
An Analysis of Diversity in Genetic
Programming

by Steven Matt Gustafson

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy, February 2004

ii

Contents

List of Figures v

List of Tables viii

Abstract ix

Publications Produced x

1 An Analysis of Diversity 1

1.1 Introduction 1

1.2 Research Perspective 2

1.3 Contributions 3

1.4 Overview 3

2 Search, Evolutionary Algorithms and Genetic Programming 5

2.1 Problem Solving and Search 5

2.2 Evolutionary Algorithms 9

2.3 Genetic Programming 11

2.4 Application Domains 17

2.5 Scalability and Fitness Landscape 23

2.6 Metaphors of Search 24

2.7 Summary 25

3 Issues in Genetic Programming 26

3.1 Diversity Measures and Methods 27

3.2 The Effects of Population Diversity 29

CONTENTS iii

3.3 The Role of the Population 31

3.4 Summary 34

4 Analysis of Diversity Measures 35

4.1 Diversity Measures 35

4.2 Empirical Analysis of Diversity Measures 42

4.3 Analysis of Results 45

4.4 Discussion of Diversity Measures 57

4.5 Summary 59

5 Genetic Lineages and A Metaphor of Hill Climbing 61

5.1 Genetic Lineages 61

5.2 Experimental Study using Lineage Selection 65

5.3 Results of Lineage Selection 67

5.4 Discussion of the Metaphor of Hill Climbing 71

5.5 Sampling of Unique Structures and Behaviours 75

5.6 Analysis of Results 78

5.7 Discussion of Sampling 81

5.8 Summary 83

6 Effects of Population Diversity: Code Growth and Problem Difficulty 85

6.1 Code Growth and Problem Difficulty 85

6.2 Regression Problems and Increased Difficulty 86

6.3 Experimental Investigation 89

6.4 Binomial-3 and Random Polynomial Results 89

6.5 Discussion of a Causal Model 95

6.6 Summary 102

7 Diversity, Survivability and a Niche for Island Models 103

7.1 Previous Distributed Evolution Work 104

7.2 Survivability of the Diverse 112

7.3 Genetic Outliers and Survivability 112

7.4 The Ant, Parity and Regression Domains 124

CONTENTS iv

7.5 A Niche for Island Models in Genetic Programming 126

7.6 Summary 131

8 Conclusions 132

8.1 Contributions 133

8.2 Remarks and Problem Specific Conclusions 136

8.3 Future Directions 139

Bibliography

v

List of Figures

2.1 The Sante Fe Trail for the Artificial Ant Problem. 18

2.2 Truth table for the Even-3-Parity problem. 20

2.3 The Quartic and Rastrigin functions. 22

4.1 Example of entropy distributions. 39

4.2 Example of population visualisations on a circular lattice. 40

4.3 Examples of ranked correlation scatter plots between fitness and diversity. 45

4.4 Fitness vs. generation for Ant, Parity, Quartic and Rastrigin experiments. 46

4.5 Average number of nodes vs. generation for the Ant, Parity, Quartic and Rastrigin
experiments. 47

4.6 Average depth vs. generation for the Ant, Parity, Quartic and Rastrigin experiments. 47

4.7 Phenotype diversity vs. generation for the Ant, Parity, Quartic and Rastrigin experi-
ments. 48

4.8 Average entropy vs. generation for the Ant, Parity, Quartic and Rastrigin experiments. 48

4.9 Edit distance One diversity vs. generation for the Ant, Parity, Quartic and Rastrigin
experiments. 49

4.10 Edit distance Two diversity vs. generation for the Ant, Parity, Quartic and Rastrigin
experiments. 49

4.11 Genotype diversity vs. generation for the Ant, Parity, Quartic and Rastrigin experi-
ments. 50

4.12 Pseudo-isomorph diversity vs. generation for the Ant, Parity, Quartic and Rastrigin
experiments. 50

4.13 Correlation coefficient vs. generation for the Ant, Parity, Quartic and Rastrigin ex-
periments. 54

4.14 Fitness vs. entropy for the Ant, Parity, Quartic and Rastrigin experiments. 55

4.15 Fitness vs. edit distance One diversity for the Ant, Parity, Quartic and Rastrigin
experiments. 56

LIST OF FIGURES vi

4.16 Fitness vs. edit distance One diversity vs. generation for the Ant, Parity, Quartic and
Rastrigin experiments. 57

5.1 Example of genetic lineage loss during recombination. 62

5.2 An example of lineage selection. 66

5.3 Average mean and average best fitness vs. generation for the control and lineage
selection experiments. 69

5.4 Average diversity measures and size vs. generation for the control and lineage selec-
tion experiments. 70

5.5 Edit distance between successive best-fit individuals for the control and lineage se-
lection experiments. 71

5.6 Generation where best fitness was found in the Ant experiments. 72

5.7 Average size of an individual in the generation where the best fitness was found in
the Parity experiments. 73

5.8 Behaviour definition example for the Regression domain, with standard fitness cal-
culation (mean squared error) and the behaviour definition. 77

5.9 Ant results, cumulative sampling of unique structures and behaviours. 78

5.10 Parity results, cumulative sampling of unique structures and behaviours. 79

5.11 Regression results, cumulative sampling of unique structures and behaviours. 80

5.12 Confidence bars for the average cumulative structure and behaviour sampling dis-
tributions. 82

6.1 The Binomial-3 and random polynomial functions. 88

6.2 Discretized final population results for the Binomial-3 and random polynomial ex-
periments. 90

6.3 Size vs. fitness, generation-of-best-fitness vs. fitness and generation-of-best-fitness
vs. depth for the Binomial-3 experiments. 91

6.4 Size vs. fitness, generation-of-best-fitness vs. fitness and generation-of-best-fitness
vs. depth for the random polynomial experiments. 92

6.5 Generation vs. (fitness, depth, nodes, diversity and entropy) for the Binomial-3 ex-
periments. 93

6.6 Generation vs. (fitness, depth, nodes, diversity and entropy) for the random polyno-
mial experiments. 94

6.7 Spearman correlation between size and fitness and between edit distance and en-
tropy for the Binomial-3 experiments. 95

6.8 Spearman correlation between size and fitness and between edit distance and en-
tropy for the random polynomial experiments. 96

6.9 Hypothesis of a causal relationship between code growth and instance difficulty. . . 98

LIST OF FIGURES vii

6.10 The model of difficulty and growth experiment results. 100

7.1 The division of phenotype and genotype spaces to define genetic outliers. 113

7.2 The target binary tree structure for the Tree-String problem. 116

7.3 The pareto front and points visited for the Tree-String experiments. 118

7.4 The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Tree-String experiments. Outliers are
defined by the (fitness, similarity) tuple as (better-than, 2 standard deviations). . . . 119

7.5 The average number in the population, the number of times selected and the sur-
vivability of the outliers, in-liers and un-fit for the Tree-String experiments using the
(better-than � equivalent-to , 2 standard deviation) definition of outliers. 120

7.6 The average number in the population, the number of times selected and the sur-
vivability of the outliers, in-liers and un-fit for the Tree-String experiments using the
(better-than, 1 standard deviation) definition of outliers. 121

7.7 The average number in the population, the number of times selected and the sur-
vivability of the outliers, in-liers and un-fit for the Tree-String experiments using the
(better-than � equivalent-to , 1 standard deviation) definition of outliers. 122

7.8 The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Ant experiments. 125

7.9 The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Parity experiments. 125

7.10 The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Binomial-3 experiments. 125

7.11 Two possible views of outliers in the genotype space. 129

viii

List of Tables

4.1 Experiment and problem parameters for the Ant, Parity, Quartic and Rastrigin di-
versity measure experiments. 42

4.2 Spearman correlation coefficients for the Ant, Quartic, Rastrigin and Parity experi-
ments. 52

5.1 Experiment and problem parameters for the lineage selection experiments. 67

5.2 Statistics for the lineage selection experiments. 68

6.1 Experiment and problem parameters for the Binomial-3 and random polynomial ex-
periments. 89

7.1 Experiment and problem parameters for the Tree-String experiments. 117

7.2 The Tree-String outlier definition variations and respective figures. 120

7.3 Experiment and problem parameters for Ant, Parity and Binomial-3 outlier experi-
ments. 124

ix

Abstract

Genetic programming is a metaheuristic search method that uses a population of variable-length

computer programs and a search strategy based on biological evolution. The idea of automatic

programming has long been a goal of artificial intelligence, and genetic programming presents an

intuitive method for automatically evolving programs. However, this method is not without some

potential drawbacks. Search using procedural representations can be complex and inefficient. In

addition, variable sized solutions can become unnecessarily large and difficult to interpret.

The goal of this thesis is to understand the dynamics of genetic programming that encourages

efficient and effective search. Toward this goal, the research focuses on an important property of

genetic programming search: the population. The population is related to many key aspects of the

genetic programming algorithm. In this programme of research, diversity is used to describe and

analyse populations and their effect on search. A series of empirical investigations are carried out

to better understand the genetic programming algorithm.

The research begins by studying the relationship between diversity and search. The effect of in-

creased population diversity and a metaphor of search are then examined. This is followed by an

investigation into the phenomenon of increased solution size and problem difficulty. The research

concludes by examining the role of diverse individuals, particularly the ability of diverse individ-

uals to affect the search process and ways of improving the genetic programming algorithm.

This thesis makes the following contributions: (1) An analysis shows the complexity of the issues of

diversity and the relationship between diversity and fitness, (2) The genetic programming search

process is characterised by using the concept of genetic lineages and the sampling of structures and

behaviours, (3) A causal model of the varied rates of solution size increase is presented, (4) A new,

tunable problem demonstrates the contribution of different population members during search,

and (5) An island model is proposed to improve the search by speciating dissimilar individuals

into better-suited environments.

Currently, genetic programming is applied to a wide range of problems under many varied con-

texts. From artificial intelligence to operations research, the results presented in this thesis will

benefit population-based search methods, methods based on the concepts of evolution and search

methods using variable-length representations.

x

Publications Produced

While pursing this Ph.D. research programme, I produced several publications that represented my

ongoing research for the degree. The following publications are based on my research conducted

for this thesis:

S. Gustafson, E.K. Burke, G. Kendall and N. Krasnogor. (in preparation). Diversity and Surviv-

ability in Genetic Programming. IEEE Transactions on Evolutionary Computation.

S. Gustafson, A. Ekart, E. Burke and G. Kendall. (to appear in 2004). Problem Difficulty and Code

Growth in Genetic Programming. Genetic Programming and Evolvable Machines.

S. Gustafson, E.K. Burke and G. Kendall. (2004). Sampling of Unique Structures and Behaviours in

Genetic Programming. In Proceedings of the European Conference on Genetic Programming. 10 pages,

April, Coimbra, Spain. Springer.

E.K. Burke, S. Gustafson, G. Kendall. (2004). Diversity in Genetic Programming: An Analysis of

Measures and Correlation with Fitness. IEEE Transactions on Evolutionary Computation. 8(1), pp.

47-62, IEEE Press.

E.K. Burke, S. Gustafson, G. Kendall and N. Krasnogor. (2003). Is Increasing Diversity in Genetic

Programming Beneficial? An Analysis of the Effects on Fitness. In Proceedings of the Congress on

Evolutionary Computation, pages 1398-1405, Canberra, Australia. IEEE Press.

E. Burke, S. Gustafson, G. Kendall and N. Krasnogor. (2002). Advanced Population Diversity

Measures in Genetic Programming. In Parallel Problem Solving from Nature. Volume 2439 of LNCS,

pages 341-350, Granada, Spain. Springer.

E. Burke, S. Gustafson and G. Kendall. (2002). A Survey and Analysis of Diversity Measures in

Genetic Programming. In Proceedings of the Genetic and Evolutionary Computation Conference, pages

716-723, New York. Morgan Kaufmann Publishers.

xi

Acknowledgments

I would like to thank my academic supervisors, Edmund Burke and Graham Kendall, for giving

me the opportunity to study at the University of Nottingham. I am grateful for the many opportu-

nities and guidance they have afforded me while at Nottingham. In particular, my research greatly

benefited from the chance to attend several academic conferences.

Several people in the evolutionary algorithm and genetic programming community have provided

invaluable discussions. I would like to especially thank Bill Hart, Bill Langdon, Sean Luke, Maarten

Keijzer, Nic McPhee, Una-May O’Reilly, and Lee Spector.

My research benefited from collaborations with Atif Azad, Anikó Ekárt, Natalio Krasnogor and

Leonardo Vanneschi.

In particular, I would like to thank Natalio Krasnogor for always having an open door to discuss,

listen and help with my research. I also greatly appreciate the time my Dad gave in reviewing

many drafts of papers and this thesis.

I also would like to acknowledge the support of my family in the United States, especially my

parents, David and Karen.

Moving abroad and setting up home in a new country would not have been as enjoyable or bearable

if it was not for my wife, Kristin. I thank her for her constant support and understanding.

To Kristin

and my Parents

1

CHAPTER 1

AN ANALYSIS OF DIVERSITY

This thesis examines the issue of diversity in genetic programming. Genetic programming, an

evolutionary methodology in the fields of machine learning and artificial intelligence, uses a pop-

ulation of solutions to guide search. As such, population diversity is an important issue. This

thesis describes a series of carefully planned and designed experiments that provide a detailed

understanding of genetic programming, diversity and diversity related issues. An introduction

to genetic programming is presented next, followed by the contributions and an overview of this

thesis.

1.1 Introduction

Genetic programming uses a population of variable-length computer programs within the metaphor

of evolution to guide search (Cramer, 1985; Koza, 1992). Search is a framework for problem solv-

ing where alternative solutions are evaluated in a trial-and-error fashion. A goal of search is to

find an ordering of alternative solutions that leads to good solutions. When enumeration over the

entire space of alternative solutions is not possible, heuristics like genetic programming use rules-

of-thumb to guide the search for alternative solutions. Genetic programming belongs to a class of

algorithms which use the metaphor of Natural Selection (Darwin, 1859) to determine the ordering

of alternative solutions during search.

Genetic programming is a simple and powerful technique which has been applied to a wide range

of problems in combinatorial optimisation, automatic programming and model induction (see

(Banzhaf et al., 1998) for a general introduction to genetic programming). The direct encoding

of solutions as variable-length computer programs allows genetic programming to provide solu-

tions that can be evaluated and also examined to understand their internal workings. In this way,

a genetic programming solution can represent a single value after evaluation (as in optimisation),

1. AN ANALYSIS OF DIVERSITY 2

an iteratively built algorithm (as in automatic programming) or a data-driven model useful in data

mining and knowledge discovery (as in model induction). While genetic programming is applied

successfully in all three cases, each of which merits its own scientific discipline, the focus of this

thesis is on the inner workings of the algorithm itself.

The issues of problem solving that motivate the use of genetic programming also represent some of

the limits to its applicability. The increase in computer power, the wide range of applications and

the ability to collect enormous amounts of scientific data all require a computational framework,

such as genetic programming, capable of automatically generating solutions with a representation

that is both powerful and understandable. However, the genetic programming algorithm has a

high computational cost to run, has difficulty scaling to larger and harder problem instances, and

uses a complex representation that can also limit its use.

At the heart of these issues is the use of a population of alternative solutions and the methods used

to generate new alternatives. A candidate, or alternative, solution is evaluated by means of a fitness

function that allows it to be compared with previously evaluated solutions. A stochastic selection

method chooses better solutions from the population that then undergo stochastic variations to

produce new alternatives. In this way, the population is responsible for guiding a parallel search

through the solution space. However, the evaluation of each population member becomes increas-

ingly computationally expensive and designing an effective process of variation on the direct and

complex encoding of solutions is not intuitive. Also, the amount of data produced by a population-

based search over an enormous space of possible programs makes the prediction and analysis of

algorithm behaviour difficult.

1.2 Research Perspective

The focus of this thesis is on understanding the genetic programming population, the ways it can

be measured and the role it plays on guiding the search process. Specifically, the diversity of the

population is analysed to uncover key features and relationships that make search successful. In

the process of developing a better understanding of genetic programming, a clearer description of

the dynamics of the algorithm emerges to facilitate and motivate future enhancements. The exist-

ing theoretical models of evolutionary algorithms are limited in use and applicability due to their

complexity. Therefore, the majority of theoretical work has been derived from experimentation.

The approach taken in this thesis is also based on the careful design, collection and analysis of

experimental results.

1. AN ANALYSIS OF DIVERSITY 3

1.3 Contributions

This thesis makes the following contributions:

1. A survey and analysis of diversity in genetic programming demonstrates the complexity be-

hind the issues of diversity measures and methods and the relationship between diversity

and fitness.

2. An analysis using genetic lineages shows how a search metaphor of hill-climbing can be used

to explain and improve genetic programming search. Also, the sampling of unique structures

and behaviours by genetic programming demonstrates the low sampling of both complex

behaviours and unique structures of large size.

3. A causal model is developed which links increased rates of code growth to non-decreased se-

lection pressure and to increased similarity within the population. Decreased selection pres-

sure occurs when fitness-based diversity is lost, and increased similarity in the population is

the result of both faster convergence and non-decreased selection pressure.

4. An analysis using the Tree-String problem shows the inability to produce good offspring by

both dissimilar-and-fit individuals and by similar-and-equally-well-fit individuals.

5. A model is proposed that identifies dissimilar individuals and moves them to new islands

where they can contribute to search more effectively.

1.4 Overview

Chapter 2 introduces search, heuristics, evolutionary algorithms and genetic programming. An in-

depth examination of genetic programming follows. The algorithm, representation and operators

are described before an introduction is given to common benchmark problem domains. Two im-

portant research issues and a metaphor of genetic programming search are then discussed.

Chapter 3 discusses three major issues which are evaluated in this thesis. First, the representation

and possible definitions of diversity are examined to highlight the complexity of diversity mea-

sures and methods. Secondly, the effects of diversity on other aspects of the search process is em-

phasised to demonstrate the wide-reaching issue of population diversity. The chapter concludes by

discussing the role the population plays in producing new solutions to guide search is discussed.

Chapter 4 begins the first of four chapters which represent the original contributions in this the-

sis. Measures and methods of diversity are surveyed from the literature. Common measures are

1. AN ANALYSIS OF DIVERSITY 4

used, along with novel population diversity measures, in an experimental study to assess the cor-

relation between diversity and fitness at different stages of evolution. The results emphasise the

contrasting behaviour between the common measures of diversity. Also, the most important diver-

sity measures appear to be the ones that capture information relevant to other processes, such as

selection and recombination.

Chapter 5 develops a diversity method based on genetic lineages. This method, lineage selection,

is used to demonstrate how and why increasing the diversity of populations may be beneficial

for some problems and not for others. Results suggest that many problems benefit or suffer from

a hill-climbing type search. When hill-climbing is interrupted by lineage selection, performance

is sometimes improved, sometimes worsened. To further investigate the type of search genetic

programming performs, the sampling of unique behaviours and structures is analysed. Results

provide a clearer characterisation of search on several problem domains.

Chapter 6 explores the effects diversity has on other aspects of the search process. A causal relation-

ship is found between difficulty, diversity and code growth. Initially these results are reinforced

by examining related literature, and then verified with a simplified model of genetic programming.

The results indicate that increased difficulty leads to both non-decreased selection pressure and less

structurally diverse populations, both of which contribute to an increased rate of code growth.

Chapter 7 explores the role of dissimilar individuals in the population and the effectiveness of mi-

grant individuals in distributed models. Several definitions of genetic difference are used to probe

these relationships on a new, constructed problem. The study looks at the ability of different sub-

populations to produce offspring with high survivability. A survey of previous methods used to

encourage distributed evolution is presented. A model is then proposed that explicitly identifies

dissimilar solutions and places them into an environment where they will be most effective.

Chapter 8 states the conclusions, lists the contributions and summarises the problem-specific results

obtained throughout the thesis. Recommendations for future research then follow.

5

CHAPTER 2

SEARCH, EVOLUTIONARY ALGORITHMS AND

GENETIC PROGRAMMING

Evolutionary algorithms are heuristic search techniques within the broadly defined domain of ar-

tificial intelligence. Problem solving is a common application of artificial intelligence, where search

is the framework for problem solving with computers. How does an evolutionary algorithm im-

plement and carry out search? This chapter describes the process of search, the elements required

to carry out search and different search strategies. Traditional search is described first, followed

by common heuristic methods. The evolutionary algorithm is then described, showing how it ad-

dresses the task of problem solving by means of search. After introducing and describing genetic

programming, the chapter concludes by discussing two important research issues: scalability and

representation.

2.1 Problem Solving and Search

Most human activity can be defined as a form of complex problem solving. Thus, problem solving

by a computer program is considered to be an instance of artificial intelligence, where the task con-

sists of managing information and searching for solutions (Shapiro, 1990). Given a representation

of a problem and a description of an ideal solution, the goal of search is to find a solution equal to

or close to the ideal solution. In many cases, decision making and problem solving are formulated

as optimisation problems (Pardalos and Resende, 2002). The role of the search method is to find

the best solution among possible alternatives, optimising for solution quality.

An example of problem solving in artificial intelligence is the field of automatic programming (Barr

et al., 1989). Computers perform calculations by means of programs. Designing and writing pro-

grams can be tedious and difficult. Given a specification of the desired behaviour of a program, it

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 6

would be desirable if another program could automatically generate a solution that met the spec-

ification. Although not normally considered an artifact of artificial intelligence, compilers were

an early form of automatic programming as they allowed programmers to write an algorithm in

a high-level language that was then interpreted and compiled into the lowel-level machine code

used by the computer’s processor. Later, while investigating the possibility of learning machines,

Friedberg (1958) designed an algorithm that was able to evaluate the quality of a computer pro-

gram, make random changes to it and then re-test for improvements. Since then, many advances

have been made in the field of artificial intelligence and automatic programming. For a further

discussion of automatic programming see (Barr et al., 1989).

Another example of problem solving by computer programs can be seen in the field of operational

research. Real-world problems are routinely solved efficiently and accurately by means of com-

puter programs (Pardalos and Resende, 2002). Operational research is concerned with studying

such methods and their applications. The methods developed in the cross-disciplinary research

between operational research and artificial intelligence are typically considered to be the state-of-

the-art applied algorithms, as they produce the solutions that are used in everyday decision making.

2.1.1 Requirements of Search

To carry out search by means of a computer program, several elements of the problem and search

strategy must be defined. Search requires the following elements (Nilsson, 1971):

� A defined problem, often requiring intelligent or complex behaviour to solve,

� A model of the problem and the representation of possible solutions,

� A goal state that defines the ideal solution, where heuristic methods often use an evaluation

function to rank the non-goal state solutions,

� Transformation operators that are capable of changing an existing solution into an alternative

solution, and

� A strategy for searching the space of possible solutions using the representation and transfor-

mation operators.

The application of the transformation operator(s) on a solution creates a neighbourhood of solutions.

These new solutions can then be compared to the goal state. When knowledge of the problem

is available, heuristic algorithms can define an evaluation function that allows the scoring and

ranking of solutions. The ranking of solutions determines which, if any, of the solutions in the

neighbourhood are better.

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 7

While search requires the above items, much of artificial intelligence and search research focuses

on the last item, finding good search strategies.

2.1.2 Algorithms to Perform Search

With the ability to generate and evaluate a possible solution, a random search strategy can be de-

fined. A random search method repeatedly generates solutions, evaluates them and generates

more. Random search uses no knowledge of previously generated solutions and typically stops

when a solution meets a particular criterion, such as being equal to the goal state or having quality

above a threshold.

Transformation operators allow a solution to be transformed into one or many new solutions, de-

pending on the number and type of operators. In this way, the neighbourhood of the current

solution is generated. The neighbourhood represents all the solutions that can be generated by the

application of the operators on the current solution.

Search strategies control the operators used, the size of the neighbourhood searched and which

solutions are selected to continue the search from. In traditional search, where typically a goal state

is defined, the operators can define a search tree. A node in the tree represents a solution, and its

successors, or children, are defined by the operators. Strategies can then be defined to search the

tree. Two such blind search strategies are depth-first and breadth-first search.

Breadth-first search generates all the successors of the root node in the search tree. Next, it gen-

erates all the successors of those nodes and continues until a solution is found. Depth-first search

generates a single successor of the root node. Next, it generates one successor to that node and

continues until a maximum depth is reached. At this point, it backtracks to the previous root node

and, if possible, generates another successor.

For problems with large search trees, blind search methods become inefficient and impractical.

This is particularly true when a search problem is cast as a decision problem (e.g. whether or

not a solution exists with quality above a threshold) that is undecidable in polynomial time of the

size of the problem instance. That is, if the decision problem is in the
���

complexity class, the

optimisation or search problem must also be at least as hard (Papadimitriou and Steiglitz, 1982).

However, blind search methods typically do not use any knowledge of the problem domain, which

is often readily available. As it is common for problems to become intractably large, approximate

methods called heuristics are typically used. Heuristics define rules-of-thumb about the problem

structure, such as a way to generate a feasible solution in a combinatorial optimisation problem or a

search strategy that finds good solutions in a reasonable amount of time (Reeves, 1995). Heuristics

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 8

can improve search efficiency by only considering a subset of all possible solutions or by only

generating solutions that are likely to be better than the current solution.

A simple heuristic search method is hill-climbing. Hill-climbing (or steepest descent) begins with a

randomly generated solution and continues to produce neighbours until a better solution is found.

This new solution becomes the current solution and the algorithm begins producing its neighbours.

If there are no improving solutions in the current neighbourhood, the method will stop. The current

solution may or may not be a global optimum in this case. Stochastic hill-climbing is a variant of

hill-climbing that proceeds in the same way but can also accept neighbours that are equivalent

to the current solution. The multi-start hill-climbing method attempts to improve performance by

performing several trials or runs of hill-climbing that each start from a different random initial

solution. The operator used in heuristic techniques typically results in a small random change

to the current solution. This type of operator, often called mutation, requires little or no domain

knowledge. If all the neighbours of the current solution are created before selecting the best, the

method is called neighbourhood search. Variable neighbourhood search adaptively increases the size of

the neighbourhood when no improving solution is found.

Another simple heuristic search method is best-first. This method generates all the neighbours of

a solution, selects the best one, generates all its neighbors, etc. When no better solution is found

in a neighbourhood, the search returns to the previous neighbourhood and selects the second best,

and continues until no improvements can be found. Beam search is similar to best-first, but does

not remember the complete previous neighbourhood. Instead, beam search remembers a fraction

of the best solutions in all previous neighbourhoods to return to when no improvements are found.

These methods are also called local search methods as they only accept improving solutions that are

in the local neighbourhood of the current solution.

By using knowledge of the domain, heuristic evaluation functions can be defined to provide an esti-

mation of the quality of a current solution or the likelihood that the search will continue toward a

goal state. Heuristic evaluation functions are also called cost functions, objective functions or fit-

ness functions. The estimated solution quality reported by these functions is often called the fitness

of the solution. With this measure of solution quality, the search strategy has additional informa-

tion with which to guide search. Metaheuristic methods represent search strategies that use heuristic

evaluation functions to guide search. Metaheuristics are iterative improvement algorithms that

repeatedly transform solutions, selecting better or worse new solutions in order to improve the

overall fitness of the final solution obtained. Metaheuristic methods assume that the heuristic eval-

uation function, representation and operators combine to lead search on a path from the current

solution to a better one, hopefully to the goal state or a global optimum.

When operators induce small changes to the solution that result in small changes to solution qual-

ity, the fitness landscape is said to be smooth. The term strong causality describes the property where

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 9

small changes to the solution result in small changes to its fitness. This property can also apply to

large changes in solutions. Strong causality indicates that there is a correlation between the size

of solution transformation and the size of change in the resulting solution quality. Weak causality

describes the case where there is little or no correlation between the size of the changes in solutions

and fitness values. Fitness landscapes were suggested by Wright (1932) and later studied by Kauff-

man (1993) using the
���

family of correlated landscapes. When the landscape is not smooth, local

search methods are likely to get stuck with sub-optimal solutions.

In order to avoid sub-optimal solutions, metaheuristics use a variety of techniques to be robust

to non-smooth, or rough, fitness landscapes. Most metaheuristic search strategies allow non-

improving solutions to be selected during search. Two popular methods are simulated annealing

(Kirkpatrick et al., 1983) and tabu search (Glover, 1986; Glover and Laguna, 1997). Simulated an-

nealing is similar to a hill-climbing method that begins with a random current solution. However,

in simulated annealing, a parameter (temperature) defines the likelihood that a worse scoring solu-

tion is accepted. Over time, the temperature is reduced, allowing the acceptance of worse solutions

with smaller probability.

Tabu search generates the neighbourhood of a current solution and considers any of the new solu-

tions that are not on a list of previously visited ones, the tabu list. Thus, the search is temporarily

banned from re-visiting solutions, preventing cycling. In this way, if all improving solutions are

on the tabu list, then this algorithm can also visit non-improving solutions. Tabu search can also

contain an explicit method of directing the search toward similar or dissimilar new solutions, called

intensification and diversification. Both simulated annealing and tabu search have been applied to a

wide range of real-world problems (Pardalos and Resende, 2002; Glover and Kochenberger, 2003).

Another class of metaheuristic search strategies are those based on the theory of Natural Selection

(Darwin, 1859). These are described in the following section.

2.2 Evolutionary Algorithms

Darwinian evolution uses the principles of competition, inheritance, and variation within a pop-

ulation. These concepts are used to define a class of iterative improvement metaheuristic search

methods. These methods, evolutionary algorithms, use a population of solutions and genetic oper-

ators to carry out search. Specifically, the evolutionary algorithm employs the following items:

� A population of candidate solutions called individuals,

� A fitness function that evaluates and assigns each individual a score, or fitness value,

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 10

� Transformation operators that produce offspring individuals from parent individuals, imple-

menting the concept of inheritance through stochastic variation, and

� A stochastic selection method for selecting individuals with better fitness to produce off-

spring.

Given a population � at time � , the evolutionary algorithm applies variation operators � on the

population. Variations are applied according to a selection method � , where individuals compete

to be selected according to their fitness. A population � at time ����� is found by:

�	��

�������������������

The transformation operators � provide new solutions by means of variations on existing ones. In

evolutionary algorithms, these operators usually consist of reproduction, recombination and mutation

operators. The population together with variation operators and competition provide a strategy

for searching the space of solutions. Only those solutions which are reachable by the operators

could be visited during the evolutionary process or run. Additionally, the use of a population in

search, instead of searching with a single solution as in hill-climbing, allows for a parallel search of

different areas of the search space representing alternative representations of similar fitness.

Evolutionary algorithms are often categorised into four main branches that are mainly distinguish-

able by their commonly used representation and operators: genetic algorithms use a bit-string and

two-parent crossover, evolutionary strategies use a real-valued vector and Gaussian mutation, evo-

lutionary programming employs a finite-state machine and mutation operators, and genetic program-

ming uses a computer program or executable structure and two-parent crossover. These classifica-

tions represent common or initial implementations. Many implementations use components from

different branches and make the classifications less accurate.

The genetic algorithm was originally represented by bit-strings in a fixed length genome. The

term genome refers to the bit-string. Early work by Fraser (1957), reprinted in (Fogel, 1998), and

Bremermann (1962) provided the foundations of genetic algorithms, which were later popularised

by Holland (1975) and DeJong (1975). A bit-string requires a mapping to a representation that can

be evaluated and assigned a fitness by the heuristic evaluation function. The genetic algorithm

traditionally relied on various forms of crossover as the main operator. For instance, in one-point

crossover with bit-strings � and � with bit positions indexed from ������� � , a point � is chosen such

that �"!#�$!%�'&�� . Next, the bit-strings exchange the portions of the string delineated by point �
so that

�(���)�*�+�����-,.��/ ,0
��1 �+�����32 and �����+����+�4� ,-�5/ ,�

��1 �����6�72 , becomes

�(���)�*�+�����-,-�5/ ,�

��1 �+���6�72 and ���8�+�
�����6� ,.��/ ,0
*��1 ���+� �32 after crossover.

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 11

Evolutionary strategies traditionally uses a direct encoding of the candidate solution, typically as a

vector of real numbers (Rechenberg, 1965; Bäck et al., 2000a). The method began using a population

consisting of a single individual. Offspring are produced by a Gaussian mutation operator and

became the new population if they were better than the parent. Population-based evolutionary

strategies uses two main selection schemes, the comma or plus strategy. In the (� , �) version, �
offspring replace the � parents. In the (� ���) version, parents and offspring compete to become the

new set of � parents. Evolutionary programming was originally based on the iterative adaptation

of finite-state machines (Fogel et al., 1966). Finite-state machines are evaluated and assigned a

fitness. A mutation operator is usually the only means of variation. In this sense, the population

in evolutionary programming is like an ecosystem of species, where each individual is a different

species.

Within the evolutionary algorithm framework, specialised methods such as multipopulation mod-

els (Cohoon et al., 1987), coevolutionary models (Potter and De Jong, 1994) and memetic models

(Moscato, 1989; Krasnogor, 2002) exist to further blend evolutionary algorithms with other local

search and heuristic methods. These hybrid algorithms typically combine global search strategies

with local strategies, representing the state-of-the-art in optimisation (Davis, 1991; Pardalos and

Resende, 2002; Glover and Kochenberger, 2003). Hybrids allow a general metaheuristic search

strategy to be specialised for specific applications. Davis (1991) points out that the two objectives

of generalisation and specialisation are conflicting in that increasing the performance of a method

for a specific domain is likely to make the same method perform worse on other domains. The “No

Free Lunch Theorems” by Wolpert and Macready (1997) emphasised this performance trade-off

by explicitly stating that the average performance of all methods over all problems will be equal.

However, this does not prevent some algorithms from being better than others on particular classes

of problems.

Genetic programming is an evolutionary algorithm that represents solutions as programs. The

remainder of this thesis will focus specifically on the canonical form of this method and represen-

tation.

2.3 Genetic Programming

Genetic programming is an evolutionary algorithm that uses either a procedural or a functional

representation. This section describes this representation and the specific algorithm components

used in the canonical version of the algorithm. The foundations of genetic programming are ini-

tially presented, followed by a discussion of the algorithm and a description of three common

applications. Lastly, two important research issues and metaphors of genetic programming search

are described.

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 12

2.3.1 Foundations

Genetic programming became a popular search technique in the early 1990s due to the work by

Koza (1992). Angeline (1998) traced the historical foundations of genetic programming back to

Friedberg (1958) and Friedberg, Dunham and North (1959) where iterative random changes made

to computer programs induced better programs. Learning machines were proposed earlier by Tur-

ing (1950), where an automated process similar to evolution in combination with human interaction

was thought to be a possible way for programs to acquire intelligent behaviour. The form of ge-

netic programming used today is most closely related to work done by Cramer (1985), where a tree

representation of programs was used in conjunction with subtree crossover to evolve a multiplica-

tion function. This work also employed the use of partial credit assignment for function activity,

input dependence and iterative constructs, issues that are not traditionally considered in canonical

genetic programming. Other background and foundational research of genetic programming and

evolutionary algorithms can be found in (Banzhaf et al., 1998; Fogel, 1998; Bäck et al., 2000a; Koza,

1994). More modern approaches to genetic programming and evolutionary algorithms are de-

scribed in (Langdon and Poli, 2002; Bäck et al., 2000b; Koza et al., 2003). Some of these approaches

are discussed in later chapters.

The theoretical foundations of genetic programming are summarised in Langdon and Poli (2002).

Theories of evolutionary algorithms use abstract representations of the solution space, called schem-

ata, to describe various components and behaviours of the algorithm. Holland’s (1975) notion of

schema for genetic algorithms was extended by Koza (1992) to include syntax trees. Syntax trees

are the common representation in genetic programming, and these schema were intended to rep-

resent trees that have common subtrees. In this case, subtrees represent functional code that is

combined over time to create better programs (Altenberg, 1994; Rosca and Ballard, 1996). O’Reilly

(1995) extended the idea of schema for genetic programming trees to allow for subtrees to contain

wildcards, giving a more flexible definition of schema. Rosca (1997) defined a similar schema based

on rooted trees, also using wildcards to allow for schema to represent templates.

Theories based on parse tree schemata are often complex. This is mainly due to the many ran-

dom decisions in the algorithm, requiring the modelling of many stochastic events. However, it

is not always clear that schemata are selected and combined in a predictive way. That is, the fit-

ness resulting from the combination of two schemata with high fitness is often unpredictable. That

does not, however, lessen the importance of the development of theoretical models, which have

produced many practical results. The rooted tree schema (Rosca, 1997b) provided an improved

understanding of the effects of popular operators and representation, while Poli (2003) used theo-

retical results to justify a method to control growth in solution size. Langdon and Poli (2002) and

Poli and McPhee (2003a,2003b) describe their recent developments of exact schema theories for ge-

netic programming using a complete and exact description of the representation and operators. As

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 13

noted in (Langdon and Poli, 2002), this approach is costly to compute since, in a sense, it simu-

lates the actual execution of the algorithm with all its complexities and degrees of freedom. Thus,

to know what exact schemata will be generated, one can either compute an enormous number of

probabilities of events and their likely results, or one can execute the algorithm.

2.3.2 The Genetic Programming Algorithm

Genetic programming adopts a similar search strategy as a genetic algorithm, but uses a program

representation and special operators. It is this representation that makes genetic programming

unique. The basic algorithm is as follows:

1. Initialise a population of solutions

2. Assign a fitness to each population member

3. While the Stopping criterion is not met

4. Produce new individuals using operators and the existing population

5. Place new individuals into the population

6. Assign a fitness to each population member, and test for the Stopping criterion

7. Return the best fitness found

The rest of this section describes the components of this algorithm in more detail, beginning with

the representation.

2.3.3 Representation of Solutions

The original formulations of genetic programming considered Lisp S-expressions as candidate so-

lutions. The Lisp programming language is popular in artificial intelligence research as it was

designed for symbolic processing, see (Shapiro, 1990) for a further discussion. S-expressions, or

symbolic expressions, are the basic objects in Lisp and are naturally represented as syntax trees,

where leaves represent terminals (variables or constants) and nodes represent functions. The arity

of a node is the number of arguments it expects to receive. In genetic programming, to over-

come typing issues related to passing arguments and function values to functions, it is standard

to use a strongly-typed system (Montana, 1995) where variables and functions have the same type.

Grammar-based genetic programming systems can use multiple types easily, but require a defined

grammar and specialised operators, e.g. (Whigham, 1995; Ryan et al., 1998).

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 14

The evaluation of a syntax tree is performed as a depth-first walk of the tree. Before evaluating

a node, each of its arguments must first be evaluated. Thus, one may think of the syntax tree

evaluation algorithm as a recursive call on the root node of the tree, which in turn evaluates each

of its children, typically from left to right. Function and terminal nodes return their values up the

tree to their parent, where terminals can only return their value. In the domain of mathematical

functions, the expression ������� ��� ��� ��� �8��& �5� � can be represented by an S-expression in prefix as:

� � ��� ��� � �%�����-� ��� � &#� �	�

which can then be represented as a syntax tree as:

+

/

3 +

1 2

-1

The representation of candidate solutions in genetic programming is not limited to single syntax

trees. Auxiliary data structures such as memory arrays are also used (Spector and Luke, 1996), as

are data structures containing several syntax trees to represent one solution (Luke, 1998). The en-

capsulation of functions has been accomplished with automatically defined functions (Koza, 1994) or

automatically defined macros (Spector, 1996). More recent advances have seen “architectural-altering”

operators, loops and recursion (Koza et al., 1999). Additionally, when using functional languages

such as ML in a genetic programming framework, iteration and recursion can become more natural

(Olsson, 1995).

2.3.4 Initialisation

The genetic programming algorithm requires an initial population of individuals, or syntax trees.

There are many possible methods to perform tree initialisation. The ramped half-n-half method is

the most commonly used. It was introduced by Koza (1992) and probabilistically selects between

two recursive tree generating methods: Grow and Full. The Grow method choses a depth
 and

randomly picks functions or terminals to build a tree, no deeper in any branch than
 . The Full

method is the same but only choses functions until
 is reached, creating full trees of depth
 .

Several methods have been used to create different distributions of initial trees, where the general

consensus is that a more uniform and random distribution is better for the evolutionary process.

