 1274, 1255, 1223, 1130, 809, 733, 697 cm⁻¹.

Synthesis of N-(3-(2-tert-butoxycarbonylaminoethyl)-4-hydroxyphenethyl)-3, 4-bis(pentyloxy)benzamide (118)

2-(2-tert-Butoxycarbonylaminoethyl)-O-benzyl-N-benzyloxy carbonyltyramine 116 (300 mg, 0.595 mmol) and Pd/C (40 mg) was stirred in 70 % EtOH: 30% EtOAc (15 mL) under a H2 atmosphere (1 atm), at rt, for 24 h. The reaction was filtered through a Celite pad and concentrated in-vacuo to yield 80 mg (52%) of amine 117 as a hydroscopic tacky solid. 1H NMR showed the characteristic Cbz and Bn signals at δ 7.43-7.22 to be absent. A solution of 3, 4-dipentoxybenzoic acid 105 (80 mg, 0.27 mmol) and 1,1 carbonyldiimidazole (46 mg, 0.29 mmol) was prepared in MeCN (7 mL). The solid 117 from the hydrogenolysis reaction was added, without further purification or characterization, to this activated acid solution and the reaction was stirred at rt for 48 h. The solvent was reduced and the reaction taken up into EtOAc (20 mL), the organic was washed with water (1 x 10 mL), 2M KHSO4(aq) (2 x 20 mL), and sat. NaHCO3(aq) (2 x 20 mL). The organics were dried (MgSO4), and evaporated
to leave oil that was purified using preparative TLC (45% EtOAc: 55% hexane) to yield the title compound (66 mg, 20% overall yield from 2-(2-tert-butoxycarbonylaminoethyl)-N-benzyloxycarbonyltyramine) as a colourless oil. A small portion was crystallised from EtOAc: Hexane to yield an analytically pure white solid.

m.p. 141-142 °C

1H NMR (CDCl$_3$) δ 7.39 (1H, d, J 1.9 Hz, 2-H), 7.21 (1H, dd, J 8.3 & 1.9 Hz 6-H), 6.93-6.80 (2H, m, aromatic), 6.43 (1H, br t, N-H amide), 5.09 (1H, br t, N-H carbamate), 4.00 (2H, t, J 6.6 Hz, O-CH$_2$ (o)), 3.99 (2H, t, J 6.6 Hz, O-CH$_2$ (p)), 3.60 (2H, q, J 6.2 Hz, CH$_2$-amide), 3.27 (2H, q, J 6.2 Hz, CH$_2$-carbamate), 2.78 (4H, t, J 6.4 Hz, 2 x CH$_2$-Ph), 1.80 (4H, m, CH$_2$ β to ether), 1.48-1.37 (17H, m, Boc & alkyl chain) 0.93 (6H, m, CH$_3$).

13C NMR (CDCl$_3$) δ 167.4 (4°, C=O amide) 156.9 (4°, C=O Boc), 153.8 (4°, C-O aromatic), 151.9 (4°, C-O aromatic), 148.9 (4°, C-O aromatic), 130.9 (CH, C-3 tyramine), 130.1 (4°, C-4 tyramine), 128.1 (CH, C-5 tyramine), 126.9 (4°), 125.2 (4°), 119.5 (CH, benzamide), 116.1 (CH, benzamide), 112.7 (CH, benzamide), 112.3 (CH, C-6 tyramine), 79.8 (4°, C(CH$_3$)$_3$), 69.3 (CH$_2$, C-O), 69.2 (CH$_2$, C-O), 41.5 (CH$_2$ α amide), 41.1 (CH$_2$-α-carbamate) 34.9 (CH$_2$ β amide), 31.1 (CH$_2$-β-carbamate), 28.9 (CH$_2$), 28.8 (CH$_3$, Boc), 28.4 (CH$_2$), 28.2 (CH$_2$), 22.4 (CH$_2$), 14.0 (CH$_3$).

ES-MS MH+ calcd for C$_{32}$H$_{49}$N$_2$O$_6$ 557.4, found m/z 579.4 (MNa+), 557.4 (MH+), 457.2 (M – Boc).

Anal calcd C$_{32}$H$_{48}$N$_2$O$_6$ C 69.04, H 8.69, N 5.03. Found. C 68.77, H 8.67, N 5.05

FTIR: (KBr) 3386 (O-H), 3243 (N-H), 2956, 2918, 1688 (C=O), 1633 (C=O), 1509, 1262, 1224, 1134, 1047, 819 cm$^{-1}$.
Synthesis of \(N-(3-(2\text{-aminoethyl})-4\text{-hydroxyphenethyl})-3,4\text{-bis(pentyloxy)benzamide hydrochloride (119)}\)

A solution of HCl in MeOH was prepared by the addition of AcCl (400 µL) to MeOH (5 mL). To this solution was added \(N-(3-(2\text{-tert-butoxycarbonylaminoethyl})-4\text{-hydroxyphenethyl})-3, 4\text{-bis(pentyloxy)benzamide 118}\) (50 mg, 0.090 mmol) and the reaction was stirred at rt for 4 h. The solvent was evaporated and the residue was crystallised from EtOAc: EtOH to yield the title compound as a white solid (19 mg, 43%). The compound was not fully soluble in any common NMR solvent \textit{i.e.} CDCl_3; DMSO-d_6, D_2O, MeOD, MeCN-d_3.

m.p. 130 °C (dec.)

\(^1\)H NMR (DMSO-d_6 & MeOD sample not fully soluble) \(\delta\) 7.29 (2H, br s, aromatic), 6.75 (1H, br s, aromatic), 6.73-6.50 (3H, m, aromatic), 3.60 (4H, br s), 3.30 (2H, br s), 2.95 (2H, br s), 2.76-2.40 (4H, m), 1.40 (4H, br s), 1.05 (8H, m), 0.65 (6H, m).