These methods have recently been described in (Luke, 2000; Luke and Panait, 2001). While the

Full and Grow methods were probably initially (and subsequently) used due to their simplicity,

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 15

they offer little control over tree creation. However, while other methods do give better control,

e.g. (Iba, 1996), it is not clear what methods are better for different situations and whether the

complexity of these methods are justified by their performance. Thus, in the research presented in

this thesis, the ramped half-n-half method will be used for initialisation.

2.3.5 Fitness and Selection

Genetic programming requires an evaluation, or fitness, function to determine the quality of an

individual. The fitness value is typically a single scalar value that allows selection methods to dis-

tinguish between various levels of individual quality. Multiobjective methods often use a vector to

represent fitness. Most of the computation time, particularly for more complex problem domains,

is spent in the fitness evaluation. For instance, in a robotic control problem, each individual might

represent an algorithm to move a robot from one location to another. Each individual must then be

run for the purpose of fitness evaluation in a simulator or on an actual robot, where both tasks may

take considerable time.

To determine a fitness value, the individual is typically applied to a fitness case, or set of fitness

cases. The score on the fitness case(s) is represented in the final fitness function value. For exam-

ple, in the above robotic control problem example, executing a program that controls a robot in a

simulator would represent a fitness case. The fitness value assigned to the robot on this fitness case

could represent the distance from some predefined location and the final location of the robot. If

this process was repeated several times by starting the robot in different initial locations, the values

returned by these fitness cases could be averaged to represent the fitness value assigned to the in-

dividual. In the problem domains described later in this chapter, a fitness value will sometimes be

the result of applying a program to one fitness case and sometimes it will be the result of applying

the program to a set of fitness cases.

The design of a good representation and fitness function is critical. Ideally, the representation and

fitness should have the property of strong causality where small changes in the genotype represent

small changes in fitness (Rosca and Ballard, 1995). However, weak causality, the opposite of strong

causality, is more common in genetic programming. Weak causality implies more “instability” of

the programs evolved by genetic programming, where small changes to solutions often yield large

changes in fitness.

While fitness functions are designed to distinguish between individual quality, code growth and

other dynamics can also be controlled with components added to the fitness function (Luke and

Panait, 2002b). Dynamic fitness functions and hierarchically defined fitness functions (Langdon

and Poli, 2002) are examples of other ways to guide the search.

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 16

To create the next population of individuals in a generational algorithm, individuals are probabilis-

tically selected from the current population based on fitness. The most common method in genetic

programming is tournament selection. Tournament selection chooses � individuals from the current

population and returns the one with the best fitness. Typically, one tournament is held for each

individual participating in crossover, mutation or reproduction. Other forms of selection consist of

truncation selection, fitness-proportionate selection, ranked selection and selection based on mul-

tiple criteria (for example, selecting individuals based on fitness and then on size). See (Blickle and

Thiele, 1995) for a discussion of selection methods.

2.3.6 Recombination, Mutation and Reproduction

Recombination is usually implemented as subtree crossover between two parents. The mechanics

of the subtree crossover method were initially described by Cramer (1985) and Koza (1992) and

have been examined in detail in a variety of studies, e.g. (D’haeseleer, 1994; Luke and Spector,

1998; Langdon, 2000b; Igel and Chellapilla, 1999; Gathercole and Ross, 1996). The algorithm can be

described as follows: Two trees are selected from the population, a subtree in each tree is selected

and the two subtrees are exchanged between the trees. Either one or both children are considered

for the new population. For example, consider the two binary trees with roots � and � ,

�

�

2 2

2

�

1 �

1 1

Two crossover points are chosen (� and �) and subtrees are exchanged to produce the two

following trees:
�

�

1 1

2

�

1 �

2 2

Subtree selection is done by assigning a uniform probability to all internal nodes and leaf nodes

separately. Then, an internal node selection probability, usually set to 0.9, defines the frequency

of leaves or subtrees selected for recombination. Note that, typically, as trees grow in size, the

probability of selecting subtrees near the leaves grows. This is because there are more nodes in

these locations, giving them a higher cumulative probability of being selected.

Since in canonical genetic programming all functions and terminals return and expect the same

type, any exchange of subtrees between two trees will be valid. Many possible variations of re-

combination exist. For example, Homologous and Size Fair crossover (Langdon, 2000b) attempt

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 17

to preserve tree structures and the size of exchanged subtrees. Other operators are described in

(Langdon, 1998a).

Subtree crossover tends to be the dominant operator in genetic programming, while mutation oper-

ators are often used at lower rates. Subtree mutation was investigated in comparison with subtree

crossover in (Luke and Spector, 1998). Other forms of mutation include single-node mutations and

various forms of code-editing to remove unnecessary code from trees. The reproduction operator

copies an individual from one population into the next.

The production and selection of new individuals is carried out in a generational or steady-state algo-

rithm. In a generational algorithm, a new population is created from parents in the current popu-

lation. In a steady-state algorithm, one offspring is created and placed into the existing population,

either randomly or based on fitness. The comma and plus methods for offspring and parent selection

used in evolutionary strategies are also possible, see Section 2.2. Other examples of offspring pro-

duction force children to compete amongst themselves, such as brood selection (Altenberg, 1994;

Tackett, 1994), or use methods based on similarity to bias toward similar or dissimilar parents, such

as disassortative mating (Ryan, 1994).

2.3.7 Stopping Criterion

A generation consists of the production of a new population in a generational algorithm. A similar

definition is used for a steady-state algorithm. A maximum number of generations usually defines

the stopping criterion in genetic programming. However, when it is possible to achieve an ideal

fitness, this can also serve as the stopping criterion. In this thesis, a maximum generation number

is used, regardless of whether the ideal fitness is achieved. Other criteria are possible, such as a

measure of diversity loss or a lack of fitness improvement.

2.4 Application Domains

To further understand genetic programming, it is useful to consider the problem domains which

were used to motivate the field and to develop a theoretical understanding of it. Such problem

domains are also employed to test new representations and operators. These standard problems

are used throughout the genetic programming literature and were introduced by Koza (1992) and

later used by other researchers, e.g. (Daida et al., 2001; Luke, 2001; Luke and Spector, 1998; McPhee

and Hopper, 1999; Soule and Heckendorn, 2002). This section surveys these problems to introduce

the domains which are used in this research.

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 18

FIGURE 2.1: The Sante Fe Trail for the Artificial Ant Problem. Food pellets are denoted with a circle
in the above grid.

2.4.1 Artificial Ant

The artificial Ant problem was popularised by Koza (1992), but was originally developed for the

field of artificial life by Jefferson et al. (1991). The Ant problem consists of finding the best strategy

for picking up food pellets along a trail in a grid. The solution to the problem is an algorithm for

collecting food. The Sante Fe trail is often used for the Ant problem. The Sante Fe trail consists of

89 food elements on a two dimensional, � ��� � � , toroidal grid, shown in Figure 2.1. The ‘ant’ starts

in the North-west corner, facing East.

Ant Functions and Terminals

The functions and terminals are executed to move the ant on the grid during evaluation. The typical

functions include:

� if food ahead(a,b) : if the ‘ant’ faces a food pellet then evaluate a, else evaluate b,

� progn2(a,b) : evaluate a, then b, returning b’s value, and

� progn3(a,b,c) : evaluate a, b then c, returning c’s value.

The last two functions are simple sequencing functions. The following terminals provide the ‘ant’

with locomotion and change of direction:

� left : turn the ‘ant’ left by 90 degrees,

� right : turn the ‘ant’ right by 90 degrees, and

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 19

� move : move the ‘ant’ forward by one square/step.

Ant Fitness Assessment

The fitness for this problem is measured as the number of pellets missed out of the total on the trail.

The ant is typically given a total of 600 time steps1 to collect food pellets, where each terminal takes

one time step to execute. Each candidate program is re-evaluated, without re-initialising the ‘ant’,

until the all the food has been collected or the maximum number of time steps is reached.

Ant Related Studies

The Artificial Ant problem was investigated in numerous studies. Langdon and Poli (2002) exam-

ined several aspects of the search space for the Ant problem. The authors measure the search ef-

fort required for genetic programming, several variations of genetic programming, several random

search techniques and several stochastic search methods. While genetic programming performed

at least as good as the random search methods, some versions of stochastic hill-climbing, includ-

ing population based hill-climbing, performed equally well or better than genetic programming.

Langdon and Poli noted that the Ant problem is highly deceptive. That is, there are many pos-

sible solutions that are symmetrical, and because there is no requirement that a particular path is

followed, solutions with equal fitness can take very different approaches to solving the problem.

Langdon and Poli later showed that by encouraging the population to follow similar paths, the

problem became considerably easier for genetic programming.

2.4.2 Even Parity

Machine learning is typically concerned with inducing a model that can correctly classify input and

output pairs. The set of boolean problems provides a similar framework for genetic programming.

Langdon and Poli (2002) provide a discussion of boolean program spaces, which is also related to

the field of evolvable hardware and circuit design (Koza et al., 1999).

Within the class of boolean problems, the Even- � -Parity problem requires the correct classification

of bit strings of length � having an even number of � ’s. For example, Figure 2.2 shows the truth

table for Even-3-Parity, where an even number of � ’s is classified as “True”. In this thesis, the case

of � � �
will be considered.

�
Koza (1992) reported the number of 400, but work by W. Langdon suggests this number was 600.

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 20

D1 D2 D3 Even-Parity
0 0 0 True
0 0 1 False
0 1 0 False
0 1 1 True
1 0 0 False
1 0 1 True
1 1 0 True
1 1 1 False

FIGURE 2.2: Truth table for the Even-3-Parity problem.

Parity Functions and Terminals

Logical functions are used to determine parity in the binary bit strings. The typical functions used

include:

� and(a,b) : returns 1 if a and b are 1, else 0,

� or(a,b) : returns 1 if a or b are 1, else 0,

� nand(a,b) : returns 0 if a and b are 1, else 1.

� nor(a,b) : returns 0 if a or b are 1, else 1.

In the Parity problem, the terminals representing the � bits are denoted as:

� D1,...,D � .

Parity Fitness Assessment

The Even-5-Parity fitness function is the number of wrong classifications out of the ��� possible bit

strings of length 5.

Parity Related Studies

The Parity problem has also been investigated in detail in (Langdon and Poli, 2002). The most char-

acteristic aspects of this problem are the few test cases that define fitness and the requirement that

all terminals are processed by a solution to achieve the ideal fitness. Additionally, because of the

nature of the problem, a random guess on all fitness test cases will lead to a score of 50%. O’Reilly

and Oppacher (1994,1995) performed a comparison of several hill-climbing methods using similar

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 21

genetic programming operators to show that hill-climbing generally performed better than genetic

programming on the 6 and 11 Multiplexer problem. Similar results were also obtained in (Juels and

Wattenberg, 1995). While the two problems, Multiplexer and Parity, are not identical, they share

several similar features (e.g. boolean functions and terminals and very few fitness function values).

2.4.3 Symbolic Regression

In many scientific disciplines, finding a model explaining the relationship of large and complex sets

of data is required. However, the task is often difficult and many methods have been employed to

uncover models of data. The domain of symbolic regression is one method where input and output

pairs are used to infer a functional model, typically consisting of a function and its coefficients.

Keijzer (2001) researched the application of genetic programming on the Regression domain in the

context of “scientific discovery”, demonstrating several ways to improve its application.

The Regression problem attempts to find a program that approximates a target function. A target

function
� ��� � ��� is applied to domain values, � , in a pre-determined range. The resulting � values

are then compared with the candidate program’s value upon the same � values. This thesis uses

the Quartic polynomial, � ����������� �	��
 �	��� �	� �
the Rastrigin function, � ��� ��� �)� � � �

� �
� � � �

�
& ��� � cos � �����

�
� �

the Binomial-3 polynomial, � ��� ��� ��� �	� �
 �
and several random polynomials (described in Chapter 5). For the Rastrigin instance, � is in the

range � & � � � � � � � � ���
 , for the Quartic, Binomial-3 and random polynomial instances, � is in the range� & �-� ��� �+�-� ����� . The number of (� ���) pairs is ��� for both the Quartic and Rastrigin instances and
� � for

the Binomial-3 and random polynomial instances. Figure 2.3 shows the Quartic polynomial and

the Rastrigin function (� �%�).

Regression Functions and Terminals

Regression problems use mathematical functions to approximate a target function. The division

and logarithm function are usually “wrapped”: division returns 1.0 if the denominator is equal to

or very close to 0, while logarithm returns 0 if its argument is equal to or very close to 0. Addition-

ally, it is common, especially for functions with coefficients such as the Rastrigin, to use ephemeral

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 22

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

randomly generated points

quartic function x^4 + x^3 + x^2 + x

0

100

200

300

400

500

600

-6 -4 -2 0 2 4 6

randomly generated points

rastrigin function

FIGURE 2.3: The Quartic and Rastrigin functions.

random constants (ERCs). ERCs are constants that keep their value after initialisation for the re-

mainder of the run. In the random polynomial instances in Chapter 5, the ERCs are in the range

of [-1,1] while they are varied for the Binomial-3 instances. The experiments that use the Rastrigin

function in Chapter 4 do not use ERCs.

The Regression domain functions are usually a subset of the following:

� a + b, a - b, a * b : return addition, subtraction and multiplication of their arguments, respec-

tively,

� a / b : protected division, returns 1 if denominator is � 0, otherwise returns the quotient,

� sin(a), cos(a) : returns sine and cosine of the argument,

� log(a) : returns 0 if a � 0, else the logarithm of the argument,

� exp(a) : returns �
�
.

The following terminals are common in the Regression domain:

� � : from the pair (� ���),

� ERCs.

Regression Fitness Assessment

Fitness for the Regression problem instances is determined by summing the squared difference

between the target value for each � value. In Chapter 5, fitness is reported as “adjusted fitness”,

where this is defined by the following equation:

adjusted fitness � �
� � fitness

�

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 23

Regression Related Studies

Many studies have used the Regression problem domain as a testbed. The problem has been char-

acterised by both Daida et al. (2001) and O’Reilly (1998) as being unique in that it contains many

conflicts of context and content in the representation. Keijzer (2003) found improvements using

interval arithmetic and a simple fitting method, and other improvements were found using more

advanced models for symbolic regression of polynomials (Nikolaev and Iba, 2001).

2.5 Scalability and Fitness Landscape

Two complex issues in genetic programming is the ability to scale toward harder and larger prob-

lem instances and the landscape induced by the representation, operators and fitness function. This

thesis approaches both of these issues by focusing on the population used by genetic programming.

There are many elements of genetic programming which limit the scalability of the algorithm. First,

evaluating a solution can be computationally expensive. While evaluating a single solution alone

is not a problem, a very large population of solutions easily becomes a problem. A bias toward

the increase in solution size compounds this problem by increasing the evaluation time and the

memory used by the population. Also, it is not clear that genetic programming can be applied

effectively to when the combinatorial search space is increased, nor is it clear that very simple

implementation decisions, such as the population size, do not drastically change the difficulty of a

problem instance.

A second major issue in genetic programming is the basic choice of representation, operators and

fitness function. The elements define the fitness landscape. The representation of solutions by com-

puter programs is straightforward for modelling a variety of problem domains. However, trans-

forming one program to another, while maintaining some commonality of behaviour between the

two is not, i.e. the property of strong causality. Thus, when the representation, operators and fit-

ness function have the property of weak causality, the fitness landscape can be described as rough.

Not only has the operator in genetic programming come under scrutiny, but several representation

variations have been proposed to improve the algorithm, e.g. grammar-based genetic program-

ming (Whigham, 1995) and linear genetic programming (Keller and Banzhaf, 1996).

Related to the issue of strong and weak causality in genetic programming is the issue of context

and content in the representation and fitness function. The content of a syntax tree refers to its

functions and terminals. The context of a group of functions and terminals in a particular syntax

tree is the way in which these primitives contribute toward fitness, and is typically determined by

the other elements in the tree. However, moving this content, or group of functions and terminals,

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 24

to another syntax tree may change its context. Thus, selecting a portion of one solution that has

good fitness and placing it in another solution with good fitness is not guaranteed to preserve the

original context of the content. The issue of content and context in the genetic programming system

is likely to effect the causality of the system.

Both of the previous two issues, scalability and fitness landscape, have strong links with the pop-

ulation and its dynamics. For instance, if the size of the population could be reduced without cost

to performance, computation could be drastically reduced. As the population has a strong effect

on guiding the search in the solution space, the issues of scalability and landscape roughness could

be addressed to a degree by different population dynamics. To better understand genetic program-

ming and related issues, this thesis will address population dynamics by studying the more specific

issue of population diversity. Diversity describes the amount of variation in the population, and as

shown in later chapters, has wide-reaching effects on many aspects of the search process.

2.6 Metaphors of Search

Genetic programming is an evolutionary algorithm. The assumed metaphor for this type of search is

that it proceeds by adaptation: solutions adapt or change to meet predefined objectives. However,

when this metaphor of adaptation is applied to the standard genetic programming algorithm, it is

somewhat misleading and too general. It is misleading because canonical genetic programming,

due to structure and content convergence, has only a limited ability to adapt during the evolutionary

process. That is, it is likely at some point to be unable to change solution quality. The metaphor is

too general as genetic programming is usually applied to search problems where a component is

the optimisation of a specific objective. However, the concept of adaptation seems to imply that a

solution can equally adapt to one or more objectives, as is typically the case in Nature. It is likely

that a metaphor exists which is more specific than evolution and is still accurate.

One such metaphor that was previously proposed is that of Beam Search (Tackett, 1994). Beam

search is similar to the best-first heuristic but only allows a limited capacity of memory of previ-

ously visited solutions. Thus, portions of the search space may be forgotten and optimal solutions

may be missed. In genetic programming, the population and selection methods provide the basis

for the metaphor. These elements provide a kind of memory of previous search and the ability to

select the most promising aspects to continue search with.

Another possible metaphor is that of hill-climbing. Hill-climbing is a memory-less version of beam

search. While comparisons are made between genetic programming search quality, hill-climbing

(O’Reilly and Oppacher, 1994) and random search methods (Langdon and Poli, 2002), to charac-

terise the search behaviour is a different matter. It is clearly not the case that genetic programming

2. SEARCH, EVOLUTIONARY ALGORITHMS AND GENETIC PROGRAMMING 25

is a random search. The population, selection and variation of better solutions produce a search

by the trial-and-error of new solutions, but a metaphor of random search would suggest that the

search proceeds with no direction from previous solutions. Hill-climbing, on the other hand, may

be an applicable metaphor as it captures the sense that while a population does exist (providing

the memory component for the Beam-Search metaphor), convergence and operator behaviour are

likely to prevent the population from returning to a previous state.

It may be the case that beam search and hill-climbing metaphors offer an optimistic and pessimistic

metaphor of genetic programming search, respectively. A variation of hill-climbing, stochastic hill-

climbing (Juels and Wattenberg, 1995), seems particularly appropriate as it considers neutral moves

on the fitness landscape. In the following research, a metaphor of search is sought to explain results

and algorithm behaviour. In Chapter 5, a metaphor of hill-climbing appears to agree with the

results and with much previous literature. In light of the complexity of genetic programming and

other evolutionary algorithms, such metaphors of search may lead to new theoretical models.

2.7 Summary

This chapter has described search, evolutionary algorithms and the genetic programming algo-

rithm and representation. Three common problem domains were introduced. Lastly, two open

research issues, their relationship with the population, and metaphors of search relating to genetic

programming were presented.

The procedural representation and evolutionary search strategy used by genetic programming

makes it an intuitive algorithm for automatic programming and search. However, the issues of

scalability and landscape roughness can present serious issues to its applicability. These issues

have received much attention from the community. Instead of proposing new solutions to these

problems, the aim of the remainder of this thesis is to develop a sound working knowledge of

population dynamics from which new solutions can then be developed. To achieve this goal, the

research will focus on the issue of population diversity. Once this is achieved, many new possibili-

ties for improving search with genetic programming will become intuitive. Toward this goal, three

key questions are outlined in the next chapter which are addressed in the following experimental

studies.

26

CHAPTER 3

ISSUES IN GENETIC PROGRAMMING

The genetic programming literature often cites the importance of maintaining diversity to avoid

premature convergence toward local optima (Ekárt and Németh, 2000; McKay, 2000; McPhee and

Hopper, 1999; Rosca, 1995a; Ryan, 1994). What does diversity mean to a population-based search

algorithm? Certainly, variation is required in the principles of biological evolution. While genetic

programming is not the same process that occurs in Nature, there are many different types and

possible levels of diversity.

At the center of this thesis are three questions that are related to diversity. By exploring these issues,

a clearer understanding of genetic programming and diversity will be achieved. Each of these three

questions motivates the research that follows. The questions are:

1. How can diversity be measured and controlled, and are there ideal levels of diversity?

The numerous references to the culpability of ‘the loss of diversity’ for poor results, e.g. as

suggested by the several methods designed to increase diversity discussed in Chapter 4, sug-

gests that the prevention of this loss will somehow improve results. However, it will be

shown later that diversity has been measured and used in a variety of ways that are often

conflicting.

2. Genetic programming is a population search method, thus, what effect does population diversity have

on other aspects of the search process?

One challenging problem in genetic programming is the increase of solution size that is not

accompanied by an increase in solution quality. While the literature describes the mechan-

ics that cause growth, e.g. (Langdon and Poli, 1998a; Luke, 2003; Soule and Heckendorn,

2002), few have argued as done in this thesis that the varied rate of growth is an artifact of

population diversity.

3. ISSUES IN GENETIC PROGRAMMING 27

3. What specific role does diversity play in the evolutionary process, i.e. do dissimilar individuals con-

tribute offspring differently than the rest of the population?

The population provides the main reservoir of genetic material from which to produce new

solutions. The population is expected, to a degree, to simultaneously occupy different parts

of the search space. However, to provide good solutions, it is accepted that the population

converges toward one optimum. These two possibly conflicting functions of the population

are important to understand, particularly in context of diversity.

The purpose of this chapter is to examine these issues in more detail.

3.1 Diversity Measures and Methods

Diversity is not the goal of evolutionary algorithms. Ideally, as in nature, diversity would be a

side-effect of the representation and operators that, when the right or sufficient level is achieved,

encourages good performance. While population initialisation in genetic programming does not

usually allow duplicate individuals, future populations are usually not bounded by such a con-

straint. In fact, duplication of individuals is common and often explicitly promoted by more elitist

methods and the reproduction operator.

A natural conclusion as to the cause of run failure is the wrong level of diversity, specifically too

little diversity. However, this idea is problematic for several reasons. Genetic programming is not

typically implemented as an ‘open-ended’ evolutionary system. The algorithm is said to ‘converge’

when it is unable to find new solutions or improve solution quality. Without explicit pressure,

genetic diversity and the ability to make variation and improvement will be lost during the evo-

lutionary process. Knowing whether this will occur in the earlier or later stages is difficult. As

fitness is a function of the syntax tree representation, a loss of different syntax trees also causes a

loss of different fitness values. How does one know the right kind and level of diversity required

to produce quality solutions?

3.1.1 Measuring Diversity

Genetic programming typically employs a syntax-tree representation, often using binary trees. A

population of trees exists in each generation. Function and terminal sets consist of anywhere from

1 to several terminals and usually 3 or more functions. The number of different binary tree shapes

with � internal nodes can be found using the Catalan number
�
 � � � � ��� � � ��� � � � �5��� � , (Lucas

et al., 1993). The beginning of this series, where each term describes the number of binary tree

3. ISSUES IN GENETIC PROGRAMMING 28

configurations with � internal nodes, i.e. trees of size � �"��� , consists of the following terms:

� ��� � � � � �+��� ��� � ��� � � ��� ��� ����� ��� ������� �����	��
���� � � ��

��� � ������� � �����+���
Now, for every tree of size � � � � , the total number of unique trees given the function and terminals

sets creates an enormous space including
�
 � �

� � /

��1 programs, where
�

is the number of

functions and � is the number of terminals. Within this space there may be many equivalent trees,

functionally and based on the fitness function. What aspect of tree shape, content or behaviour

should diversity measures capture? What are the critical elements? Should measures concentrate

on the node level, i.e. based on the number and types of function and terminal nodes (McPhee and

Hopper, 1999), or should more problem specific measures be used that describe detailed solution

behaviour (D’haeseleer and Bluming, 1994)?

The term diversity is often used without definition. The implicit assumption is that it refers to the

solution representation. However, it is useful to also consider aspects of solution behaviour or

fitness. In the following research, the term genotype refers to the shape and content of the solution,

while phenotype refers to the fitness value. The term phenotype generally eludes to a more descriptive

measure of solution behaviour. However, the standard practice in the literature uses fitness value

and phenotype interchangeably. Later, a more complex definition of solution behaviour will be used

that describes solutions in more detail than typical fitness functions.

Based on the type of diversity being measured, several measures of diversity can be defined. The

number of unique genotypes was the traditional diversity measure (Koza, 1992; Langdon, 1998a).

The number of unique fitness values was also considered a diversity measure (Rosca, 1995b). There

are obviously many other possible definitions. Some of these definitions are described in Chapter

4.

3.1.2 Controlling Diversity

Is there an ideal level of a particular type of diversity? The two recognised phases of the evolution-

ary process, exploration followed by exploitation (Eiben and Schippers, 1998), make this question

difficult to answer. Without knowing a priori the existence of a type and ideal levels of diversity,

blindly controlling diversity in a population seems problematic. Instead, two different diversity

strategies may be required: a diversification and an intensification strategy, similar to those explic-

itly defined in tabu search (Glover and Laguna, 1997). A related method was recently defined in

genetic programming based on edit distance and adaptive control based on fitness improvement

(Ekárt and Németh, 2000). However, the exploration and exploitation aspects of search are not

the only issues to consider when attempting to control or modify population diversity. A fuller

discussion of methods used to control diversity is presented in Chapter 4.

3. ISSUES IN GENETIC PROGRAMMING 29

3.2 The Effects of Population Diversity

Genetic programming works by selecting individuals and recombining their genetic material to

produce new offspring. It is common for genetic programming to use only the subtree crossover

operator. When mutation operators are used, their effects are not unlike crossover and they are

often used at low rates. The type of individuals in the population will obviously affect the type of

individuals selected and the type of offspring produced. Recombining similar or dissimilar individ-

uals will effect offspring size and fitness. Diverse and non-diverse populations can make the search

more difficult depending on the landscape defined by the representation, operator and fitness func-

tion. The possibility of context and content conflicts in the representation can further complicate

the effects of population diversity. Also, population diversity can effect selection pressure, making

the search more random or more focused.

3.2.1 Code Growth

Code growth is a well-documented phenomenon of evolutionary systems using a variable-length

representation, as is used in genetic programming. When an increase in solution size does not

correspond with fitness improvement then computation time is wasted and the readability of solu-

tions is decreased. Several recent studies of the causes of code growth exist. Luke (2003) presented

a theory based on the depth of modification points and Soule and Heckendorn (2002) assessed the

viability of three hypotheses: the protective, the drift and the removal bias. There are two major

contributing factors to code growth in genetic programming emphasised in these studies:

1. The smaller the removed portion of a tree the less likely that the fitness of the resulting off-

spring will be worse than the parent’s according to the removal bias (Soule and Heckendorn,

2002; Igel and Chellapilla, 1999).

2. Child survivability is linked to deeper nodes selected for modification in their parents accord-

ing to the depth-based theory of code growth (Luke, 2003). This gives a bias toward larger parents

which will tend to produce larger children.

These two points are overlapping, and are also somewhat consistent with other theories of code

growth, specifically Langdon and Poli’s fitness causes bloat theory (Langdon, 2000a; Langdon and

Poli, 1998a; Langdon et al., 1999), which suggests that the space of larger trees contains more better

fit programs. As fitness increases or stays the same with tree size growth, the selection of crossover

points nearer to the leaves increases, the size of the removed portion decreases and the modification

points are deeper. Thus, as trees grow, their modification points become deeper, their removed

3. ISSUES IN GENETIC PROGRAMMING 30

subtrees become smaller and their children’s survivability is higher. There is a clear bias toward a

constant rate of growth during evolution.

However, empirical evidence also shows a wide range of code growth rates that these theories do

not predict. In a series of random runs, genetic programming may produce a wide range of solu-

tion sizes. For example, Figure 4.5 in Chapter 4 shows the average size of an individual in each

population for 50 random runs. In each of the experiments, a wide range of sizes are produced.

Understanding the mechanics of the population that allowed for smaller solutions and the op-

posite mechanics that caused larger solutions seems paramount to controlling code growth while

maintaining fitness improvements. If solutions are predisposed toward growth due to the recom-

bination of tree types, controlling population diversity could allow better control of code growth.

Also, understanding the effects and causes of different levels of population diversity could allow a

more thorough description of the mechanisms that cause growth.

3.2.2 Problem Difficulty

Another issue in genetic programming is how to identify important properties of problems or prob-

lem instances. Specifically, what makes a problem difficult with respect to genetic programming?

Daida et al. (2001) investigated a tunable problem, the binomial-3 function with varying ephemeral

random constant ranges, to show that difficulty can be increased without changing the combina-

torial search space. In this case, genetic programming difficulty increases with the increased range

of ERC values. The authors suggested that the conflict between content and context is largely re-

sponsible for increased difficulty. O’Reilly and Goldberg (O’Reilly, 1998; Goldberg and O’Reilly,

1998) used constructed problems to highlight the content and context dependencies in genetic pro-

gramming solutions. The authors investigated how partial solutions contribute toward fitness and

how they make solving the problem more difficult (O’Reilly and Goldberg, 1998). Recent research

has also investigated possible structural mechanisms that make search more difficult (Daida, 2002;

Daida et al., 2003b). Population diversity, among other things, could be a way to reduce problem

difficulty by filtering misleading or deceptive solutions from the population and search.

3.2.3 Selection Pressure and Deception

Selection methods select fitter individuals to produce new individuals. The fitness function defines

a scalar value for each individual that the selection method uses to compare individuals. However,

the loss of different fitness values in the population leads to the reduction of selection pressure on

individuals with the same fitness. For example, if the population contains only one fitness value,

then a selection method based on fitness will become random. When fitness-based diversity is

3. ISSUES IN GENETIC PROGRAMMING 31

low, particularly among the fitter individuals, selection and search become more random. Previous

work has also linked selection pressure to code growth (Smith and Harries, 1998; Langdon and

Poli, 1998a; Tackett, 1994).

Low phenotype diversity in the population can also represent another property of the population,

deception. Goldberg (2002) provides a discussion of deception in context of genetic algorithms and

building blocks. Langdon and Poli (1998b) describe deception in terms of the Artificial Ant problem

for genetic programming. Deception, in general, refers to solutions that lead the search toward

poor local optima. Deception can occur when very different solutions exist with the same fitness

but their recombination leads to poor fitness. Or deception can occur when solutions that have

relatively good fitness are not amenable to further improvement. Selecting these individuals would

not lead to better solutions. In both cases, the selection method does not have enough information

about the problem or population to avoid deceptive solutions.

3.3 The Role of the Population

Fitness evaluation is typically responsible for the majority of computation time in genetic program-

ming. Bigger populations require more computation. Understanding clearly the role of the pop-

ulation during search is likely to allow the controlled reduction of population size and improved

efficiency. Additionally, understanding this role is also likely to allow populations to be evaluated

on their potential for providing good search. This section examines several issues related to the

role of the population during search.

3.3.1 Local or Global Search

Metaheuristic methods, such as genetic programming, are typically considered as global search

methods. However, the locality of the operator, subtree crossover, has led the search to be char-

acterised as more of a local search method (Poli and Langdon, 1998a; Langdon and Poli, 2002).

Research has shown that the loss of genetic diversity in populations is often followed by small

fitness improvements, likening the search to a blind random search on the converged population

(Gathercole and Ross, 1996; McPhee and Hopper, 1999). Genetic programming is then described

as “behave[ing] like a set of parallel stochastic hill-climbers” (Poli and Langdon, 1998a) as it has a

limited ability to search much of the space of possible solutions.

Without diversity in the population, genetic programming is more likely to be capable of only sam-

pling close genetic neighbours. When this behaviour is repeated over several random runs, the runs

appear to be stochastic hill-climbers. While the loss of diversity could encourage improvement by

3. ISSUES IN GENETIC PROGRAMMING 32

performing a more local search around the best solution found so far, too much early convergence

is likely to make the population more susceptible to local optima (McPhee and Hopper, 1999).

Genetic programming was compared with hill-climbing methods using similar representations and

operators (O’Reilly and Oppacher, 1995; O’Reilly and Oppacher, 1994; Langdon and Poli, 2002;

Langdon, 1998b; Juels and Wattenberg, 1995). Different problems were solved better and worse us-

ing genetic programming. While these studies will be referred to later to help explain experimental

results, they also show how simple algorithms that are made to behave like genetic programming

can sometimes provide good and better results. For instance, in (Juels and Wattenberg, 1995), a hill-

climbing strategy is amended to allow neutral moves, called stochastic hill-climbing, which seems

appropriate for genetic programming. Standard hill-climbing typically accepts only solutions that

are improvements to the current solution.

A high level of convergence in genetic programming suggests a diminished exploration ability,

and the comparisons to hill-climbing methods suggest that these two methods sometimes behave

similarly. Should genetic programming be considered as more of a global or a local search method?

Recent research (Luke, 2001; Loveard, 2003) has treated the algorithm similarly to single solution

hill-climbing method, where optimal population sizes are combined with run length parameters

to search for the best arrangement of computation in a multi-run genetic programming algorithm.

While these papers suggest more robust methods, they present genetic programming behaviour as

a more local search method, or a hill-climber.

Much of the space of genetic structures has been shown to be difficult to reach by canonical genetic

programming (Daida, 2002; Daida et al., 2003b; Langdon, 2000b). If good solutions are in these

spaces, it will be difficult to discover them. Previous research also emphasized the shape and

content convergence in genetic programming (McPhee and Hopper, 1999; Igel and Chellapilla,

1999), where tree shapes and their contents in the population became increasingly fixed from the

top down early in the evolutionary process.

If the role of the population is to provide diversity while hill-climbing toward a single solution, then

directly modelling genetic programming as a hill-climber would allow smaller population sizes in

combination with elitism and diversity to hill-climb effectively. If the role of the population is to

carry out a more global and parallel search over the search space, perhaps more careful selection,

recombination and diversity strategies are required.

3.3.2 Representation and Operator Conflicts

Section 3.2 described issues in the representation and operator that increase problem difficulty. In-

tuitively, exchanging subtrees between two syntax trees (representing computer programs) during

3. ISSUES IN GENETIC PROGRAMMING 33

recombination, regardless of tree shape or content, would seem unlikely to preserve the semantic

meaning of the exchanged subtrees. Thus, it is not too surprising that subtree crossover has been

shown to perform similarly to mutation variants (Angeline, 1997; Luke and Spector, 1998; O’Reilly

and Oppacher, 1996). However, because the population only represents a portion of the search

space at one time, could the population make the search more robust against landscape rough-

ness issues by avoiding particular regions of the search space? If the population can encourage the

search toward regions of the search space that minimise internal conflicts between the representa-

tion and operator, it would be able to ‘smooth’ the search landscape.

Homology attempts to address some of the problems with the representation and operator. In-

tuitively, recombination should modify similar content with similar context in parents, thereby

preserving the semantics of exchanged genetic material. In this way, solutions may be iteratively

and incrementally built. Homology can be achieved by using operators that search for semantically

similar subtrees. Platel et al. (2003) defined a homologous crossover for a linear genetic program-

ming representation. Their results showed that homology reduced code growth and produced far

more neutral events than a standard crossover operator. While neither method produced many

“Advantageous” events, the number of destructive events were more numerous using standard

crossover. Smaller solution sizes with mixed improvement of quality were seen in other studies

using homologous operators (D’haeseleer, 1994; Langdon, 2000b; Poli and Langdon, 1998a; Nordin

et al., 1999).

The concept of homology could also be implemented with a population that consist of similar trees.

In this case, operators are more likely to pick subtrees from semantically similar areas as probability

of selection will apply similarly to the homogeneous population. That is, less genetically diverse,

or homologous, populations may, among other things, improve the chance of preserving semantics

during recombination.

As noted in (Langdon, 2000b), a potential drawback of homologous crossover is the slow growth

in size of the population. If the initial population is of the wrong structure, e.g. trees much smaller

than optimal size, then homologous crossover will approach this rate slowly. Standard crossover

might better obtain the ideal size, but its ability to improve solution quality or maintain the size

is debatable and problem dependent. Additionally, homologous operators introduce or preserve

similarities in the population, which could counter the possible benefits of diversity preservation.

However, a converged population, while possibly improving search, can also limit the ability to

avoid local optima.

3. ISSUES IN GENETIC PROGRAMMING 34

3.4 Summary

This chapter stated three questions that are used to guide the following research. These questions

highlight the difficulty in measuring and controlling diversity, the importance of diversity on other

aspects of search and the need to understand how and to what extent diversity guides search.

Genetic programming is an appealing search heuristic because it provides an intuitive way to

search a very complex space. This representation provides many possible measures and meth-

ods of diversity. It is not clear what type of diversity is more relevant for improving search, or what

level of diversity would be best. Next, Chapter 4 looks at diversity measures and the correlation

between fitness and diversity. Chapter 5 then uses a novel diversity measure to explore the ef-

fects of increased diversity, the expected diversity loss and the type of search genetic programming

appears to be carrying out.

Issues such as code growth, bloat and problem difficulty and homology are not the primary focus of

this thesis. Instead, Chapter 6 examines population diversity to understand its role and the effects

it has on the previous issues. As the population is connected to most issues in search, it is likely

that many interesting relationships exist.

The population and operator are responsible for producing new individuals during search. While

diversity is obviously beneficial to sampling new individuals, do the most dissimilar individuals

produce good individuals? Should the search method focus explicitly on dissimilar individuals or

simply use them to provide variety for a converging population? These issues are fundamental

to how genetic programming searches and also to developing new methods that can be used to

improve search. Chapter 7 explores the concept of the survivability of dissimilar and fit individuals

to better understand how these individuals guide search.

35

CHAPTER 4

ANALYSIS OF DIVERSITY MEASURES

Previous investigations into measures of diversity have given the community a clearer view of

populations and the search process of genetic programming (McPhee and Hopper, 1999; Darwen

and Yao, 2001; Ekárt and Németh, 2002; Rosca, 1995a; Keijzer, 1996; Langdon and Poli, 2002).

However, the many different possible definitions of diversity can be conflicting. Identifying the

measures that correlate with run performance will enable the design of more efficient operators

and genetic programming algorithms.

The three main issues addressed in this chapter are:

1. The ways of measuring and controlling diversity,

2. The correlation between the best fitness and diversity of populations, and

3. The importance of diversity at different stages of the evolutionary process.

As genetic programming is a stochastic algorithm, clear (and always applicable) rules about exact

ideal levels of diversity are not expected to be found. The goal is instead to draw general conclu-

sions and ‘rules of thumb’ about expected diversity and search performance. A survey of diversity

measures and diversity preserving methods is presented next. This is followed by an experimental

study of the trends of various measures, the correlation between fitness and diversity measures

and a discussion about the overall effects of diversity.

4.1 Diversity Measures

Biological diversity refers to the differences between individuals in a population, which in nature

imply structure and behaviour difference. Koza (1992) used the term variety to indicate the number

4. ANALYSIS OF DIVERSITY MEASURES 36

of different genotypes in a population. In a standard genetic programming population, this would

be the number of structurally unique individuals. While this measure is probably the least informa-

tive it is the most common due to its ease of use and understanding. Langdon (1998a) argued that

genotypic diversity is a sufficient upper bound of population diversity. Due to the nature of most

genetic programming systems and problems, two identical genotypes will produce the same fit-

ness. Thus, a decrease in genotype diversity (unique individuals) will necessarily cause a decrease

in phenotype diversity (unique fitness values). In the treatment of the stack problem, Langdon

(1998a) investigated the effects of the crossover operator on variety. The author noted that genetic

programming loses some ability to improve fitness after 20-30 generations, which is most proba-

bly due to selection and crossover causing a loss of variety. Langdon also noted that in the stack

problem, in runs with better fitness, crossover appeared to produce a larger number of fitter (and

non-duplicate) children than their parents. Also, the author found that the loss of diversity caused

a decrease of unique terminals that, due to subtree crossover, led to further diversity loss. Langdon

and Poli (2002) later noted that measuring variety with only unique genotypes fails to consider the

ancestral history of individuals, the degree of difference between non-unique individuals and their

behavioural similarities.