ES-MS MH+ calcd for C_{27}H_{41}N_{2}O_{4} 457.3, found \(m/z\) 457.3 (MH+)

Anal calcd C_{27}H_{33}ClN_{2}O_{5}. H_2O C 63.45, H 8.48, N 5.48. Found. C 63.44, H 8.38, N 5.68
Labeling of N-(3-(2-aminoethyl)-4-hydroxyphenethyl)-3, 4-bis(pentyloxy)benzamide hydrochloride with BODIPY® 630/650-x, SE (121)

A solution of N-(3-(2-aminoethyl)-4-hydroxyphenethyl)-3,4-bis(pentyloxy)benzamide hydrochloride 119 (5.70 mg, 0.011 mmol) and Bodipy 630/650-X, SE 86 (4.12 mg, 0.0062 mmol), was stirred at rt in the dark, in 1.5 mL of 30% MeCN: 70% pH 8.3 NaHCO$_3$ (aq) buffer for 1 h. The reaction was reduced in vacuo and the residue was partitioned between water and CHCl$_3$. The aqueous phase was further extracted with CHCl$_3$ (3 x 20 mL). The organic layers were combined, dried (MgSO$_4$), and reduced. The resulting oil was purified using preparative TLC (10% MeOH: 90% CHCl$_3$) to yield the title compound as a purple solid (3.16 mg, 51%).

1H NMR (CDCl$_3$) δ 8.41 (1H, br s, O-H phenol), 8.20 (1H, d, J 1.0 Hz, Bodipy), 7.62-7.55 (2H, m), 7.48 (1H, dd, J 1.0 & 5.0 Hz, Bodipy), 7.37 (1H, d, J 2.0 Hz, 2-H), 7.33 (1H, br s), 7.21-7.18 (1H, m), 7.16 (1H, dd, J 8.3 & 1.9 Hz 6-H), 7.04-6.79 (11H, m), 6.47 (1H, br t, N-H amide), 6.26 (1H, br t, N-H amide), 4.55 (2H, s, benzylic), 4.00 (4H, t, J 6.6 Hz, O-CH$_2$ (σ) & (ρ)), 3.60 (2H, q, J 6.2 Hz, CH$_2$-amide), 3.40-3.26 (4H, m), 2.78 (4H, t, J 6.4 Hz, CH$_2$-phenol), 2.11 (2H, t, J 7.3 Hz, Bodipy) 1.82-1.20 (20H, m) 0.93 (6H, m, CH$_3$-pentyl).

ES-MS MH$^+$ calcd for C$_{56}$H$_{67}$BF$_2$N$_3$O$_7$S 1002.5 found m/z 1002.9 (MH$^+$), 1024.5 (MNa$^+$)

HPLC – gradient 35% → 100% MeCN in water over 30 min. R_t 19.62 min (89% using peak area)
Labeling of N-(3-(2-aminoethyl)-4-hydroxyphenethyl)-3,4-bis(pentyloxy)benzamide hydrochloride with dansyl chloride (120)

A solution of N-(3-(2-aminoethyl)-4-hydroxyphenethyl)-3,4-bis(pentyloxy)benzamide hydrochloride 119 (5.7 mg, 0.011 mmol) and dansyl chloride (3.0 mg, 0.011), was stirred at rt in the dark, in 2 mL of 70% MeCN: 30% pH 8.3 NaHCO₃ (aq) buffer for 12 h. The reaction was reduced in vacuo and the residue was partitioned between water and CHCl₃. The aqueous phase was further extracted with CHCl₃ (3 x 20 mL). The organic layers were combined, dried (MgSO₄), and reduced. The resulting oil was purified using preparative TLC (7% MeOH: 93% CHCl₃) to yield the title compound as a green oil (2.8 mg, 37%).

¹H NMR (CDCl₃) δ 8.50 (1H, d, J 8.6 Hz, Dansyl), 8.21-8.10 (2H, m, Dansyl), 7.47 (2H, t, J 7.3 Hz), 7.35 (1H, d, J 1.9 Hz, 2-H), 7.16-7.07 (2H, m), 6.87-6.77 (3H, m), 6.65 (1H, d, J 8.1 Hz, 6.12 (1H, br t, N-H amide), 5.87 (1H, br s, O-H), 5.14 (1H, br t, N-H amide), 4.00 (4H, t, J 6.6 Hz, O-CH₂ (o) & (p)), 3.60 (2H, q, J 6.2 Hz, CH₂-amide), 3.40-3.26 (4H, m), 2.78 (4H, t, J 6.4 Hz, CH₂-phenol), 2.11 (2H, t, J 7.3 Hz, Bodipy) 1.82-1.20 (20H, m) 0.93 (6H, m, CH₃-pentyl).