The standard representation in genetic programming (syntax trees) lends itself to more fine grain

structural measures that consider nodes, subtrees, and other graph theoretic properties (rather than

just entire trees). Keijzer (1996) measured subtree variety as the ratio of unique subtrees over total

subtrees, and program variety as the ratio of the number of unique individuals over the size of the

population. Keijzer also used a distance measure between two individuals as the number of dis-

tinct subtrees the individuals share. The author noted that his distance measure of distinct subtrees

between two individuals could be used to predict when subtree crossover will fail to provide im-

provements due to loss of distinct subtrees and diversity. Tackett (1994) also measured structural

diversity using subtrees and schemata frequencies.

Problem specific measures can allow additional insight into population diversity, especially on

novel and non-traditional problems. D’haeseleer and Bluming (1994) defined behaviour and fre-

quency signatures for each individual based on fitness and gene (i.e. specific nodes) frequencies,

respectively. The average correlation between the respective signatures in the population repre-

sents the phenotype and genotype diversity of the population. In addition, D’haeseleer and Bluming

tagged genetic code and evaluated the behaviour of individuals with a “stimulus-response map”

to gain further knowledge into the structure and behaviour of populations in their robot tank prob-

lem. Using these measures, the authors witnessed emerging demes (distinct subpopulations) with

neighborhood selection and mating.

The degree of graph isomorphism could be applied to genetic programming trees as a measure of

diversity. However, the properties of functions used in genetic programming (associativity, com-

4. ANALYSIS OF DIVERSITY MEASURES 37

mutativity, etc) would require special, and possibly complex, implementations of isomorphism

(Rosca, 1995a). Also, determining graph isomorphism would be computationally expensive for

an entire population. However, a measure of possible isomorphic trees could be found by noting

simple properties (terminal, functions, depth, etc.) to determine the individuals which could be

isomorphic without actually computing isomorphism.

McPhee and Hopper (1999) investigated diversity at the genetic level by assigning numerical tags

to each node in the population. The tags track the survival of nodes from the initial population

and the change of context for nodes during recombination. The authors also tracked the genetic

lineages from the initial population by noting the individuals selected for recombination, which

child they produced and which of the parents provided the root portion of the child’s tree. They

found that populations in the final generation often descended from one single initial individual,

since genetic lineages were often reduced to one surviving lineage early on in the evolutionary

process.

Measuring the difference between two individuals based on string edit distances has been used

several times in genetic programming. O’Reilly (1997) used an edit distance based on string match-

ing, which uses single node insertions, deletions and substitutions to transform two trees to be

equal in structure and content. De Jong et al. (2001) also used a similar edit distance in a multiob-

jective method. This edit distance, a modification of string edit distance, or Levenshtein distance,

overlaps two trees at the root node. Two different nodes, when overlapping, score a distance of 1.

Equal nodes score a distance of 0. The edit distance is then the sum of all different nodes, which

can be normalised by dividing it by the size of the smaller tree. The measure represents the number

of node changes that need to be made to either tree to make them equal in structure and content.

Note that this measure does not take into consideration the standard subtree crossover operator,

but does resemble a single point mutation operator.

O’Reilly (1997) noted the importance of using structural distance measures on genetic program-

ming populations to understand the underlying dynamics. An edit distance measure was used

here to study the effects of crossover and the differences between individuals and better individu-

als. While no clear results were found, the ability to understand genetic programming populations

with edit distance measures was suggested.

Ekárt and Németh (2000) defined an edit distance specific to genetic programming syntax trees,

adapted from (Nienhuys-Cheng, 1997), which considered the cost of substituting between different

node types (functions vs. terminals and within these classes). The difference between two trees is

defined as:

������0��� � ��� � � �
�

	��� ���.� if neither � � nor � � have any children

	��� ���.� � K �
	��
 � �
������0� �
 ���
 � otherwise

4. ANALYSIS OF DIVERSITY MEASURES 38

where � � ��� � are trees with roots � � � and possible children (� total) subtrees � and � . The overall

distance between two trees,
������0��� � ��� � � , is found by recursively finding the distance between their

nodes,
 � � ���.� . The constant K is set to �� but can be adjusted to weight the depth of tree differences

differently. Two trees are brought to the same tree structure by adding “null” nodes to each tree.

Note that the differences near the root have more weight. This is a convenient description for

genetic programming as it has been noted that programs converge quickly to a fixed root portion

(Igel and Chellapilla, 1999; McPhee and Hopper, 1999). As before, this measure does not account for

the subtree crossover operator, but it does represent its dynamics more closely by giving a higher

cost to the upper portions of trees which are more difficult to change when using subtree crossover.

Additionally, the cost of changing one node to another can be specified for each pair of nodes or for

classes of nodes, as was the case in (Ekárt and Németh, 2000).

Measures based on behaviour compare differences among the populations’ fitness values at a given

time. Rosca (1995a) used the fitness values in a population to define an entropy and free energy

measure. Entropy represents the amount of disorder of the population, where an increase in en-

tropy represents an increase in diversity. Rosca found that populations appeared to be stuck in

local optima when entropy did not change or decreased monotonically in successive generations.

Entropy is calculated for a population by first placing fitness values into classes and noting the

size of each class (Rosca, 1995a). In a discrete fitness space, a unique fitness value may define a

fitness class. In continuous spaces, discretisation may be necessary. The level of convergence in the

genotype space often significantly reduces the number of unique fitness values, even in continuous

spaces. Given a fitness value � , � unique fitness values in the current population, and fitness classes

��� ��������� , the fitness class �
�

is the proportion of the population which has fitness equal to � . Entropy

is then defined as,

&
�
�

� ��� log� � �

In physical systems, entropy represents the amount of chaos in the system. In genetic program-

ming, high entropy reveals the presence of many unique fitness values, where the population is

evenly distributed over those values. Low entropy describes a population which contains fewer

unique fitness values as many individuals have the same fitness, as shown in Figure 4.1. Entropy

gives insights into the distribution of fitness values over the population, but does not describe the

precise distribution of the fitness values. Additionally, because entropy describes the number of

unique fitness values and some information about their distribution, it also describes the same in-

formation used by selection. If all the individuals in the population have the same fitness value,

selection based on fitness becomes random. The higher the entropy, the more evenly distributed

the population becomes over the possible fitness values, the more fine-grain the population will

appear to selection. Thus, entropy can describe, as does phenotype diversity in a broader sense,

the dynamic change of the applied selection pressure.

4. ANALYSIS OF DIVERSITY MEASURES 39

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

Low Entropy High Entropy

si
ze

 o
f

cl
as

se
s

fitness classes fitness classes fitness classes

si
ze

 o
f

cl
as

se
s

si
ze

 o
f

cl
as

se
s

FIGURE 4.1: Examples of entropy distributions from low entropy, where all members of the pop-
ulation have the same value, to high entropy, where each individual is represented by a different
value (assuming there are at least as many possible fitness values as individuals).

The frequency of the terminals and functions in a population could also serve as a measure of pop-

ulation diversity. Similarly, diversity could also refer to the number and type of tree structures

that the population represents. A visualisation of a genetic programming tree was described for a

circular lattice in (Daida, 2002) and later in (Daida et al., 2003a), where a population visualisation

using colors represented the most sampled type of shapes in the lattice. Using the lattice model,

a population visualisation method can be developed using a 3-dimensional graph (Gustafson and

Krasnogor, 2003), which gives rise to measures that describe the tree shapes sampled by the popu-

lation. Figure 4.2 shows a full binary tree of depth 10 on the circular lattice in the upper left graph.

A 3-dimensional visualisation can be made by finding the cumulative node count of the population

for the absolute node positions represented in the lattice. This cumulative count then can denote

the height of each node, as shown in the bottom two figures of Figure 4.2, where the upper right

graph shows the same visualisation from above.

4.1.1 Promoting Diversity

The canonical view of evolution and diversity is that more diversity will provide more oppor-

tunities for evolution. However, typical evolutionary algorithms contain a phase of exploration

followed by exploitation (Eiben and Schippers, 1998). Promoting all kinds of diversity during the

entire search process could be counter-productive to the exploitation phase. The type and amount

of diversity required at different times remains unclear. However, several measures and methods

have been used to promote diversity. These methods typically use a non-standard selection, mat-

ing, or replacement strategy to increase or control diversity. Common methods include geographi-

cal distributions of individuals that limit their interactions, such as neighbourhoods (Collins, 1992)

and islands (Martin et al., 2000). Other methods consider behaviour and structure similarities, such

as sharing (Goldberg and Richardson, 1987), crowding (DeJong, 1975) and genotype sharing (Deb

and Goldberg, 1989). These techniques were initially applied in genetic algorithms.

4. ANALYSIS OF DIVERSITY MEASURES 40

FIGURE 4.2: Example of population visualisations on a circular lattice in the upper left. A sample
tree is shown in the upper right, which actually represents an overhead view of a population of
trees where the node height is the number of times the population samples a node at this structural
location. The 3-dimensional views of this population are in the bottom two graphs.

Eshelman and Schaffer (1993) investigated the advantage of pair-wise mating in genetic algorithms.

The authors used Hamming distances to select individuals for recombination and replacement,

finding improvement over hill-climbing-type selection strategies for genetic algorithms. Ryan’s

“Pygmie” algorithm (1994) addressed premature convergence and elitism in small populations for

evolving minimal sorting networks. To facilitate selection for reproduction, the algorithm builds

two lists: one based on fitness and the other on length. Ryan’s algorithm maintained higher di-

versity and prevented premature convergence using simple measures. De Jong et al. (2001) used

multiobjective optimisation for the n-Parity problem to promote diversity and concentrate on non-

dominated individuals, according to a 3-tuple of � fitness, size, diversity � . Diversity was the average

square distance to other members of the population, using a specialised measure of edit distance

between nodes. This multiobjective method promoted smaller and more diverse trees.

Keller and Banzhaf (1995) described a structural difference measure based on edit distance between

genotypes. The measure was more complicated than standard edit distance, but was intended for

explicitly controlling the diversity of populations. Brameier and Banzhaf (2002) used a string edit

distance on the effective portions of their Linear Genetic Programming individuals, measuring the

distance between program code that contributed toward fitness. They used their measure in a

two-level tournament, selecting for fitness and then for diversity.

McKay (2000) applied the fitness sharing concept from Deb and Goldberg (1989) to test its feasibil-

ity in genetic programming. Fitness sharing was credited with maintaining population diversity,

allowing performance improvement and population size reduction for the Multiplexer and recur-

4. ANALYSIS OF DIVERSITY MEASURES 41

sive list membership problems. Diversity was the number of fitness cases solved, where the sharing

concept assigned a fitness based on an individual’s performance divided by the number of other

individuals with the same performance. Also, McKay studied negative correlation from (Liu et al.,

2000) and a root Quartic negative correlation (2001a,2001b) to preserve diversity on the Multiplexer

problem with mixed results. Similarly, a selection method that is uniform over the fitness values

was suggested as an alternative way to preserve diversity (Hutter, 2002). Ekárt and Németh (2000)

applied fitness sharing with a novel tree distance definition to a symbolic regression problem, sug-

gesting that it may be an efficient measure of structural diversity. Their results showed promise for

controlling the size of programs, although not initially improving performance. The authors then

applied their measure between every pair of individuals in a weighted arithmetic mean to develop

a population diversity measure (Ekárt and Németh, 2002). This measure was used to adaptively

control diversity for explorative and exploitative search phases, noting the conflict between fitness

improvement and high diversity observed in previous work. The authors found that on their sym-

bolic regression instances, fitness sharing was able to improve accuracy and maintain population

diversity.

Bersano-Begey (1997) tracked the number of individuals that solved specific fitness cases. The

method promoted diversity and the discovery of different or less popular solutions. This was

similar to the Stepwise Adaptation of Weights technique for constraint satisfaction and symbolic re-

gression instances (Eiben and van Hemert, 1999; Eggermont and van Hemert, 2001). Smith et al.

(1993) investigated diversity within their immune system algorithm for classifier systems, based

on a standard genetic algorithm. Their task was not concerned with traditional optimisation and

required diverse populations to be successful. A speciation tree using Euclidean distance was ap-

plied by Bessaou et al. (2000) in a study on multimodal optimisation with island models. Their

algorithm divided individuals into species, evolved them with a genetic algorithm and then redis-

tributed them into new species. Geard and Wiles (2002) counted unique genotypes while studying

recombination and diversity for a genetic algorithm solving the “royal staircase” problem.

Fernandes and Rosa (2001) looked at varying population sizes and non-random mating to main-

tain diversity for the Royal Road problem. Their negative assortative mating looks for genotypes

with maximal Hamming distances. Darwen and Yao (2001) studied cooperation in the Iterated Pris-

oner’s Dilemma problem and found that increasing behavioural diversity, not genetic diversity, can

improve cooperation and performance. The authors also commented on the dogma surrounding

diversity and some previous methods to maintain diversity (Darwen and Yao, 2000). Ursem (2002)

cited the importance of high and low diversity phases in an evolutionary strategy framework. The

author used a “distance-to-average-point” diversity measure for the real-value encoded individu-

als. Depending on whether the diversity is in a predefined high or low diversity phase, different

recombination operators were used, allowing diversity to fall or promoting more diversity.

4. ANALYSIS OF DIVERSITY MEASURES 42

TABLE 4.1: Experiment and problem parameters for the Ant, Parity, Quartic and Rastrigin diver-
sity measure experiments. These parameters settings represent the commonly used settings in the
literature for these problems. The division and log functions are protected, as described in Chapter
2.

Evolutionary algorithm Generational
Population size 500
Stopping criterion Maximum generation = 51
Function sets

Ant if food ahead, progn2, progn3
Parity and, or, nand, nor
Quartic, Rastrigin + , -, *, p/, sin, cos, exp, log

Terminal sets
Ant left, right, move
Parity D1, D2, D3, D4, D5
Quartic, Rastrigin x

Tree generation Ramped half-n-half
Initial depth 4
Maximum depth 10
Subtree crossover probability 1.0
Subtree crossover internal node selection prob. 0.9
Mutation probability 0.0
Selection method, size Tournament selection, size 4

4.2 Empirical Analysis of Diversity Measures

The Artificial Ant, Even-5-Parity, and symbolic regression problems (using the Quartic polynomial

and Rastrigin function) were introduced in Chapter 2. The problems are used here to explore di-

versity measures and the relationship between diversity and fitness. Table 4.1 contains the problem

and experiment parameters for the following empirical investigation. These parameters were se-

lected as they are commonly used in the literature and in many similar empirical studies. Note that

the function set used here is typical for the Rastrigin function, whereas the Quartic problem typi-

cally only uses addition, subtraction, multiplication and division. The same function set are used

for both to be consistent and do not use any ephemeral random constants. The Rastrigin problem

is likely to be more difficult to solve without using ephemeral random constants. All experiments

in this thesis were carried out using a modified version of the ECJ framework (Luke, 2004) and the

Mersenne Twister random number generator (Matsumoto and Nishimura, 1998).

4.2.1 Diversity Measures Used

The following measures are collected for each population in every generation, whereby the diver-

sity present in a population can then be compared to other populations.

4. ANALYSIS OF DIVERSITY MEASURES 43

Genotype Diversity

Genotype diversity represents the number of unique trees (Langdon, 1998a). Genotype diversity

does not consider the fitness or behaviour of the trees. Two trees are equal only if they contain the

exact same structure and content.

Phenotype Diversity

Phenotype diversity represents the number of unique fitness values in a population. The number

of possible fitness values is determined by the fitness function and varies between problem do-

mains. For example, in the Parity problem, there is a finite number of possible fitness values that

an individual can have. Instead, the fitness space is continuous in regression problems, but due

to the precision of numbers, wrappers around operators (protected division for instance) and the

presence of non-functional code it is possible for different trees to have the same fitness.

Entropy

Entropy is calculated as described in Section 4.1 and in (Rosca, 1995a). A fitness class represents

each unique fitness value in the current population.

Pseudo-Isomorphic Tree Diversity

In an attempt to approximate the degree of isomorphism, we count the number of pseudo-isomorphic

trees in the population. Pseudo-isomorphic trees are represented by the number of similar 3-

tuples in the population, where a 3-tuple is defined as � # of terminals, # of nonterminals, depth �

for each individual. Two identical 3-tuples represent trees which could be isomorphic, while two

non-identical 3-tuples represent trees that certainly can not be isomorphic.

Edit Distance One (non-weighted)

Edit distance One diversity is based on the standard edit distance, described in Section 4.1 and in

(de Jong et al., 2001; O’Reilly, 1997), and is referred to as “ed 1” in most figures. Trees are brought to

the same structure and overlapped. The number of non-identical overlapping nodes between the

two trees are counted. This is then normalised by tree size.

4. ANALYSIS OF DIVERSITY MEASURES 44

Edit Distance Two (weighted)

Edit distance Two diversity is based on the depth-weighted edit distance between individuals used

by Ekárt and Németh (2000). This measure (denoted “ed 2”) is adapted back to its original formula-

tion (Nienhuys-Cheng, 1997) where the difference between any two non-equal nodes was 1. Using

a value of
� � �� gives differences near the root more weight.

In (Wineberg and Oppacher, 2003) an �(� � � � � inter-population diversity method is developed

based on pair-wise distance by counting the frequencies of symbols for each position in the genome.

While a similar method could be found for genetic programming syntax trees, the variable length

and size of symbol sets would make this calculation more complex. To reduce computation time

here, an approximate population diversity measure is found by only comparing each population

member against a single tree. Every individual in the population is compared with the best fit

individual found so far in the run. This measure is then divided by the population size.

Both edit distance One and Two are vulnerable to outliers, especially when the best fit individual

is the outlier. However, previous experimental results display two key properties which make

these measures appropriate and representative. First, even if the best fitness is found in the initial

population, an individual in the current generation is considered to be the best of the run if it is at

least as good as the current best of the run individual. Secondly, with probabilistic selection based

on fitness, the best individual is likely to contribute several offspring to the next generation and

is unlikely to remain the outlier for long. Later chapters also consider the best individual in the

current generation for these measures. Another reason for using the best of run individual in this

chapter is that it is common for researchers to consider this individual during analysis rather than

the best in the current generation.

4.2.2 Correlation Measures

An objective of this study is to quantify the importance and ideal levels of diversity, recorded by

different measures on common problems. The primary test of the relationship between diversity

and fitness will be the Spearman correlation measure (Siegel, 1956). The Spearman measure ranks

two sets of variables and tests for a linear relationship between the variables’ ranks. Correlation is

first examined to determine if two runs can be distinguished by their diversity in terms of which

run is better. As interesting relationships could easily exist but may not necessarily be linear, a

range of scatter plots of diversity measures and fitness are evaluated.

The Spearman correlation coefficient is computed as follows:

� & � 	 �
�
� �
 �

�
�
 & � �

4. ANALYSIS OF DIVERSITY MEASURES 45

fitness

di
ve

rs
ity

best (low) worst (high)

lo
w

hi
gh

Positive Correlation

fitness

di
ve

rs
ity

best (low) worst (high)

lo
w

hi
gh

No Correlation

fitness

di
ve

rs
ity

best (low) worst (high)

lo
w

hi
gh

Negative Correlation

FIGURE 4.3: Examples of ranked correlation scatter plots between fitness and diversity, where low
fitness (ideal) is ranked from 1 to 50 (with 50 runs total) and diversity is ranked from high (1) to
low (50). The middle graph shows the case of no correlation where the points are aligned vertically
or horizontally.

where
�

is the number of runs and

�

is the distance between each population’s fitness rank and

diversity rank. A value of -1.0 represents negative correlation, 0.0 denotes no correlation and 1.0

demonstrates positive correlation. For the measures used here, when low best-of-generation fitness

values, which will be ranked in ascending order (1=best, ����� ,50=worst), occur with high diversity,

ranked in ascending order (1=lowest diversity and 50=highest diversity), the correlation coefficient

should be strongly negative. Alternatively, a positive correlation indicates that either bad fitness

accompanies high diversity or good fitness accompanies low diversity. Figure 4.3 shows the rela-

tionship between fitness on the X-Axis and diversity on the Y-Axis and the type of correlation that

a scatter plot in these circumstances would indicate.

4.3 Analysis of Results

Fifty independently random runs, with one graph for each problem and diversity measure are

shown in Figures 4.4 to 4.12. Figure 4.4 shows the best fitness of each generation during the evo-

lutionary process and Figure 4.5 shows the evolution of size, while depth is shown in Figure 4.6.

Many runs stop improving after 15-20 generations, with the exception of the Parity problem which

continues to make improvements. Previous research by Luke (2001) showed that it is better to

carry out short runs (above a critical point) than fewer long runs for the Ant and Quartic problem.

Luke also found that with the Parity problem (Even-10), one long run was actually better. This was

due to the difficulty of the problem and the ability of genetic programming to consistently make

improvements. This critical point was around generation 8 for the Quartic problem and slightly

higher for the Ant problem. An early period of higher activity in the runs also exists with respect

to diversity measures. There is typically a lot of activity in the early generations and not too much

after generation 30.

For the Quartic and Rastrigin experiments, the phenotype diversity in Figures 4.7 shows an ini-

4. ANALYSIS OF DIVERSITY MEASURES 46

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

be
st

 fi
tn

es
s

generation

 ant

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50

be
st

 fi
tn

es
s

generation

 parity

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50

be
st

 fi
tn

es
s

generation

quartic

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35 40 45 50

be
st

 fi
tn

es
s

generation

 rastrigin

FIGURE 4.4: Ant, Parity, Quartic and Rastrigin best fitness in population, plotted against the gen-
eration number. 50 independently random runs of each problem are shown.

tial decrease followed by a sharp increase. This behaviour was also seen with genotype diversity

and entropy: an initial sharp decrease was followed by an increase within the Quartic and Ras-

trigin experiments and in all experiments with genotype diversity. Intuitively, the cause of this

initial fluctuation is due to the ease with which improvements can be found in the initial solutions.

This initial phase highlights the differences between the experiments. Also, note that phenotype

diversity for the Parity experiments continues to increase until the final generation.

For all experiments, the edit distance One in Figure 4.9 generally decreases after the initial gener-

ation. Also, in Figure 4.10, the populations measured with edit distance Two behave similarly1.

With this in mind, and because the edit distance Two measure places more importance on the root

and higher portions of trees, one can conclude the following: While trees are changing (according

to edit distance One) to be more like the best fit tree in each population, the differences between
�
Figure 4.10, plotting edit distance Two diversity, shows an initial increase followed by a decrease in most experiments.

The decrease comes at a later stage than that seen with edit distance One. While this might seem to imply that their is an
increase in diversity with respect to root portions of the trees, which occurs for a longer amount of time, two other issues
need to be considered. First, the � value is 0.5, meaning that each depth level in the tree (for binary trees) is capable of
contributing the same to the distance measure. Secondly, the Ant problem uses a 3-arity function and the regression prob-
lems both contain unary functions. These two issues explain why a more dramatic increase in edit distance Two diversity
is seen in the Ant problem (due to the 3-arity function) and less in the regression problems (due to the unary function) and
an overall later decrease in all problems (due to the trees still growing toward maximum depths in combination with the �
value, as seen in Figure 4.6). The performance of both measures, edit distance One and Two, can also be seen for the same
problem domains in Chapter 5, Figure 5.2. In this case, it is more clear what increased diversity under the edit distance Two
measure looks like.

4. ANALYSIS OF DIVERSITY MEASURES 47

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e

nu
m

be
r

of
 n

od
es

generation

 ant

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e

nu
m

be
r

of
 n

od
es

generation

 parity

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e

nu
m

be
r

of
 n

od
es

generation

quartic

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e

nu
m

be
r

of
 n

od
es

generation

 rastrigin

FIGURE 4.5: Average number of nodes vs. generation for the Ant, Parity, Quartic and Rastrigin
experiments.

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e

de
pt

h

generation

 ant

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e

de
pt

h

generation

 parity

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e

de
pt

h

generation

quartic

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e

de
pt

h

generation

 rastrigin

FIGURE 4.6: Average depth vs. generation for the Ant, Parity, Quartic and Rastrigin experiments.

4. ANALYSIS OF DIVERSITY MEASURES 48

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

ph
en

ot
yp

e
di

ve
rs

ity

generation

 ant

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50

ph
en

ot
yp

e
di

ve
rs

ity

generation

 parity

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

ph
en

ot
yp

e
di

ve
rs

ity

generation

quartic

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

ph
en

ot
yp

e
di

ve
rs

ity

generation

 rastrigin

FIGURE 4.7: Ant, Parity, Quartic and Rastrigin phenotype diversity, plotted against the generation
number.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

en
tr

op
y

generation

 ant

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

en
tr

op
y

generation

 parity

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

en
tr

op
y

generation

quartic

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

en
tr

op
y

generation

 rastrigin

FIGURE 4.8: Average entropy vs. generation for the Ant, Parity, Quartic and Rastrigin experiments.

4. ANALYSIS OF DIVERSITY MEASURES 49

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

ed
it

di
st

an
ce

 1
 d

iv
er

si
ty

generation

 ant

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

ed
it

di
st

an
ce

 1
 d

iv
er

si
ty

generation

 parity

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

ed
it

di
st

an
ce

 1
 d

iv
er

si
ty

generation

quartic

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

ed
it

di
st

an
ce

 1
 d

iv
er

si
ty

generation

 rastrigin

FIGURE 4.9: Ant, Parity, Quartic and Rastrigin edit distance One diversity plotted against the gen-
eration number.

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

ed
it

di
st

an
ce

 2
 d

iv
er

si
ty

generation

 ant

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

ed
it

di
st

an
ce

 2
 d

iv
er

si
ty

generation

 parity

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

ed
it

di
st

an
ce

 2
 d

iv
er

si
ty

generation

quartic

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

ed
it

di
st

an
ce

 2
 d

iv
er

si
ty

generation

 rastrigin

FIGURE 4.10: Edit distance Two diversity vs. generation for the Ant, Parity, Quartic and Rastrigin
experiments.

4. ANALYSIS OF DIVERSITY MEASURES 50

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

ge
no

ty
pe

 d
iv

er
si

ty

generation

 ant

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

ge
no

ty
pe

 d
iv

er
si

ty

generation

 parity

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

ge
no

ty
pe

 d
iv

er
si

ty

generation

quartic

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

ge
no

ty
pe

 d
iv

er
si

ty

generation

 rastrigin

FIGURE 4.11: Genotype diversity vs. generation for the Ant, Parity, Quartic and Rastrigin
experiments.

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

ps
eu

do
-is

om
or

ph
 d

iv
er

si
ty

generation

 ant

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

ps
eu

do
-is

om
or

ph
 d

iv
er

si
ty

generation

 parity

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

ps
eu

do
-is

om
or

ph
 d

iv
er

si
ty

generation

quartic

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

ps
eu

do
-is

om
or

ph
 d

iv
er

si
ty

generation

 rastrigin

FIGURE 4.12: Pseudo-isomorph diversity vs. generation for the Ant, Parity, Quartic and Rastrigin
experiments.

4. ANALYSIS OF DIVERSITY MEASURES 51

the roots and top portions of the tree also become more similar (according to the edit distance Two

measure). This supports previous conclusions (Igel and Chellapilla, 1999; McPhee and Hopper,

1999; Soule and Foster, 1998) that roots become fixed early on in the evolutionary process. Struc-

tural convergence is important when considering using a method to control diversity. If structural

convergence is beneficial to genetic programming search, then encouraging or forcing structural

diversity (edit distance in this case) could have negative consequences. However, the loss of edit

distance diversity does not necessarily mean a loss of phenotype diversity or the worsening of

fitness, as seen in Figure 4.7 and 4.4.

Lastly, the figures show the behaviour that in some runs fitness continues to increase until the

final generation. Identifying the dynamics and properties that allowed for this continued increase

is critical for genetic programming practitioners. This is a goal of this research: understanding

how to make populations more amenable to improvement. Given the wide range of fitness and

diversity, one would like to know if these measures correlate with fitness in any way. Addressing

this question is key to understanding if controlling diversity is likely to be effective and how it

should be applied to different problem domains.

4.3.1 Correlations in Final Populations

Table 4.2 summarises the Spearman correlation coefficients between the best fitnesses in 100 runs

and the diversity in the final populations. Also the correlation between diversity measures is re-

ported.

In the Ant experiments, negative correlation is seen between phenotypes and fitness and also be-

tween entropy and fitness. Good (low) fitness is seen with high phenotype diversity and entropy.

There is a positive correlation of edit distance with fitness and also between pseudo-isomorphs

and fitness. Only very weak correlation is seen between genotypes and fitness in Ant experiments,

which is the trend for all the experiments. In this case, a positive correlation between fitness and

edit distance and between fitness and pseudo-isomorphs suggests that low (good) fitness is seen

with low diversity. From Figures 4.9 and 4.10, edit distance generally decreases during the run.

While runs tend to structurally converge for the Ant experiments, and with respect to the edit

distance One measure in the Parity experiments, those which converge more often have better fit-

ness. This may be the result of good fitness being found early in the run, or it may be the result of

convergence leading to better fitness.

The table of correlation coefficients in Table 4.2 also gives the Rastrigin experiment results. This

table shows the lack of strong correlations between diversity and fitness (the same effect is partially

seen in the Quartic experiments as well). It may be the case that a correlation did exist between

fitness and diversity, the relationship is not linear or the final populations have lost any correlation

4. ANALYSIS OF DIVERSITY MEASURES 52

TABLE 4.2: Spearman correlation coefficients for the Ant, Quartic, Rastrigin and Parity
experiments.

The Ant Problem
fitness phenes genes p-isom entropy ed 1

phenes -.3936 – – – – –
genes .1962 -.4950 – – – –

p-isom .4009 -.6389 .6949 – – –
entropy -.3615 .9039 -.5724 -.7569 – –

ed 1 .4205 -.5040 .2991 .3998 -.4891 –
ed 2 .4606 -.4537 .4702 .5603 -.4949 .7504

The Quartic Problem
fitness phenes genes p-isom entropy ed 1

phenes .4345 – – – – –
genes -.1363 -.0353 – – – –

p-isom -.0300 .1588 .8408 – – –
entropy .3924 .9730 -.1712 .0070 – –

ed 1 -.1640 .0045 .2290 .3150 -.0191 –
ed 2 -.0881 -.0273 .1554 .2182 -.0461 .6891

The Rastrigin Problem
fitness phenes genes p-isom entropy ed 1

phenes -.0616 – – – – –
genes -.1305 .7089 – – – –

p-isom -.2262 .5521 .6163 – – –
entropy -.0402 .9688 .7324 .5525 – –

ed 1 -.0530 -.0365 .2056 .2014 .0460 –
ed 2 -.0762 .1185 .3265 .3828 .1750 .6514

The Parity Problem
fitness phenes genes p-isom entropy ed 1

phenes -.7803 – – – – –
genes -.0641 .0510 – – – –

p-isom .0773 .0646 .5132 – – –
entropy -.7146 .7048 -.0379 .0204 – –

ed 1 .3235 -.2156 .1178 .4483 -.3062 –
ed 2 .0148 -.0087 .2656 .5377 -.0626 .7265

due to the repeated application of selection and recombination without change in fitness.

The importance of phenotype diversity is now seen with the Parity experiments in Table 4.2, where

a strong negative correlation exists between fitness and phenotype diversity. Figure 4.7 shows

that phenotype diversity tends to increase in the Parity experiments. With only 32 possible fitness

values in the problem, the population begins with random guesses near a fitness of 16. As popula-

tions undergo selection and recombination, the number of unique fitness values increases from 3-4

to 6-13. Without some increase in phenotype diversity, genetic programming cannot distinguish

between good individuals and bad ones.

4. ANALYSIS OF DIVERSITY MEASURES 53

As tournament selection uses the fitness values of an individual to decide tournaments, fewer

unique phenotypes in the population (and the lower the entropy) will make selection more random.

That is, selection will be faced with many individuals that have the same fitness. Therefore, if high

phenotype diversity and entropy are maintained, selection pressure remains at the pre-set level.

The lowering of phenotype diversity and entropy might actually benefit some problems where less

selection pressure is suitable, but negatively affect others where higher selection pressure is better.

Table 4.2 also gives the correlation between measures of diversity. In the Ant experiments, note that

more phenotype diversity negatively correlates with the structural measures (genotypes, pseudo-

isomorphs, and the edit distances). An increase (or decrease) of unique fitness values in the pop-

ulation corresponds with a decrease (or increase) in the structural diversity. This seems counter-

intuitive as more unique genotypes should correspond to more unique fitness cases. This behaviour

is expected with the edit distance measures as these measures generally decrease during evolution

while phenotype diversity increases. In this problem, the discovery of different fitness values ap-

pears to be aided by less structural diversity. That is, if the population is structurally similar, it is

easier to find more unique fitness values. Possible hypothesese for this behaviour include: a better

environment for crossover, less deception in the search space or a more focused local search phase.

4.3.2 Evolving Populations’ Correlation

Is diversity more important at different stages of the evolutionary process? The fact that several

methods have been previously used to adaptively control the level of diversity would suggest so.

Figure 4.13 shows the correlation between diversity and best fitness for each generation. Note that

each point represents the correlation between 100 populations, sampled from 100 runs where there

is a dependency of later generations on preceding ones.

Both the Ant and Parity experiments contain varying levels of correlation between edit distance and

fitness and between phenotype diversity and fitness. The Quartic experiments contains a period of

early fluctuation, followed by an increase in positive correlation between entropy (and phenotype

diversity) and fitness. As runs typically achieve the best fitness early, this effect may be due to

many copies of the best fit individual accumulating in the population. That is, populations which

achieve good local optima begin to have lower entropy.

The Rastrigin experiments contain an early period of varying correlation between diversity and

fitness, after which most measures lost correlation with fitness. In this problem and representation,

the relationship between fitness and diversity becomes less important, probably due to other more

critical relationships like node-to-node dependencies (Daida et al., 2001). A positive correlation

between fitness and edit distance occurs together with a negative correlation between fitness and

4. ANALYSIS OF DIVERSITY MEASURES 54

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

sp
ea

rm
an

 c
or

re
la

tio
n

generation

 ant problem, correlating population fitness and diversity

phenes
genes

isom
entropy

ed 1
ed 2

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

sp
ea

rm
an

 c
or

re
la

tio
n

generation

 parity problem, correlating population fitness and diversity

phenes
genes

isom
entropy

ed 1
ed 2

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

sp
ea

rm
an

 c
or

re
la

tio
n

generation

 quartic problem, correlating population fitness and diversity

phenes
genes

isom
entropy

ed 1
ed 2

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50
sp

ea
rm

an
 c

or
re

la
tio

n

generation

 rastrigin problem, correlating population fitness and diversity

phenes
genes

isom
entropy

ed 1
ed 2

FIGURE 4.13: Evolving populations’ correlation between best fitness in each population and differ-
ent diversity measures. Each point represents the correlation between 100 populations from a 100
runs, each of the 50 generations are represented.

phenotype diversity is seen in the Ant and Parity experiments. These results suggest that the fitness

landscape induced by the representation, operator and fitness function is uncorrelated. Small dif-

ferences between individuals are still capable of expressing a wide range of behaviours. However,

this statement should be considered in the light of the operator not being used to define distance

and the actual difference between behaviours is not considered. The measures used here only give

approximate descriptions of the fitness landscape.

4.3.3 Scatter Plots of Diversity and Fitness

The Spearman correlation coefficient only describes linear relationships. A series of scatter plots

are also examined to assess the data for any nonlinear relationships. Figure 4.14 and 4.15 plot a

population’s performance (best fitness found in the population is plotted along the x-axis, where

values to the left are better) versus that population’s diversity (on the y-axis). Each point represents

a population sampled from a different run, where no run is used twice and 10 populations are

4. ANALYSIS OF DIVERSITY MEASURES 55

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

en
tr

op
y

best fitness in population per generation

ant

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

en
tr

op
y

best fitness in population per generation

parity

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

en
tr

op
y

best fitness in population per generation

quartic

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

0 500 1000 1500 2000 2500 3000 3500 4000 4500

en
tr

op
y

best fitness in population per generation

rastrigin

FIGURE 4.14: Ant, Parity, Quartic and Rastrigin best fitness in population plotted against that pop-
ulation’s entropy. Note that each point represents one population from each run. We sample 10 dif-
ferent runs for each population at generation � , requiring

� ��� � � � � ��� runs for all 50 generations.

sampled for each generation, requiring 500 runs. Also note that all points for the Parity experiments

have their fitness values randomly offset in the range of [-0.2,0.2] to allow for better visualisation

of the points at each fitness value.

A few general comments can be made about the scatter plots in Figures 4.14 and 4.15. There are

clear trends of best fitness occurring with lower edit distance and with higher entropy. However,

many populations with low fitness also have a wide range of entropy (Rastrigin and Quartic ex-

periments) and edit distance (Quartic experiments). The Ant experiments, in particular, show a

transition from high to low fitness with populations in the middle containing a wide range of en-

tropy and edit distance values. The populations which achieve the lower fitness then also have

lower entropy and edit distance. It is likely that this problem suffers the most from local optima,

where populations that get stuck with sub-optimal individuals also have sub-optimal diversity. Too

high edit distance diversity and either too-low or too-high entropy would appear to be sub-optimal

for the Ant problem.

4. ANALYSIS OF DIVERSITY MEASURES 56

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70

ed
it

di
st

an
ce

 1

best fitness in population per generation

ant

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14 16

ed
it

di
st

an
ce

 1

best fitness in population per generation

parity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6

ed
it

di
st

an
ce

 1

best fitness in population per generation

quartic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500 2000 2500 3000 3500 4000 4500

ed
it

di
st

an
ce

 1

best fitness in population per generation

rastrigin

FIGURE 4.15: Best fitness vs. edit distance One diversity for the Ant, Parity, Quartic and Rastrigin
experiments. Note that each point represents one population from each run. We sample 10 different
runs for each population at generation � , requiring

� � �$� � � � ��� runs for all 50 generations.

An important observation is that better populations tend to occur near the end of evolution and

resulting populations will be less diverse simply because of the search and selection mechanisms.

In Figure 4.15, when populations have large edit distances they are unlikely to have better fitness

values. A reason for this could be that large edit distances only occur at the beginning of runs. The

question of whether these populations always occur late in evolutionary process is analysed next.

For Figure 4.16, the same populations from Figure 4.15 are used, except now the z-axis shows

a vertical line representing the generation in which that population occurred. A common trend

is that the worse fit populations occur in early generations, which is to be expected as Fig. 4.4

showed fitness to always improve (decrease in value) initially. In general, moving from right to left

in fitness values (from worse to better), the lines get taller on the z-axis. However, it is not the case

that the best populations are always at the end of runs for all problems. Many populations achieve

good fitness early and in the middle of runs. Furthermore, Fig. 4.16 emphasises that populations

have different diversity at similar times in the evolutionary process. Later evolutionary periods do

not always imply high or low values of diversity and fitness.

4. ANALYSIS OF DIVERSITY MEASURES 57

ant

0 10 20 30 40 50 60 70
fitness 0

0.2
0.4

0.6
0.8

1

edit dist. 1
0
5

10
15
20
25
30
35
40
45
50

generation

parity

0 2 4 6 8 10 12 14 16
fitness 0

0.3

0.6
edit dist. 1

0
5

10
15
20
25
30
35
40
45
50

generation

quartic

0 1 2 3 4 5 6
fitness 0

0.2
0.4

0.6
0.8

1

edit dist. 1
0
5

10
15
20
25
30
35
40
45
50

generation

rastrigin

0 1000 2000 3000 4000fitness 0
0.2

0.4
0.6

0.8
1

edit dist. 1
0
5

10
15
20
25
30
35
40
45
50

generation

FIGURE 4.16: Ant, Parity, Quartic and Rastrigin best fitness in population (x-axis) plotted against
that population’s edit distance One diversity, (y-axis) and the generation the population occurred
(z-axis). Note that each point represents one population from each run.

4.4 Discussion of Diversity Measures

The measures studied here are in a sense related hierarchically with respect to the amount of in-

formation they contain about the population. The edit distance measures provide a fine grain

description of population structure and content differences, pseudo-isomorphs give an aggregated

view of the population and the genotype diversity measure simply describes the number of unique

genotypes. Entropy and phenotype diversity are similarly related. Entropy not only describes the

number of unique phenotypes, but also how the population is distributed over the existing pheno-

types. Also, the experimental study shows the most consistent correlation between edit distance

and fitness and between entropy and fitness, suggesting that these measures capture an important

element in the genetic programming search process. The pseudo-isomorph diversity measure was

used to capture a level of information that is more specific than genotype diversity, but less expen-

sive than edit distance. Pseudo-isomorph diversity expressed stronger correlations than genotype

diversity and is generally more correlated to edit distance measures.

4. ANALYSIS OF DIVERSITY MEASURES 58

The experiments used different measures of diversity and have enabled the analysis of not only

the measures and how they correlate with fitness, but also the behaviour of standard genetic pro-

gramming on commonly used problems. Results showed additional evidence that the roots of trees

become fixed very early on in the genetic programming evolutionary process and are unlikely to

change. This has been demonstrated by previous research (Igel and Chellapilla, 1999; McPhee and

Hopper, 1999; Soule and Foster, 1998) and is supported here by the edit distance diversity measures.

Phenotypic diversity and entropy are important due to the ability of selection to distinguish be-

tween individuals better and maintain a constant pressure. Depending on the problem and be-

haviour of the current run, the increase and decrease of phenotype and entropy diversity is likely

to be crucial at different stages of evolution. This change of selection pressure could be beneficial in

helping to avoid local-optima for some problems. The constantly fluctuating values of phenotype

diversity in Fig. 3 could be demonstrating this behaviour. However, based on the experiments and

analysis, it is not clear if this is necessarily the case.

The Spearman correlation coefficient showed a positive correlation between fitness-based diversity

and fitness, and a negative correlation between edit distance diversity and fitness. A hypothe-

sis to explain this behaviour is that more structurally similar populations create a neighbourhood

in which crossover is likely to find better neighbours. Crossover initially works with very unlike

structures until a significantly good one is found. Then, combined with the selection pressure, the

population begins to resemble this good individual as crossover repeatedly combines more and

more similar individuals. Success at this point suggests that crossover is able to work within this

population structure to find better solutions. The results have shown how quickly edit distance

diversity is lost. It appears that this crossover-friendly neighborhood occurs early in the evolution-

ary process, but might also be responsible for leading the search toward inescapable local-optima

rather quickly. The point here is not to argue that crossover is (or is not) a sufficient operator for

search in tree-based genetic programming, but to show (in cases where genetic programming is

solving problems) how populations and recombination operators may be working together.

However, just as the correlation coefficient suggests associations between diversity and perfor-

mance, it should not be used to infer causation between variants, i.e. higher diversity does not

necessarily cause better performance but better performance is seen with higher diversity (pheno-

type diversity here). Caution should also be taken considering that the search mechanism’s re-

combination and selection methods play an extremely important role in shaping individuals and

populations. Very simple implementation differences can drastically increase or decrease diversity

measures. Models of causation based on diversity results should be defined carefully. Later in

Chapter 6, lengths are taken to validate a causal relationship, relying on experimental evidence,

previous literature and further experimental evidence on a specially constructed model of genetic

programming behaviour.

4. ANALYSIS OF DIVERSITY MEASURES 59

Standard genetic programming is often compared to a random search or a hill-climber, due to the

loss of diversity and the attraction to local optima (Gathercole and Ross, 1996; McPhee and Hopper,

1999; Poli and Langdon, 1998a). The results on diversity presented here also support the hypothe-

sis of uneven exploration and exploitation phases. After an initial period of adjustment to different

problem representations and selection, the populations appeared to converge toward less edit dis-

tance diversity. These initial few generations of each run appear to represent the exploration phase,

while the latter part of the run exploited the better individuals. Adaptive controls of diversity, se-

lection pressure or mutations could be used to extend the exploration phase to allow more global

search. However, they should also consider the initial settling behaviour observed here, which is

likely due to the ease of which initial good solutions can be found.

Based on the results presented here, it is hypothesised that strong convergence and exploitation of a

common structure occurs in almost all runs, but not all runs exploit a good structure. Thus, genetic

programming may be converging to structures which are not amenable to further improvements

with respect to the existing population. If the algorithm backtracked upon finding a bad structure,

or made a concentrated effort to find a good structure, it could be argued that it is more likely to

exploit better structures. In essence, by either increasing the length of exploration or adaptively

exploring in later phases, local-optima may be avoided more effectively. Increased population

sizes, higher levels of mutation, weaker selection pressure and models which prevent the overall

convergence of populations (such as islands, demes or distributed models) could achieve this effect.

4.5 Summary

This chapter has provided a survey of measures used to capture diversity and methods employed

to control diversity in genetic programming. An experimental study enabled the analysis of cor-

relation between selected measures of diversity and fitness. The results showed three important

behaviours:

1. The generation to generation behaviour of specific diversity measures is problem specific.

In fact, representation changes of the same problem are likely to have different diversity be-

haviours. Thus, the pursuit of a single measure with which to control diversity in order to

improve fitness is likely to be difficult.

2. Entropy and edit distance diversity showed some correlation with fitness. This is likely re-

lated to a change of selection pressure and the level of structural convergence which allows a

form of hill-climbing search.

3. Regression problems had the weakest correlation between any measure of diversity and fit-

ness overall, suggesting that the things that make these populations achieve good fitness may

4. ANALYSIS OF DIVERSITY MEASURES 60

not be captured by any of the measures used here.

The introduction of different recombination operators, large changes in parameter values and ap-

plications on different problem domains are all likely to effect the results and interpretations made

here. However, the methodology of using several informative and complimentary measures of di-

versity should allow one to gain a deeper understanding of the search space and algorithm. As

search spaces become larger and more complex, fine grain measures will become too inefficient.

Therefore, using measures which capture the right level of information while still being efficient

will be critical. Based on these results, the following recommendations are made:

� Before applying new methods to control diversity in order to improve fitness, the correlation

between fitness and diversity should be investigated. Knowledge of the correlation between

fitness and a measure of diversity can help to enhance the diversity measure or diversity

control method and give insight into results.

� Care should be taken to distinguish between correlation and causation.

� Lastly, when a many-to-one relationship exists between the genotype and phenotype encod-

ing, measures which are based on genotype uniqueness will probably not be as useful as

those which capture phenotype uniqueness.

Next, a measure of diversity, genetic lineages, is used to increase population diversity (both edit

distance and entropy). The effects of this change in population dynamics is examined to better

understand the relationship between diversity and fitness, and also the type of search genetic pro-

gramming carries out during the evolutionary process.

61

CHAPTER 5

GENETIC LINEAGES AND A METAPHOR OF HILL

CLIMBING

What is the effect of increased diversity on search? Chapter 4 showed that diversity can be mea-

sured in several often conflicting ways. The relationship between levels of diversity and fitness

improvement is clearly not as simple as one would hope.

In this chapter, the genetic diversity in the population is perturbed to increase population edit

distance diversity (both measures from Chapter 4) and entropy. A simple but powerful method

is employed: lineage selection. After examining the results of this method, a metaphor of hill-

climbing is used to support the results presented here and previous results in the literature. Lastly,

a sampling analysis is performed to understand the type of solutions genetic programming visits

during the course of the evolutionary process.

5.1 Genetic Lineages

In a system based on Darwinian evolution, where inheritance provides the motivation for trans-

formation operators, a simple form of diversity measurement is the genetic lineage. McPhee and

Hopper (1999) observed that the dominant operator, subtree crossover, preserves most of the root

parent’s genetic material (also noted by Poli and Langdon (1998a)), and thus they defined genetic

lineages between the root parent to its offspring. The authors tracked lineages when they counted

the appearance of the Eve individual, the latest common ancestor of the population. The Eve indi-

vidual can then be traced back to a single individual in the initial population from which the entire

final population descended. That is, when a latest-common-ancestor exists, one can trace the root-

parents of all individuals in the final population back to this individual. By definition then, this Eve

individual is the root-descendant of exactly one individual from the initial population. Remember

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 62

I1 2I 3I

I1 2I 3I

I1 2I 3I

lineage I3lineage I3 lineage I3

applications of
crossover

non−root−parent

KEY:

root−parent ‘‘

‘ ‘ ‘

‘‘ ‘‘

lineage I3

FIGURE 5.1: An example of three individuals undergoing recombination, where after the second
application of crossover all three are descendants from the same individual and represent the same
genetic lineage.

that the lineage definition only considers the root-parent and offspring relationship.

McPhee and Hopper (1999) showed how entire populations quickly lose many genetic lineages and

soon descend from only one individual. As genetic lineages tend to share common root shapes and

contents, this loss of lineages in the population signifies the convergence toward a common tree

shape and contents (Rosca and Ballard, 1999; Langdon and Poli, 2002; Poli and Langdon, 1998a).

Tracking the progression of genetic lineages through the evolutionary process provides a sense of

the loss of genetic diversity in the population at little computational cost. Figure 5.1 is an example

of the genetic lineages. Three individuals (� � ��� � ���
) produce offspring (���� ������ �����
) via crossover. The

root parent is denoted with a solid arrow. After another generation, the three new individuals all

belong to the same genetic lineage, �
 . In this chapter, as in McPhee and Hopper (1999), a genetic

lineage is defined as the path from the root parent to its child during two parent recombination.

5.1.1 A Caricature of Tournament Selection

To illustrate the loss of genetic lineages, a modified version of tournament selection is used. This

version represents a caricature of standard tournament selection, placing emphasis on the selection

of the fitter individuals. The individuals in a population � of size � are sorted into ascending fitness

order, from worst to best. A tournament size � defines the number of equal-sized partitions that

divide the sorted population, where a partition contains �� individuals. Partitions � � � � � ���+��� � � �
serve to separate the worst fit (� � ���+�) from the best fit individuals (������� �). This assumes a unique

fitness value for each individual. In a generational algorithm, to produce a child in the next gen-

eration, a tournament is held to find the root parent. If the population size is � , then we hold �
tournaments to produce all the children. Typically, � � � tournaments are held to select for both

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 63

parents for crossover, but since only the root parent and child are used to define lineages, only the

one tournament to select the root parent is considered. Every individual in � has the expectation of

being selected for a tournament
�
�
� � � � times.

To further simplify the model, tournament selection will pick one individual from each partition,

where there are � partitions. Thus, in every tournament held, the winner of that tournament will

come from � � . Every child in the next generation will be of a genetic lineage that came from � � . In

practice, individuals are randomly selected from the population to make a tournament. To simulate

the random nature of tournament selection, it will be assumed that the number of offspring each

individual in � � produces for the next generation will be equal.

5.1.2 Variation of Loss of Lineages

It is not possible to increase the number of genetic lineages during the evolutionary process without

explicitly introducing new lineages. Genetic lineages can, however, be lost at different rates. In the

above model of selection, if the fitness of the root parent is passed to its child. Since every initial

individual represents a unique lineage, the next generation will contain at most �� distinct lineages.

If the individuals all have unique fitness values that are passed unchanged to children, the ordering

by fitness of children will be the same as the parents ordering in the previous generation. Thus, at

generation � , the maximum number of distinct lineages will be ���� , with a minimum of � .

If the fitness of children is not transfered from the root-parent, it is possible to think about upper

and lower bounds on the loss of lineages. To consider the upper and lower bounds of genetic

lineage loss, remember that the �� members of partition � � are sorted according to their unique

fitness values. The lower bound (or the least) number of lineages preserved in the next generation

will occur when the children of individuals from � � have a fitness ordering consistent with their

root-parent ordering. Interestingly, this also holds true when the fitness ordering is the complete

opposite of the root-parent ordering. In the former case, offspring produced by an application of

the operator to their root-parent undergo small fitness value change from the parent. The upper

bound (or the most) number of genetic lineages preserved in the next generation from � � will be

when the children are ordered randomly compared to the root-parent ordering in the previous

generation.

Admittedly, this caricature of tournament selection is elitist toward the better individuals, which

are found in partition � � . This behaviour is emphasised to illustrate the loss of lineages, and that in

a set of runs, those runs with more genetic lineages are probably performing a more parallel type

of search.

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 64

5.1.3 Relevance to the Fitness Landscape

If the fitness landscape is smooth with our representation, operator and fitness function, then an

application of an operator should cause a relatively small change in fitness. If the landscape is

rough, then small changes to an individual by the operator may cause large or small changes in

fitness. With a smooth landscape, genetic lineages should be lost quicker. More random changes

in fitness between root-parents and offspring occurring with a rough landscape will preserve the

most lineages. As it is generally more preferable to have a correlated or smooth landscape, the

quicker loss of lineages would be a sign of good search.

However, the loss of lineages also implies genetic convergence and the inability to escape local

optima. In canonical genetic programming, using subtree crossover, genetic lineages will begin to

share more and more genetic material, from the root downward, during successive generations.

As individuals become larger, the size of subtrees inserted into the root parent becomes relatively

smaller and at lower points, respectively (Luke, 2003). Quicker genetic lineage loss leads to quicker

genetic diversity loss. The evolutionary process then becomes a sort of local search over the con-

verged population’s tree shape(s) and contents.

If the operator, representation and fitness function create a rough landscape, genetic lineages will

be lost more slowly, more genetic diversity will be preserved longer and more varied tree shapes

and tree contents will remain in the population longer. However, this later convergence time and

increased diversity is the consequence of a more uncorrelated landscape, which is generally un-

desirable. Thus, a paradox exists with respect to loss of lineages and ability of improvement. If

the operator works ‘well’, genetic lineages and diversity should be lost rather quickly, getting the

algorithm stuck in local optima. If the operator and representation do not work well together and

induce a rough landscape, genetic diversity is maintained longer, whereby a more global search

may be performed. The loss of genetic lineages is a desirable property as it signifies the correlated

landscape in our representation and operator, but it also signifies a loss of diversity which will

eventually prevent runs from improving.

Results in Chapter 4 showed that lower genetic diversity was more often correlated with better

fitness, supporting the idea that better fitness was achieved when lineages were lost quickly due

to a more correlated landscape. The following experimental study serves to further highlight these

conclusions about diversity and to provide an analysis of the effects of increased diversity.

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 65

5.2 Experimental Study using Lineage Selection

To better understand the effects diversity has on search, a simple method is used based on ge-

netic lineages to increase the genetic diversity of populations. No elitism, size, shape or content

bias is added. Three problem domains are investigated and compared with previous research to

understand why increasing diversity is beneficial in some domains but not others.

The definition of genetic lineages, described in the previous section, is combined with tournament

selection to redirect selection pressure from the fit to the fit and diverse. As lineages provide an

approximation of diversity in canonical genetic programming, this technique does not require a

measure of diversity, but it significantly changes populations during the evolutionary process. The

goal of this study and technique is to demonstrate that increasing diversity can lead to dramatic

changes in the search ability of genetic programming. Population convergence and increased se-

lection pressure of similar individuals creates a ‘hill-climbing’ atmosphere which, when disturbed,

can improve or worsen fitness, depending on the problem. Neither method, genetic programming

or hill-climbing, is proposed to be better than the other. Instead, the similarities and differences

between the methods are used to explain the effects of changing diversity.

One of the main challenges of search in general is preventing the system from getting stuck in local

optima. As highlighted in earlier chapters, convergence is often associated with the inability of

the run to improve, but it is also related to the exploitation phase during the evolutionary process.

Many problem and representation specific methods have been used to improve diversity. While

some methods of diversity show improvement of fitness, they typically add elitism, suffer from

additional computation and address a problem which is not clearly defined or understood. How

does one know what type of diversity is needed and how much of it is necessary for different

problems? As stated by Ryan (1994), “...what is needed is a method which does not attempt to

explicitly measure genetic differences, for this leads to much difficulty when defining exactly what

constitutes difference”. Also, it can be difficult to understand why a problem would benefit from

different types and levels of diversity.

5.2.1 Lineage Selection

Lineage selection is implemented as an additional step to bias selection toward different lineages

from the initial population. To perform selection, individuals are placed into groups based on

common genetic lineages. Tournament selection picks individuals by first picking a random genetic

lineage and then a random individual from within that lineage. A tournament is held between

these random individuals. Each genetic lineage has an equal change of contributing an individual

to each tournament. The method introduces no elitism or no direct measure of size, shape, content,

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 66

lineage lineage lineage21 L. . .Population

pick a random

j. . .ind indlineage

pick a random
individual

lineage

ind

Repeat T times
for each tournament,
where T is the
size of the tournament

i

FIGURE 5.2: An example of lineage selection. An individual (ind) is randomly chosen from a
randomly selected lineage to compete against � others in a tournament.

or fitness. The aim of lineage selection is to maintain diversity so that the population contains good

individuals that are not just diverse.

Figure 5.2 shows an example of lineage selection, which can be described as follows:

1. Select a random lineage
�

from � ���+��� , where � is the total number of unique lineages in the

current population,

2. Select from lineage
�

, which consists of individuals � ����� �
, a random individual, where

� & � !
� ,

3. Repeat steps 1 and 2 above to produce � individuals for a tournament of size � .

Thus, a tournament consists of random individuals from random lineages.

5.2.2 Other Forms of Lineage Selection

Other implementations of lineage selection could allow further control of genetic diversity via ge-

netic lineages. Here, two other selection schemes are described that could be used with genetic

lineages to accomplish different objectives.

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 67

TABLE 5.1: Experiment and problem parameters for the lineage selection experiments.
Functions

Ant if food ahead, progn2
Parity and, or, nand, nor
Binomial-3 +, -, *, p/

Terminals
Ant left, right, move
Parity D1, D2, D3, D4, D5
Binomial-3 x, ERCs

ERC range � & � � ��� ���
Maximum generations 101

� Select � random individuals from within a random lineage to make a tournament. Now

selection gives each lineage an equal chance of participating in recombination. This form of

selection promotes the combining of individuals that are from different lineages. A potential

drawback is the selection of poor quality lineages where no individuals have high fitness.

Thus, it would seem necessary to add a bias toward selecting more highly-fit lineages, or

those with a high average fitness.

� Select � � � random individuals from within a random lineage to make two tournaments,

one for each parent in recombination. This form of selection promotes the recombination

of genetically similar individuals and could be likened to a form of hill-climbing within a

lineage. Assigning a bias toward more fit lineages, ensuring that lineages have a sufficient

number of individuals to perform two tournaments and closely observing the convergence

within lineages are areas that may need to be addressed within this form of selection.

These three methods, the one used here and the two above, modify the standard tournament selec-

tion scheme to force competition and breeding across lineages, force competition within lineages

but breeding across lineages, and finally to force competition and breeding from within the same

lineage. The more restrictive the method becomes, the more the algorithm will need to consider the

potential drawbacks. However, particularly with the last method, these forms of selection could be

considered very efficient implementations of more familiar models of similar and dissimilar mate

selection and distributed models.

5.3 Results of Lineage Selection

Lineage selection is applied to the Ant, Parity and Regression problem domains with two experi-

ments: a control experiment with tournament selection and an experiment which employs lineage

selection. Table 5.1 describes the parameters used for the following experiments. The Binomial-3

problem is used in Chapter 6 and is described there in greater detail. The other problems and pa-

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 68

TABLE 5.2: The Ant, Parity and Binomial-3 statistics for the lineage selection and control exper-
iments. Significant difference is denoted with a ‘*’ next to the mean values for lineage selection.
Significance testing was done using the Student’s T-test at the 95% confidence level.

The Ant Problem
Min Max Mean Stdev

fitness control 0.000 37.000 15.060 12.362
lineages 0.000 29.000 10.930 10.010

nodes control 43.408 116.180 79.068 14.878
lineages 41.968 88.408 62.370* 8.672

entropy control 0.292 1.169 0.709 0.170
lineages 0.542 1.509 1.127* 0.235

edit-d control 0.120 0.353 0.245 0.048
lineages 0.187 0.365 0.275* 0.036

edit-d (W) control 0.615 3.572 1.643 0.628
lineages 1.047 4.394 2.884* 0.711

The Parity Problem
Min Max Mean Stdev

fitness control 0.000 13.000 6.740 2.207
lineages 5.000 11.000 8.970* 1.195

nodes control 68.064 220.268 124.125 26.762
lineages 63.136 109.580 82.896* 9.443

entropy control 0.437 0.969 0.749 0.092
lineages 0.643 0.940 0.787* 0.05

edit-d control 0.102 0.409 0.221 0.066
lineages 0.259 0.471 0.363* 0.042

edit-d (W) control 0.356 3.494 1.042 0.516
lineages 2.335 5.490 4.507* 0.580

The Binomial-3 Problem
Min Max Mean Stdev

fitness control 0.000 5.480 0.651 0.972
lineages 0.007 6.930 1.428* 1.875

nodes control 3.000 141.308 57.351 24.950
lineages 2.992 84.372 34.401* 21.659

entropy control 0.287 2.614 1.920 0.554
lineages 0.264 2.662 1.888 0.819

edit-d control 0.200 0.533 0.361 0.060
lineages 0.227 0.711 0.403* 0.104

edit-d (W) control 0.664 2.078 1.123 0.308
lineages 0.677 5.134 2.442* 1.042

rameters are used from Chapter 4. The main difference between the parameters used here and in

Chapter 4 is the use of only binary functions here. Thus, the syntax trees created in the following

experiments, and for the remainder of this thesis, will be restricted to binary trees.

Figures 5.3 and 5.4 show the behaviour of the system for the control and lineage experiments.

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 69

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

av
er

ag
e

fit
ne

ss

generation

ant-control mean
ant-control best

ant-lineage mean
ant-lineage best

6

7

8

9

10

11

12

13

14

15

16

17

0 20 40 60 80 100

av
er

ag
e

fit
ne

ss

generation

parity-control mean
parity-control best

parity-lineage mean
parity-lineage best

0

5

10

15

20

25

30

0 20 40 60 80 100

av
er

ag
e

fit
ne

ss

generation

binomial3-control mean
binomial3-control best

binomial3-lineage mean
binomial3-lineage best

FIGURE 5.3: Average mean and average best fitness vs. generation are shown for each problem and
experiment type (control and lineage).

In Figure 5.3, the average best and average mean fitness1 is plotted against the generation for all

experiments. In Figure 5.4, mean run values are plotted for measures of diversity and size, but

final generation statistics are also reported in Table 5.2. Note that only the Ant experiments had an

improvement in fitness with lineage selection, while all experiments had a significant decrease in

size and increase in edit distances using lineage selection. In the control experiment, both measures

of edit distance diversity decreased early in the runs and remained low. Initial increases in entropy

for the control experiments were followed by either decreases or stagnation. This signifies the

inability to improve either the spread of fitness values or the uniformity of the distribution. On the

other hand, lineage selection had significantly higher levels of both edit distance diversity. Also,

after an initial period of greater decrease of entropy, lineage selection increased entropy longer

and to higher values. Figure 5.4 also shows that lineage selection produced significantly smaller

individuals.

Figure 5.5 shows that under lineage selection, the distance between successive best fit individuals
�
It is common, when using ‘wrapped’ functions (log and division), for solutions in regression experiments to obtain an

extremely high fitness value. Thus, when calculating the average mean fitness of the population in each generation, it is
necessary to remove these individuals from the calculation to avoid skewed results. This was performed for the Binomial-3
graphs, which resulted in approximately 1% of the population being ignored during the calculation.

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100

ed
it

di
st

an
ce

 d
iv

er
si

ty
 (

no
n-

w
ei

gh
te

d)

generation

ant-control
parity-control

binomial3-control
ant-lineage

parity-lineage
binomial3-lineage

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100

ed
it

di
st

an
ce

 d
iv

er
si

ty
 (

to
p-

of
-t

re
e

w
ei

gh
te

d)

generation

0

20

40

60

80

100

120

140

0 20 40 60 80 100

av
er

ag
e

no
de

s

generation

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100
ph

en
ot

yp
ic

 e
nt

ro
py

generation

FIGURE 5.4: Average measures vs. generation are shown for each problem and experiment type
(control and lineage).

in the population is also higher. Note that the weighted edit distance measure is not normalised by

individual size. Because lineage selection produced smaller individuals, this measure was divided

by the average individual size to produce a graph similar to the non-weighted measure, but where

all the lineage selection experiments remained significantly higher.

The Ant problem was the only one to benefit in terms of fitness improvement from lineage selec-

tion. While the fitness for the Parity and Binomial-3 lineage selection experiments were statistically

worse, a high level of fitness was achieved in very diverse populations. This behaviour is also re-

flected in the phenotypic entropy. The difference in entropy values between the control and lineage

selection experiments appears to be somewhat correlated to fitness improvement. Only on the Ant

problem did entropy stay at the much higher levels after similar initial behaviours. On the other

two problems, entropy was much lower in the initial generations (see Figure 5.4). This indicates

that the ability to achieve high entropy is hindered by lineage selection in the Parity and Binomial-3

problems, resulting in worse overall fitness. However, in the Ant problem, lineage selection helps

to achieve higher levels of entropy and slightly better fitness.

For the Ant experiments, Figure 5.6 shows the last generation where fitness improved versus the

best fitness of the run. Under lineage selection, the Ant problem finds better fitness on average

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 71

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

ed
it

di
st

an
ce

 d
iv

er
si

ty
 (

no
n-

w
ei

gh
te

d)

generation

ant-control
parity-control

binomial3-control
ant-lineage

parity-lineage
binomial3-lineage

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

ed
it

di
st

an
ce

 d
iv

er
si

ty
 (

to
p-

of
-t

re
e

w
ei

gh
te

d)

generation

FIGURE 5.5: Edit distance between successive best-fit individuals for the control and lineage selec-
tion experiments.

20 generations later than the control experiment. This is a good indicator that premature conver-

gence is being avoided. The Parity lineage selection experiments had a similar change, where the

best fitness was found between 10 and 15 generations later but with a slightly worse fitness. The

Binomial-3 results were not significant with respect to fitness or the last generation of improve-

ments.

5.4 Discussion of the Metaphor of Hill Climbing

Lineage selection changes the evolutionary dynamics of diversity according to edit distance and

phenotypic entropy. The measures of diversity, when increased, are expected to decrease the chance

that genetic programming will become stuck in local optima. However, only on the Ant problem

did fitness improve. Lineage selection increases diversity by shifting the focus of selection away

from the best fit individuals to the fit individuals from different lineages. Note that normal selec-

tion pressure is returned after lineages are lost. Why does the Ant problem benefit from reduced

selection pressure and added diversity, and why does improving diversity and reducing selection

negatively affect fitness on the Binomial-3 and Parity problems? The metaphor of genetic program-

ming performing a type of hill-climbing search is now examined to help understand the results.

In standard genetic programming, the convergence of the population to similar programs leads re-

combination to be characterised as a type of hill-climber. Thus, one may think of the beginning of a

genetic programming run as a short, parallel search period until convergence occurs. At that point,

recombination coupled with selection pressure (or elitism) and a converged population behaves

like a hill-climber on a single program. If this is considered as a metaphor for standard genetic pro-

gramming search, then what changes to the algorithm might weaken or strengthen performance?

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 72

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

be
st

 fi
tn

es
s

of
 r

un
generation of best fitness of run

control
control (mean)

lineages
lineages (mean)

FIGURE 5.6: The generation in the Ant problem where the best fitness of the run was found is
plotted against the best fitness of the run. Single standard deviation bars are plotted for both means
in all directions.

5.4.1 Artificial Ant

Langdon and Poli (2002) described the Ant problem to be highly deceptive for genetic program-

ming. The problem contains numerous solutions with a lot of symmetry and there is no ‘guiding’

force to encourage the Ant to travel any particular path. The authors also showed that the Ant

problem is solved better using genetic programming than simulated annealing and hill-climbing

techniques. Only population based, mutation-only search performed considerably better, as did

a variant of strict hill-climbing, which allowed for trees that were smaller and larger than those

that would be typically produced by subtree crossover. As population search only uses mutation,

it should maintain a high amount of diversity and be similar to performing several hill-climbing

searches in parallel. This search method should deal with deception better and not get stuck in

local optima as frequently, which explains better performance.

Lineage selection also adds a similar component of parallel search to the Ant problem. High edit

distance diversity is maintained and selection pressure is reduced, creating a parallel hill-climbing

effect that escapes local-optima better. When an individual becomes stuck in local optima because

of deception, a diverse population is likely to contain another individual which is significantly

different and allows the run to continue. Lineage selection increases or maintains higher entropy

longer with more fitness values or more uniform distributions. In the control experiments, entropy

quickly rises and then declines, suggesting a short period of exploration and a higher likelihood of

being stuck in local optima. Also, note that in Figure 5.5 the weighted edit distance between best

of generation individuals is considerably higher with lineage selection between generations 10-

30, the same generations where the entropy values between experiments diverge. The difference

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 73

between the best individuals in this phase is found closer to the root with lineage selection. A more

explorative search phase appears to be taking place with lineage selection.

5.4.2 Parity

O’Reilly and Oppacher (1994,1995) and Juels (1995) studied the Multiplexer problem with genetic

programming and similar hill-climbing type methods . The Parity and Multiplexer problems have

similar functions, terminals and objectives, though they are not identical. Hill-climbing techniques

appeared superior in this type of problem. Could genetic programming improve performance by

becoming more of a hill-climber? De Jong et al. (2001) used a multi-objective method that kept

only non-dominated individuals according to an individual’s fitness, size and diversity to produce

superior performance over genetic programming on the Even-5-Parity problem. Diversity was

based on an edit distance between trees. Small populations were used that kept all non-dominated

individuals. The authors noted that diversity is required to prevent convergence resulting in run

failure with their “uncommon degree of greediness or elitism”. Hill-climbing appears to perform

well on this problem as does a multi-objective method which simulates hill-climbing.

0

2

4

6

8

10

12

14

0 50 100 150 200 250

be
st

 fi
tn

es
s

of
 r

un

average size in generation with best fitness of run

control lineages

FIGURE 5.7: Average size of an individual in the generation where the best fitness was found in the
Parity experiments.

Lineage selection on this problem decreases selection pressure and prevents the loss of diversity

and convergence. Lineage selection appears to remove the attributes of genetic programming

which allow it to behave like a “hill-climber”. Additionally, the size of individuals is significantly

reduced under lineage selection, as seen in Figure 5.4 and Figure 5.7. The latter graph shows the

best fitness of each run plotted against the average size of an individual in that generation. Only in

the Parity problem was there such a distinctive increase in size associated with an improvement in

fitness. It is hypothesised that an additional factor is responsible for poorer fitness under lineage

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 74

selection. By using code-growth reducing methods, Luke and Panait (2002a) showed that reducing

the size of solutions in Parity and Multiplexer problems (in both size restricted and unrestricted

spaces) had the effect of also worsening fitness when compared with standard runs . In both prob-

lems, the solving of all the fitness cases requires the use of all the terminal values. For example, in

the Parity domain, the absence of one of the boolean variables from a program would result in only

half of the test cases being potentially solved. There is a benefit to programs which contain several

copies of each terminal to increase the chance that they are used properly.

Adding additional elitism or more computation time with lineage selection should improve the

fitness results. Also, for problems where it is known that solutions will need particular terminals

or functions, it would make sense to encourage their inclusion.

5.4.3 Binomial-3

Daida et al. (2001) provided a thorough investigation of why increasing the ephemeral constant

range makes the Binomial-3 problem ‘harder’. The authors draw attention to the inter-play be-

tween content and context of functions and terminals in the representation. Many different solu-

tions exist to the Binomial-3 problem and combining parts of different solutions does not always

make sense. A level of deception exists that is similar to the Ant problem, due to the many differ-

ent solutions. However, in the Ant problem the functions and terminals preserve, to some degree,

semantic meaning in different contexts. Moving constants and arithmetic functions between pro-

grams in Regression problems does not ensure their meaning in new contexts. A DAG (directed

acyclic graph) representation of genetic programming was used on a Regression problem (Mon-

sieurs and Flerackers, 2003) where the author introduced a diversity method that was also highly

elitist. Performance showed that best fitness was achieved much faster with smaller population

sizes using the elitist diversity measure.

Regression problems appear to pose a two-fold problem, finding a good approximation to fit the

data points and attempting to reduce semantic changes of nodes during crossover. In this case,

increasing genetic diversity could increase the chance that crossover will have problems with nodes

changing context. A converged population may contain fewer nodes but with similar contexts and

improve search performance. However, too little or too much selection or diversity would cause

problems as well, making this a complex problem domain.

5.4.4 Remarks

Is increasing diversity beneficial to genetic programming? The results have shown that increasing

the genetic differences in populations allows for more global search and local optima avoidance.

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 75

The results have also shown that higher genetic diversity leads to less code growth, and that in-

creasing genetic diversity adds longer periods of entropy increase. While higher entropy indicates

a more explorative search, lower entropy results in less selection pressure as more individuals have

the same fitness value. Also, the slower increase of entropy and higher genetic diversity appears

to decrease the hill-climbing behaviour that previous research has shown to be effective in solving

these problems. Future methods used to increase diversity to improve fitness should clearly state

the motivation for such an increase and why that type of diversity would be beneficial. Diversity

methods may not be justified in their own right, but they work together with more elitist strategies

or as a supplier of programs to a local search method.

Genetic programming searches for solutions to a given objective using program-like representa-

tions. However, the task of evolving both the structure and content of a solution is complex and

difficult to understand (Daida et al., 2001; O’Reilly, 1998; Hu et al., 2002). The research presented

in Chapter 4 and earlier in this chapter has focused on understanding the relationship between

diversity and search, particularly on the kind and level of diversity that encourages good perfor-

mance. So far this chapter has showed how increased diversity negatively and positively effects

performance on several problems. A metaphor of hill-climbing search helped explain the results,

where deception appeared to be a cause of poor performance. To further understand diversity and

search, particularly with respect to the solutions the population contains during search, the type of

structures (tree shapes) and behaviours that genetic programming samples during the evolutionary

process will now be examined.

5.5 Sampling of Unique Structures and Behaviours

Research into code growth and operator biases can be used to help understand the type of tree

shapes sampled by genetic programming. Subtree crossover and the representation predispose

solutions toward code growth and bloat (Soule and Foster, 1997; Langdon et al., 1999; Langdon,

1998b; Banzhaf and Langdon, 2002; Langdon, 2000a; Soule and Heckendorn, 2002; Luke, 2003).

While programs continue to grow, they tend to grow toward deeper and less-bushier trees. Also,

the space of tree shapes visited during genetic programming search has been studied (Soule and

Foster, 1997; Langdon, 2000a; Langdon, 1999; Daida, 2002), showing that there are types of shapes

that are more easily sampled than others. If a problem’s solution is not within the more easily

sampled structures, the problem will be difficult for genetic programming (Daida et al., 2003b).

With respect to the growth of solutions, the subtree crossover operator is shown to be a more “local”

operator, where the upper-portion of trees become fixed and variations mainly occur near the leaves

(Rosca and Ballard, 1995; Igel and Chellapilla, 1999; Poli and Langdon, 1998a; D’haeseleer and

Bluming, 1994). Diversity research also demonstrates the effects of the convergence of structures

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 76

(McPhee and Hopper, 1999), and in Chapter 4. However, it is also the content of trees (functions

and terminals) that provide a solution to a given problem. By using stochastic sampling techniques,

the proportion of solutions of increasing size was shown not to increase beyond a certain threshold

(Langdon, 1999; Langdon and Poli, 2002). That is, the space of increasingly larger solutions did not

yield a higher proportion of solutions.

As the fitness function is typically a very coarse description of behaviour, it is more difficult to

understand the type of solutions sampled by genetic programming. However, comparisons be-

tween genetic programming and hill-climbing methods using similar representations and opera-

tors can be helpful (Langdon and Poli, 2002; O’Reilly and Oppacher, 1994; O’Reilly and Oppacher,

1996; Juels and Wattenberg, 1995). While genetic programming performed better and worse on

various problem domains, comparisons emphasised the domains in which more hill-climbing or

explorative search is beneficial. These results were particularly useful in explaining the effects of in-

creased genetic diversity, as seen earlier in this chapter. In any case, much of the solutions’ behaviour

remains hidden behind the fitness function value.

To better understand the sampling of tree shapes and behaviours during search, this section exam-

ines the number of unique tree shapes and behaviours (an enriched definition of fitness) sampled.

The structure aspect of the following study provides additional views of the search process, while

the coarseness of fitness function values is addressed with problem-specific behaviour descriptions

that reflect fitness but elucidate the behaviour of the solutions better.

5.5.1 Problems and Measures

The same three problems from earlier in this chapter (from the control experiments) are used in the

following empirical study. However, in the following study, problem specific measures of solution

behaviour are used.

In an evolutionary algorithm, a scalar value is typically used to define a solution’s behaviour (al-

though multiobjective methods may use a vector). This value, defined by a fitness function, must

be able to distinguish different degrees of solution quality. This coarseness often leads to deception,

as in the Artificial Ant problem (Langdon and Poli, 2002), or fails to identify solutions that are rela-

tively good in the current population but extremely poor to continue a search with, as in the case of

very small solutions in Regression problems. Thus, measuring the sampling of behaviours during

a run using only the fitness value may not be as informative as one would like, and so problem

specific definitions of behaviour are used, defined as follows:

� Ant: each food item is uniquely labeled to create a vector representing the order in which the

food is collected,

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 77

target

candidate
solution

error vector of angles

FIGURE 5.8: Behaviour definition example for the Regression domain, with standard fitness calcu-
lation (mean squared error) and the behaviour definition.

� Parity: a vector of integer values, where the size is the total classified correctly and the con-

tents indicate which of the � � test cases were correctly classified,

� Regression: a vector of integer values represents the angles between test points (from the hor-

izontal) taken by a solution.

These definitions capture more information than their typical scalar value fitness would, but are

still a reduction of the complete behaviour of a solution. The Ant behaviour represents the unique

sequence of food collection, where the largest sequence is 89 and the smallest is 0. The Parity

behaviour describes which specific instances are correctly classified. The definition of behaviour

for the Regression domain describes the change in angle from the horizontal between each function

point in the candidate solution. By casting these angles as integers, when two successive angles in

the vector are identical, only the first is kept. Thus, the size of the vector alludes to the complexity

of the solution (the number of “bends” in the graph of that function), but not directly to the fitness

value as the target function is not considered. Figure 5.8 highlights the differences between the

standard fitness function and the definition of behaviour proposed here.

In this section, the tracking of sampled structures is performed by considering the binary tree

shapes regardless of tree content. The number of unique tree shapes of each size that are sampled

during the run of the algorithm are counted.

A canonical genetic programming system is run for 51 generations, using a generational algorithm

with a population size of 500. Initial tree creation is carried out using ramped half-n-half with tree

sizes between depths 2 and 4. Subtree crossover, with internal node selection set at 90% probability

and maximum depth of 10, is used for recombination – no mutation or duplication is used. There

are 30 random runs collected for each problem domain.

The results for each problem domain are depicted in two graphs showing the average number of

unique tree shapes sampled and unique behaviours sampled of a given size. Each line represents

the cumulative total of unique tree shapes (or behaviours) in each generation during a run. Each

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 78

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 u

ni
qu

e
st

ru
ct

ur
es

 v
is

is
te

d

size of structure

generation 0
generation 10
generation 20
generation 30
generation 40
generation 50

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

nu
m

be
r

of
 u

ni
qu

e
be

ha
vi

ou
rs

 v
is

is
te

d

size of behaviour

generation 0
generation 10
generation 20
generation 30
generation 40
generation 50

FIGURE 5.9: Ant results, cumulative sampling of unique structures and behaviours.

successive ten generations are highlighted with symbols. Thus, the space between two lines repre-

sents the number of new unique tree shapes (or behaviours) of a given size that were sampled in a

generation. The larger the space, the more effort genetic programming spends on searching unique

tree shapes (or behaviours) of that size.