ES-MS MH⁺ calcd for C₃₉H₅₂N₃O₆S 690.3 found m/z 690.2 (MH⁺)

HPLC – gradient 35% → 100% MeCN in water over 30 min. Rₜ 18.92 min (95% using peak area)
Synthesis of N-(4-hydroxyphenethyl)-3,4-bis(pentyloxy)benzamide (JTE2-3 (62))

A solution of 3,4-bis(pentyloxy)benzoic acid 105 (300 mg, 1 mmol) and 1,1-carbonyldiimidazole (174 mg, 1 mmol) was prepared in MeCN (30 mL). Tyramine (147 mg, 1 mmol) was added to the reaction and was stirred at rt for 48 h. The solvent was reduced and the reaction taken up into EtOAc (20 mL), the organic was washed with water (1 x 10 mL), 2 M KHSO₄ (aq) (2 x 20 mL), and sat. NaHCO₃ (aq) (2 x 20 mL). The organics were dried (MgSO₄), and evaporated to leave oil that was purified by crystallizing from MeCN: water to yield the title compound as white needles (320 mg, 77%).

m.p. 135-136 °C Lit¹²⁶ 134-136 °C

¹H NMR (CDCl₃) δ 7.34 (1H, d, J 2.0 Hz, 2-H), 7.14 (1H, dd, J 2.0 & 8.3 Hz, 5-H), 7.04 (2H, d, J 8.5 Hz, phenol aromatic), 6.81 (2H, d, J 8.5 Hz, phenol aromatic), 6.80 (1H, d, J 8.3 Hz, 4-H), 6.53 (1H, s, OH), 6.17 (1H, br t, N-H amide), 4.03-3.97 (4H, m, O-CH₂), 3.63 (2H, q, J 6.2 Hz, CH₂-amide), 2.82 (2H, t, J 6.4 Hz, CH₂-phenol), 1.82-1.74 (4H, m, CH₂-pentyl), 1.50-1.33 (8H, m, CH₂-pentyl) 0.93 (6H, m, CH₃-pentyl).

Lit¹²⁶ ¹H NMR (DMSO-d₆) δ 9.14 (1H, s), 8.33 (1H, t, J 5.4 Hz), 7.42-7.40 (2H, m), 7.04-6.97 (3H, m), 6.68 (2H, d, J 8.4 Hz), 4.01-3.96 (4H, m), 3.45-3.32 (2H, m), 2.70 (2H, t, J 7.4 Hz), 1.78-1.64 (4H, m), 1.49-1.26 (8H, m) 0.94-0.83 (6H, m).

¹³C NMR (CDCl₃) δ 167.5 (4°, C=O amide) 156.9 (4°), 151.9 (4°), 148.9 (4°), 130.1 (4°), 129.8 (C-H), 126.8 (4°), 119.3 (CH, benzamide), 116.1 (CH, benzamide), 112.6 (CH, benzamide), 112.3 (CH, tyramine), 69.3 (CH₂, C-O), 69.1 (CH₂, C-O), 41.5
(CH₂ α amide), 34.9 (CH₂ β amide), 28.9 (CH₂), 28.8 (CH₃, Boc), 28.2 (CH₂), 22.4 (CH₂), 14.0 (CH₃).

ES-MS MH+ calcd for C₂₅H₃₅N₂O₄ 413.3 found m/z 414.2 (MH+)

Synthesis of 3-nitro-1-naphthoic acid (127)

A mixture of 3-nitro-1, 8-naphthalic anhydride (20 g, 0.082 mol), NaOH (11.2 g, 0.281 mol) in water (400 mL) was added to a suspension of HgO_red (19.5 g, 0.090 mol) in water (50 mL) and acetic acid (40 mL). The mixture which frothed vigorously, was then stirred and heated under reflux for 3 days. The suspension was then hot-filtered and the solid residue was air dried. The solid was then heated under reflux in conc. HCl (aq) (100 mL) and water (200 mL) for 4 h. Hot filtration gave the crude product, which was re-crystallized from hot acetic acid to give 3.85 g (22%) of the title compound as a cream coloured solid.

m.p. 250-252 °C Lit²⁶¹ 255-257 °C

¹H NMR (DMSO-d₆) δ 13.89 (1H, br s, COOH), 9.22 (1H, d, J 2.4 Hz, 4-H), 8.93 (1H, d, J 8.6 Hz, 5-H), 8.75 (1H, d, J 2.4 Hz, 2-H), 8.43 (1H, d, J 8 Hz, 8-H), 7.97-7.89 (2H, m, aromatic).

¹³C NMR (DMSO-d₆) δ 166.1 (4°, C=O acid), 144.0 (4°), 135.1 (4°), 133.6 (4°), 132.8 (4°), 131.5 (CH), 130.6 (CH), 128.8 (CH), 128.3 (CH), 126.3 (CH), 123.2 (CH).

ES-MS M- calcd for C₁₁H₇NO₄ 217.04, found m/z 217 (M-).
FTIR: (KBr) 3500 (O-H), 3068, 2641, 1701 (C=O), 1597, 1529, 1453, 1412, 1336, 1287, 1253, 1203, 1102, 915, 796, 760, 687, 500 cm$^{-1}$.

Synthesis of 2-methyl-1-\textit{n}-propylindole (125)

Solid 2-methylindole (1 g, 0.008 mol) was added portion wise to a stirring slurry of NaH (0.2 g, 0.008 mol) in DMF (30 mLs) at 0 °C. To this red solution was added 1-bromopropane (0.8 mL, 0.008 mol) and the reaction was stirred at rt for 4 h. The solvent was removed in vacuo and the residue was partitioned between EtOAc (50 mL) and water (50 mL). The organic layer was further washed with water (2 x 50 mL), dried (MgSO$_4$) and reduced to yield the title compound (1.27g, 97%) as a yellow oil.

1H NMR (CDCl$_3$) δ 7.51 (1H, dd J 7.3 & 0.9 Hz, aromatic), 7.23 (1H, dd, J 7.1 & 1.1 Hz, aromatic), 7.13-7.00 (2H, m, aromatic), 6.21 (1H, s, 3-H), 3.97 (2H, t, J 7.2 Hz, N-CH$_2$), 2.38 (3H, s, CH$_3$-indole) 1.73 (2H, sextet, J 7.4, CH$_2$-propyl) 0.91 (3H, t, J 7.4 Hz, CH$_3$-propyl).

13C NMR (CDCl$_3$) δ 136.6 (4°), 136.4 (4°), 128.0 (4°), 120.2 (CH), 119.6 (CH), 119.1 (CH), 109.0 (CH), 99.7 (CH), 44.6 (CH$_2$-N-indole), 23.4 (CH$_2$-propyl), 12.8 (CH$_3$-indole), 11.5 (CH$_3$-propyl).

AP-MS MH+ calcd for C$_{12}$H$_{16}$N 174.1, found m/z 173.9 (MH+).

FTIR: (thin film) 3053, 2964, 2932, 2874, 2641, 1550, 1462, 1399, 1383, 1222, 769, 745 cm$^{-1}$.
Synthesis of 2-methyl-3-(3-nitronaphthoyl)-1-n-propyldindole (128)

3-Nitronaphthoyl chloride 127 was prepared by refluxing 3-nitro-1-naphthoic acid in thionyl chloride for 4 h. The excess thionyl chloride was reduced in vacuo. 2-Methyl-1-n-propyldindole (0.61 g, 3.5 mmol) and the freshly prepared 3-nitro naphthoyl chloride (1.03 g, 4.4 mmol) were dissolved in DCM (10ml) to give a red solution. Aluminium chloride (0.931 g, 7.0 mmol) was gradually added to the reaction at r.t, before the reaction was heated to reflux for 30 minutes. Sodium hydroxide was then added dropwise, until the reaction reached pH 11, and it was filtered free of solids. The organic layer was separated and was washed with 1M sodium hydroxide (2 x 20 mL), brine (1 x 20 mL) and dried (MgSO₄). The crude product was purified using flash chromatography (30% EtOAc: 70% hexane) to yield the title compound (0.24 g, 19%) as a yellow foam.

1H NMR (CDCl₃) δ 8.92 (1H, d, J 2.1 Hz, 4’-H), 8.30 (1H, J 2.3 Hz, 2’-H), 8.18-810 (2H, m, aromatic), 7.70-7.55 (2H, m, aromatic), 7.34 (1H, d, J 8.2 Hz, aromatic), 7.21-7.10 (1H, m, aromatic), 6.98-6.96 (2H, m, aromatic), 4.13 (2H, t, J 8.6 Hz, N-CH₂), 2.57 (3H, s, CH₃-indole) 1.87 (2H, sextet, J 7.5, CH₂-propyl) 1.01 (3H, t, J 7.4 Hz, CH₃-propyl).

13C NMR (CDCl₃) δ 190.5 (4°, C=O), 146.5 (4°), 144.7 (4°), 142.6 (4°), 136.3 (4°), 132.9 (4°), 132.7 (4°), 128.3 (CH), 126.7 (4°), 126.1 (CH), 125.7 (CH), 122.6 (CH), 122.4 (CH), 120.6 (CH), 118.5 (CH), 114.0 (4°), 109.8 (CH), 45.0 (CH₂-N-indole), 22.9 (CH₂-propyl), 12.8 (CH₃-indole), 11.5 (CH₃-propyl).

AP-MS M- calcd for C₂₃H₂₀N₂O₃ 372.4, found m/z 372.1 (M-).

Anal calcd C₂₃H₂₀N₂O₃ C 74.18, H 5.41, N 7.52 % Found. C 75.75, H 6.10, N 7.78 %
FTIR: (thin film) 3075, 2965, 2932, 2875, 2641, 1652 (C=O), 1603, 1530 (NO$_2$), 1504, 1455, 1412, 1333 (NO$_2$), 1220, 1093, 760 cm$^{-1}$.

Synthesis of 3-(3-aminonaphthoyl)-2-methyl-1-n-propylindole (129)

A solution of 2-methyl-3-(3-nitronaphthoyl)-1-n-propylindole 128 (240 mg, 0.886 mmol) and Pd/C (32 mg) in 70% EtOH: 30% EtOAc (20 mL) was stirred at rt under a H$_2$ atmosphere (1 atm) for 1 h. The reaction was filtered through a celite pad, concentrated *in vacuo*, and purified using preparative TLC (50% EtOAc:50% hexane) to yield the title compound as a pale yellow oil (147 mg, 66%). A small portion was crystallized from MeOH/ HCl to give the HCl salt as an analytical sample.

1H NMR (CDCl$_3$) δ 7.84 (1H, d, J 8.3 Hz, aromatic), 7.58 (1H, J 8.2 Hz, aromatic), 7.25-7.20 (3H, m, aromatic), 7.19-7.08 (2H, m, aromatic), 7.05-6.95 (3H, J 8.2 Hz, aromatic), 4.03 (2H, t, J 7.3 Hz, N-CH$_2$), 3.91 (2H, br s, NH$_2$) 2.40 (3H, s, CH$_3$-indole) 1.76 (2H, sextet, J 7.5, CH$_2$-propyl) 0.94 (3H, t, J 7.4 Hz, CH$_3$-propyl).

13C NMR (CDCl$_3$) δ 193.1 (4°, C=O), 145.7 (4°), 143.5 (4°), 142.0 (4°), 136.1 (4°), 135.4 (4°), 127.0 (4°), 126.6 (CH), 126.1 (4°), 125.4 (CH), 124.9 (CH), 123.3 (CH), 122.2 (CH), 122.1 (CH), 121.3 (CH) 117.5 (CH), 114.7 (4°), 110.3 (CH), 109.4 (CH) 44.8 (CH$_2$-N-indole), 22.9 (CH$_2$-indole), 12.5 (CH$_3$-indole), 11.4 (CH$_3$-propyl).