5.6 Analysis of Results

Figure 5.9 shows the structure and behavioural sampling for the Ant problem. There is a distinct

trend of the highest number of unique structures sampled toward sizes of 45. The bottom graph in

Figure 5.9 shows the sampled behaviours of each size for the Ant problem. Note that the number of

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 79

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 u

ni
qu

e
st

ru
ct

ur
es

 v
is

is
te

d

size of structure

generation 0
generation 10
generation 20
generation 30
generation 40
generation 50

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

nu
m

be
r

of
 u

ni
qu

e
be

ha
vi

ou
rs

 v
is

is
te

d

size of behaviour

generation 0
generation 10
generation 20
generation 30
generation 40
generation 50

FIGURE 5.10: Parity results, cumulative sampling of unique structures and behaviours.

unique behaviours sampled of all sizes in each generation is greatly reduced after approximately

10 generations. Also, after two unusual peaks at behaviours of size 20 and 24, the number of

unique sampled behaviours greatly decreases for behaviours of large size (which represent more

“fit” solutions).

The sampling of structures for the Parity problem is shown in the top graph of Figure 5.10. This

problem samples fewer unique structures but at larger sizes. The number of unique behaviours

sampled in the Parity problem are shown in the bottom graph of Figure 5.10. A behaviour has a

maximum length of 32, which represents all � � correct classifications. However, there are �
 ���� pos-

sible unique behaviours for a length of
�

. For the expected random strategy classification of size 16,

nearly 2500 unique behaviours are sampled over the course of a run. Genetic programming spends

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 80

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 u

ni
qu

e
st

ru
ct

ur
es

 v
is

is
te

d

size of structure

generation 0
generation 10
generation 20
generation 30
generation 40
generation 50

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 u

ni
qu

e
be

ha
vi

ou
rs

 v
is

is
te

d

size of behaviour

generation 0
generation 10
generation 20
generation 30
generation 40
generation 50

FIGURE 5.11: Regression results, cumulative sampling of unique structures and behaviours.

a large amount of effort searching neutral behaviours equivalent to a random strategy, with slight

peaks at fitness 18 and 20. Symmetry in the Parity bit-string instances probably rewards the solving

of an additional instance with another symmetrical instance also solved correctly, explaining why

fitness is concentrated on the random (16) strategy initially, followed by one instance additionally

solved (17+1=18) and then another (19+1=20).

The Regression problem’s sampling of structures is shown in the top graph of Figure 5.11. A distinct

trend is seen toward sampling unique structures of sizes near 40. Fewer unique structures of larger

sizes are sampled. The number of unique behaviours sampled in the Regression problem, depicted

in the bottom graph of Figure 5.11, shows a strong attraction toward behaviours of size 12. All

generations during the run sample unique behaviours of this size. As behaviour does not directly

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 81

reflect the fitness, these behaviours may or may not have neutral fitness. However, the Binomial-

3 fitness function contains 50 equidistant � values that generate the target � values for testing an

individual. The angle gradient between successive � values is nearly always greater than 1. Thus,

for our behaviour measure, if a behaviour is to represent the function ideally, it will need close to

50 angle changes between points.

The 95% confidence bars for each of the average distributions from Figures 5.9 to 5.11 are shown in

Figure 5.12. From left to right, the Ant, Parity and Regression structures are shown on the top row,

and behaviours on the bottom row. The sampling between the 30 runs is fairly uniform with the

greatest variations occurring near the peaks in the Regression problem.

5.7 Discussion of Sampling

How does one search for computer programs, and how does one know if one program is better

than another? The intuitive broad sampling of a complex solution space by a population in genetic

programming is one reason why the algorithm may be considered useful. Early work by Cramer

(1985) and Koza (1992) laid the foundations for this procedural representation, where the use of

single-value scalars as fitness combined and complex representations were already in use in other

evolutionary algorithm domains. While it may have been straightforward to apply these methods

to program evolution for genetic programming, the conflicts arising in this representation are well

documented (Daida et al., 2001; O’Reilly, 1998; Daida et al., 2003b; O’Reilly and Goldberg, 1998).

The results presented here, based on the sampling of unique tree shapes and unique behaviours,

further describe genetic programming’s ability to sample a complex solution space.

The behaviour definition has enriched the description of the sampling of solutions by genetic pro-

gramming. In the Ant problem, the geographic distribution of food pellets on the Ant trail may

allow for many Ant behaviours that are able to collect 20 to 24 pellets, but unable to easily collect

more. In this problem, the standard definition of fitness creates deception (Langdon and Poli, 2002)

that has already been shown to negatively impair fitness improvement. However, the more grad-

ual decrease in the ability to sample different behaviours of higher fitness explains why genetic

programming often outperforms hill-climbing methods that search with poor solutions. The peaks

of behaviours sampled at size 20 and 24 may represent local optima that trap search. The behaviour

distribution for the Parity problem is particularly interesting as it shows the ability of genetic pro-

gramming to sample many different near-random type behaviours. Sampling such high numbers

of different behaviours is promising but a likely cause of deception and negative contextual shifts

of subtrees, explaining why hill-climbing and elitist strategies are more effective on this problem

(O’Reilly and Oppacher, 1994; Juels and Wattenberg, 1995).

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 82

While the Regression problem used a behaviour that did not directly reflect its fitness value, the

behaviour did reflect the complexity of solutions. The preference toward sampling behaviours of

a small size and complexity could be caused by neutrality in the fitness values or the result of a

biased structure sampling. In the latter case, the inability to increase structure size is hypothesized

to be positively correlated with the inability to increase the complexity of solutions. This hypothesis

seems plausible for the Regression domain, considering that subtree crossover typically functions

near the leaves (terminals).

With respect to the sampling of unique structures of various sizes, all problems showed that while

genetic programming is predisposed to code growth (and bloat), unique tree shapes of large sizes

are sampled less. That is, a fewer number of big tree shapes are sampled. Remember that the

number of different programs for a given tree shape increases exponentially with an increase in

size. Thus, while fewer large and unique tree shapes are being sampled, the algorithm could be

sampling more different programs of those shapes. The different structures of the same size that

are sampled more frequently would appear to be attractive to genetic programming for one reason

or another. The depth limit imposed here and the mechanics of subtree crossover are also possible

causes.

Poli and McPhee (2001) examined the distributions of a variable-length linear genomes using stan-

dard crossover and a flat landscape. The authors found that the distribution of genome lengths

sampled during search resembled a gamma distribution and that shorter genomes were sampled

much more than longer ones. With respect to the results presented here, when the non-cumulative

version of Figures 5.9 to 5.11 are examined, the distribution of unique tree shapes sampled in the

Ant and Regression experiments also resembles a gamma distribution. While it is less clear for the

Parity experiments, additional analysis into these distributions would provide further support of

-50

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 u

ni
qu

e
st

ru
ct

ur
es

 v
is

is
te

d

size of structure

-50

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 u

ni
qu

e
st

ru
ct

ur
es

 v
is

is
te

d

size of structure

-50

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 u

ni
qu

e
st

ru
ct

ur
es

 v
is

is
te

d

size of structure

-10

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

nu
m

be
r

of
 u

ni
qu

e
be

ha
vi

ou
rs

 v
is

is
te

d

size of behaviour

-500

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

nu
m

be
r

of
 u

ni
qu

e
be

ha
vi

ou
rs

 v
is

is
te

d

size of behaviour

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 u

ni
qu

e
be

ha
vi

ou
rs

 v
is

is
te

d

size of behaviour

FIGURE 5.12: 95% confidence bars for the average cumulative structure and behaviour sampling
distributions. From left to right is the Ant, Parity and Regression problems with structure on top
and behaviour below.

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 83

the results presented in (Poli and McPhee, 2001).

These results also suggest several possibilities to improve performance. The sizes of behaviours

that were sampled in high numbers may represent areas of deception in the fitness space. This

deception may be reduced by pressuring the search away from areas of neutral fitness. Previ-

ous research showing a positive correlation between high fitness-based diversity with good fitness

could be the result of avoided deception leading to better fitness. Thus, when a population contains

many different but equal in fitness behaviours, we may wish to move the search toward a less de-

ceptive region of the search space. Leading the ant to follow a specific food trail reduced deception

and improved fitness (Langdon and Poli, 2002). For the Regression domain, using a component

of complexity in the fitness function may also improve the performance of genetic programming.

Similarly, the Parity fitness function could be amended to reflect which instances a solution solves

correctly to reduce deception. Of course, exploration (global search) and exploitation (local search)

ability will be affected when such methods are employed to reduce deception.

5.8 Summary

This chapter has described how genetic lineages can serve as a simple measure of diversity in a

representation based on natural selection. Many possible uses exist in genetic programming for

lineages, here a variant of selection was used to further describe the search process. The relation-

ship between genetic lineage loss, diversity and fitness landscape was described. A correlated

landscape, where the application of an operator causes small changes to fitness, will encourage the

quicker loss of genetic lineages and diversity. A uncorrelated landscape will lose genetic lineages

and diversity at a slower rate.

Lineage selection is used to increase diversity by reducing the selection pressure from the most fit

to the fit and diverse. This has caused performance variance across three problem domains. The

results were analysed in the light of previous research to conclude that, if genetic programming

is viewed as performing a type of hill-climbing search, adding diversity can worsen fitness on

some problems that clearly benefit from elitism in a hill-climbing environment. However, when

deception is embedded into the problem, improving diversity may help avoid local optima (as

in the Ant problem), or it may compound the deception by maintaining its presence (as in the

Binomial-3 problem).

The last section of this chapter examined the sampling of unique tree shapes and unique behaviours

in genetic programming. An enriched definition of behaviour provided more information about so-

lutions than typical fitness functions. As the genetic programming algorithm requires the search

of structure and content, it is important to understand issues such as deception and the effort the

5. GENETIC LINEAGES AND A METAPHOR OF HILL CLIMBING 84

algorithm spends on searching different types of behaviours and structures. The behaviour sam-

pling results showed sampling trends that help explain previous diversity research and suggests

new ways to improve search.

Also, the sampling results showed that there are different behaviours with the same fitness val-

ues in all problems that genetic programming samples at much higher rates. If low phenotype

diversity and entropy are likely indicators of deceptive regions of the search space, and consider-

ing the results from Chapter 4 showing a correlation between high values of these measures and

better fitness, then better search is achieved when deceptive regions are avoided. Thus, adaptive

measures that recognize the signs of deception could possibly help to improve search. Lastly, the

structure sampling results showed that while bloat and code growth occur, fewer different unique

tree shapes of these large sizes are sampled. Problems that require specific structures at these large

sizes are likely to be more difficult for genetic programming.

In the next chapter, the relationship between diversity and other aspects of the search processed

is examined. In particular, the effects of population diversity are examined with respect to code

growth and problem difficulty.

85

CHAPTER 6

EFFECTS OF POPULATION DIVERSITY: CODE GROWTH

AND PROBLEM DIFFICULTY

The issues of code growth and problem difficulty were introduced in Chapter 3. In Chapter 4,

various forms of diversity were shown to have a complex relationship with fitness improvement,

where edit distance and fitness-based measures seem to represent important properties. Chapter

5 furthered the analysis of diversity by illustrating expected diversity loss using the concept of

genetic lineages and a caricature of tournament selection. Also, Chapter 5 highlighted a poten-

tial metaphor of genetic programming search and the signs and consequences of deception in the

search space. How do these results apply to important issues such as code growth and problem

difficulty?

In this chapter, diversity is closely examined with respect to problem instances that are both tun-

ably difficult and that exhibit varying rates of code growth. The results strongly support a causal

hypothesis relating code growth and diversity. This hypothesis is also supported by previous lit-

erature and further experiments using a constructed model of code growth and problem difficulty.

While furthering the understanding of diversity and problem difficulty, this chapter also provides

important insights that suggest new ways of addressing the issue of bloat.

6.1 Code Growth and Problem Difficulty

Two challenging problems in genetic programming are the application of genetic programming on

increasingly difficult problem instances and the increase of solution size which is not correlated

with improvement. Daida et al. (2001) recently demonstrated that when genetic programming has

difficulty solving harder problem instances, solutions are generally larger in size, take longer to

find, and are less numerous in the population. Of these traits, the increase in size without corre-

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 86

sponding fitness improvement is the most worrying to genetic programming practitioners. The

continued growth of solutions for difficult problems will become a limiting factor of the applicabil-

ity of the algorithm; computational resources will be exhausted and the algorithm will halt before

reaching a good solution. The existing theories of code growth (Langdon and Poli, 2002; Luke, 2003;

Soule and Heckendorn, 2002) provide the mechanical basis for understanding why programs in a

variable-length representation tend to grow in size, but do not predict the rate of growth or explain

why optimal solutions can vary in size by a large degree. Additionally, the many methods used

to limit code growth, or to remove non-functional code from solutions, may often lead to worse

performance (Ekárt, 2000; Luke and Panait, 2002a; Soule and Foster, 1998; Zhang and Mühlenbein,

1995).

Two symbolic regression problems are used that are differently scaled in difficulty to observe the

behaviour of fitness, code growth and diversity. If growth is related to instance difficulty, it will be

likely that the dynamics of the population, viewed with measures of diversity, will aid in under-

standing the phenomenon. Symbolic regression problems are used for two main reasons. Firstly,

there is a large body of existing theoretical studies using regression problems to understand genetic

programming. Secondly, it is easier to reason about increasing the difficulty of fitting mathematical

functions than it might be for increasing the difficulty of other types of problems.

6.2 Regression Problems and Increased Difficulty

Building on the study by Daida et al. (2001), the Binomial-3 problem with varying ERC ranges is

used to increase difficulty. As in Chapter 5, the Binomial-3 problem consists of approximating the

function
� ��� � � ��� �����
 using the functions � � �+& � � ��� ��� and the terminals � � ����� . � are ERCs

in the ranges of [-1,1) (referred to lated as unity), [-10,10) (ten), and [-100,100) (‘hundred’), where

larger ranges create increasing difficulty. The Binomial-3 function is shown graphically over the

interval [-1,0] in Figure 6.1 (top left). There are several solutions to this function which can be

represented easily by many different combinations of functions and terminals. The easiest version

of this problem would be expected to allow for many close-to-optimal initial solutions and more

new optimal solutions to be acquired in every generation. Harder instances are likely to cause more

difficulty in finding good solutions early and often.

To complement this problem, a method is used to generate random polynomial instances (Ekárt

and Németh, 2002). Random polynomials are generated up to degree 11 with non-zero coefficients

and with real roots in the range ��& � ��� � . As higher degree polynomials have a larger number of

roots close to zero, most of the values they take in the ��& � ��� � interval are close to zero. For genetic

programming, it is easy to find relatively close fit solutions in the form of straight lines close to

the X axis. However, it is difficult to improve on these solutions to find a really good approxima-

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 87

tion, especially if the relatively fit and simple individuals spread across the genetic programming

population after a few generations.

The polynomials of increasing degree with non-zero coefficients and real roots in the � & � ��� � interval

constitute a class of increasing difficulty problem instances which are suitable for studying the

behaviour of genetic programming, as they have the following properties:

� Minimum Required Depth. Higher degree polynomials can be approximated less easily with

our function set. Each term of degree
 is formed by a sequence of � ��� � � � � ��� � � � ���+��� ��� ��� .
This, in general, will require larger solutions for a good approximation of a higher degree

polynomial. A polynomial with real roots and non-zero coefficients
� ������� � �

�
� � ���"& �

�
� can

be expressed as a tree by using �
 & � functions (i.e.,
 & � multiplications and
 subtractions)

and �
 terminals. The minimum depth (thus complete) tree representing this polynomial is

of depth � ����� ����
3� .
� Maximum Allowed Depth. It follows from the above requirement that polynomials with

higher degree are harder for genetic programming to approximate if allowing the same lim-

ited depth for trees, as there is less space for genetic programming to grow introns. Introns

refer to non-functional code in the program. In these cases the trees must be more efficient in

using more nodes to express the solution.

� Approximation Ability. Lastly, the Matlab Polyfit routine is used to assign a degree of approx-

imation ability to the polynomials. Polyfit finds the best polynomial of given degree to fit a

set of points. The polynomials of degrees 11, 7 and 3 (shown in Figure 6.1) were best fitted as

polynomials of degrees 11, 8 and 3, respectively, with errors of order � �
	 � � , the approximation

error being the highest for the 11 degree polynomial. That is, there were no close approximate

polynomials of degree � to generated polynomials of degree
�

with � � �
�
. Furthermore, as

the generated polynomials are best fit with Polyfit polynomials of similar degree, a successful

application of genetic programming on this problem should also find polynomials of similar

degree.

The type of increased difficulty posed by the random polynomials and the Binomial-3 function

is similar. The Binomial-3 problem must cope with ERC values spanning an increasing range.

Likewise, for the random polynomials, when the degree increases, the fixed ERC range will become

less appropriate as the polynomials contain variations of smaller magnitude.

For assessing the differences in behaviour between easy and difficult instances, two measures of

diversity are used. The entropy measure is used for indicating the distribution of individuals over

fitness values (and subsequently the level of selection pressure) and the edit distance measure is

used for indicating the structural diversity of a population. These measures are described next.

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 88

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

50 equidistants x values

binomial-3 problem: 1 + 3x + 3x^2 + x^3

-0.5

0

0.5

1

1.5

2

2.5

3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

degree 3 polynomial: (x+0.44)(x+0.54)(x+0.27)

-0.25

0

0.25

0.5

0.75

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

degree 7 polynomial: (x+0.44)(x+0.54)(x+0.27)(x+0.04)
(x+0.41)(x-0.43)(x-0.71)

-0.005

0

0.005

-0.25

0

0.25

0.5

0.75

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

degree 11 polynomial: (x+.44)(x+.54)(x+.27)(x+.04)
(x+.41)(x-.43)(x-.71)(x+.82)(x+.63)(x-.75)(x-.91)

-0.005

0

0.005

FIGURE 6.1: The Binomial-3 problem and the generated polynomial functions of degree 3 (upper
right), 7 (bottom left) and 11 (bottom right). The inset for degree 7 and 11 shows the same x-range
and smaller y-range between [-0.005:0.005], where it is relatively easy for genetic programming to
find a close fit, but difficult to fine-tune the approximation.

6.2.1 Population Measures: Entropy and Edit Distance Diversity

To better understand the distribution of fitness values that a selection method is presented with,

and the ability of the population to represent solutions for each problem instance, we use the mea-

sure of entropy based on fitness, described in detail in Chapter 4. Again, the entropy measure

represents the chaos of the system with respect to the distribution of fitness values amongst the

population (Rosca, 1995a). An increase in entropy reflects the system (population’s fitness values)

moving into a state of more chaos (more different fitness values). This measure also gives us a sense

of how the fitness values are distributed over the fitness classes, from a uniform distribution over

all fitness classes to the other extreme of the entire population belonging to only one fitness class.

Measuring the genetic diversity of populations is difficult, as there are many aspects of tree shapes

and contents that could be measured. In this study, a measure is used based on the edit distance

between two trees, introduced and used in Chapter 4 as edit distance One, and in Chapter 5 as the

non-weighted edit distance. This measure is used to understand how structurally similar popula-

tions become and to give insight into the search process.

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 89

TABLE 6.1: Experiment and problem parameters for the Binomial-3 and random polynomial
experiments.

Population size 500
Functions +,-,*,p/
Terminals x, ERCs
Polynomial ERC range � & � � �+� ���
Binomial-3 ERC range unity ��& � ��� �

ten � & � � �+� ���
hundred � & � � � �+� �����
control � no ERCs �

Tournament selection size 4
Maximum tree depth 10
Ramped half-n-half tree creation minimum depth 2

maximum depth 4
Maximum generations 101

Other parameters same as in Chapter 4

6.3 Experimental Investigation

100 independent random runs are performed for each problem instance. Experiment and problem

parameters are described in Table 6.1. The fitness for both problems are calculated by summing the

squared difference for each point along the problem instance’s function and the function produced

by the individual. All problems used here are minimisation problems with an ideal fitness of zero.

However, we report the adjusted fitness � � ��� � raw fitness � (with ideal value of one). For the ran-

dom polynomial experiments a random seed was selected and used to generate three polynomials

of degree 3, 7 and 11. The three polynomials are:

 � � � � ��� � ��� �	��� ����� � ���(� �)� � �3� �$��� �	��� �
.�

 � � � � �
 � ���"�	��� ����� �$��� � �)� � ��� � ���(�	��� �
.� �
���(� �)� ���3� �$��� �	��� �	�5� � ��� & �)� � ��� �$��� & ���
 �5�

 � � � � � � � � ���"�	��� ����� �$��� � �)� � ��� � ���(�	��� �
.� �
��� � �)� ����� � ���"�	��� �	�5� �$��� & �)� � � � � ��� & ���
 �5� �

���(� �)� � � � �$��� �	��� � � � � ��� & �)�
 � � �$��� & ��� ���5�
The polynomials are graphically presented in Figure 6.1.

6.4 Binomial-3 and Random Polynomial Results

The results are evaluated to first validate the increase of difficulty across instances. Measures of

entropy, edit distance diversity and size are examined and a general hypothesis is developed to

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 90

0

5

10

15

20

25

30

35

40

control unity ten hundred

binomial3 fitness values placed into 60 bins
 (where bin size is (max-min)/60)

0

10

20

30

40

50

60

degree 3 degree 7 degree 11

polynomial fitness values placed into 21 bins
 (where bin size is (max-min)/21)

FIGURE 6.2: Each problem instance’s final population performance values have been discretised
and placed into 60 (Binomial-3) or 21 (polynomials) bins to show their distribution. Bins to the left
in each instance represent better fitness.

explain what induces faster rates of code growth. The following section looks more closely at the

correlation between growth and these measures.

6.4.1 Establishing Difficulty

Daida et al. (2001) established the tunable nature of the Binomial-3 problem by demonstrating

increased difficulty through the reduced frequency which good solutions are found, the longer

it took for good solutions to be found and the increased size of good solutions. In Figure 6.2,

the best fitness of 100 runs for each experiment are placed into bins and plotted in a histogram.

The left-most bins in each experiment – corresponding to the number of best solutions found –

are expectedly larger for easier instances. The Binomial-3 results show a clear trend of less good

solutions with increasing ERC ranges. In the case of the polynomial results, this trend is clear for

degree 3 and degree 11. Note the large number of poor fit runs for the degree 11 polynomial (the

right-most bins). These ‘failed’ runs tend to be present in regression problems where the lack of

initial fitness improvements causes the run to become stuck in poor local optima. The nature of

the degree 11 polynomial amplifies this effect, as we would expect. As shown later, the degree 7

polynomial produces a mixture of results but generally shows the expected behaviour.

In Figure 6.3 the results from Daida et al. (2001) are reproduced based on the experiments carried

out here. Figure 6.4 shows the similar results for the generated polynomials. The same trends

apply for both the Binomial-3 instances and the random polynomials. Increasing the ERC range

worsens the best fitness found and increases the size and depth of the solutions when best fitness

is found. When the difficulty is increased, the best-of-run solutions are found in later generations.

Note that while the fitness function remains the same in the Binomial-3 problems, the polynomial

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 91

0

40

80

120

160

0 0.2 0.4 0.6 0.8 1

no
de

s

hundred: fitness

0

40

80

120

160

0 0.2 0.4 0.6 0.8 1

no
de

s

ten: fitness nodes

0

40

80

120

160

0 0.2 0.4 0.6 0.8 1

no
de

s

unity: fitness

0

40

80

120

160

0 0.2 0.4 0.6 0.8 1

no
de

s
control: fitness

0

40

80

120

160

0 20 40 60 80 100

hundred: generation

0

40

80

120

160

0 20 40 60 80 100

ten: generation

0

40

80

120

160

0 20 40 60 80 100

unity: generation

0

40

80

120

160

0 20 40 60 80 100

control: generation

0

40

80

120

160

0 2 4 6 8 10

hundred: depth

0

40

80

120

160

0 2 4 6 8 10

ten: depth

0

40

80

120

160

0 2 4 6 8 10

unity: depth

0

40

80

120

160

0 2 4 6 8 10

control: depth

FIGURE 6.3: Results of the Binomial-3 experiments. The average size of the population contain-
ing the best-of-run individual is plotted against best-of-run fitness (left column), the generation in
which the best-of-run individual occurred (middle column) and the average depth of the popula-
tion (right column). Each circle corresponds to one run.

fitness function does change. For the polynomial experiments, the distinguishing feature of run

performance is the amount of improvement that genetic programming can find. The difference in

this behaviour can be seen in Figure 6.6.

The higher degree polynomials contain smaller variations and the fitness functions across the in-

stances are not the same. As the higher degree polynomials start with lower initial fitness, the

improvement rate from initial generations to later ones is observed as a sign of performance. The

higher the degree, the less improvement is made during the evolutionary process, the bigger and

deeper solutions are and the later they are found. A more in-depth analysis of the behaviour of

runs with respect to size, entropy and edit distance follows.

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 92

0

40

80

120

160

0 0.2 0.4 0.6 0.8 1

no
de

s

11: fitness

0

40

80

120

160

0 0.2 0.4 0.6 0.8 1

no
de

s

7: fitness

0

40

80

120

160

0 0.2 0.4 0.6 0.8 1

no
de

s

3: fitness

0

40

80

120

160

0 20 40 60 80 100

11: generation

0

40

80

120

160

0 20 40 60 80 100

7: generation

0

40

80

120

160

0 20 40 60 80 100

3: generation

0

40

80

120

160

0 2 4 6 8 10

11: depth

0

40

80

120

160

0 2 4 6 8 10

7: depth

0

40

80

120

160

0 2 4 6 8 10

3: depth

FIGURE 6.4: Results of the random polynomial experiments. The average size of the population
containing the best-of-run individual is plotted against the best-of-run fitness (left column), the
generation in which the best-of-run individual occurred (middle column) and the average depth of
the population (right column). Each circle corresponds to one run.

6.4.2 Binomial-3 Results

For the increasing range of ERCs, the instances (control, unity, ten and hundred) become increasingly

difficult for genetic programming to solve. As shown in Figure 6.5, fitness (adjusted fitness) con-

verges less quickly, fewer good fitness values are found and individuals become larger and deeper

for the larger ERC ranges. Additionally, the edit distance diversity is slightly higher for the easier

instances. This would seem counterintuitive as one would expect earlier convergence toward sim-

ilar programs for easier instances. In the bottom graph of Figure 6.5, the entropy quickly falls and

rises, then continues to decrease. This confirms that once good solutions are found, the population

loses unique fitness values. As more and more solutions have the same fitness value, entropy de-

creases. However, the easier instances, in contrast to the difficult instances, are also more likely to

be solved by more different programs. This explains why diversity is higher in this case. While the

populations do converge and lose diversity, the easier instances converge to a more varied selection

of fit individuals. Note that the time when entropy begins to slowly decrease also marks the time

when code growth begins to slow down. For the easier instances, this occurs just before generation

40, and for the hundred instance, somewhere between generation 60 and 80.

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 93

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

ad
ju

st
ed

 fi
tn

es
s

generation

control
unity

ten
hundred

0

2

4

6

8

10

0 20 40 60 80

de
pt

h

generation

control
unity

ten
hundred

0

20

40

60

80

100

120

0 20 40 60 80

no
de

s

generation

control
unity

ten
hundred

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80

ed
it

di
st

an
ce

generation

control
unity

ten
hundred

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 20 40 60 80

en
tr

op
y

generation

control
unity

ten
hundred

FIGURE 6.5: The Binomial-3 problem adjusted fitness, depth, nodes, edit distance and entropy
versus generation for the control, unity, ten, and hundred experiments. Points represent the average
over 100 runs.

6.4.3 Random Polynomials

It can be seen in Figure 6.6 that increasing the degree of the random polynomials results in a be-

haviour that is characteristic of increased difficulty. If one looks at the rate of improvement, it is

decreasing as the degree increases. The higher degree instances cause a higher rate of code growth

and populations with deeper trees. Again, the easier instance (degree 3) has higher edit distance

diversity than the harder instance (degree 11). As noted before, the degree 7 polynomial tends to

perform with less uniformity than the Binomial-3 instances. A higher rate of code growth and a

lower edit distance diversity are seen in the degree 7 polynomial results.

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 94

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

ad
ju

st
ed

 fi
tn

es
s

generation

degree 3
degree 7

degree 11
0

2

4

6

8

10

0 20 40 60 80

de
pt

h

generation

degree 3
degree 7

degree 11

0

30

60

90

120

0 20 40 60 80

no
de

s

generation

degree 3
degree 7

degree 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80

ed
it

di
st

an
ce

generation

degree 3
degree 7

degree 11

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80

en
tr

op
y

generation

degree 3
degree 7

degree 11

FIGURE 6.6: The random polynomial experiments adjusted fitness, depth, nodes, edit distance and
entropy versus generation for degree 3, 7 and 11 polynomials. Points represent the average over
100 runs.

There is one major difference between the results of the Binomial-3 and the polynomial experi-

ments: the initial decrease in entropy of the easier and harder instances. While the initial fluctua-

tion of entropy is not very important for the final analysis, it demonstrates an interesting difference

between the problems. In Figure 6.5, an increase in instance difficulty results in less of an initial

decrease in entropy. However, in Figure 6.6 a smaller decrease in initial entropy can be observed

for the lower degree polynomial. As the ERC range is increased in the Binomial-3 problem, it is

likely that initial populations will be able to represent more unique fitness values than with smaller

ERC ranges. While each ERC range does contain the same number of usable constants, some of

these values become functionally identical, especially small numbers that may cause division by

zero or be similar because of precision representation. In the polynomial experiments, the initial

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 95

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100

si
ze

 a
nd

 fi
tn

es
s

co
rr

el
at

io
n

generation

control
unity

ten
hundred

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100

si
ze

 a
nd

 e
di

t d
is

ta
nc

e
co

rr
el

at
io

n

generation

control
unity

ten
hundred

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100

si
ze

 a
nd

 e
nt

ro
py

 c
or

re
la

tio
n

generation

control
unity

ten
hundred

FIGURE 6.7: Spearman correlation between size and fitness and between edit distance and entropy
for the Binomial-3 experiments.

greater loss of entropy by the degree 11 polynomial shows the initial difficulty genetic program-

ming has in representing different initial solutions when the function closely represents a straight

line. These observations refer to the populations that undergo the initial rounds of selection and

that have higher or lower decrease in entropy.

6.5 Discussion of a Causal Model

The increase in size, depth and time needed for best-of-run solutions with increased difficulty is

clear for both the Binomial-3 and polynomial problems. Also, for both problems, many small good

solutions are found in early and late generations. Increased size is expected in later generations,

but runs appear to have very different rates of growth. However, what is the cause of the varied

rates of code growth?

By observing the behaviour of entropy in Figures 6.5 and 6.6, it can be seen that the harder instances

contain longer periods of higher (Binomial-3) or increasing (polynomials) entropy. As entropy

describes the number of different fitness values and their distribution in the population, lower

entropy will cause selection to become more random. When selection is faced with a population

of identical fitness values (the extreme of low entropy), selection becomes purely random. Thus,

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 96

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100

si
ze

 a
nd

 fi
tn

es
s

co
rr

el
at

io
n

generation

3 7 11

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100

si
ze

 a
nd

 e
di

t d
is

ta
nc

e
co

rr
el

at
io

n

generation

3 7 11

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100

si
ze

 a
nd

 e
nt

ro
py

 c
or

re
la

tio
n

generation

3 7 11

FIGURE 6.8: Spearman correlation between size and fitness and between edit distance and entropy
for the random polynomial experiments.

lower or decreasing entropy in the easier instances will induce a lower selection pressure.

Figures 6.7 and 6.8 show the evolution of the Spearman correlation coefficient between the average

size of a population and its best fitness (raw fitness, where lower is better), entropy and diversity,

respectively. The correlation is calculated in every 5th generation up to generation 50, then every

10th afterward. Generally, size is negatively correlated with fitness (low fitness with large size),

negatively correlated with edit distance diversity (low edit distance with large size) and positively

correlated with entropy (high entropy with large size). There is a clear trend of bigger individuals

in populations with higher entropy and lower edit distance.

The 7-degree polynomial is the exception with erratic correlation between edit distance and size,

and appears to contain aspects of both the 3-degree polynomial and the 11-degree polynomial. For

the 7-degree polynomial there are very few good individuals initially, and they are subsequently

over-selected (similarly to the degree-11). After the initial period of code-growth, optimal solutions

are represented easily by many different programs, leading to reduced entropy and code growth

(as with degree-3), but lower diversity following initial over-selection.

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 97

6.5.1 Hypothesis

The increase in instance difficulty makes it more difficult to find good programs, and, when the

population converges, to find one or more similarly good (optimal or sub-optimal) programs as

well. In the case of easier instances, entropy decreases when the population converges toward

individuals with the same optimal (or sub-optimal) fitness. In harder instances, the lack of this

behaviour causes higher entropy, which does not decrease as quickly, maintaining higher selection

pressure. This non-decreased selection pressure is hypothesised as a cause of more code growth

and less diversity, which also causes more code growth. This hypothesis of the causal relationship

between difficulty, entropy, diversity and growth is shown in Figure 6.9. The experiments show

evidence of higher entropy, less genetic diversity and a higher rate of code growth for harder in-

stances. Supporting evidence for the conjectures that higher selection pressure and lower diversity

cause an increased rate of code growth is now given.

Does high selection pressure cause growth?

Tackett suggested that the rate of growth is proportionate to the amount of selection pressure

(Tackett, 1994) and Langdon and Poli (1998a) showed that removing selection pressure stops code

growth. To see the effect of varied selection pressure on code growth, one can look at different selec-

tion schemes and objective functions used in the literature. Smith and Harries (1998) investigated

selection schemes and variable tournament sizes to show the same trend: less selection pressure

generally leads to reduced code growth. Poli (2003) studied a method for reducing code growth by

periodically worsening the fitness of above average sized individuals. In the control experiment

with no code growth control, the results (Fig. 1, page 211) show trends of smaller tournament sizes

producing less growth.

Considering the theories of code growth, particularly that individuals with similar size and shape

are less likely to produce children with worse fitness than two dissimilar individuals, an increased

rate of growth is expected with higher selection pressure. In this case, higher selection pressure

becomes more likely to pick the same individual repeatedly. Given that the algorithm contains

some bias for producing bigger individuals (as bigger children are more likely to have a higher

chance of survival), the repeated selection of these individuals will consistently produce offspring

which in turn have a better chance of survival.

Does low diversity cause growth?

As the population becomes more similar in shape and content, selection will mate more similar

individuals. From the above argument, whether these individuals happen to be the fit or not, a

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 98

Low DiversityHigh Entropy

Solutions
 Fewer Good

Pressure
Higher Selection

of Code Growth

Higher Rate

Solutions Pressure

of Code Growth

Easy Low Entropy High Diversity

Lower Selection

Lower Rate

 Many Good

Key:

observed

conjectured

Difficult

FIGURE 6.9: The symmetrical hypothesis that difficulty effects the rate of code growth by maintain-
ing higher levels of entropy, which causes less diversity by the over-selection of better individuals,
and both cause more similar individuals, which are likely to be big and to create bigger offspring.

higher rate of growth will generally occur when the individuals are of the same size and shape.

When the individuals are similar in both size and shape, they will exchange similar size subtrees to

produce their offspring. According to the theories of code growth, the offspring which are slightly

larger will be biased to have a higher chance of survival. Also, both offspring will tend to be similar

in size to their parents, slightly bigger and slightly smaller, producing more similar size individuals

in the next generation and a higher rate of growth. This is in contrast to a population with high

shape and content diversity.

In a diverse population (in terms of size, shape and contents), the offspring are more likely to be

of varied size, i.e. smaller and larger than parents. Growth will be slower in this case. Although

two dissimilar individuals may produce one larger offspring than if they were similar, these two

offspring are likely to have a lower chance of survival than two offspring from similar individuals.

Thus, a diverse population would not produce code growth as consistently as a low diversity pop-

ulation. A higher selection pressure could reverse the effect of low diversity by over-selecting the

best individuals, which are likely to be similar.

Assuming code growth generally occurs with fitness improvement, does the difference in difficulty

sufficiently explain the difference in entropy, diversity and rate of growth? The regression problems

contain possible conflicts between content and context, noise introduced by the protected division

operator and a wide range of intron and neutral code effects that could lead to varied rates of

growth. Does the causal hypothesis, described in Figure 6.9, capture the important aspects that

lead to an increased rate of code growth and are not influenced by these factors?

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 99

6.5.2 A Model of Difficulty

To assess the results in a model without biases introduced by a specific problem domain and fitness

function, the following model is created:

1. Trees contain only ‘dummy’ functions and terminals which are not used to calculate fitness.

2. Fitness is assigned arbitrarily of tree shape or content. All individuals have an initial fitness

of 1.0 (0.0 is the best fitness).

3. An offspring which is the same size or larger than its parent is awarded a small fitness im-

provement, an offspring which is smaller than its parent is penalised by a small amount. This

incorporates the theories and corresponding empirical evidence of code growth.

The model consists of binary trees that are initially full with 7 nodes. The algorithm is presented

below (a population size of 100, tournament selection size of 3, and subtree crossover is used for

recombination):

Generate initial population and assign uniform fitness of �-� �
for Each generation do

for Each individual do

Assign with probability P the best fitness of �)� �
for The size of the populations do

Use tournament selection to find two parents

Create a single offspring

Assign the offspring the fitness of the root-parent

if The offspring is smaller than the root-parent then

Add �)� � �
to the fitness

else

Subtract ��� � �
from the fitness, with a minimum of �)� �

The P value indicates the hardness of the problem. A smaller value denotes the unlikely event that

good solutions are found often and by many individuals (a difficult problem). The higher probabil-

ity corresponds to the situation where many early individuals can easily represent good solutions,

and in each generation more new individuals with the same good fitness can be found (an easy

problem). The fact that same size or larger individuals are rewarded represents the general consen-

sus in the community that growth is seen with improved performance in the canonical algorithm.

Note that it is the rate of growth which is investigated here and that the assignment of ideal fitness

is independent of size.

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

av
er

ag
e

fit
ne

ss

generation

.2

.1
.05
.01

.005

5

10

15

20

25

30

35

40

0 20 40 60 80

no
de

s

generation

.2

.1
.05
.01

.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80

en
tr

op
y

generation

.2

.1
.05
.01

.005
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80

ed
it

di
st

an
ce

generation

.2

.1
.05
.01

.005

FIGURE 6.10: The model of difficulty and growth experiment results, with values of the probability
term P as .2, .1, .05, .01 and .005.

A range of P values show a marked difference between easier and harder instances in Figure 6.10.

Easier instances (P values of 0.2 and 0.1) induce a lower entropy and more diversity, which both

contribute to a slower rate of code growth. This effect is similar to the results on symbolic regression

instances presented earlier. More difficult instances induce higher entropy and lower diversity that

dually contribute toward faster code growth. These results support the previous conjecture that

reducing the difficulty of instances in this way leads to lower selection pressure (via entropy) and

more diversity (due to less selection pressure). These factors cause more different programs to be

recombined to produce less code growth.

6.5.3 Recommendations

The relationship between size and fitness is complex. Previous research has investigated the exter-

nal dependencies with nodes and the node-to-node interactions in regression problems. Shifting

nodes between programs is likely to result in semantic changes during crossover. An increase in

program size may help to buffer against detrimental semantic changes. However, where size is not

a necessary part of the fitness function, an increase in size results in a computational cost which

becomes an ever-increasing burden on simulation time. Additionally, the many attempts to reduce

size that result in weaker fitness illustrate the negative consequences of directly pressuring size.

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 101

Given that genetic programming is likely to favour larger trees, several methods have been used

in an to attempt to limit code growth. The standard method to deal with code growth is to place

a limit on the size of individuals (Koza, 1992; Luke and Panait, 2002a; Poli, 2003). This measure

has been shown to be difficult to beat with respect to overall algorithm performance. However,

ideal sizes for particular problems are generally unknown, and placing a limit on size can have

unforeseen consequences as trees will find it harder to replicate within size limits. Also, when

genetic programming is applied on more complex problems it is not clear how to scale the limits of

size appropriately.