ES-MS MH+ calcd for C$_{23}$H$_{23}$N$_2$O 343.2, found m/z 343.0 (MH+).

Anal calcd C$_{23}$H$_{23}$N$_2$OCl C 72.91, H 6.12, N 7.39 % Found. C 72.72, H 6.16, N 7.13 %
FTIR: (thin film) 3458 (NH$_2$), 3354 (NH$_2$), 3223 (NH$_2$), 3051, 3006, 2965, 2932, 2875, 2641, 1616 (C=O), 1600, 1508, 1416, 1220, 1087, 747 cm$^{-1}$.

Synthesis of 3-(3-N-tert-butyloxycarbonylglucaminonaphthoyl)-2-methyl-1-n-propylindole (130)

3-(3-Aminonaphthoyl)-2-methyl-1-n-propylindole 129 (86mg, 0.205 mmol), Nα-Boc-glycine (38mg, 2.15 mmol), DCC (44mg, 2.15 mmol) and catalytic DMAP were dissolved in anhydrous DCM (4 mL). The reaction was stirred at rt for 12 h and then cool filtered and diluted with DCM (30ml). The organic layer was washed with KHSO$_4$ (2×20 mL), NaHCO$_3$ (2×20 mL), and brine (1×20 mL). The reaction was dried (MgSO$_4$) and reduced *in-vacuo* to give a yellow solid. This was purified using preparative TLC (45% ethyl acetate: 55% hexane) to give 67.8mg (67%) of the title compound as a yellow oil.

1H NMR (CDCl$_3$) δ 8.90 (1H, br s, N-H amide), 8.28 (1H, br s, aromatic) 7.89 (1H, d, J 8.2 Hz, aromatic), 7.76 (1H, d, J 8.1 Hz, aromatic), 7.44-7.25 (5H, m, aromatic), 7.18 (1H, t, J 7 Hz, aromatic), 7.02 (1H, t, J 7.2 Hz, aromatic), 4.03 (2H, t, J 7.3 Hz, N-CH$_2$), 3.88 (2H, d, J 6.9 Hz, CH$_2$-carbamate), 2.33 (3H, s, CH$_3$-indole) 1.79 (2H, sextet, J 7.5, CH$_2$-propyl), 1.42 (9H, s, CH$_3$-Boc), 0.96 (3H, t, J 7.4 Hz, CH$_3$-propyl).

13C NMR (CDCl$_3$) δ 193.1 (4°, C=O), 168.1 (4°, C=O Boc), 156.3 (4°, C=O Boc), 146.4 (4°), 141.2 (4°), 136.2 (4°), 134.5 (4°), 128.2 (4°), 127.3 (4°), 126.6 (CH), 126.8 (4°), 125.9 (CH), 124.9 (CH), 122.5 (CH), 122.4 (CH), 121.3 (CH), 119.2 (CH) 118.6 (CH), 114.6 (4°), 109.6 (CH), 80.2 (4°, Boc), 44.8 (CH$_2$-N-indole), 33.8 (CH$_2$-gly), 28.3 (CH$_3$, Boc), 22.8 (CH$_2$-propyl), 12.6 (CH$_3$-indole), 11.4 (CH$_3$-propyl).

AP-MS MH+ calcd for C$_{30}$H$_{34}$N$_3$O$_4$ 500.3, found m/z 500.1 (MH+).
FTIR: (thin film) 3307 (br, NH), 3055, 3007, 2973, 2931, 1685 (C=O Boc), 1653 (C=O), 1603, 1505, 1418, 1366, 1244, 1092, 751 cm$^{-1}$

Synthesis of 3-(3-glycylaminonaphthoyl)-2-methyl-1-n-propylindole hydrochloride (131)

3-(3-N-tert butyloxycarbonyl-glycylaminonaphthoyl)-2-n-propylindole 130 (58mg, 0.116 mmol) was dissolved in methanol (3 mL) and conc. HCl$_{(aq)}$ (3 mL), and the reaction was stirred at rt for 12 h. The reaction was reduced *in-vacuo* and the product was recrystallised from MeOH: acetonitrile to give 25mg (50%) of the title compound as a pale pink solid.

m.p. 283°C (dec)

1H NMR (MeOD) δ 8.41 (1H, d, J 1.8 Hz, aromatic) 7.90 (1H, d, J 8.2 Hz, aromatic), 7.83 (1H, d, J 8.4 Hz, aromatic), 7.66 (1H, d, J 2.1 Hz aromatic), 7.53-7.30 (3H, m, aromatic), 7.20-7.12 (1H, m, aromatic), 7.10-7.05 (1H, m, aromatic), 6.99-6.90 (1H, m, aromatic), 4.21 (2H, t, J 7.3 Hz, indole N-CH$_2$), 3.89 (2H, s, N-amine-CH$_2$), 2.45 (3H, s, CH$_3$-indole) 1.81 (2H, sextet, J 7.5, CH$_2$-propyl), 0.94 (3H, t, J 7.4 Hz, CH$_3$-propyl).

13C NMR (MeOD) δ 195.1 (4°, C=O), 166.3 (4°, C=O amide), 149.0 (4°), 143.4 (4°), 138.4 (4°), 136.8 (4°), 136.2 (4°), 129.6 (CH), 129.1 (4°), 128.7 (CH), 128.6 (4°), 127.6 (CH), 126.4 (CH), 124.1 (CH), 123.7 (CH), 122.2 (CH), 120.2 (CH), 119.6 (CH), 115.8 (4°), 111.7 (CH), 46.1 (CH$_2$-N-indole), 42.7 (CH$_2$-N-amine), 24.8 (CH$_2$-propyl), 12.6 (CH$_3$-indole), 11.4 (CH$_3$-propyl).