Parsimony pressure is a common method used to control size (Burke et al., 1998; Iba et al., 1994;

Luke and Panait, 2002a; Luke and Panait, 2002b; Rosca, 1997a). This method favours fitter and

smaller individuals. The degradation in performance due to parsimony pressure is studied by

Soule and Foster (Soule and Foster, 1998). They noted that pressure to reduce size increases the

failure of runs, where populations often converge to very small, poorly fit individuals. Several

variations of such methods exist which vary the relative importance of size and fitness. Their

drawback is that they require a large parameter search for optimality (Luke and Panait, 2002a).

In (Zhang and Mühlenbein, 1995), an adaptive pressure allowed an initial increase in size before

increasing the parsimony pressure. This allowed the method to find better fitness but required

problem specific tuning of parameters. Other methods add a size objective to the fitness objective,

creating a multiobjective problem (de Jong et al., 2001; Ekárt and Németh, 2001). Smaller size in-

dividuals and similar fitness with smaller population sizes are reported benefits of these methods.

Using specific recombination operators and methods which combine like-sized individuals (Lang-

don, 2000b) or requiring an improvement in fitness in children (O’Reilly and Oppacher, 1995) are

other approaches to reducing code growth. These methods attempt to reduce the amount of inef-

fective code. Generally, without a large parameter search or problem specific modifications, these

methods are likely to reduce code growth but also worsen fitness.

However, high rates of growth do not seem to be necessary for solving more difficult instances, as

many small good solutions are still found. Rather, an increased rate of growth appears to be the

effect of higher selection pressure and lower genetic diversity. Methods which remove large indi-

viduals or pressure the population away from increased growth directly are likely to have negative

effects. In these cases, good fitness is likely occurring in the neighbourhood of large individuals,

and by biasing the search away from them, overall performance could be worsened. Therefore,

the following is recommended as a method to reduce the rate of growth and the overall size of

solutions.

Methods which work to reduce the rate of code growth more gradually or indirectly, such as the

adaptive control of selection pressure and population diversity during recombination, may be a

more effective strategy against code growth.

6. EFFECTS OF POPULATION DIVERSITY: CODE GROWTH AND PROBLEM DIFFICULTY 102

� The decrease of entropy, the poor ability of finding good initial and dissimilar solutions and

the low dissimilarity between parents during recombination are possible signs that a higher

rate of code growth will follow.

� When these events occur, decreasing selection pressure and encouraging the recombination of

more dissimilar individuals are possible ways to lower the rate of growth while maintaining

good search.

6.6 Summary

This chapter investigated the effects of population diversity by examining the relationship between

problem difficulty and varied rates of code growth. Two problems with different types of difficulty

and a simplified model of genetic programming have been used to understand this relationship. A

causal hypothesis is formed that links difficulty to higher entropy, which in turn causes more se-

lection pressure and loss of diversity. Increased selection pressure and lower diversity are then re-

sponsible for a higher rate of code-growth. This hypothesis is consistent with previous research. A

recommendation for controlling genetic diversity, entropy and selection pressure is made to grad-

ually effect the rate of code growth, in response to more direct methods which often have negative

effects.

The results in this chapter were based on experiments in the regression domain, using a variety of

problem instances. Earlier chapters displayed varying levels of results between problem domains,

but diversity and fitness trends were generally consistent. Thus, the conclusions and recommenda-

tions from this chapter are relevant for other domains as well. The correlation between fitness and

diversity was investigated in Chapter 4, which was complemented in this chapter with the inves-

tigation of the relationship between size and fitness, size and edit distance diversity, and size and

entropy. Lastly, while the causal hypothesis of code growth appears consistent with results pre-

sented in earlier chapters and in the literature, additional research would be beneficial to confirm

specific aspects of the hypothesis as well as its validity on other problem domains.

To further understand the role of population diversity in genetic programming, the next chapter

examines the ability of dissimilar individuals to produce good offspring.

103

CHAPTER 7

DIVERSITY, SURVIVABILITY AND A NICHE FOR

ISLAND MODELS

Population diversity effects many aspects of the evolutionary process. For example, the number

of unique fitness values in the current population effects selection pressure. Also, a high amount

of genetic differences, indicated in previous chapters by high edit distance diversity, is likely to

produce slower code growth. Low amounts of genetic differences, or low edit distance diversity,

describes convergence and can lead to lower selection pressure. Diversity is obviously an impor-

tant topic in genetic programming. Without adequate diversity the population may be unable to

produce variations to improve solution quality. However, increasing diversity can prevent suffi-

cient exploitation and convergence. With respect to search, how do diverse individuals contribute

to the evolutionary process? That is, how successful are the members of the population, which

account for the most genetic dissimilarity, in producing new solutions during search?

The survivability of dissimilar and fit individuals is examined in this chapter to establish their role

in the search process. The Tree-String problem is introduced and used in an empirical study. This

problem has many similar attributes to other domains and constructed problems. The results from

this study are compared with a survey of distributed and related methods that use diverse and fit

individuals differently. Chapter 4 surveyed previous measures and methods of diversity. In this

chapter, that survey is complemented with a survey of distributed models and related methods.

Based on the analysis of the following study, a detailed proposal is made to improve genetic pro-

gramming search by encouraging the recombination of genetically similar individuals by means of

a speciation island model.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 104

7.1 Previous Distributed Evolution Work

Many methods have been proposed and used in evolutionary computation to control diversity,

prevent convergence and to distribute individuals over different areas of the search space. These

include niching methods, diversity methods, mate selection techniques and distributed population

models.

The island model (Cohoon et al., 1987) is an example of a distributed population model where sub-

populations are isolated during selection, breeding and evaluation. Islands focus the evolutionary

process within subpopulations before migrating individuals to other islands. There are many vari-

ations of distributed models, e.g. islands, demes, and niching methods. However, by tuning the

parameter settings of each model, the functionality of different models can become very similar. So,

the different parameter and algorithm settings largely define the objectives of these models with

respect to similarity and dissimilarity mating, elitism and selection pressure.

Other methods simulate distributed evolution by using specific forms of selection and recombi-

nation. For example, the method of lineage selection in Chapter 5 could be implemented to only

allow the recombination of individuals from the same lineage, which are very likely to have similar

shape and content. In effect, lineage selection would encourage a kind of similarity-based mate

selection. Previous methods that focus selection and recombination on particular individuals, or

on particular features of individuals, are also included in this section. Initially, methods from evo-

lutionary algorithms are examined, followed by applications specific to genetic programming and

the tree representation.

7.1.1 Evolutionary and Genetic Algorithm Models

The most common form of island model uses fitness-based probabilistic selection for migration

selection and replacement. Breeding and evaluation are typically carried out in isolation on each

island. Pettey (1987) designed a distributed model based on the polytypic concept of a species being

represented by several types that are capable of mating and producing viable offspring. Every

generation, migration sent the best individuals in each population to each neighbour, replacing

the worst individuals. Tanese (1987,1989) presented a parallel genetic algorithm implemented on

a hypercube structure. Migration occurred periodically, where migrants where selected according

to fitness and replaced individuals selected based on fitness in the receiving population. Belding

(1995) extended the work of Tanese (1989) where migrants were selected by choosing the first �

individuals in the local population according to a predefined ordering, effectively simulating a

more random migrant selection strategy.

Whitley et al. (1997) investigated whether the island model has a natural advantage for finding so-

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 105

lutions to linearly separable problems. The authors concluded that for problems where an increase

in the population size does not yield better results, island models may better search more of the

solution space. Also, Whitley et al. noted that migration can be an “additional selective pressure”,

which could make the island model ideal when adding this pressure is beneficial to the problem.

Cantú-Paz (1999) used the building block schema theory to develop equations to predict deme sizes

and topologies for the parallel island model in genetic algorithms. The author concluded that

the specific communication topology is probably irrelevant given the degree of connectivity of the

topology.

The concept of random migrant selection and replacement was introduced in the first island model

for evolutionary algorithms by Cohoon et al. (1987). This island model was based on isolated pop-

ulations in different geographical locations. Populations had different environments by defining

fitness relative to the population and individuals migrated according to a mesh and hyper-cube

topology. To be consistent with the biological motivations, it was noted that migration should

occur after a period of stasis. However, due to the difficulty of defining stasis or equilibrium, mi-

gration occurred after
�

generations, or an epoch. Unique to this model is that migrant selection

is not done probabilistically but randomly to simulate a “catastrophe”, or random environmental

change.

Martin, Lienig and Cohoon (2000) described the results of using the island model on a VLSI design

problem. They showed that a variable length epoch was slightly better than a fixed length. To

implement a variable epoch length, the authors defined the end of the current epoch to be the point

when no improvement to the most fit individual occurred for 25 generations. Results also showed

that a random migration selection was more effective and that an aggressive selection strategy

caused the population to get stuck in a local optima.

The idea that islands should consist of different environments was also seen in later work, often

for coevolution. Potter and De Jong (1994) introduced a method for using isolated populations, or

species, in a genetic algorithm for cooperation where the species are not “user-defined”. The au-

thors concluded that their algorithm works well on problems with independent variables. Potter

and De Jong (2000) later presented an architecture to adaptively co-evolve components in a speci-

ation model. Subpopulations represented separate species, which were required to contribute to

the overall fitness to survive. Periods of stagnation suggested an insufficient number of species,

resulting in the addition of new subpopulations. Species were tested in the cooperative problem

domain and were removed if they failed to contribute sufficiently.

Lin, Punch and Goodman (1994) presented a hybrid of the island model called the injection island

genetic algorithm. The injection architecture divided the search space into hierarchical levels. Popu-

lations that were trained on more general tasks were injected into populations with more specific

tasks. Hu and Goodman (2002) described the hierarchical fair competition model, which defined hi-

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 106

erarchical levels with fitness value boundaries. Individuals undergo selection and recombination

within these levels and move between them based on their fitness. Higher fitness levels undergo

higher selection pressure to simulate added exploitation.

In Pei and Goodman (2001) the cohort algorithm (Holland, 2000) is compared with island genetic

algorithms. The cohort genetic algorithm was designed to combat premature convergence, in the

form of “hitchhiking” by allowing higher fit individuals to reproduce first. Offspring are assigned

to cohorts based on their fitness. Adamidis and Petridis (1996) used an island model configuration

for recurrent neural network training that varied control parameters in each sub population.

Another form of island models uses the concept of demes. These models are often implemented on

grid-like topologies (stepping stone or hypercubes, for instance), where a deme is defined by the

size of the neighborhood. Collins (1992) used a form of local breeding, the stepping-stone model,

where individuals are placed on a grid, one per node, and can interact with neighbors in a given

range. Several metrics measured the difference between breeding: allele diversity, genotype diver-

sity, a panmictic index, and speed and robustness. Results indicated that, for the Partition problem,

local mating was superior to panmictic breeding in finding both optimal solutions, maintaining

allele and genotype diversity, faster optimisation, and robustness in the proportion of runs that

produced an optimal solution.

Several other models have been proposed for various types of problems such as multiobjective

optimisation (Zhu and Leung, 2002), multimodal optimisation (Bessaou et al., 2000) and agent-

based evolutionary algorithms (Smith and Bonacina, 2003). As seen in the previous examples,

island and distributed models are typically based on the goal of preserving diversity to prevent

premature convergence or to allow the isolated evolution of different structures or behaviours.

However, the effects of various forms of migration, selection and replacement are not always clear.

7.1.2 Genetic Programming Distributed Models

Much of the effort in distributed models in genetic programming focus on increasing efficiency or

adding computational resources by means of parallelisation. Andre and Koza (1996) used a trans-

puter architecture for the Even-5-Parity problem where each processor was responsible for the fit-

ness evaluation and breeding of a subpopulation. This work is representative of the author’s many

large scale parallel implementations, e.g. (Koza et al., 1999). Tongchim and Chongstitvatana (2000)

compared a parallel implementation with a coarse grain island model for a robot control problem,

comparing synchronous and asynchronous versions. The authors previously showed that the stan-

dard island model gave a near linear speedup with the increase of processors, with degradation

arising from communication and the synchronous issues (Tongchim and Chongstitvatana, 1999).

Fernandez et al. (2000, 2001, 2003) studied various control parameters for multipopulation models.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 107

Populations were homogeneous and migration selection and replacement were based on fitness,

where migrants were copies, increasing selection pressure. Results highlighted the need of sub-

populations to be have enough individuals to perform effective search.

Punch (1998) looked at conflicting reports of the effectiveness of multiple populations for genetic

programming, extending earlier work by Punch et al. (1996) where multiple population on the Ant

and Royal Tree problems showed little improvement. Andre and Koza (1996) previously showed

super linear speedup on the Even-5-Parity problem. Problems with multiple solutions, such as

the Parity problem, are thought to be good for multiple population models. However, deceptive

problems are thought to be harder for multiple population models that evenly divide the total pop-

ulation over several processors. Punch tested this hypothesis on a sequencing problem and showed

the negative effects deception can cause with multipopulation models. Stoffel and Spector (1996)

showed improved results on a regression problem using a stack representation with the popula-

tion evenly distributed across processors. Lastly, Iwashita and Iba (2002) proposed an island model

using two types of crossover, depth dependent and standard, to simulate local and global search.

New individuals in an island undergo depth-dependent crossover to prevent the destructive effects

of standard crossover.

Juill �� and Pollack (1996) used a parallel deme model of genetic programming. The island model

consisted of a 2-D wrap-around mesh. Parents were selected locally and offspring replaced the

least fit individual. Migrants were chosen from the subpopulation randomly. Poli and Page (2000)

used demes to solve high-order Boolean Parity problems. To maintain diversity while increasing

efficiency, the model only kept individuals with different fitnesses. An elitist approach distributed

individuals with high fitness quickly among different demes. Langdon (1998a) used demes similar

to Collins (1992) in a stepping stone model. The author reported that the deme implementation

provided better results than panmictic genetic programming when evolving a queue and a list and

on the balanced bracket problem. Tackett and Carmi (1994) studied different forms of breeding and

population configurations for classification of the donut problem. Demes were formed by distribut-

ing the population over a grid. This model was shown to improve the generalization of solutions.

D’haeseleer and Bluming (1994) used genetic programming in an ALife scenario to study popula-

tion dynamics. A tank problem, where tanks compete against each other for survival and partici-

pate in breeding and selection, allowed the authors to track genotypes and witness the emergence

of demes. The authors pointed out that:

“Whereas the concepts of natural selection and survival of the fittest are commonly re-
ferred to in evolutionary programming literature, the role of sub population isolation
in species differentiation is cited less frequently. Identifying the environment of an in-
dividual, including the members of its local population, as a primary influence on the
continued development of the local sub population as well as the species as a whole is
an important step toward more realistic modelling of evolutionary mechanics.”

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 108

Each individual produced a behavior signature (for phenotype diversity) that described their per-

formance after competing against thirteen seed tanks. A genotypic diversity was measured by

comparing the frequency of terminals and functions in individuals. The tank individuals com-

peting against neighbors showed the emergence of demes, where a deme is a local population, by

means of a correlation measure for phenotypes and genotypes. Parents and offspring were selected

and inserted locally.

7.1.3 Speciation, Niching and Other Methods

The previous five models all used the concept of demes, while the following two rely more heavily

on the notion of niches and do not use migration. Kishore et al. (2001) applied genetic program-

ming to an � class classification problem with a “niching” technique and a parallel implementation.

Niching allowed the populations to evolve independently of each other on different problems and

in parallel. Bongard (1999) studied the effects of evolving two populations that attempt to solve

a regression problem with two different Fourier functions. Improved solutions were found when

populations sent individuals at the end of a run to a server. New runs were then seeded with both

random individuals and individuals that were previous solutions to either problem.

Other methods have been used to allow populations to occupy separate areas of the search space

and to promote diversity. Some of these methods were also discussed briefly in Chapter 4. Crowd-

ing (DeJong, 1975) in genetic algorithms requires new offspring to replace the most similar indi-

vidual in a pool drawn from the population. Sharing, phenotype and genotype (Goldberg and

Richardson, 1987; Deb and Goldberg, 1989), require individuals in a genetic algorithm to receive a

lower fitness, determined by the size of the population that has the same fitness or are genetically

similar. A mating restriction scheme was also investigated (Deb and Goldberg, 1989) to prevent dis-

similar individuals from the likely destructive crossover operation in genetic algorithms. McKay

(2000) applied the fitness sharing method to genetic programming and found increased diversity,

error rate reductions and similar performance with smaller populations as benefits.

Sharing was also applied to genetic programming using an edit distance between trees (Ekárt and

Németh, 2000). Although solution quality was not improved, sharing did find similar solutions

of smaller size. Structure fitness sharing (Hu et al., 2002) was applied to genetic programming to

encourage the parameter search (functions and terminals) over similar structures (trees) while not

requiring expensive edit distance measures. The method adjusts an individual’s fitness according

to how many other individuals have the same tree structure. Another method used to simulate

niching or speciation is negative correlation (Liu et al., 2000). In the context of learning ensembles

of neural networks, “negative correlation learning provides a novel way to decompose the learning

task of the ensemble into a number of subtasks for different individual networks”. The resulting

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 109

populations were then divided into species, where a representative from each species was included

in the ensemble. McKay and Abbass (2001a, 2001b) investigated negative correlation for genetic

programming on the Multiplexer problem as a way to improve diversity and prevent premature

convergence.

Edmonds (2001) applied genetic programming on the sun spot prediction problem by allowing in-

dividuals to find a problem niche. By creating a number of “models” (here model is used to specify

an area of the problem to solve, or niche) and selecting individuals for fitness evaluation based

on their neighborhood and proximity to the niche, Edmonds hoped to allow individuals to orient

themselves near those niches which are most effective. Li et al. (2002) implemented a “species con-

serving” genetic algorithm and tested it on several multimodal and deceptive problems. Species

were found in the panmictic population by a distance metric. Species “seeds” were individuals that

were at least as fit or more fit than the rest of the species. These individuals were then “conserved”,

or copied, into the next generation.

Lastly, a range of operators have been proposed to preserve the context or similarity of exchanged

genetic material (D’haeseleer, 1994; Poli and Langdon, 1998a; Langdon and Poli, 2002; Page et al.,

1999; Poli and Langdon, 1998b; Platel et al., 2003). Like distributed models, these methods attempt

to improve the ability of genetic programming to sample good regions of the search space effec-

tively. While distributed models hope to allow semi-isolated subpopulations to better sample the

search space prior to convergence, context preserving and homologous recombination operators

attempt to sample the search space more effectively with a better designed operator. Both similar

and dissimilar mating has been shown to improve search, often producing smaller in size solutions

with similar fitness (Ekárt and Németh, 2000; Ryan, 1994). Chapter 5 results, produced using lin-

eage selection, also showed how mating (likely) dissimilar individuals can lead to smaller solutions

with some loss of solution quality. Also, while specialised operators may seem intuitively better,

they are often computationally expensive and the results unclear.

7.1.4 Biological Foundations of Distributed Models

Several distributed models from the previous survey were motivated by the theory of punctu-

ated equilibria (Eldredge and Gould, 1972) and the adaptive landscape and shifting balance theory

(Wright, 1931; Wright, 1932). This work is examined next to provide a more thorough understand-

ing of these models.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 110

Punctuated Equilibria

The paper Punctuated Equilibria: An Alternative to Phyletic Gradualism (Eldredge and Gould, 1972)

described a new perspective on evolution. Phyletic gradualism, a hypothesis proposing that evo-

lution proceeds at a constant rate and new species evolve gradually from ancestral species, was the

common world view of evolution and the authors contended that it was insufficient to explain the

fossil record. Since 1930 the model of allopatric speciation was being considered, but not seriously

as the cause of evolution. In allopatric speciation, new species evolve in geographical isolation

from ancestral species. The authors suggested that this model more clearly explains why the fossil

record is incomplete.

The theory of punctuated equilibria says that individuals and species are resistant to change, they

have an innate property that prevents easy change. The previous belief that gene flow was sufficient

to keep a group of subpopulations similar enough to remain a species is contrasted with the fact

that the species and individuals were probably not kept coherent by gene flow but because they

had a strong resistance to change. However, peripheral isolates, populations that are at the edge

of a species range, with small population sizes and considerably different environments provide

enough “distance” to allow for the hard and uncommon event of speciation. Thus, one sees long

periods of stasis, or equilibria, where species do not change at all, and then small bursts of success

by peripheral isolates in different environments.

Sewall Wright

In the 1931 paper Evolution in Mendelian Populations, Wright analysed the gene frequencies in dif-

ferent types of populations under environmental and genetic pressures, such as recombination,

mutation, and drift. It was noted that the mean gene frequency of a large population will reach a

stable equilibrium. When that population is sub divided into partly isolated groups, each group

will have similar mean values, if under similar conditions. However, when the groups do not have

similar means, those which are more successful will grow in size and the others will decline, thus

causing the mean gene frequencies of the entire population to change. Wright concludes:

“Finally in a large population, divided and subdivided into partially isolated local races
of small size, there is a continually shifting differentiation among the latter (intensi-
fied by local differences in selection but occurring under uniform and static conditions)
which inevitably brings about an indefinitely continuing, irreversible, adaptive, and
much more rapid evolution of the species.”

Wright follows this with The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution, a

1932 paper that, with the 1931 work, Provine (1986) calls “...Wright’s two most seminal early papers

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 111

on evolutionary theory”. The adaptive landscape was introduced in this work as possible gene

combinations, where peaks represent high adaptiveness. The main obstacle for a species would be

to effectively explore the different peaks of an adaptive landscape that would be constantly moving

in response to environment changes. To solve this dilemma, Wright stated:

“In order that this may occur, there must be some trial and error mechanism on a grand
scale by which the species may explore the region surrounding the small portion of the
field which it occupies. To evolve, the species must not be under strict control of natural
selection. Is there such a trail and error mechanism?”

After showing the different ways a species may move around in the adaptive landscape, Wright

described how a large species divided into small local “races” would be able to spread across the

adaptive landscape. The local races would rapidly explore their area of the landscape and when

one finds a higher peak than the currently known, it will move the entire species toward that peak.

Wright concluded:

“The conclusions is that subdivision of a species into local races provides the most ef-
fective mechanism for trail and error in the field of gene combinations.”

7.1.5 Comments on Previous Distributed Models

The goals of distributed models and techniques such as niching is to maintain a population that

occupies different areas of the search space. There is, however, no guarantee that these methods

will perform as expected. Methods may fail to apply the right amount or kind of pressure to keep

a population distributed or allow fitness improvement. The previous work described in Section 7.1

highlighted the variations of models for genetic algorithms and the more specific focus on efficiency

in genetic programming models.

Distributed models commonly use panmictic-like subpopulations that perform the standard evo-

lutionary algorithm within each island, migrating fit individuals between islands to replace the

worse fit. Fitness-based migrant selection and insertion can be considered an added selection pres-

sure, especially when migrants are copied. However, deme models can reduce selection pressure

by only conducting selection within demes. Previous studies also highlighted the importance of

connectedness of the topology, rather than the topology itself (Cantú-Paz, 1999). As diversity con-

trolling methods are, in a sense, largely countering the effects of selection, the type of selection

pressure a model defines is likely to be extremely important in determining its effectiveness.

Lastly, in distributed populations, migrants are likely to be, at least initially, genetically different

from their new subpopulation. This is particularly true if islands converge toward different regions

of the search space. However, previous work does not typically address the actual role of migrants.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 112

It is questionable if migrants effectively add new genetic material, takeover the new subpopula-

tion or are selected at all in their new subpopulation. The following study examines the role of

dissimilar individuals, relevant to both standard populations and distributed models.

7.2 Survivability of the Diverse

In the context of search, the recombination of population members would hopefully lead to im-

proved solutions. However, in genetic programming, there are arguments for both preventing and

encouraging the recombination of dissimilar solutions. The ability of recombination to improve

solutions can be studied by measuring the change in fitness between parent and offspring. As the

root parent tends to contribute most of the genetic material, the root parent and offspring relation-

ship is initially considered. However, instead of measuring the absolute value of fitness and its

change between parent and offspring, the relative rank of parent and offspring in each respective

population will be used to indicate which individuals are guiding the search more effectively (also

used in (Luke, 2003)). That is, even if the overall offspring population’s fitness is worse, it is still

desirable to know which of these individuals contributed to search.

In the following empirical study, the survivability of diverse individuals are studied to understand

the guiding forces in search. The phrase diverse individuals refers to those individuals in the pop-

ulation that account for the majority of dissimilarity. These individuals are found by comparing

their average dissimilarity to the population’s average dissimilarity. Following this study, many

adjustments may be possible to improve efficiency or performance. Additionally, there is another

important motivation for studying the survivability of diverse individuals in standard genetic pro-

gramming populations: the role of the migrant in distributed models. Generalising these results

to describe the expected behaviour of migrants in a distributed model is not a stretch of applica-

bility. Distributed models are commonly defined in a way to mimic several single population runs

with periodic exchange of individuals. The following study, which also considers the most dis-

similar individuals as migrants, is probably being conservative as migrants are likely to be much

more dissimilar in real distributed models. Next, the genetic outlier definition and the measure of

survivability are described.

7.3 Genetic Outliers and Survivability

Genetic outliers are defined in a genetic programming population by first dividing the population

into the fit and un-fit. The fit, which are more likely to be selected, are further divided into the

similar and the dissimilar using a pair-wise distance metric. Figure 7.1 shows these divisions.

Individuals which are dissimilar from the rest of the population are unlikely to have much of a

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 113

�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����

un−fit fit

outliers

in−liers

fit populationthe population

phenotype space

genotype space

FIGURE 7.1: The phenotype space is divided into the fit and un-fit. The fit genotype space is then
divided into the outliers (filled region) and the in-liers (shaded region). Of course, this example
is does not represent the true relationship between phenotype and genotype spaces, it is only an
example of defining the outlier individuals.

role in the evolutionary process if they have low fitness and are unlikely to be selected. Therefore,

the definition of genetic outliers considers both fitness and genetic differences. Next, survivability

is measured in these subpopulations by counting the number of times members are selected for

recombination and the number of times their off-spring are selected in the next generation. This

denotes the offspring’s relative rank in the population and the original individual’s survivability.

The previous chapters have shown how trends in diversity and convergence are similar between

problem domains. At the same time, Chapter 5 highlighted that the type of search genetic program-

ming carries out in each domain can vary. Specifically, domains sample structures and behaviours

differently, indicating a varied response to different levels of diversity. This was also seen in Chap-

ter 4, which showed the varied correlations between diversity and fitness on different problems.

As constructed problems often focus either on the search for structure or content, but not both, to

initially investigate the role of genetic diversity during the evolutionary process, the Tree-String

problem is developed.

The Tree-String problem has two objectives: to match a target tree structure and to match a target

string of symbols realised on the structure. This problem has explicit goals of searching for struc-

tures and contents which are likely to be conflicting, but are representative of the general class of

problems genetic programming is applied to. A much smaller study will be performed later using

the problem domains from previous chapters. This later study is carried out to provide additional

confirmation of the applicability of analysis and to continue to improve the understanding of those

domains.

7.3.1 The Tree-String Problem

The Tree-String problem consists of the following components:

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 114

� A target tree is defined with nodes labeled as leaf (l) and non-leaf (n). In this study, these

structures will be binary and produced with a random tree growing method shown to be

consistent with standard genetic programming (Daida, 2002). The method is also similar to

those used in designing tree-based hill-climbing methods, e.g. (Juels and Wattenberg, 1995).

Pairs of nodes (representing two child nodes) are repeatedly added to a tree, beginning with

only a root node, until a predefined size is reached. The point of attachment of the child nodes

is selected by assigning each leaf node an equal probability prior to each growth phase.

� A target string is defined consisting of symbols from the alphabet � with length equal to

the number of nodes in the target tree. The target string is generated by iteratively selecting

random symbols from � .

� Two objective functions are defined for the target tree and target string as:

– Given a breadth-first traversal of the target and candidate trees, with nodes � � � � ��� , the

longest common subsequence is found between the resulting strings. The target tree size

minus this value is returned for the tree objective.

– Given a depth-first traversal of the target and candidate trees, with nodes ��� , the longest

common subsequence is found between these resulting strings. The target string size

minus this value is returned for the string objective.

� A pareto criterion is used with the two objective functions, where the better-than and equivalent-

to relationship are used for selection (� � and � � refer to the string objective and the tree objec-

tive, respectively), and

� equivalent-to
�

if ���4� � �
� � ��� �6� � �

� � �5� � � �6� � �
� � ��� �4� � �

� � � � � ���4� � � � � ��� �6� � � � � � �	�

� better-than
�

if � �6� � �
� � ��� �4� � � � � � � � ���4� � � � � ��� �6� � �

� � � � � � �6� � �
� � ��� �4� � �

� � � �0�

The evolutionary algorithm attempts to minimise the objective function using subtree crossover,

tournament selection and other standard genetic programming parameters.

In this study, the longest common subsequence is used as a measure of similarity between the can-

didate and target trees and strings (Pevzner, 2000). However, other measures of similarity between

trees and strings are possible, such as edit distance and sequence alignment measures from com-

putational biology. There are other possible ways to specialise this problem for particular research

agendas, where the decisions made here were designed to be consistent with common problem

domains. The tunable nature of the Tree-String problem is most easily realised with the set � and

the method of tree growing. In the latter case, much research has demonstrated trees that are diffi-

cult for genetic programming to reach during search (Daida et al., 2003b; Langdon and Poli, 2002).

Additionally, increasing the size of the set � will increase the difficulty of minimising the string

objective.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 115

An example target string with 7 nodes is:

����� � ����� �

This string could be realised over any tree with 7 nodes. An examples of binary tree structures that

are traversed breadth-first with 7 nodes is � � � � � ��� , which represents the following tree:

n(A)

l(B) n(B)

l(C) n(A)

l(D) l(D)

Another example is the tree structure � � � ����� � that represents this tree:

n(A)

n(B)

l(B) l(C)

n(A)

l(D) l(D)

7.3.2 Relevance to Other Domains

The Tree-String problem is similar to the Royal Tree problem (Punch et al., 1996) where an objective

is a predefined structure. However, the Royal Tree problem gives maximum credit to full trees with

specific functions and terminals at specific depths in a hierarchical fitness function. An extension of

the Royal Tree (Platel et al., 2003) is also related where an objective is matching contiguous symbols

in a string in the context of a linear representation. The structural aspect of the Tree-String problem

is also similar to the Lid problem (Daida et al., 2003b) where a structure at a pre-defined depth and

size is the objective. However, the Lid problem is concerned with structure and does not consider

the effects of content or context that are present in other problem domains.

With respect to other problem domains, the following characteristics are relevant:

� The string objective is likely to contain a high level of deception, similar to the Ant problem,

as described earlier and found in (Langdon and Poli, 2002). For example, the string objective

function can assign the same fitness to very different strings that share the same length of

matching subsequence with the target string. In the following two trees, both contain the

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 116

FIGURE 7.2: A binary tree of depth 10 is realised on a circular lattice on the left and the target tree
in the Tree-String problem of 63 nodes on the right. The root nodes lies at the center of the lattice.
Note that the scale was increased in the right figure.

string “ABC” (found by a depth-first traversal):

A

B

C

D A

A

A

A

A

A

A B

C

D

If the complete target string is “ABCDDDDDD”, then both trees have a fitness of (9-4) by

matching the subsequence “ABCD”. The two trees, however, achieve the same fitness in very

different ways.

� The tree objective function is likely to have less deception and be amenable to a hill-climbing

search. A genetic programming approach that mimics the target tree construction method

should be very effective. A hill-climbing method that encouraged the slow growth of an

tree should work well in minimising the tree objective. Whether the reasons are similar, the

Parity problem is also amenable to hill-climbing type methods, which often out-performs

genetic programming, described in Chapter 5 and in (O’Reilly and Oppacher, 1994; Juels and

Wattenberg, 1995).

� Lastly, the combined objectives of string and structure will probably create a content and

context conflict similar to the regression domain (Daida et al., 2001). Moving mathematical

functions expressed on subtrees is likely to change the way the content applies toward fitness

in a new context. Similarly, a subtree is likely to contribute very differently when the context

is not preserved in a similar shaped offspring, even one with similar content. For example, in

the Tree-String problem, inserting a subtree into an existing tree is likely to effect any sequence

matching the target string. This is due to the fact that the string is obtained by a depth-first

traversal.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 117

TABLE 7.1: Experiment and problem parameters for the Tree-String experiments.
Population size 500
Tree initialisation Ramped half-n-half
Maximum generation 51
Functions (binary) A, B, C, D
Terminals A, B, C, D
Other parameters same as Chapter 4 parameters

Given these properties of the Tree-String problem and the similarities to other common domains,

the problem appears to be representative of the general class of problems to which genetic pro-

gramming is typically applied. Of course, additional analysis is required to verify these speculated

properties and behaviours of the Tree-String problem.

7.3.3 Experimental Details

A target string of length 63 is generated from � � � � � � � � � � � . A target tree structure is constructed

with 63 nodes. Tree initialisation is bounded with minimum depth of 2 and maximum size of 4,

and subtree crossover is bounded to trees with a maximum depth of 10. Experimental parameters

are found in Table 7.1. The target tree is shown graphically on the lattice in Figure 7.2, where the

deepest node is at depth 6. This target tree structure defines the following string (resulting from a

breadth-first traversal over the nodes (‘n’) and leaves (’l’)):

n n n n n n n n n n n n n n n n n n n l l n l n l n n n n n l n l n n l n l n l l l l l l l l l l l l l l l l
l l l l l l l l

The randomly generated target string using 63 symbols, realised over both leaves and functions, is:

C B C C C D B D A D A D B D D D D B C D C A B B D C A D C D B D C C B B B C D A
D D C B D D A B C D C A D C B A D D C A B D A

7.3.4 Genetic Outlier Definition

Figure 7.1 shows the divisions of the phenotype and genotype space used to define genetic outliers.

To investigate where future populations come from, the definition of genetic outlier used here is

based on the properties of selection and similarity. Selection is based on fitness, thus the population

is divided into those individuals which are better-than more than half of the population. The better-

than relationship describes the case where selection will always pick one individual over the other.

This subpopulation is called the fit subpopulation. The subpopulation that is left is called the un-fit.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 118

40

42

44

46

48

50

52

54

56

58

60

20 25 30 35 40 45 50 55

63
-(

lo
ng

es
t c

om
m

on
 s

ub
st

rin
g)

63-(longest common substructure)

FIGURE 7.3: The pareto front and points visited for the Tree-String experiments.

Next, the fit subpopulation is further divided into the similar and the dissimilar. The Levenshtein

distance between strings, or string edit distance, is used to define the distance between structures.

The structure is represented by a breadth-first traversal of trees with node labels � [n,l]. This is

the same distance measure used in previous chapters, called edit distance one, except trees only

consist of the symbols ‘n’ and ‘l’. Each individual’s pair-wise distance is the average edit distance

to the rest of the population, where each distance is normalised by dividing by the the larger size

of the pair of trees. The mean pair-wise distance of the population is then found by dividing the

summation of all individual pair-wise distance’s by the population size. The subpopulation that is

better-than half the population, the fit subpopulation, is then further divided into those which have

a pair-wise distance to the population that is less than or equal to two-standard deviations from the

population’s mean pair-wise distance. This subpopulation is called the in-liers. The subpopulation

that is left is called the outliers, which are genetically different from the rest and better-than more

than half the population.

7.3.5 Genetic Properties Contributing to the Evolutionary Process

Figure 7.3 shows the fitness points visited by 40 runs of the Tree-String problem. The tree objective

is along the X-Axis, and the string objective is on the Y-Axis. A randomly chosen run is highlighted

by connecting the successive points this run visits. Points are randomly offset by a small amount

to better illustrate their distribution. The Tree-String problem creates a complex fitness landscape

where improving one objective often conflicts with the other, and vice versa.

Figure 7.4 shows the average over 10 runs of the number of outliers, in-liers and un-fit individuals

(from left to right) at each generation (increasing from left to right) in the left plot. The number

of selected individuals and the number of those which produced offspring that were selected in

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 119

0

50

100

150

200

250

300

350

400

450

500

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

number
selected
survived

0

0.5

1

1.5

2

2.5

3

outliers 0 in-liers 0 un-fit

generations (per individual category)

selected/number
survived/selected

FIGURE 7.4: The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Tree-String experiments. Outliers are defined by the
(fitness, similarity) tuple as (better-than, 2 standard deviations).

the following generation (the survivability) are shown in heavier lines. 95% confidence bars are

plotted every ten generations for the in-lier and outlier individuals. The un-fit population is the

total population size minus the in-lier and outlier populations. This measure of survivability is

similar to that in (Luke, 2003) where the selection of an individual represents the relative rank of

that individual in the population. The measure considers the selection method being used and is a

better indicator of an individual’s contribution toward the search process than the change in fitness

from parent to offspring.

Every generation has a number of outliers which are rarely selected, due to their low numbers and

subsequently low probability of selection. Thus, these outliers have almost no survivability. The

right plot in Figure 7.4 of ratios of selected over total number and survived over selected emphasise

these effects. Here the in-liers generally have a higher ratio of selection, which is expected, and a

higher survivability than the un-fit. The un-fit tend to have worse survivability, which emphasizes

that the in-liers produce more offspring that are able to survive and contribute offspring in the next

generation. The survivability of the in-liers tends to lower toward the end of the run, which is likely

due to convergence, i.e. the in-liers are unable to produce useful variations.

In this initial experiment, outlier individuals have an average pair-wise edit distance greater than

2 standard deviations from the population mean and are better than over half of the population in

fitness. The number of outliers in Figure 7.4 highlights the fact that the population contains good

individuals that are structurally unlike the rest of the population, are unlikely to be selected due

to their few numbers, and, without more experimental results, have an intuitively lower chance of

producing good offspring.

The above definition of outliers addresses the concepts of fitness and genetic diversity, but it is not

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 120

0

50

100

150

200

250

300

350

400

450

500

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

number
selected
survived

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

outliers 0 in-liers 0 un-fit

generations (per individual category)

selected/number
survived/selected

FIGURE 7.5: The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Tree-String experiments using the (better-than �

equivalent-to , 2 standard deviation) definition of outliers.

the only possibility. For example, the fitness component in the outlier definition requires an outlier

to be better-than more than half the current population. It may be beneficial to also consider indi-

viduals with equivalent fitness values in this definition. To further investigate the role of genetic

diversity and survivability, three additional experiments are performed, summarised in Table 7.2,

by adjusting the fitness and dissimilarity components that define outliers. The following alterna-

tive definitions provide alternative views of the survivability of different regions of the population.

The evolutionary process is the same for all definitions of outliers, and as above, each alternative is

considered using the averages of 10 random runs.

7.3.6 Alternative Definitions

Figure 7.5 shows the average and 95 % confidence bars for the random runs, but now the fitness

component used to define outliers (and in-liers) is that of better-than or equivalent-to. With this

change, the number of outliers and in-liers has increased significantly. This increase highlights the

equivalence of fitness in the population. The ratios in the right plot of Figure 7.5 show dramatically

different selection and survival ratios than before. The outlier survival rates are highly sporadic

and seem to increase later in the evolutionary process. In the presence of many equivalent fitness

TABLE 7.2: The Tree-String outlier definition variations and respective figures.
fitness component difference component

Fig. 7.4 better-than , 2 standard deviations
Fig. 7.6 better-than , 1 standard deviations
Fig. 7.5 (better-than � equivalent-to) , 2 standard deviations
Fig. 7.7 (better-than � equivalent-to) , 1 standard deviations

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 121

0

50

100

150

200

250

300

350

400

450

500

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

number
selected
survived

0

0.5

1

1.5

2

2.5

3

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

selected/number
survived/selected

FIGURE 7.6: The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Tree-String experiments using the (better-than, 1
standard deviation) definition of outliers.

relationships, diverse solutions appear to play a more important role in creating offspring which

survive to create more offspring. Also, the ratios of survival are much higher in the un-fit than

the in-liers. This suggests that while their overall numbers are lower, individuals that are both

similarly fit and genetically similar are unable to produce viable offspring. By changing the view of

outliers and in-liers to include equivalent fitness values in their definition, the in-lier class increased

in numbers but decreased in overall survivability.