AP-MS MH+ calcd for C$_{25}$H$_{26}$N$_3$O$_2$ 400.2, found m/z 400.0 (MH+).
Anal calcd C$_{25}$H$_{28}$N$_3$O$_2$Cl 0.25 H$_2$O C 67.79, H 5.69, N 9.49 % Found. C 68.12, H 5.99, N 9.45 %

FTIR: (KBr) 3168 (br, NH HCl salt), 2961, 2585 (amine HCl salt), 1688 (C=O Boc), 1592, 1567, 1499, 1421, 1359, 1263, 1091, 750 cm$^{-1}$

Synthesis of 3-(3-[(N-(7-nitrobenz-2,1,3-oxadiazol-4-ylglycyl)amino] naphthoyl)-2-methyl-1-n-propylindole (132)

A solution of 3-(3-glycylaminonaphthoyl)-2-methyl-1-n-propylindole HCl 131 (8 mg, 0.023 mmol) and NBD-F (2.85 mg, 0.0156 mmol) in pH 8.3 NaHCO$_3$ (aq) buffer (0.5 mL) and MeCN (0.5 mL) were stirred at room temperature for 45 min giving an orange precipitate. The solid was filtered and washed with water. The solid was dried (35°C) to yield 4.0 mg (46%) of the title product as an orange solid.

m.p. 178°C (dec.)

1H NMR (DMSO-d$_6$) δ 10.54 (1H, br s, aromatic), 9.45 (1H, br s, aromatic), 8.55 (1H, d, J 8.9 Hz, aromatic) 8.41 (1H, d, J not detectable, aromatic) 7.95 (1H, d, J 8.2 Hz, aromatic), 7.79 (1H, d, J 8.3 Hz, aromatic), 7.66 (1H, d, J 2.0 Hz aromatic), 7.60-7.48 (2H, m, aromatic), 7.41-7.32 (1H, m, aromatic), 7.20-7.10 (1H, m, aromatic), 7.01-6.92 (2H, m, aromatic), 6.47 (1H, m, aromatic), 4.45 (2H, br s, amide-CH$_2$), 4.21 (2H, t, J 7.3 Hz, indole N-CH$_2$), 2.45 (3H, s, CH$_3$-indole) 1.81 (2H, sextet, J 7.2 Hz, CH$_2$-propyl), 0.91 (3H, t, J 7.3 Hz, CH$_3$-propyl).

ES-MS -ve calcd for C$_{31}$H$_{26}$N$_6$O$_5$ 562.2, found m/z 561.1 (M-H)
FAB-MS (-ve mode) M calcd for C₃₁H₂₆N₆O₅ 562.1965 found 562.1962

HPLC – gradient 35% → 100% MeCN in water over 30 min. Rₜ 13.64 min (91% using peak area)

Synthesis of 2-methyl-3-(1-naphthoyl)-indole (134)

A solution of 2-methylindole (0.50 g, 3.8 mmol) in EtOEt (7 mL) was added dropwise to a stirring solution of 3M methylmagnesium bromide in EtOEt (1.2 mL) at 0 °C. The reaction was allowed to reach rt. 1-naphthoyl chloride was freshly prepared by refluxing 1-naphthoic acid in thionyl chloride for 5 h and removing the excess thionyl chloride in vacuo. A solution of 1-naphthoyl chloride (0.62 g, 3.26 mmol) in ether (10 mL) was added to the magnesium indole salt and the reaction was stirred for 45 min at rt and 1.5 h at reflux. The reaction was quenched with the addition of sat. NH₄Cl(aq) and was allowed to stir overnight to afford a fine precipitate. The solids were filtered from the reaction and the solid was refluxed in a solution of MeOH (12 mL), water (3 mL) and NaOH (200 mg) for 2 h. The title compound was filtered from the reaction and dried to yield 287mg (31%) of an off white solid.

m.p. 221 °C Lit²⁷⁰ 229-230 °C

¹H NMR (CDCl₃ & DMSO-d₆) δ 11.20 (1H, br s, N-H), 8.10-7.85 (3H, m, naphthalene), 7.53-7.28 (6H, m), 7.18-6.97 (2H, m, indole), 2.19 (3H, s, CH₃).

¹³C NMR (CDCl₃ & DMSO-d₆) δ 193.8 (4°, C=O), 146.6 (4°), 141.1 (4°), 135.6 (4°), 134.0 (4°), 130.5 (4°), 129.9 (CH), 128.6 (CH), 127.9 (4°), 127.1 (4°), 126.6 (CH), 125.8 (CH), 125.5 (CH), 125.2 (CH), 122.6 (CH), 122.1 (CH), 121.3 (CH), 115.0 (4°), 111.4 (CH), 14.9 (CH₃)
AP-MS MH+ calcd for C\textsubscript{20}H\textsubscript{16}NO 286.1, found m/z 286.2 (MH+).

Anal calcd C\textsubscript{20}H\textsubscript{15}NO C 84.19, H 5.30, N 4.91 % Found. C 83.77, H 5.17 , N 4.70

FTIR: (KBr) 3170 (N-H), 3105, 3053, 1595 (C=O), 1571, 1436, 1232, 1186, 887, 617 cm-1

Synthesis of 2-methyl 3-(1-naphthoyl)-1-n-propylindole (JWH-015 (53))

A suspension of 2-methyl-3-(1-naphthoyl) indole 134 (100 mg, 0.351 mmol), 1-bromopropane (75 µL, 0.848 mmol)) and K\textsubscript{2}CO\textsubscript{3} (117 mg, 0.846 mmol) was refluxed in methyl ethyl ketone for 12 h. The reaction was filtered and reduced in vacuo. The residue was dissolved in MeCN: water and the crystals that formed (38 mg of 2-methyl 3-(1-naphthoyl) indole) were filtered. The mother liquor was reduced to dryness and the residue purified using preparative TLC to yield the title compound (42mg, 36% (59% based on recovered starting material) green oil (R\textsubscript{f} 0.2 EtOAc: Pet Ether (1:10)). Attempted crystallization of the oil failed from a number of common solvent systems (i.e. EtOH: water, MeOH: water, MeCN: water, DMF: water, EtOAc: hexane and Acetone: water).

1H NMR (CDCl\textsubscript{3}) \(\delta\) 8.10 (1H, d, J 8.2 Hz), 7.95 (1H, d, J 8 Hz), 7.90 (1H, d, J 8.1 Hz), 7.59-7.39 (4H, m), 7.31-7.12 (3H, m), 6.98 (1H, t, J 7.2 Hz), 4.07 (2H, t, J 7.4 Hz, CH\textsubscript{2}-indole), 2.46 (3H, s, CH\textsubscript{3}-indole), 1.80 (2H, sextet (6), J 7.4 Hz, CH\textsubscript{2}-propyl), 0.97 (3H, t, J 7.4 Hz, CH\textsubscript{3}-propyl).

13C NMR (CDCl\textsubscript{3}) \(\delta\) 193.4 (4°, C=O), 145.6 (4°), 140.5 (4°), 136.2 (4°), 134.4 (4°), 129.9 (CH), 128.2 (CH), 127.1 (4°), 126.8 (CH), 125.7 (CH), 125.6 (CH), 125.1 (CH), 122.2 (CH), 121.8 (CH), 114.9 (4°), 109.5 (CH), 44.8 (CH\textsubscript{2}-N-indole), 22.9 (CH\textsubscript{2}-propyl), 12.55 (CH\textsubscript{3}-indole) 11.43 (CH\textsubscript{3}-propyl).
ES-MS MH+ calcd for C\textsubscript{23}H\textsubscript{22}NO 328.2, found m/z 327.9 (MH+).

Anal calcd C\textsubscript{23}H\textsubscript{21}NO.5 H\textsubscript{2}O C 82.11, H 6.59, N 4.16 % Found. C 82.11, H 6.49, N 4.19 %

8.2 Pharmacology

Rat splenocyte membrane preparation

Adult male Hooded Lister rats were killed by decapitation and spleens were removed, chopped with scissors and rapidly forced through a 70 μM pore size steel mesh with the plunger of a 5 mL syringe into ice-cold phosphate buffered saline (PBS) to produce a single cell suspension. The cells were pelleted by centrifugation, and erythrocytes were lysed with lysis buffer (0.017 M Tris, 0.144 M ammonium chloride, pH 7.2) for 3 mins. The cells were washed twice in PBS and resuspended in Tris buffer (50mM Tris, 100mM NaCl, 10mM MgCl\textsubscript{2}, pH 7.4). The cell suspension was homogenised with a glass/Teflon homogeniser. The homogenate was centrifuged at 20,000 x g at 4 °C for 10 min and the pellet resuspended in Tris buffer. Homogenisation and centrifugation were repeated twice and the final pellet was resuspended in storage buffer (50mM Tris, 1mM EDTA, pH 7.4) to a protein concentration of 5 mg mL-1 for radioligand binding.

hCB\textsubscript{2} CHO cell membrane preparation

CHO K1 cells stably transfected with the hCB\textsubscript{2} receptor were kindly obtained from Dr Darren Smart (GlaxoSmithkline) and were grown in our own laboratories in Dubelcco’s modified Eagle’s medium (DMEM) containing 5% foetal calf serum, 2 mM L-glutamine, 600 μg/mL Geneticin®, and 300 μg/mL Hygromycin B, in a Sanyo CO\textsubscript{2} incubator (95% O\textsubscript{2}: 5% CO\textsubscript{2}) at 37 °C. Cells were passaged every 3-4 days, using trypsin to lift the cells, and resuspended in fresh media. Flasks were grown as above to confluence (3 days) and cells were harvested, by removing excess media, and collecting in ice cold PBS using a plastic cell scraper. The cells were washed twice in ice cold PBS. Cell disruption was performed using a Polytron hand held electric
homogeniser in Tris buffer (50mM Tris, 100mM NaCl, 10mM MgCl₂, pH 7.4). The homogenate was centrifuged at 20,000 x g at 4 °C for 10 min and the pellet resuspended in Tris buffer. Homogenisation and centrifugation were repeated twice and the final pellet was resuspended in storage buffer (50mM Tris, 1mM EDTA, pH 7.4) to a protein concentration of 5 mg mL⁻¹ for radioligand binding or 2 mg mL⁻¹ for [³⁵S] GTP-γ-S binding and stored at -70 °C.

hCB₂ cell preparation for confocal microscopy

The CHO K1 cells were grown as above except that upon confluence in T175 flasks cells were resuspended in 10 mL of DMEM. 0.5 mL of cell suspension was diluted in a further 10 mL of DMEM and 0.4 mL of this cell suspension was pipetted into 8 well glass bottomed plates. Incubation for 24 h gave plates of approximately 60-70 % confluence which were used in confocal microscopy experiments.

hCB₂ transient transfection and membrane preparation

HEK-293T cells were grown in DMEM with 10% foetal bovine serum and high glucose. Cells were transiently transfected with pcDNA3 encoding CB2 using calcium phosphate precipitation and used for membrane preparation as described previously.²⁷¹ Briefly, at 24 h post-transfection, cells were harvested, washed twice in PBS and resuspended in PBS with 0.1% v/v protease inhibitor cocktail (Sigma Chemical Co., St Louis, MO, U.S.A.). Cell disruption was performed with nitrogen cavitation at 750 psi for 5 min. Following removal of cell debris and nuclei by differential centrifugation, membranes were resuspended in buffer (25 mM Tris-HCl, pH 7.4, 5 mM MgCl₂, 1 mM EDTA) + 7% sucrose. The membrane preparation was diluted to 0.6 mg ml⁻¹ total protein concentration and stored at -70 °C.