Depending on the problem representation and operator, one may wish to consider an alternative

definition of genetic dissimilarity, such as the distance from the mean of only one standard devia-

tion. Next, the the original fitness definition for outliers is used, but the genetic difference will now

be based on one standard deviation. This change should allow more individuals to be considered

as dissimilar.

Figure 7.6 shows the same plots as above for the number of outliers and the ratios of selection and

survivability, but now using the one standard deviation criterion. Here, one can see again how a

slight increase in the number of outliers causes their selection and survival rates to increase. The

right plot of this figure emphasises the large spikes of the survival ratio of outliers. In contrast

to Figure 7.5, the survivability of outliers, while still unstable, tends to decrease during the evo-

lutionary process. The in-lier survivability frequently intersects the selected ratio, while the un-fit

individuals tend to have lower survived ratios compared to the selected ratio. These results show

that as the population loses diversity and becomes genetically converged, the outlier survivability

becomes more unstable. When the number of outliers are high enough to be selected, they produce

children with high survivability, but at an increasingly varied rate during the course of the run.

This view of outliers, compared with Figure 7.5, shows that outliers, which have a dissimilarity be-

tween 1 and 2 standard deviations from the population’s mean, play a more important role initially

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 122

0

50

100

150

200

250

300

350

400

450

500

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

number
selected
survived

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

selected/number
survived/selected

FIGURE 7.7: The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Tree-String experiments using the (better-than �

equivalent-to , 1 standard deviation) definition of outliers.

in search. As Figure 7.5 shows outliers with a dissimilarity greater than 2 standard deviations,

Figure 7.6 confirms that the addition of outliers with a dissimilarity greater than 1 and less than

2 standard deviations account for this increased dissimilarity. However, in the later stages of the

evolutionary process, the outliers have a lower survivability.

Finally, the above two methods are combined to define an outlier as being one standard devia-

tion from the mean average pair-wise edit distance and being better-than or equivalent-to half the

population in fitness. Figure 7.7 shows that when the outlier class is made larger by including

equivalent fitness and only being one standard deviation from the pair-wise distance mean, the

survivability rate of outliers is consistently higher than its selection rate, but still unstable. This

view of outliers, combined with Figures 7.4 and 7.5, shows clearly how the population converges to

be mostly equivalent and genetically similar. Also, Figure 7.7 shows that when outliers are viewed

using the equivalent fitness criterion, their survivability is higher for longer periods.

7.3.7 Discussion of Experimental Results

The previous experiments have provided an initial exploration into the role of diverse individuals

in the population using a constructed problem. The results showed the existence of varying types

of structurally diverse and fit individuals and their ability to produce successful offspring. Each of

the varying definitions described in Table 7.2 shows a different perspective of the role of diversity.

The view of the population using the equivalent definition of fitness showed how the survivability

of in-liers goes below their selection rates. This, combined with the previous views using the better-

than relationship, shows how the increase of the number of equally fit individuals is correlated

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 123

with poorer search ability. Or, a decrease in phenotype diversity is correlated with poorer search

ability. This was also seen in Chapter 4, where high fitness entropy and phenotype diversity were

positively correlated with fitness improvements.

When considering the outlier dissimilarity to be one standard deviation from the population mean

pair-wise distance, the low selection of these individuals still produced high rates of survival, be-

coming lower and more sporadic over time (Figure 7.6). What is consistent in these experiments,

and with others that examine diversity with similar algorithms (McPhee and Hopper, 1999), is that

the population becomes more similar in structure over time. Thus, the number of outlier individ-

uals in all experiments tends to decrease as the population becomes more homogeneous. When

that occurs, seen in Figure 7.6, the survivability of outliers becomes more sporadic. However, in

Figure 7.5, using the equivalent fitness definition for outliers, the sporadic survivability of outliers

increases as the population converges. With this view of outliers, they become more important as

they contain diverse genetic material that the population needs to produce useful variations.

Among the possible interpretations of these results, two are initially highlighted here. First, dissim-

ilar individuals have an unstable ability in producing offspring with high survivability. Secondly,

as the population converges, and in light of equivalent fitness values, the role of dissimilar indi-

viduals becomes more important. Without considering equivalence, dissimilar individuals become

less effective when the population converges. With the equivalence relationship, dissimilar indi-

viduals provide key variation necessary for variation and improvement. That is, when the space

of fit individuals contain many equally fit individuals, the dissimilar individuals with the same

fitness play an increasingly important role, albeit an unstable one.

Lastly, this study has grouped similar and dissimilar individuals with low fitness into the un-fit

class. However, it is interesting to note the change of survivability rates under the varying views

of the population. Most noticeably is the change between using the stricter better-than definition

(Figures 7.4 and 7.6) to the better-than or equivalent definition (Figure 7.5 and 7.7). In the latter

cases, the un-fit consistently produces higher survivability ratios than the outliers or the in-liers.

Also, this ratio is typically higher than its own selection ratio. The loss of genetic and phenotype

diversity probably increases deception and lowers selection pressure, causing search to rely on new

solutions produced by the un-fit subpopulation.

An effort has been made throughout this thesis to consistently analyse genetic programming on a

similar set of problem domains. In order to add to this growing body of analysis for these domains,

and to provide additional validation of the above analysis using the Tree-String problem, an initial

study of survivability is carried out using the Ant, Parity and regression problems.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 124

TABLE 7.3: Experiment and problem parameters for Ant, Parity and Binomial-3 outlier
experiments.

Functions
Ant if food ahead,progn2
Parity and,or,nand,nor
Binomial3 +,-,*,p/

Terminals
Ant left,right,move
Parity D1,D2,D3,D4,D5
Binomial3 x, ERCs

ERC range � & � � ��� ���
Other parameters same as for Tree-String experiments

7.4 The Ant, Parity and Regression Domains

The Ant, Parity and Binomial-3 regression problem instances are used with the same definitions

and parameters as presented in Chapter 5. All problems are minimisation of errors; the number

of missed food pellets in the Ant problem, the mean squared error in regression of the Binomial-3

problem and the number of misclassified bit-strings in the Parity problem. The genetic measure of

diversity is the Levenshtein distance between tree structures denoted with [n,l]. The same experi-

mental parameters were used as in the Tree-String experiments. The better-than relationship and 2

standard deviations are used as the fitness and difference components to define outliers.

The outliers, in-liers and un-fit distributions are shown in Figures 7.8 to 7.9. These graphs show the

averages over 30 runs for each problem, where the left plot represents the numbers in each category.

Survival numbers were based on the number of selected individuals that produced offspring which

were selected in the next generation. 95% confidence bars are shown for the left plots and the right

plots in Figures 7.8 to 7.9 show the ratios of selection and survivability.

For the Ant experiments in Figure 7.8, the rate of survival of outliers is initially high compared

to their number and rate of selection, especially in the early generations. As discussed earlier

in this thesis, the Ant problem contains deception and benefits from more exploration in early

generations. The decrease of in-liers in the later generations is due to the increasing number of

individuals which have equivalent fitness. However, even though the number and rate of selection

of in-liers dramatically reduces, their offspring have a considerably higher and increasing rate of

survival compared to selection.

Similar results are seen with the Parity experiments in Figure 7.9. The few number of outliers have

high survival rates that are also very sporadic. In this problem, the role of in-liers and the un-fit

change similarly to the Ant problem. The early stages in the evolutionary process rely on the un-fit

and outliers to produce much of the surviving offspring relative to the rate of selection. However,

this role shifts to the in-liers having higher survival rates in later generations. The Parity problem

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 125

0

50

100

150

200

250

300

350

400

450

500

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

number
selected
survived

0

0.5

1

1.5

2

2.5

3

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

selected/number
survived/selected

FIGURE 7.8: The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Ant experiments.

0

50

100

150

200

250

300

350

400

450

500

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

number
selected
survived

0

0.5

1

1.5

2

2.5

3

3.5

outliers 0 in-liers 0 un-fit

generations (per individual category)

selected/number
survived/selected

FIGURE 7.9: The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Parity experiments.

0

50

100

150

200

250

300

350

400

450

500

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

number
selected
survived

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 outliers 0 in-liers 0 un-fit

generations (per individual category)

selected/number
survived/selected

FIGURE 7.10: The average number in the population, the number of times selected and the surviv-
ability of the outliers, in-liers and un-fit for the Binomial-3 experiments.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 126

differs from other problems (including the Tree-String problem) in that the un-fit subpopulation

increases in numbers considerably. Previous chapters, particularly Chapter 5, showed the large

effort genetic programming spends in sampling different solutions that have equally poor fitness.

Thus, in the later stages of the evolutionary process, the un-fit subpopulation increases in numbers

but becomes less effective in producing good offspring. The Ant problem has a similar behaviour,

but starts the run with an already high number of un-fit.

The Binomial-3 experiments have somewhat different results, shown in Figure 7.10. These exper-

iments contain a relatively higher numbers of outliers compared to the other problems. Outliers

are selected more and achieve higher rates of survival more often. The in-liers and un-fit maintain

fairly constant and similar rates of selection and survival. Outliers achieve higher rates of survival

compared to their numbers and selection rates, which decreases during the run. However, it is im-

portant to remember that the definition of outliers, particularly with the difference component, is

problem dependent. Performing a more extensive study of different definitions of outliers would

yield more informative results, as done earlier with the Tree-String problem. Based on the above

empirical study and survey of related work, a niche for islands models is proposed.

7.5 A Niche for Island Models in Genetic Programming

Previous methods used to encourage distributed evolution commonly lack explicit or adaptive

methods to ensure or consider the type of genetic or fitness value distribution in the population.

Many aspects of these models and methods may actually work against diversity by increasing

selection and quickly migrating fit individuals. However, models like the stepping-stone model

may reduce the global selection pressure by focusing tournaments only in one geographic location

at a time. As previous methods do explicitly intend for populations to be distributed over the search

space by using niches, islands or demes, what measures should be used to define their distribution

and ensure their effectiveness? That is, given the previous experimental results in this thesis, could

distributed models explicitly leverage the outliers to improve the search?

Sewall Wright’s early work with the shifting balance theory and later work on stasis and allopatric

speciation by Eldredge and Gould all rely on semi-isolated populations, fledgling populations, or

peripheral isolates as the mechanism for rapid evolutionary change. Wright proposed that the

semi-isolated populations that exist in separate ecosystems and undergo their own evolutionary

history would have enough random evolution and genetic drift to allow for rapid evolution. El-

dredge points out that behaviors like habitat tracking keep species in stasis. He says that species

do not adapt first or go extinct when ecosystems change, but first try to move to another familiar

ecosystem. Upon failure to do so, extinction or adaptation follow, where peripheral isolates are the

candidates for rapid evolutionary change.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 127

In evolutionary computation and distributed populations, stasis could be considered to be stability

in the fitness or convergence of the genotypes. Cohoon et al. (1987) mentioned the idea of stasis

in their original paper on genetic algorithms and punctuated equilibrium, but simply to say that in

an ideal model a local population should reach some kind of equilibrium before migration occurs.

Potter and DeJong (2000) use stasis as periods with no fitness improvement to trigger the addi-

tion of new subpopulations. Incorporating changes in the ecosystem, or catastrophes, when stasis

occurs may help avoid convergence and stagnation in local optima.

However, stasis may be one possible way to allow distributed populations to emphasise the impor-

tance of outliers and dissimilar individuals. When convergence increases, the search may benefit

from a change of focus from the converged population to the diverse elements. Given the results

showing the sporadic survival rates of outliers, it would seem beneficial to consider the outliers in a

different environment, or with special operators, to increase their survivability. Also, as the popula-

tion converges and contains more equivalently fit individuals, biasing selection toward genetically

or behaviourally dissimilar individuals may be another way of improving the search.

In the light of the sporadic rates of survivability, how should the existing use of migration be evalu-

ated? Is migration necessary or beneficial? Previous methods used to preserve niches for objectives

or components often prevented migration-like events. The effects of migration are likely to be de-

termined by the degree of difference between the subpopulation and the migrant and the migrants

relative fitness to the new subpopulation. In the worst case, the migrant is either never selected or

repeatedly selected, quickly taking over the subpopulation with copies of itself.

Convergence to local optima and the inability to escape those optima is an important issue in ge-

netic programming, and the island model is often cited as a solution. Cohoon et al. (1987) stated

that migrant selection should be done randomly to simulate a random “catastrophe” or environ-

mental change. However, later work typically uses probabilistic migrant selection and insertion.

Instead of migration moving fit individuals to new subpopulations, perhaps it should consider

diverse individuals in a new environment where they can be exploited.

Lastly, the research into the use of homologous individuals or operators in genetic programming

has shown improved performance when attempting to preserve the context of exchanged genetic

material and those which work on similar shaped and placed material (D’haeseleer, 1994; Platel

et al., 2003; Langdon, 2000b). If a good solution is migrated to a new subpopulation, pressure from

the native individuals may prevent it from evolving due to the differences between genotypes or

phenotypes. However, a smaller population with less competition may allow this individual to

survive. These ideas are raised in Iwashita and Iba (2002) as new migrants are protected from the

likely-destructive subtree crossover by using only depth-dependent crossover on these individuals.

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 128

7.5.1 Proposed Niche Solution

Due to the previous uses of islands, niches and species described previously in this chapter, an

island model is proposed. This model is based on the results from Section 7.3 and the survey from

Section 7.1, and it aims to accomplish the following tasks:

1. Improve the survivability of selected individuals. By giving the operator a higher chance of

success in producing better solutions, the entire search process should become more efficient

and successful. Section 7.3 showed overall low and sporadic survivability rates for the fit

individuals. Ideally, these individuals should be more responsible for guiding the search

process.

2. Improve genetic programming’s search ability by giving dissimilar individuals a higher rate

of survivability. These individuals represent new regions of the search space that the algo-

rithm would be likely to benefit from exploring.

The proposed model consists of:

� A measure of genetic dissimilarity to identify dissimilar and fit individuals that arise during

the evolutionary process.

� A speciation event that creates new islands based on these dissimilar individuals.

This process would simulate a speciation event where the dissimilar individual leaves the existing

population to create a new species. Speciating new islands introduces a form of branching. If

the current population has too much momentum to move away from a local optima even when

different, and better individuals exist, then search paths are lost. These individuals were earlier

called genetic outliers and are defined as structurally or genetically dissimilar as well as highly fit.

In addition to being dissimilar, outliers were also highly fit, giving more indication that they are

promising solutions. Based on the specific representation and operator, measures of dissimilarity

may also consider node content as well as structure.

Another benefit of this model is that the role of diversity becomes easier to understand and con-

trol. When a subpopulation is more similar in structure and content, the role of diversity in the

population becomes clearer. If a subpopulation has converged to a single structure and has lost all

diversity at the level which the operators work (near the leaves, for instance), then the search can

either continue by adding diversity in these areas or it will halt. Adding diversity at the root level

may provide large behavioural changes, but if the operators do not work with these nodes, typi-

cally seen with subtree crossover does not, they could be lost during selection. However, adding

diversity where operators work could be a better way to continue search. Issues of diversity within

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 129

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

	�	�	
	�	�	
	�	�	
	�	�	

�

�

�

�

population population

outliers outliers

FIGURE 7.11: Two possible views of outliers in the genotype space, where the shaded regions
represent the population and the outliers are represented outside by the filled region.

the canonical genetic programming search process are complex and problem dependent. This is

highlighted in the previous chapters. Considering diversity issues within genetically homologous

subpopulations, given a particular operator, becomes a more tractable space and issue.

In summary, the proposed niche for island models would allow a subpopulation to converge to-

ward local optima in isolation. Migration events are replaced by a form of speciation which forks

off a new search on sufficiently different individuals (structures) and further exploits that structure

on a new island. In this manner, this island model would be different then performing several

random restarts of a single population model. The model would encourage higher rates of surviv-

ability that would make the search more efficient, possibly allowing population sizes to be reduced.

Furthermore, this model would promote a broader exploration of the search space.

7.5.2 Similar Models

A similar model was proposed by Bessaou et al. (2000) for multimodal optimisation with genetic

algorithms. In their model, a multipopulation algorithm performed migration between subpop-

ulations. The subpopulations were then merged and individuals were redistributed to new sub-

populations based on a speciation tree method that places genetically similar individuals together.

A local genetic algorithm was then run on each island for a number of generations to serve as an

‘intensification’ phase. Our proposed model does not consider migration or the concept of merging

the subpopulations before redistributing them according to species. The genetic algorithm species

conserving model (Li et al., 2002) identified diverse individuals and assigned the fitter to be seeds

which are propagated to the next generation. However, recombining diverse individuals, as seen

in Section 7.3, may not always be ideal for genetic programming.

Fitness sharing over structures was used to balance the search between structure and contents (Hu

et al., 2002). However, like other fitness sharing methods in genetic programming based on genetic

dissimilarity, this approach ignores the possible benefits of homology and the possible negative

effects of recombination using diverse parents. Lastly, the method by Potter and DeJong (2000) for

coevolution of components requires each species to contribute toward fitness to survive and new

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 130

species are added when no improvements are found. In a similar way, future research with the

proposed model can investigate different ways to remove stagnate islands while still allowing the

possibility of variation to arise during stasis.

7.5.3 The Island, Post-Speciation Event and Other Comments

This investigation and proposal did not address the speciation event and subsequent search on the

new species for two reasons. Firstly, the method to initialise a new subpopulation based on the

species is problem dependent in the size of the search space around that species. For example,

depending on the size of the individuals, the size of the function and terminal sets and the current

distribution of individuals, different methods would be appropriate. Given a large function and

terminal set, considering a species as sharing the exact same tree structure may be infeasible, let

alone similar tree structures. In this case, a species may define an exact tree structure plus some

commonality amongst the node labels. Adapting the subpopulation size is also a possible consid-

eration in this case.

Secondly, the method of initialisation is dependent upon the operator currently being used. Given

the use of an operator like standard subtree crossover, it makes little sense to expect the search to

take place near the root of the trees when this operator is biased toward the leaves. Thus, initialising

the new species based on the seed might focus the changes near the leaves first, then toward the

root after a sufficient level of diversity is found. More homologous operators may be able to use a

looser definition of species due to a lack of bias toward a particular area of the tree. In some cases,

it may be good to just perform a phase of local search on the diverse individuals which would

normally define a new species. In fact, this is a good way to initially validate this model. The local

optimisation technique would probably need to be defined for each problem instance. According to

the results presented in this thesis, the canonical genetic programming system routinely produces

outlier individuals that would seem to be ideal candidates for further examination. While previous

methods may have leveraged these individuals in more indirect ways, the proposed model intends

to leverage these individuals directly.

What is not addressed in this study is the composition of the in-lier space. While previous re-

search has shown the strong convergence characteristic of the population with respect to structure

and content, the in-lier space may indeed be composed of several distinct clusters of genetically

similar individuals. Figure 7.11 demonstrates how the in-liers could be composed of four distinct

genetically similar clusters, instead of the single cluster shown in Figure 7.1. However, the actual

identification of these spaces and distinct clusters is a complex issue requiring specific measures

and methods.

The proposed model was largely motivated by the momentum in the literature toward the impor-

7. DIVERSITY, SURVIVABILITY AND A NICHE FOR ISLAND MODELS 131

tance of structure, e.g. (Daida et al., 2003b), and diversity (as seen in earlier chapters). However,

while the model proposed is general (i.e. explicitly considering outliers should generally improve

results), the exact performance and tuning of model parameters will be problem specific.

7.6 Summary

The research presented in this chapter examined the role diversity has in guiding the search. An

empirical analysis examined the role of the most dissimilar and fit individuals in the population.

This was accomplished by studying the survivability of these individuals. Also, due to the many

distributed models and methods proposed to improve search by means of increased diversity, this

research also considered the role of the migrant.

One might expect that higher amounts of diversity generally leads to better search in genetic pro-

gramming. Diversity and dissimilar individuals could provide key variations that allow new solu-

tions to be discovered and improved by passing on their genetic material to offspring. While the

results presented in this chapter showed how dissimilar individuals play an important role in pro-

ducing offspring when the population is genetically similar, this role is usually unstable. Dissimilar

individuals were particularly important when the many fit individuals also had the same fitness.

That is, when the most fit subpopulation contains low phenotype diversity, dissimilar individuals

are more successful in producing offspring that later contribute toward search. Also, as phenotype

diversity is lost among the most fit individuals, the worse fit individuals are more successful in

contributing new solutions to later generations.

These results raise questions about the motivation of methods based on dissimilarity mating and

blindly promoting high diversity. If dissimilar individuals have a low chance of success produc-

ing offspring with high relative fitness, why concentrate effort on producing additional diversity?

Lastly, the results also highlighted the possible ineffectiveness of migrants in distributed models to

contribute positively toward search. While this was not directly investigated, the results certainly

suggest further work should be carried out in validating the effectiveness of migrants.

A niche for island models was proposed that leverages the results from this chapter. The niche

consists of identifying structurally different individuals (that are unlikely to mate effectively with

the rest of the population) and speciates them to a new island. The new island provides a chance

to search more effectively with this individual and the region of the search space this individual

represents.

The conclusions of this thesis are presented in the following chapter.

132

CHAPTER 8

CONCLUSIONS

Genetic programming is a search heuristic that represents candidate solutions as computer pro-

grams. As such, genetic programming is used as a technique for optimisation, automatic program-

ming and model induction. Like other metaheuristic methods, it combines a search strategy with

operators and an objective function. However, genetic programming also uses a complex, variable-

length representation, a population of solutions and a search strategy based on natural evolution.

These elements combine to make analysis difficult.

When genetic programming does not produce desirable results, premature convergence and loss

of diversity within the population are often blamed. Without diversity the algorithm cannot pro-

duce variation and move out of local optima due to convergence. However, the population rarely

loses all diversity. Therefore, it is often misleading to attribute run failure to convergence. In fact,

genetic programming runs are usually pre-determined to converge due to the representation and

operators. Run failure is more likely due to the type and rate of convergence, not convergence

itself.

The research presented in this thesis has contributed toward an improved understanding of genetic

programming by focusing on the issue of diversity. While diversity loss can describe convergence

and the inability to escape local optima, diversity also influences most decisions in the evolutionary

process. After all, evolutionary algorithms are a population-based search method that rely on the

population to provide search direction.

The results of this research demonstrate many ways to improve search efficiency and effective-

ness in genetic programming. Improving this population-based search method has wide reaching

benefits, demonstrated by the many applications of genetic programming, from artificial intelli-

gence (mobile robotics, automatic programming and machine learning) to operations research and

applied optimisation.

8. CONCLUSIONS 133

8.1 Contributions

This thesis has made the following contributions.

8.1.1 A survey and analysis of diversity in genetic programming demonstrated the complexity

behind the issue of diversity measures and methods and the relationship between diversity

and fitness.

Several measures of diversity frequently used in the literature were surveyed and analysed in

Chapter 4. Specifically, the most typical measures from the literature referring to genotype and

phenotype traits were used in an experimental study. The general behaviour of these measures

showed the initial difficulty in assessing and attributing run failure to diversity loss as many mea-

sures behaved unexpectedly. For example, the measure of unique genotypes typically remained at

high levels after only a few generations and never increased or decreased significantly. As individ-

uals became larger in size, maintaining distinct individuals was not generally difficult.

In Chapter 4, using a measure based on edit distance, populations were seen to generally lose most

diversity early in the run and then remain at low levels. There was not a distinct phase transition

of diversity loss that could be attributed to an expected time when the run would become stuck in

local optima. Rather, low edit distance diversity is the result of selection, the representation and

operator. In some cases, the increased loss of diversity was linked to improved search performance,

demonstrated by the correlation between good fitness and low diversity.

Measures of particular importance were those based on fitness values. A high number of unique

phenotypes and high entropy were both correlated with the best fitness found during the evolu-

tionary process. Problems with discrete fitness spaces in particular, such as the Ant and Parity

problems, cause selection methods to become more random when the population loses unique fit-

ness values. The loss of unique fitness values can also increase the chance that selection will pick

deceptive or conflicting individuals to search with. This explains why high fitness-based diversity

measures correlated well with good fitness.

The previous methods used to control diversity, like those used to control code growth, are often

heavy-handed. Such methods are likely to effect the run in many unexpected ways. Therefore, in

Chapter 5, a measure of diversity that incorporated ancestry information and inheritance was used.

8. CONCLUSIONS 134

8.1.2 An analysis using genetic lineages showed how a search metaphor of hill-climbing can be

used to explain and improve genetic programming search. Also, the sampling of unique

structures and behaviours demonstrated the the low sampling of both complex behaviours

and unique structures of large size.

Genetic lineages were used to bias the selection method toward fit individuals from randomly cho-

sen lineages. The results showed that genetic diversity was increased while producing smaller so-

lutions, but with worse fitness on two of the three problem domains. A literature review of similar

and related problem domains revealed that the results of using lineage selection clearly demon-

strated the similarities between genetic programming and hill-climbing. When genetic program-

ming benefits from a hill-climbing type search, increasing diversity worsened fitness by preventing

a hill-climbing search from being carried out effectively. When genetic programming was likely to

suffer from deception, the increased diversity of lineage selection improved fitness.

The idea that genetic programming may carry out a similar search to that of hill-climbing moti-

vated an analysis of the sampling of structures and behaviours. In this case, a structure refers to

a tree without any node contents. A behaviour was defined for each problem that reflected the

fitness or complexity of solutions. These results demonstrated that genetic programming samples

fewer unique structures of large sizes. Instead, when large structures were produced, the search

effort was spent sampling different structures of an intermediate size. Problem specific results

highlighted many areas where methods could be used to improve search performance.

The issue of code growth and bloat has received much attention in the genetic programming com-

munity. The mechanics of subtree crossover and the representation are thought to be responsible

for code growth in genetic programming. However, there has been little effort to explain the varied

rates of growth that occur in most experiments.

8.1.3 A causal model was developed which linked increased rates of code growth to non-decreased

selection pressure and to increased similarity within the population. Decreased selection

pressure occurs when fitness-based diversity is lost, and increased similarity in the popula-

tion is the result of both faster convergence and non-decreased selection pressure.

To address the topic of varied rates of code growth, Chapter 6 investigated the change of population

dynamics occurring under increasingly difficult problem instances. Using previously researched

problem instances and several randomly generated instances, Chapter 6 showed how problem dif-

ficulty induces different kinds of population dynamics. These dynamics affect both selection pres-

sure and diversity, and subsequently the rate of code growth. A causal model was also supported

by a constructed problem and related literature. Results suggested that controlling the rate of code

8. CONCLUSIONS 135

growth can be achieved by considering the variability of selection pressure and the presence of

diversity. Whereas previous methods are often heavy-handed in penalising the large individuals,

this chapter outlined alternative ways in which code growth might be controlled without destruc-

tively effecting fitness improvements. Also, this chapter further highlighted the different types of

behaviours of increasingly difficult problem instances.

Given the diversity results of Chapter 4, the results of controlling diversity in Chapter 5 and the

effects of diversity on code growth and selection in Chapter 6, the next line of research carried out

was to analyse the contribution of dissimilar individuals during search. Distributed models are

frequently suggested as the remedy for convergence. As these models typically move migrants

between subpopulations, this study allowed the role of these migrants to be examined.

8.1.4 An analysis using the Tree-String problem showed the inability to produce good offspring by

both dissimilar-and-fit individuals and by similar-and-equally-well-fit individuals.

The definition of genetic outlier individuals, which are genetically dissimilar and highly fit, demon-

strated that dissimilar and fit individuals had sporadic and variable survivability. This study

showed that genetic programming populations consistently contain highly fit and dissimilar in-

dividuals that are often not considered in search due to their small numbers and their inability to

produce fit offspring. The analyses of the in-lier population showed that in-liers contribute more

consistently to future populations until they become genetically similar with many equal fitness

values. When in-liers had less dissimilarity, the un-fit population and the genetic outliers con-

tributed more to search. Lastly, the Tree-String problem was introduced. This problem is thought

to be tunably difficult with many features related to other domains.

8.1.5 A model was proposed that identifies dissimilar individuals and moves them to new islands

where they can contribute to search more effectively.

A survey of distributed models showed that they rarely assign an explicit role to dissimilar indi-

viduals, which are frequently exchanged between subpopulations. The analysis of genetic outliers

suggested that these individuals are likely to have low survivability. A model was proposed to

detect genetic outliers and give them a more suitable environment in which to evolve. In this way,

genetic outliers are considered as species. Based on the results presented here and in previous liter-

ature, this type of model would appear to have a high chance of success.

8. CONCLUSIONS 136

8.1.6 Summary

The research presented in this thesis provides an analysis of several key issues in genetic program-

ming. First, selection pressure and subtree crossover success depend on the type of fitness-based

and genetic diversity in the population. Secondly, the rates of code growth could be controlled by

adaptively controlling both fitness-based and genetic diversity. Thirdly, the type of search genetic

programming carries out can be described using a metaphor of hill-climbing and some knowledge

of the problem domain. Finally, the inability of dissimilar and fit individuals, and similar and

equally well fit individuals, to produce good offspring was shown.

8.2 Remarks and Problem Specific Conclusions

In Chapter 3, questions were proposed for this thesis to address. In response to those questions,

the contributions of this thesis are restated in those terms. Following this, problem specific results

that appear throughout the thesis are highlighted together.

Question 1: How can diversity be measured and controlled, and are there ideal levels of diversity?

Chapter 4 surveyed several measures and methods of diversity. An experimental study demon-

strated the behaviour of several of these measures. The search process in genetic programming

must find suitable structures on which to represent content. Thus, measures of diversity which

provide an accurate depiction of the structure and content in a population, such as edit distance

diversity, are likely to capture important dynamics. However, a main driving force behind the al-

gorithm is selection and recombination. Therefore, diversity measures which capture the property

of fitness distributions will indicate the population’s effect on selection pressure.

Many methods have been used to control diversity. Chapter 5 demonstrated the use of lineage

selection and its good and bad effects on performance. The concept of genetic lineages can be an

accurate indication of diversity loss in a canonical genetic programming system. Some methods

encourage high genetic diversity or fitness-based diversity, while others are adaptive. However, as

seen in Chapter 6, changing population diversity will also change other dynamics in the algorithm.

The lack of a clear correlation between diversity and fitness in Chapter 4 emphasises the danger in

assuming that high diversity (of a some type) leads to better fitness.

8. CONCLUSIONS 137

Question 2: Genetic programming is a population search method, thus, what effect does population diversity

have on other aspects of the search process?

The effects of population diversity were seen in Chapter 6 when studying code growth. The results

showed how low fitness diversity reduces selection pressure and how high genetic diversity can re-

duce code growth. Chapter 7 showed how search using populations with a high number of equally

fit and similar individuals is guided more by the dissimilar and poorly fit individuals. Chapter 5

demonstrated the increased exploration ability of more genetically dissimilar populations, but at

the cost of fitness. Chapter 5 suggested population convergence can promote a hill-climbing be-

haviour that is beneficial to improving fitness on some problems.

Question 3: What specific role does diversity play in the evolutionary process, i.e. do dissimilar individuals

contribute offspring differently than the rest of the population?

In a general sense, dissimilar individuals allow for exploration to take place. However, as seen in

Chapter 7, dissimilar individuals are not consistently effective in populations where they are likely

to breed with very different individuals. However, as the population becomes more equivalent in

fitness, dissimilar individuals provide a chance for escaping local optima. The previous literature

suggests that diverse individuals would be most effective when breeding in separate populations,

where they compete and recombine with more like individuals. One of the most important areas of

improvement that can be made to genetic programming, or any population-based search method,

is the precise characterisation of the population components to allow for new methods to improve

dynamics, efficiency and the rate of success. The research presented here makes a contribution to

that effort.

The majority of experiments used in this thesis involved three problem domains commonly used

in the genetic programming literature. The reason for this was twofold. Firstly, it was necessary to

use the same problem domains, and algorithm parameters, on which to build sound explanations

across the different chapters and experiments. Secondly, as these problems are frequently used by

the community to develop new methods and theoretical arguments, it is useful to apply to them

the full range of the diversity experiments and analysis for future reference.

8.2.1 Ant Remarks

The results from Chapter 5 showed an additional example of how avoiding deception, via increased

diversity, improved performance. The results of the sampling study at the end of Chapter 5 also

demonstrated how the Ant problem samples many different structures of a small size and fewer

different behaviours of increasing fitness.

8. CONCLUSIONS 138

The correlation between good fitness and high fitness-based diversity in the Chapter 4 Ant exper-

iments also showed the benefit of maintaining more different fitness values, i.e. fewer different

behaviours with the same fitness. However, the correlation between good fitness and low edit dis-

tance diversity in the later stages of the Ant experiments showed how better runs also converged

more. The survivability study at the end of Chapter 7 showed a phase change in the Ant exper-

iments, where in-liers began producing the majority of surviving offspring. This change, around

generation 10-15, occurred when more and more individuals became part of the un-fit population.

When better runs converge, and in-liers have much higher survivability, it is not clear what the rest

of the population contributes. A hill-climbing or local optimisation strategy at this point may be a

more effective and efficient way to continue search.

8.2.2 Parity Remarks

In Chapter 5, lineage selection prevented a hill-climbing-like behaviour that increased genetic di-

versity but led to worse fitness. Previous research showed how elitist strategies that incorporated

an element of diversity control also successfully improved search. The deception in the Parity prob-

lem is due to the many different solutions that have the same fitness. This is in contrast to the Ant

problem, where deception was also due to the fact that some solutions are not easily improved

by genetic programming. The sampling study in Chapter 5 showed the ease of which genetic pro-

gramming can sample solutions near the random strategy, and the difficulty in sampling better and

worse ones. The benefit of elitism would focus the search more consistently on a particular strategy

and create a hill-climbing behaviour of search.

Chapter 7 showed a phase change near generation 20 in the Parity experiments, where further

populations came mostly from the in-lier population. This is similar to the Ant experiments. The

variable and sporadic survival rates in the genetic outlier population suggests the importance of

variation when the population loses diversity, but also shows the inability of the genetic outliers

to produce viable offspring consistently. The ability to distinguish between the many near ran-

dom behaviours would help to reduce the effects of deception in this problem and allow a more

predictable selection pressure.

8.2.3 Regression Remarks

The range of symbolic regression instances used throughout this thesis provided a set of very differ-

ent behaviours. From the very difficult, the Rastrigin function, to much easier ones, the Quartic and

Binomial-3 functions, diversity measures did not capture a similar dynamic in previous problems

that was important to search. One reason for this is that the continuous fitness space in Regression

8. CONCLUSIONS 139

experiments allows genetic programming to easily maintain high fitness-based diversity. This can

most easily be seen in the phenotype and entropy measures in Chapter 4 that remained at much

higher levels than other domains.

The Tree-String problem from Chapter 7 would appear to be most closely related to Regression

problems with its dual and often conflicting objectives of structure and content. Applying the

results from the Tree-String experiments to the Regression problem suggests that much of the fu-

ture populations come from diverse individuals that may not necessarily be the most fit in the

population. That is, in the Tree-String experiments, when considering the definition of outliers as

better-than or equivalent-to more than half the population, the outliers contributed a considerably

higher rates of survivability than selection. The results of the Binomial-3 instance in Chapter 7 also

show that outliers play an important part in the search process.

8.3 Future Directions

The empirical investigations in this thesis suggest many possible directions for future research.

8.3.1 Diversity Measures and Methods

Developing measures based on the operators would give an improved understanding of diversity

and of the fitness landscape. However, the complexity of the representation would make these

measures computationally expensive. Approximate measures based on the operators would re-

quire careful consideration of their accuracy. Intermediate data structures could be used improve

the efficiency of such complex measures.

Chapter 5 used a new diversity method based on genetic lineages. Additional research with this

method could yield more efficient ways to control diversity and search, or easily simulate mating,

niching and island models. Chapter 6 suggested controlling diversity by adapting selection pres-

sure, which could lead to slower and more controlled code growth without fewer negative effects

to fitness. Future work could also characterise the “effective” selection pressure that populations

with varying diversity induce.

8.3.2 Code Growth and Problem Difficulty

The results in Chapter 6 demonstrated several possible areas of controlling code growth indirectly.

While the recombination of genetically similar individuals is likely to cause a consistent amount of

code growth in future populations, the recombination of dissimilar individuals, while producing

8. CONCLUSIONS 140

less overall code growth, is more likely to also produce fewer good offspring. Therefore, investi-

gating adaptive recombination methods that are aware of the similarity of individuals could be a

solution to minimising unjustified code growth while achieving good fitness.

Chapter 6 also showed the effects of problem difficulty. It may be possible to control population

diversity to better deal with harder instances. For example, when a difficult instance causes a

population to contain one really good individual, methods which dynamically prevent the over-

selection of this individual are likely to improve the overall performance of the algorithm.

Parts of the causal model in Chapter 6 remain to be fully evaluated. An area of future research

here would be measuring the dissimilarity of solutions in hard and easy instances. The hypothesis

stated that easy instances allow more optimal and different solutions to be acquired quickly. This

was based on the notion that easy instances can be solved equally well by different solutions in

different ways. Hard instances were thought to be solved by fewer solutions that are more similar.

Future work can investigate the actual dissimilarities in solutions for easy and hard instances.

8.3.3 Defining the Role of the Populations

This thesis has provided a better understanding of the role of the genetic programming population.

However, several areas of the research in Chapter 7 could be further examined. For example, the

exact dissimilarity between mating parents, the structure of dissimilarity in the un-fit population

and in-depth analysis of survivability and genetic outliers in other domains are potential areas of

future research.

If genetic programming is considered as a stochastic hill-climber using a procedural representation,

the role of the population is to provide genetic material in a more elitist algorithm. If genetic

programming is to use the population to sufficiently explore the landscape in parallel, one needs

to explicitly maintain portions of the population in beneficial areas and dispense sufficient search

effort appropriately. The proposed niche for island models is an obvious extension to the research

presented here and gives the population a much clearer role during search. Empirical studies, some

of which were described in detail in Chapter 7, need to be carried out to validate the proposed

island model.

Chapter 7 also introduced the Tree-String problem. Investigating the tunable nature of this problem

would validate it as a future testbed for understanding complex domains. Future work can begin

by modifying the size of the string symbol set and the method to grow target tree structures.

8. CONCLUSIONS 141

8.3.4 Extended Metaphors of Search

A metaphor of hill-climbing was used in Chapter 5 to characterise genetic programming search.

Developing accurate models and metaphors of genetic programming will allow more intuitive im-

provement and analysis of results. The metaphor used here helped to understand these results as

well as previous results. Further development and research along these lines may yield surprising

and extremely useful models for the community. Specifically, one could build intermediate mod-

els between stochastic hill-climbers (O’Reilly and Oppacher, 1994; Juels and Wattenberg, 1995) and

canonical genetic programming. These intermediate models would contain various properties of

both methods and should help show more clearly why and how the two methods carry out search

differently.

142

Bibliography

Adamidis, P. and Petridis, V. (1996). Co-operating populations with different evolution behavior.

In Proceedings of 1996 IEEE International Conference on Evolutionary Computation, pages 188–191,

Nagoya, Japan.

Altenberg, L. (1994). Emergent phenomena in genetic programming. In Sebald, A. and Fogel, L.,

editors, Proceedings of the Third Annual Conference on Evolutionary Programming, pages 233–241.

World Scientific.

Andre, D. and Koza, J. (1996). Parallel genetic programming: A scalable implementation using

the transputer network architecture. In Angeline, P. and Kinnear, Jr., K., editors, Advances in

Genetic Programing 2, chapter 16. The MIT Press, Cambridge, MA, USA.

Angeline, P. (1997). Subtree crossover: Building block engine or macromutation? In Koza, J. et al.,

editors, Proceedings of the Second Annual Genetic Programming Conference, pages 9–17, Stanford

University, USA. Morgan Kaufmann.

Angeline, P. J. (1998). A historical perspective on the evolution of executable structures. Informaticae,

36(1-4):179–195.

Bäck, T., Fogel, D., and Michalewicz, Z., editors (2000a). Evolutionary Computation 1: Basic Algo-

rithms and Operators. Institute of Physics Publishing, Bristol, UK.

Bäck, T., Fogel, D. B., and Michalewicz, Z., editors (2000b). Evolutionary Computation 2: Advanced

Algorithms and Operators. Institute of Physics Publishing, Bristol, UK.

Banzhaf, W. and Langdon, W. B. (2002). Some considerations on the reason for bloat. Genetic

Programming and Evolvable Machines, 3(1):81–91.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998). Genetic Programming: An Introduc-

tion. Morgan Kaufmann, Inc., San Francisco, USA.

Barr, A., Cohen, P., and Feigenbaum, E., editors (1989). The Handbook of Artificial Intelligence, vol-

ume 4. Addison-Wesley, Reading, MA.

BIBLIOGRAPHY 143

Belding, T. (1995). The distributed genetic algorithm revisited. In Eshelman, L., editor, Proceedings

of the Sixth International Conference on Genetic Algorithms, pages 114–121, San Francisco, CA.

Morgan Kaufmann.

Bersano-Begey, T. (1997). Controlling exploration, diversity and escaping local optima in GP. In

Koza, J., editor, Late Breaking Papers at the Genetic Programming Conference, pages 7–10, Stanford

University, CA.

Bessaou, M., Pétrowski, A., and Siarry, P. (2000). Island model cooperating with speciation for

multimodal optimization. In Schoenauer, M. et al., editors, Parallel Problem Solving from Nature,

pages 437–446, Paris, France. Springer Verlag.

Blickle, T. and Thiele, L. (1995). A comparison of selection schemes used in genetic algorithms.

TIK-Report 11, TIK Institut fur Technische Informatik und Kommunikationsnetze, Computer

Engineering and Networks Laboratory, ETH, Swiss Federal Institute of Technology, Glorias-

trasse 35, 8092 Zurich, Switzerland.

Bongard, J. C. (1999). Coevolutionary dynamics of a multi-population genetic programming sys-

tem. In Floreano, D., Nicoud, J.-D., and Mondada, F., editors, Proceedings of the 5th European

Conference on Advances in Artificial Life, volume 1674 of LNAI, pages 154–158, Berlin. Springer.

Brameier, M. and Banzhaf, W. (2002). Explicit control of diversity and effective variation distance in

linear genetic programming. In Tettamanzi, A. et al., editors, Genetic Programming, Proceedings

of the 5th European Conference, volume 2278 of LNCS, pages 162–171, Kinsale, Ireland. Springer-

Verlag.

Bremermann, H. (1962). Optimization through evolution and recombination. In Yovits, M., Ja-

cobi, G. T., and Goldstine, G., editors, Self-Organizing Systems, pages 93–106. Spartan Books,

Washington DC.

Burke, D., Jong, K. D., Grefenstette, J., Ramsey, C., and Wu, A. (1998). Putting more genetics into

genetic algorithms. Evolutionary Computation, 6(4):387–410.

Burke, E., Gustafson, S., and Kendall, G. (2002a). A survey and analysis of diversity measures in ge-

netic programming. In Langdon, W. B. et al., editors, Proceedings of the Genetic and Evolutionary

Computation Conference, pages 716–723, New York. Morgan Kaufmann Publishers.

Burke, E., Gustafson, S., and Kendall, G. (2004). Diversity in genetic programming: An analysis of

measures and correlation with fitness. IEEE Transactions on Evolutionary Computation, 8(1):47–

62.

Burke, E., Gustafson, S., Kendall, G., and Krasnogor, N. (2002b). Advanced population diversity

measures in genetic programming. In Guervós, J. M. et al., editors, Parallel Problem Solving from

Nature, volume 2439 of LNCS, pages 341–350, Granada, Spain. Springer.

BIBLIOGRAPHY 144

Burke, E., Gustafson, S., Kendall, G., and Krasnogor, N. (2003). Is increasing diversity in genetic

programming beneficial? An analysis of the effects on fitness. In McKay, B. et al., editors,

Congress on Evolutionary Computation, pages 1398–1405, Canberra, Australia. IEEE Press.

Cantú-Paz, E. (1999). Topologies, migration rates, and multi-population parallel genetic algorithms.

In Banzhaf, W. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference,

pages 91–98, San Francisco, CA. Morgan Kaufmann.

Cohoon, J., Hegde, S., Martin, W., and Richards, D. (1987). Punctuated equilibria: a parallel genetic

algorithm. In Grefenstette, J., editor, Proceedings of the Second International Conference on Genetic

Algorithms, pages 148–154, Hillsdale, NJ, USA. Lawrence Erlbaum Associates.

Collins, R. (1992). Studies in Artificial Evolution. Ph.D. dissertation, Department of Computer Sci-

ence, University of California at Los Angeles.

Cramer, N. (1985). A representation for the adaptive generation of simple sequential programs.

In Grefenstette, J., editor, Proceedings of an International Conference on Genetic Algorithms and the

Applications, pages 183–187, Carnegie-Mellon University, Pittsburgh, PA, USA.

Daida, J. (2002). Limits to expression in genetic programming: Lattice-aggregate modeling. In

Fogel, D. et al., editors, Congress on Evolutionary Computation, pages 273–278, Honolulu, USA.

IEEE Press.

Daida, J., Bertram, R., Stanhope, S., Khoo, J., Chaudhary, S., Chaudhri, O., and Polito II, J. (2001).

What makes a problem GP-hard? analysis of a tunably difficult problem in genetic program-

ming. Genetic Programming and Evolvable Machines, 2(2):165–191.

Daida, J., Hilss, A., Ward, D., and Long, S. (2003a). Visualizing tree structures in genetic program-

ming. In Cantú-Paz, E. et al., editors, Proceedings of the Genetic and Evolutionary Computation

Conference, volume 2724 of LNCS, pages 1652–1664, Chicago, IL, USA. Springer-Verlag.

Daida, J., Li, H., Tang, R., and Hilss, A. (2003b). What makes a problem GP-hard? validating a

hypothesis of structural causes. In Cantú-Paz, E. et al., editors, Proceedings of the Genetic and

Evolutionary Computation, volume 2724 of LNCS, pages 1665–1677, Chicago, IL, USA. Springer-

Verlag.

Darwen, P. and Yao, X. (2000). Does extra genetic diversity maintain escalation in a co-evolutionary

arms race. International Journal of Knowledge-Based Intelligent Engineering Systems, 4(3):191–200.

Darwen, P. and Yao, X. (2001). Why more choices cause less cooperation in iterated prisoner’s

dilemma. In Proceedings of the Congress on Evolutionary Computation, pages 987–994, Seoul,

Korea. IEEE Press.

Darwin, C. (1859). The Origin of Species by Means of Natural Selection. Mentor Reprint, 1958, NY.

BIBLIOGRAPHY 145

Davis, L., editor (1991). Handbook of Genetic Algorithms. International Thomson Press, Boston, MA.

de Jong, E., Watson, R., and Pollack, J. (2001). Reducing bloat and promoting diversity using multi-

objective methods. In Spector, L. et al., editors, Proceedings of the Genetic and Evolutionary Com-

putation Conference, pages 11–18, San Francisco, CA. Morgan Kaufmann.

Deb, K. and Goldberg, D. (1989). An investigation of niche and species formation in genetic function

optimization. In Schaffer, J., editor, Proceedings of the Third International Conference on Genetic

Algorithms, pages 42–50, San Mateo, CA, USA. Morgan Kaufmann.

DeJong, K. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. thesis,

Department of Compter and Communication Sciences, University of Michigan.

D’haeseleer, P. (1994). Context preserving crossover in genetic programming. In Proceedings of the

1994 IEEE World Congress on Computational Intelligence, volume 1, pages 256–261, Orlando, FL,

USA. IEEE Press.

D’haeseleer, P. and Bluming, J. (1994). Effects of locality in individual and population evolution. In

Kinnear, Jr., K., editor, Advances in Genetic Programming, chapter 8, pages 177–198. MIT Press.

Edmonds, B. (2001). Learning appropriate contexts. In Akman, V. et al., editors, Modelling and Using

Context, volume 2116 of LNAI, pages 143–155. Springer-Verlag.

Eggermont, J. and van Hemert, J. (2001). Adaptive genetic programming applied to new and ex-

isting simple regression problems. In Miller, J. et al., editors, Genetic Programming, Proceedings

of the 4th European Conference, volume 2038 of LNCS, pages 23–35, Lake Como, Italy. Springer-

Verlag.

Eiben, A. E. and Schippers, C. A. (1998). On evolutionary exploration and exploitation. Fundamenta

Informaticae, 35(1-4):35–50.

Eiben, G. and van Hemert, J. (1999). SAW-ing EAs: Adapting the fitness function for solving

constrained problems. In Corne, D. et al., editors, New Ideas in Optimization, pages 389–402.

McGraw-Hill, London.

Ekárt, A. (2000). Shorter fitness preserving genetic programs. In Fonlupt, C. et al., editors, Ar-

tificial Evolution. 4th European Conference, Selected Papers, volume 1829 of LNCS, pages 73–83,

Dunkerque, France.

Ekárt, A. and Németh, S. (2000). A metric for genetic programs and fitness sharing. In Poli, R. et al.,

editors, Genetic Programming, Proceedings of the 3rd European Conference, volume 1802 of LNCS,

pages 259–270, Edinburgh. Springer-Verlag.

BIBLIOGRAPHY 146

Ekárt, A. and Németh, S. (2001). Selection based on the pareto nondomination criterion for con-

trolling code growth in genetic programming. Genetic Programming and Evolvable Machines,

2(1):61–73.

Ekárt, A. and Németh, S. (2002). Maintaining the diversity of genetic programs. In Foster, J. et al.,

editors, Genetic Programming, Proceedings of the 5th European Conference, volume 2278 of LNCS,

pages 162–171, Kinsale, Ireland. Springer-Verlag.

Eldredge, N. and Gould, S. (1972). Punctuated Equilibria: An Alternative to Phyletic Gradualism, chap-

ter 5, pages 82–115. Freeman, Cooper and Co.

Eshelman, L. and Schaffer, J. (1993). Crossover’s niche. In Forrest, S., editor, Proceedings of the Fifth

International Conference on Genetic Algorithms, pages 9–14, San Mateo, CA. Morgan Kaufman.

Fernandes, C. and Rosa, A. (2001). A study on non-random mating and varying population size

in genetic algorithms using a royal road function. In Proceedings of the Congress on Evolutionary

Computation, pages 60–66. IEEE Press.

Fernandez, F., Tomassini, M., Punch, W., and Sanchez, J. M. (2000). Experimental study of isolated

multipopulation genetic programming. In Whitley, D. et al., editors, Proceedings of the Genetic

and Evolutionary Computation Conference, page 536, Las Vegas, NV, USA. Morgan Kaufmann.

Fernandez, F., Tomassini, M., and Vanneschi, L. (2001). Studying the influence of communication

topology and migration on distributed genetic programming. In Miller, J. et al., editors, Genetic

Programming, Proceedings of the 4th European Conference, volume 2038 of LNCS, pages 51–63,

Lake Como, Italy. Springer-Verlag.

Fernandez, F., Tomassini, M., and Vanneschi, L. (2003). An empirical study of multipopulation

genetic programming. Genetic Programming and Evolvable Machines, 4(1):21–51.

Fogel, D. (1998). Evolutionary Computation: The Fossil Record. IEEE Press, Piscataway, NJ.

Fogel, L., Owens, A., and Walsh, M. (1966). Aritifial Intelligence Through Simulated Evolution. John

Wiley & Sons, Inc., New York.

Fraser, A. (1957). Simulation of genetic systems by automatic digital computers. Aust. J. of Biol. Sci.,

10:484–491.

Friedberg, R. (1958). A learning machine: Part i. IBM Journal of Research and Development, (2):2–13.

Friedberg, R., Dunham, B., and North, J. (1959). A learning machine: Part ii. IBM Journal of Research

and Development, (3):282–287.

BIBLIOGRAPHY 147

Gathercole, C. and Ross, P. (1996). An adverse interaction between crossover and restricted tree

depth in genetic programming. In Koza, J. et al., editors, Genetic Programming 1996: Proceedings

of the First Annual Conference, pages 291–296, Stanford University, CA, USA. MIT Press.

Geard, N. and Wiles, J. (2002). Diversity maintenance on neutral landscapes: An argument for re-

combination. In Fogel, D. et al., editors, Proceedings of the Congress on Evolutionary Computation,

pages 211–213, Honolulu, USA. IEEE Press.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Comput-

ers and Operations Research, 13:533–549.

Glover, F. and Kochenberger, G., editors (2003). Handbook of Metaheuristics. Kluwer, Boston, MA.

Glover, F. and Laguna, M. (1997). Tabu search. Kluwer Academic Publishers, Boston, USA.

Goldberg, D. (2002). The Design of Innovation, Lessons from and for Competent Genetic Algorithms.

Kluwer Academic Publishers, Boston, MA.

Goldberg, D. and O’Reilly, U.-M. (1998). Where does the good stuff go, and why? how contextual

semantics influence program structure in simple genetic programming. In Banzhaf, W. et al.,

editors, Genetic Programming, Proceedings of the First European Workshop, volume 1391 of LNCS,

pages 16–36, Paris. Springer-Verlag.

Goldberg, D. and Richardson, J. (1987). Genetic algorithms with sharing for multimodalfunction

optimization. In Grefenstette, J., editor, Proceedings of the 2nd International Conference on Genetic

Algorithms and their Applications, pages 41–49, Cambridge, MA. Lawrence Erlbaum Associates.

Gustafson, S., Burke, E., and Kendall, G. (2004a). Sampling of unique structures and behaviours in

genetic programming. In Keijzer, M. et al., editors, Genetic Programming, Proceedings of the 6th

European Conference, Coimbra, Portugal. Springer-Verlag.

Gustafson, S., Ekárt, A., Burke, E., and Kendall, G. (expected to appear 2004b). Problem difficulty

and code growth in genetic programming. Genetic Programming and Evolvable Hardware.

Gustafson, S. and Krasnogor, N. (2003). Visualising populations of rooted labeled trees on a lattice.

Unpublished. http://www.cs.nott.ac.uk/˜smg/.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press.

Holland, J. (2000). Building blocks, cohort genetic algorithms, and hyperplane-defined functions.

Evolutionary Computation, 8(4):373–391.

Hu, J. and Goodman, E. (2002). The hierarchical fair competition (HFC) model for parallel evo-

lutionary algorithms. In Fogel, D. et al., editors, Proceedings of the Congress on Evolutionary

Computation, pages 49–54, Honolulu, USA. IEEE Press.

BIBLIOGRAPHY 148

Hu, J., Seo, K., Li, S., Fan, Z., Rosenberg, R., and Goodman, E. (2002). Structure fitness sharing

(SFS) for evolutionary design by genetic programming. In Langdon, W. et al., editors, Proceed-

ings of the Genetic and Evolutionary Computation Conference, pages 780–787, New York. Morgan

Kaufmann Publishers.

Hutter, M. (2002). Fitness uniform selection to preserve genetic diversity. In Fogel, D. et al., editors,

Proceedings of the Congress on Evolutionary Computation, pages 783–788, Honolulu, USA. IEEE

Press.

Iba, H. (1996). Random tree generation for genetic programming. In Voigt, H.-M. et al., editors,

Parallel Problem Solving from Nature, volume 1141 of LNCS, pages 144–153, Berlin, Germany.

Springer Verlag.

Iba, H., de Garis, H., and Sato, T. (1994). Genetic programming using a minimum description

length principle. In Kinnear, Jr., K. E., editor, Advances in Genetic Programming, chapter 12,

pages 265–284. MIT Press.

Igel, C. and Chellapilla, K. (1999). Investigating the influence of depth and degree of genotypic

change on fitness in genetic programming. In Banzhaf, W. et al., editors, Proceedings of the

Genetic and Evolutionary Computation Conference, pages 1061–1068, Orlando, FL, USA. Morgan

Kaufmann.

Iwashita, M. and Iba, H. (2002). Island model GP with immigrants aging and depth-dependent

crossover. In Fogel, D. et al., editors, Proceedings of the Congress on Evolutionary Computation,

pages 267–272, Honolulu, USA. IEEE Press.

Jefferson, D., Collins, R., Cooper, C., Dyer, M., Korf, M. F. R., Taylor, C., and Wang, A. (1991).

Evolution as a theme in artificial life: The genesys/tracker system. In Langton, C. et al., editors,

Proceedings of Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, volume X.

Addison-Wesley.

Juels, A. and Wattenberg, M. (1995). Stochastic hillclimbing as a baseline method for evaluating

genetic algorithms. Technical Report Technical Report CSD-94-834. Computers Science De-

partment, University of California at Berkeley, USA.

Juillé, H. and Pollack, J. (1996). Massively parallel genetic programming. In Angeline, P. and

Kinnear, Jr., K., editors, Advances in Genetic Programming 2, pages 339–358. The MIT Press,

Cambridge, MA, USA.

Kauffman, S. (1993). The origins of order: self-orginiation and selection in evolution. Oxford University

Press, New York, NY.

BIBLIOGRAPHY 149

Keijzer, M. (1996). Efficiently representing populations in genetic programming. In Angeline, P.

and Kinnear, Jr., K., editors, Advances in Genetic Programming 2, chapter 13, pages 259–278. MIT

Press, Cambridge, MA, USA.

Keijzer, M. (2002). Scientific Discovery using Genetic Programming. PhD thesis, Danish Technical

University, Lyngby, Denmark.

Keijzer, M. (2003). Improving symbolic regression with interval arithmetic and linear scaling. In

Ryan, C. et al., editors, Genetic Programming, Proceedings of the 6th European Conference, volume

2610 of LNCS, pages 71–83, Essex, UK. Springer-Verlag.

Keller, R. and Banzhaf, W. (1995). Explicit maintenance of genetic diversity on genospaces. Internal

Report, University of Dortmund.

Keller, R. and Banzhaf, W. (1996). Genetic programming using genotype-phenotype mapping from

linear genomes into linear phenotypes. In Koza, J. et al., editors, Proceedings of First Annual

Conference on Genetic Programming, pages 116–122, Stanford University, CA, USA. MIT Press.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by simulated annealing. Science,

Number 4598, 13 May 1983, 220, 4598:671–680.

Kishore, J., Patnaik, L., Mani, V., and Agrawal, V. (2001). Genetic programming based pattern

classification with feature space partitioning. Information Sciences, 131(1-4):65–86.

Koza, J. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection.

MIT Press, Cambridge, MA, USA.

Koza, J. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cam-

bridge MA, USA.

Koza, J., Andre, D., Bennett III, F., and Keane, M. (1999). Genetic Programming 3: Darwinian Invention

and Problem Solving. Morgan Kaufman.

Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., and Lanza, G. (2003). Genetic Programming

IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

Krasnogor, N. (2002). Studies on the Theory and Design Space of Memetic Algorithms. PhD thesis,

University of the West of England, Bristol, UK.

Langdon, W. (1998a). Data Structures and Genetic Programming: Genetic Programming + Data Struc-

tures = Automatic Programming!, volume 1 of Genetic Programming. Kluwer, Boston.

Langdon, W. (1998b). The evolution of size in variable length representations. In Proceedings of the

IEEE International Conference on Evolutionary Computation, pages 633–638, Anchorage, AL, USA.

IEEE Press.

BIBLIOGRAPHY 150

Langdon, W. (1999). Scaling of program fitness spaces. Evolutionary Computation, 7(4):399–428.

Langdon, W. (2000a). Quadratic bloat in genetic programming. In Whitley, D. et al., editors, Pro-

ceedings of the Genetic and Evolutionary Computation Conference, pages 451–458, Las Vegas, NV,

USA. Morgan Kaufmann.

Langdon, W. (2000b). Size fair and homologous tree genetic programming crossovers. Genetic

Programming and Evolvable Machines, 1(1/2):95–119.

Langdon, W. and Poli, R. (1998a). Fitness causes bloat: Mutation. In Banzhaf, W. et al., editors,

Genetic Programming, Proceedings of the 1st European Workshop, volume 1391 of LNCS, pages

37–48, Paris. Springer-Verlag.

Langdon, W. and Poli, R. (1998b). Why ants are hard. In Koza, J. et al., editors, Proceedings of the

Third Annual Conference on Genetic Programming, pages 193–201, Madison, WI, USA. Morgan

Kaufmann.

Langdon, W. and Poli, R. (2002). Foundations of Genetic Programming. Springer-Verlag, Berlin.

Langdon, W., Soule, T., Poli, R., and Foster, J. (1999). The evolution of size and shape. In Spec-

tor, L. et al., editors, Advances in Genetic Programming 3, chapter 8, pages 163–190. MIT Press,

Cambridge, MA, USA.

Li, J.-P., Balazs, M., Parks, G., and Clarkson, P. (2002). A species conserving genetic algorithm for

multimodal function optimization. Evolutionary Computation, 10(3):207–234.

Lin, S.-C., Punch, W., and Goodman, E. (1994). Coarse-grain genetic algorithms, categorization and

new approaches. In Sixth IEEE Symposium on Parallel and Distributed Processing, pages 28–37,

Dallas, TX, USA. IEEE Computer Society Press.

Liu, Y., Yao, X., and Higuchi, T. (2000). Evolutionary ensembles with negative correlation learning.

IEEE Transactions on Evolutionary Computation, 4(4):380–387.

Loveard, T. (2003). Genetic programming with meta-search: Searching for a successful population

within the classification domain. In Ryan, C. et al., editors, Genetic Programming, Proceedings of

the 6th European Conference, volume 2610 of LNCS, pages 121–131, Essex, UK. Springer-Verlag.

Lucas, J., van Baronaigien, D., and Ruskey, F. (1993). On rotations and the generation of binary

trees. J. Algorithms, 15(3):343–366.

Luke, S. (1998). Genetic programming produced competitive soccer softbot teams for robocup97. In

Koza, J. et al., editors, Proceedings of the Third Annual Conference on Genetic Programming, pages

214–222, Madison, WI, USA. Morgan Kaufmann.

BIBLIOGRAPHY 151

Luke, S. (2000). Two fast tree-creation algorithms for genetic programming. IEEE Transactions on

Evolutionary Computation, 4(3):274–283.

Luke, S. (2001). When short runs beat long runs. In Spector, L. et al., editors, Proceedings of the

Genetic and Evolutionary Computation Conference, pages 74–80, San Francisco, CA, USA. Morgan

Kaufmann.

Luke, S. (2003). Modification point depth and genome growth in genetic programming. Evolution-

ary Computation, 11(1):67–106.

Luke, S. (2004). ECJ: A java-based evolutionary computation and genetic programming system.

http://www.cs.umd.edu/projects/plus/ec/ecj/.

Luke, S. and Panait, L. (2001). A survey and comparison of tree generation algorithms. In Spector,

L. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 81–88,

San Francisco, USA. Morgan Kaufmann.

Luke, S. and Panait, L. (2002a). Fighting bloat with nonparametric parsimony pressure. In Guervós,

J. M. et al., editors, Parallel Problem Solving from Nature, number 2439 in Lecture Notes in Com-

puter Science, LNCS, pages 411–420, Granada, Spain. Springer-Verlag.

Luke, S. and Panait, L. (2002b). Lexicographic parsimony pressure. In Langdon, W. et al., editors,

Proceedings of the Genetic and Evolutionary Computation Conference, pages 829–836, New York.

Morgan Kaufmann Publishers.

Luke, S. and Spector, L. (1998). A revised comparison of crossover and mutation in genetic pro-

gramming. In Koza, J. et al., editors, Proceedings of the Third Annual Genetic Programming Con-

ference, pages 208–213, San Francisco, CA. Morgan Kaufmann.

Martin, W. N., Lienig, J., and Cohoon, J. P. (2000). Island (migration) models: evolutionary algo-

rithms based on punctuated equilibria. In Bäck, T. et al., editors, Evolutionary Computation 2,

chapter 15. Institute of Physics Publishing, Bristol, UK.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: A 623-dimensionally equidistributed

uniform pseudorandom number generator. ACM Transactions on Modeling and Computer Simu-

lation, 8(1):3–30.

McKay, R. (2000). Fitness sharing in genetic programming. In Whitley, D. et al., editors, Proceedings

of the Genetic and Evolutionary Computation Conference, pages 435–442, Las Vegas, NV, USA.

Morgan Kaufmann.

McKay, R. and Abbass, H. (2001a). Anti-correlation: A diversity promoting mechanisms in ensem-

ble learning. The Australian Journal of Intelligent Information Processing Systems, (3/4):139–149.

BIBLIOGRAPHY 152

McKay, R. and Abbass, H. (2001b). Anticorrelation measures in genetic programming. In Kasabov,

N. and Whigham, P., editors, Australasia-Japan Workshop on Intelligent and Evolutionary Systems,

pages 45–51, Dunedin, New Zealand.

McPhee, N. and Hopper, N. (1999). Analysis of genetic diversity through population history. In

Banzhaf, W. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference,

pages 1112–1120, FL, USA. Morgan Kaufmann.

Monsieurs, P. and Flerackers, E. (2003). Reducing population size while maintaining diversity. In

Ryan, C. et al., editors, Genetic Programming, Proceedings of the 6th European Conference, volume

2610 of LNCS, pages 145–156, Essex, UK. Springer-Verlag.

Montana, D. (1995). Strongly typed genetic programming. Evolutionary Computation, 3(2):199–230.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: To-

wards memetic algorithms. Caltech concurrent computation program report 826, California

Institute of Technology, Pasadena, CA 91125, U.S.A.

Nienhuys-Cheng, S.-H. (1997). Distance between Herbrand interpretations: a measure for approx-

imations to a target concept. In Lavraĉ, N. and Dẑeroski, S., editors, Proceedings of the 7th

International Workshop on Inductive Logic Programming, volume 1297 of LNAI, pages 213–226,

Prague, Czech Republic. Springer-Verlag.

Nikolaev, N. and Iba, H. (2001). Accelerated genetic programming of polynomials. Genetic Pro-

gramming and Evolvable Machines, 2(3):231–257.

Nilsson, N. (1971). Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, New York.

Nordin, P., Banzhaf, W., and Francone, F. D. (1999). Efficient evolution of machine code for CISC

architectures using instruction blocks and homologous crossover. In Spector, L. et al., editors,

Advances in Genetic Programming 3, chapter 12, pages 275–299. MIT Press, Cambridge, MA,

USA.

Olsson, R. (1995). Inductive functional programming using incremental program transformation.

Artificial Intelligence, 74(1):55–81.

O’Reilly, U.-M. (1995). An Analysis of Genetic Programming. PhD thesis, Carelton University, Ottawa,

Ontario, Canada.

O’Reilly, U.-M. (1997). Using a distance metric on genetic programs to understand genetic opera-

tors. In IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics

and Simulation, volume 5, pages 4092–4097, FL, USA.

BIBLIOGRAPHY 153

O’Reilly, U.-M. (1998). The impact of external dependency in genetic programming primitives. In

Proceedings of the IEEE World Congress on Computational Intelligence, pages 306–311, Anchorage,

AL, USA. IEEE Press.

O’Reilly, U.-M. and Goldberg, D. (1998). How fitness structure affects subsolution acquisition in

genetic programming. In Koza, J. et al., editors, Proceedings of the Third Annual Genetic Program-

ming Conference, pages 269–277, Madison, WI, USA. Morgan Kaufmann.

O’Reilly, U.-M. and Oppacher, F. (1994). Program search with a hierarchical variable length repre-

sentation: Genetic programming, simulated annealing and hill climbing. In Davidor, Y. et al.,

editors, Parallel Problem Solving from Nature, number 866 in LNCS, pages 397–406, Jerusalem.

Springer-Verlag.

O’Reilly, U.-M. and Oppacher, F. (1995). Hybridized crossover-based search techniques for program

discovery. In Proceedings of the World Conference on Evolutionary Computation, volume 2, pages

573–578, Perth, Australia. IEEE Press.

O’Reilly, U.-M. and Oppacher, F. (1996). A comparative analysis of GP. In Angeline, P. and Kin-

near, Jr., K. E., editors, Advances in Genetic Programming 2, chapter 2, pages 23–44. MIT Press,

Cambridge, MA, USA.

Page, J., Poli, R., and Langdon, W. B. (1999). Smooth uniform crossover with smooth point mutation

in genetic programming: A preliminary study. In Poli, R. et al., editors, Genetic Programming,

Proceedings of the 3rd European Conference, volume 1598 of LNCS, pages 39–49, Goteborg, Swe-

den. Springer-Verlag.

Papadimitriou, C. and Steiglitz, K. (1982). Combinatorial optimization : algorithms and complexity.

Prentice Hall, Englewood Cliffs, NJ.

Pardalos, P. and Resende, M., editors (2002). Handbook of Applied Optimization. Oxford University

Press, New York, NY.

Pei, H. and Goodman, E. (2001). A comparison of cohort genetic algorithms with canonical serial

and island-model distributed ga’s. In Spector, L. et al., editors, Proceedings of the Genetic and

Evolutionary Computation Conference, pages 501–510, San Francisco, CA, USA. Morgan Kauf-

mann.

Pettey, C., Leuze, M., and Grefenstette, J. (1987). A parallel genetic algorithm. In Grefenstette, J., ed-

itor, Proceedings of the Second International Conference on Genetic Algorithms and Their Applications,

Hillsdale, NJ, USA. Lawrence Erlbaum Associates.

Pevzner, P. (2000). Computational Molecular Biology An Algorithmic Approach. MIT Press, Cambridge,

MA, USA.

BIBLIOGRAPHY 154

Platel, M., Clergue, M., and Collard, P. (2003). Maximum homologous crossover for linear genetic

programming. In Ryan, C. et al., editors, Genetic Programming, Proceedings of the 6th European

Conference, volume 2610 of LNCS, pages 200–210, Essex, UK. Springer-Verlag.

Poli, R. (2003). A simple but theoretically-motivated method to control bloat in genetic program-

ming. In Ryan, C. et al., editors, Genetic Programming, Proceedings of the 6th European Conference,

volume 2610 of LNCS, pages 200–210, Essex, UK. Springer-Verlag.

Poli, R. and Langdon, W. (1998a). On the search properties of different crossover operators in

genetic programming. In Koza, J. et al., editors, Proceedings of the Third Annual Genetic Program-

ming Conference, pages 293–301, Madison, WI, USA. Morgan Kaufmann.

Poli, R. and Langdon, W. (1998b). Schema theory for genetic programming with one-point

crossover and point mutation. Evolutionary Computation, 6(3):231–252.

Poli, R. and McPhee, N. (2001). Exact schema theorems for GP with one-point and standard

crossover operating on linear structures and their application to the study of the evolution of

size. In Miller, J. et al., editors, Genetic Programming, Proceedings of the 4th European Conference,

volume 2038 of LNCS, pages 126–142, Lake Como, Italy. Springer Verlag.

Poli, R. and McPhee, N. (2003a). General schema theory for genetic programming with subtree-

swapping crossover: Part i. Evolutionary Computation, 11(1):53–66.

Poli, R. and McPhee, N. (2003b). General schema theory for genetic programming with subtree-

swapping crossover: Part ii. Evolutionary Computation, 11(2):169–206.

Poli, R. and Page, J. (2000). Solving high-order boolean parity problems with smooth uniform

crossover, sub-machine-code gp and demes. Genetic Programming and Evolvable Machines, 1:37–

56.

Potter, M. and De Jong, K. (1994). A cooperative coevolutionary approach to function optimization.

In Davidor, Y. et al., editors, Parallel Problem Solving from Nature, volume 866 of LNCS, pages

249–257, Berlin. Springer-Verlag.

Potter, M. and De Jong, K. (2000). Cooperative coevolution: An architecture for evolving coadapted

subcomponents. Evolutionary Computation, 8(1):1–29.

Provine, W. (1986). Sewall Wright, Evolution, Selected Papers. The University of Chicago Press,

Chicago, IL, USA.

Punch, W. (1998). How effective are multiple populations in genetic programming. In Koza, J.

et al., editors, Proceedings of the Third Annual Conference on Genetic Programming, pages 308–313,

Madison, WI, USA. Morgan Kaufmann.

BIBLIOGRAPHY 155

Punch, W., Zongker, D., and Goodman, E. (1996). The royal tree problem, a benchmark for single

and multi-population genetic programming. In Angeline, P. and Kinnear, Jr., K., editors, Ad-

vances in Genetic Programming 2, chapter 15, pages 299–316. The MIT Press, Cambridge, MA,

USA.

Rechenberg, I. (1965). Cybernetic solution path of an experimental problem. Library Translation 1122,

Royal Aircraft Establishment, Farnborough, UK.

Reeves, C., editor (1995). Modern heuristic techniques for combinatorial problems. McGraw-Hill, Lon-

don.

Rosca, J. (1995a). Entropy-driven adaptive representation. In Rosca, J., editor, Proceedings of the

Workshop on Genetic Programming: From Theory to Real-World Applications, pages 23–32, Tahoe

City, CA, USA.

Rosca, J. (1995b). Genetic programming exploratory power and the discovery of functions. In

McDonnell, J. et al., editors, Proceedings of the Fourth Conference on Evolutionary Programming,

pages 719–736, San Diego, CA. MIT Press.

Rosca, J. (1997a). Analysis of complexity drift in genetic programming. In Koza, J. et al., editors,

Proceedings of the Second Annual Genetic Programming Conference, pages 286–294, Stanford Uni-

versity, CA. Morgan Kaufmann.

Rosca, J. (1997b). Hierarchical Learning with Procedural Abstraction Mechanisms. PhD thesis, De-

partment of Computer Science, The College of Arts and Sciences, University of Rochester,

Rochester, NY 14627, USA.

Rosca, J. and Ballard, D. (1995). Causality in genetic programming. In Eshelman, L., editor, Proceed-

ings of the Sixth International Conference on Genetic Algorithms, pages 256–263, Pittsburgh, PA,

USA. Morgan Kaufmann.

Rosca, J. and Ballard, D. (1996). Discovery of subroutines in genetic programming. In Angeline,

P. and Kinnear, Jr., K. E., editors, Advances in Genetic Programming 2, chapter 9, pages 177–202.

MIT Press, Cambridge, MA, USA.

Rosca, J. and Ballard, D. (1999). Rooted-tree schemata in genetic programming. In Spector, L. et al.,

editors, Advances in Genetic Programming 3, chapter 11, pages 243–271. MIT Press, Cambridge,

MA, USA.

Ryan, C. (1994). Pygmies and civil servants. In Kinnear, Jr., K., editor, Advances in Genetic Program-

ming, chapter 11, pages 243–263. MIT Press, Cambridge, MA.

BIBLIOGRAPHY 156

Ryan, C., Collins, J. J., and O Neill, M. (1998). Grammatical evolution: Evolving programs for an

arbitrary language. In Banzhaf, W. et al., editors, Proceedings of the First European Workshop on

Genetic Programming, volume 1391 of LNCS, pages 83–95, Paris. Springer-Verlag.

Shapiro, S., editor (1990). Encyclopedia of Artificial Intelligence. Wiley, New York, NY.

Siegel, S. (1956). Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill Book Company,

Inc., New York.

Smith, P. and Harries, K. (1998). Code growth, explicitly defined introns, and alternative selection

schemes. Evolutionary Computation, 6(4):339–360.

Smith, R. and Bonacina, C. (2003). Mating restriction and niching pressure: Results from agents

and implications for general EC. In Cantú-Paz, E. et al., editors, Proceedings of the Genetic and

Evolutionary Computation Conference, volume 2724 of LNCS, pages 1382–1393, Chicago, IL, USA.

Springer-Verlag.

Smith, R., Forrest, S., and Perelson, A. (1993). Searching for diverse, cooperative subpopulations

with genetic algorithms. Evolutionary Computation, 1(2):127–149.

Soule, T. and Foster, J. (1997). Code size and depth flows in genetic programming. In Koza, J. et al.,

editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 313–320,

Stanford University, CA, USA. Morgan Kaufmann.

Soule, T. and Foster, J. (1998). Effects of code growth and parsimony pressure on populations in

genetic programming. Evolutionary Computation, 6(4):293–309.

Soule, T. and Heckendorn, R. (2002). An analysis of the causes of code growth in genetic program-

ming. Genetic Programming and Evolvable Machines, 3(3):283–309.

Spector, L. (1996). Simultaneous evolution of programs and their control structures. In Angeline,

P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic Programming 2, chapter 7, pages 137–154.

MIT Press, Cambridge, MA, USA.

Spector, L. and Luke, S. (1996). Cultural tansmission of information in genetic programming. In

Koza, J. et al., editors, Proceedings of the First Annual Conference on Genetic Programming, pages

200–208, Stanford University, CA, USA. MIT Press.

Stoffel, K. and Spector, L. (1996). High-performance, parallel, stack-based genetic programming. In

Koza, J. et al., editors, Proceedings of the First Annual Conference on Genetic Programming, pages

224–229, Stanford University, CA, USA. MIT Press.

Tackett, W. (1994). Recombination, Selection, and the Genetic Construction of Computer Programs. PhD

thesis, University of Southern California, Department of Electrical Engineering Systems, USA.

BIBLIOGRAPHY 157

Tackett, W. and Carmi, A. (1994). The donut problem: Scalability and generalization in genetic

programming. In Kinnear, Jr., K. E., editor, Advances in Genetic Programming, chapter 7, pages

143–176. MIT Press, Cambridge, MA, USA.

Tanese, R. (1987). Parallel genetic algorithms for a hypercube. In Grefenstette, J., editor, Proceedings

of the Second International Conference on Genetic Algorithms and Their Applications, pages 177–183,

Hillsdale, NJ, USA. Lawrence Erlbaum Associates.

Tanese, R. (1989). Distributed genetic algorithms. In Schaffer, J., editor, Proceedings of the Third

International Conference on Genetic Algorithms, pages 434–439, San Mateo, CA, USA. Morgan

Kaufmann.

Tongchim, S. and Chongstitvatana, P. (1999). Speedup improvement on automatic robot program-

ming by parallel genetic programming. In Proceedings of IEEE International Symposium On In-

telligent Signal Processing and Communication Systems, pages 77–80, Thailand. IEEE Press.

Tongchim, S. and Chongstitvatana, P. (2000). Comparison between synchronous and asynchronous

implementation of parallel genetic programming. In Proceedings of the 5th International Confer-

ence for Artificial Life and Robotics, pages 251–254, Japan.

Turing, A. (1950). Computing machinery and intelligence. Mind, (59):433–460.

Ursem, R. (2002). Diversity-guided evolutionary algorithms. In Guervós, J. M. et al., editors, Parallel

Problem Solving from Nature, volume 2439 of LNCS, pages 462–471, Granada, Spain. Springer.

Whigham, P. (1995). Grammatically-based genetic programming. In Rosca, J., editor, Proceedings

of the Workshop on Genetic Programming: From Theory to Real-World Applications, pages 33–41,

Tahoe City, CA, USA.

Whitley, D., Rana, S., and Heckendorn, R. (1997). Island model genetic algorithms and linearly

separable problems. In Corne, D. and Shapiro, J., editors, Proceedings of AISB Workshop on

Evolutionary Computation, volume 1305 of LNCS, pages 109–125, Manchester, UK. Springer.

Wineberg, M. and Oppacher, F. (2003). Distance between populations. In Cantú-Paz, E. et al., ed-

itors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 2724 of LNCS,

pages 1481–1492, Chicago, IL, USA. Springer-Verlag.

Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE Transactions

on Evolutionary Computation, 1(1):67–82.

Wright, S. (1931). Evolution in mendelian populations. Genetics, 16:97–159.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In

Jones, D., editor, Proceedings of the Sixth International Congress of Genetics 1, pages 356–366.

BIBLIOGRAPHY 158

Zhang, B.-T. and Mühlenbein, H. (1995). Balancing accuracy and parsimony in genetic program-

ming. Evolutionary Computation, 3(1):17–38.

Zhu, Z.-Y. and Leung, K.-S. (2002). Asynchronous self-adjustable island genetic algorithm for multi-

objective optimization problems. In Fogel, D. et al., editors, Proceedings of the Congress on Evo-

lutionary Computation, pages 837–842, Honolulu, USA. IEEE Press.