Radioligand binding in rat splenocyte and hCB₂ CHO membranes

Assay tubes were prepared in triplicate to a final volume of 1ml containing 0.3 nM [³H] CP 55,940 (Perkin-Elmer Life Sciences Inc., U.S.A.) and 250 µg membrane protein and diluted in Tris buffer (50 mM Tris·HCl, 2 mM EDTA, 5 mM MgCl₂ also
Radioligand binding in HEK-293T membrane preparations containing hCB2 receptors

Radioligand binding assays were performed as previously described. Membrane preparations were incubated with 4 nM \([\text{H}]\) CP, 55,940 with varying concentrations of test compounds. NSB was determined with 1 \(\mu\)M CP 55,940. All conditions were prepared in triplicate. A Brandel cell harvester (Brandel Inc., Gaitherburg, MD, U.S.A.) was used to separate bound from unbound ligand and the former quantified by liquid scintillation counting. Results were analysed with Prism GraphPad Software (GraphPAD Software, San Diego, CA, U.S.A.) using the Cheng–Prusoff equation to determine \(K_i\) values with the \(K_D\) value of 5.1 nM for CP 55,940 binding to hCB2 HEK 293T membrane preparations.

\[^{35}\text{S}]\text{GTP-}\gamma\text{-S membrane binding}

1 mL of CHO membrane containing the hCB2 receptor (see membrane preparation above) was preincubated with 100 mM GDP (ICN Biomedicals Inc., U.K.) and 1mM theophylline (Sigma, U.K.) in 15 mL of assay buffer (50mM Tris-HCl, 100mM NaCl, 10mM MgCl2 containing 5mg mL\(^{-1}\) BSA, pH 7.4) for 20 min at 30 °C. Assay tubes were prepared in triplicate to a final volume of 1 mL and contained 0.5 mL of the preincubated membrane solution, 0.4 nM \[^{35}\text{S}]GTP-\gamma\text{-S} (Amersham, U.K.) and the appropriate concentrations of drug. The NSB was determined using 100 \(\mu\)M
nonradiolabelled GTP-γ-S 11 and 1 µM HU210 14 was included as a positive control. Tubes were incubated for 45 min at 30 °C. Free and bound [35S]GTP-γ-S were separated by rapid filtration (using filter mats presoaked in Tris buffer (pH 7.4) containing 5% BSA) and washed with ice-cold Tris buffer (pH 7.4). Data are presented as mean values of % basal binding ± SEM (where basal binding = 100%) for experiments performed in triplicate. Statistical analysis was performed by analysis of variance using Bonferroni post hoc tests using GraphPad Prism3.

8.3 Molecular Modeling

All aspects of the molecular modeling methodology relating to the absolute parameters used are fully discussed in the relevant chapters. The software used for the analysis is listed below and operated on a Silicon Graphics interface.

Clustal W – sequence alignment (Version 1.81)
Sybyl – molecular modeling platform (Tripos, St Louis, MO63144)
Spartan PCPro – quantum mechanics software (Wavefunction Inc.)
CHARMM – energy minimization and molecular dynamics
PROCHECK – Protein structure analysis software
Ligplot – Ligand-receptor analysis software
LIGBUILDER – De novo drug design software

8.4 Fluorescence confocal microscopy

Images were taken using a Zeiss axiovert 100 with LSM510 confocal. Fluorescence was obtained by using an appropriate laser excitation wavelength through a Plan-apochromat 63x/1.4NA oil immersion objective and collecting emitted light through an appropriate long pass (LP) emission filter. Pinhole diameter was standardized to 1 area unit.
References

(3) Daly, C. J.; McGrath, J. C. Fluorescent ligands, antibodies, and proteins for the study of receptors. Pharmacology & Therapeutics 2003, 100, 101-118.

(45) British Medical Association *Therapeutic uses of cannabis*; Harwood academic publishers, 1997.

(58) Select Committee on Science and Technology Cannabis-The Scientific and Medical Evidence.; House of Lords: London, 1998.

(60) GW Pharmaceuticals Interim Results For The Six Months To 31 March 2003, 2003.

(95) Chakrabarti, A.; Onaivi, E. S.; Chaudhuri, G. Cloning and Sequencing of a Cdna-Encoding the Mouse Brain-Type Cannabinoid Receptor Protein. DNA Sequence 1995, 5, 385-388.

(182) Gouldson, P.; Calandra, B.; Legoux, P.; Kerneis, A.; Rinaldi-Carmona, M.; Barth, F.; Fur, G.; Ferrara, P.; Shire, D. Mutational analysis and molecular

(194) Song, Z. H.; Slowey, C. A.; Hurst, D. P.; Reggio, P. H. The Difference between the CB₁and CB₂ Cannabinoid Receptors at Position 5.46 is Crucial

(237) McAllister, S. D.; Tao, Q.; Barnett-Norris, J.; Buehner, K.; Hurst, D. P.; Guarnieri, F.; Reggio, P. H.; Nowell, K. W.; Cabral, G.; Abood, M. E. A

