
Qu, Rong (2002) Case-based reasoning for course
timetabling problems. PhD thesis, University of
Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/10020/1/PhDThesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

CASE-BASED REASONING FOR

COURSE TIMETABLING PROBLEMS

by Rong Qu, BSc

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

August 2002

CBR for Course Timetabling Table of Content

2

Table of Content

Abstract...7
Acknowledgements...9
Table of Content ...2
List of Figures...4
List of Tables ..6
Chapter 1 Introduction...10

1.1 Background and Motivation..10
1.1.1 Background ...10
1.1.2 Motivation ...11
1.1.3 Why CBR for Timetabling ..12

1.2 Aims and Issues...14
1.3 Organisation of the Thesis...16

Chapter 2 Case-Based Reasoning (CBR)..18
2.1 What is CBR?..18

2.1.1 CBR Framework..19
2.1.2 Methodology and Issues in CBR...20

2.2 CBR in Research and Applications22
2.2.1 Research Topics in CBR ...23
2.2.2 CBR Applications and Systems ..28

2.3 Knowledge Discovery ...37
2.4 Chapter Summary..38

Chapter 3 Timetabling Problems...40
3.1 Timetabling Problems ...40

3.1.1 What is the Timetabling Problem?..41
3.1.2 Course Timetabling Problems ...42

3.2 AI Techniques for Educational Timetabling Problems.........43
3.2.1 Traditional Approaches in Educational Timetabling43
3.2.2 Meta-Heuristic Methods in Educational Timetabling43
3.2.3 Constraint Logic Techniques...49
3.2.4 Knowledge-Based Techniques ..51
3.2.5 Hyper-Heuristic Methods ..53
3.2.6 Decomposition in Timetabling..54

3.3 Chapter Summary..55
Chapter 4 Structured Cases in CBR for Course Timetabling Problems .57

4.1 Attribute Graphs for Course Timetabling Problems58
4.2 Implementation of the CBR System......................................60

4.2.1 The Graph Isomorphism Problem ...60
4.2.2 Retrieving Structurally Similar Cases63
4.2.3 Reuse and Adaptation of the Solutions66

4.3 A Simple Illustrative Example ..67

CBR for Course Timetabling Table of Content

3

4.4 Chapter Summary..69
Chapter 5 Improved CBR Attribute Graph Approach.............................71

5.1 Improved Retrieval of Structurally Similar Cases72
5.1.1 Partially Similar Cases with Differences...............................72
5.1.2 Similarity Measure ..74
5.1.3 Branch and Bound in Retrieval ...75
5.1.4 Reuse and Adaptation of the Solutions76
5.1.5 Penalty Function..78

5.2 Experiments with Different Case Bases78
5.2.1 Algorithm Complexity Evaluation ..80
5.2.2 Performance Evaluation ..84

5.3 Chapter Summary..90
Chapter 6 Multiple-Retrieval CBR for Course Timetabling91

6.1 Multiple-Retrieval Approach on a Decision Tree92
6.2 Adaptation on Multiple Cases Retrieved...............................96

6.2.1 Combining Sub-Solutions ...96
6.2.2 Graph Heuristic Method with Tournament Selection98
6.2.3 Penalty Function..98

6.3 Experiments and Results ...99
6.3.1 Case Bases with Simple Cases ..100
6.3.2 Case Bases with Complex Cases...102
6.3.3 Evaluation on Case Bases with Small Cases.......................104
6.3.4 Comparison on Retrieval Time in Different Case Bases105
6.3.5 Multiple-Retrieval CBR as the Initialisation Method

for Tabu Search ..108
6.4 Chapter Summary..110

Chapter 7 Knowledge Discovery in Hyper-Heuristic using CBR on
Course Timetabling ...112

7.1 CBR as a Heuristic Selector ..113
7.1.1 Knowledge Discovery on Heuristic Selection.....................114
7.1.2 Getting Started...115
7.1.3 Training on the Case Representation...................................117
7.1.4 Training on the Case Base...120

7.2 Chapter Summary..123
Chapter 8 Conclusions and Future Work ..124

8.1 Summary of the Structured CBR...124
8.1.1 Structured Representation in CBR124
8.1.2 Multiple-Retrieval Approach ..125

8.2 Summary on CBR as a Heuristic Selector...........................126
8.3 Future Work ..126

8.3.1 Improving the Current Structured CBR Approach..............126
8.3.2 Hybridisation within the Structured CBR Approach128
8.3.3 CBR as the Heuristic Selector ...129
References...132
Appendices ...158

CBR for Course Timetabling Table of Content

4

List of Figures

Figure 2-1 The CBR cycle (Aamodt and Plaza, 1994)...............................19
Figure 2-2 An example of nearest neighbour method with

feature-value pair representation ..23
Figure 4-1 Attribute graph of a course timetabling problem......................59
Figure 4-2 Matrices of attribute graph G of a course timetabling

problem ...61
Figure 4-3 A decision tree storing matrices of attribute graph G62
Figure 4-4 Matrices of attribute graph G’ for a target course

timetabling problem..63
Figure 4-5 An example of similarity measure between cases65
Figure 4-6 Two retrieved cases from case base..68
Figure 5-1 Cases partially similar with some differences with

case in Figure 5-2..73
Figure 5-2 A course timetabling problem represented by an

attribute graph ...73
Figure 5-3 Schematic diagram of the CBR system used for evaluation.....79
Figure 5-4 Time of building case bases of 15-simple, 15-complex

and 20-simple cases ..81
Figure 5-5 Retrieval time in different case bases for target

cases (upper: 5-course; middle: 10-course; lower:
15-course target cases)..83

Figure 5-6 Percentage of target cases that retrieve case(s)
from different case bases ..87

Figure 6-1 Schematic Diagram of the Multiple-Retrieval CBR System92
Figure 6-2 New attribute graph generated after each retrieval93
Figure 6-3 Combining the solutions of the sub-problems97
Figure 6-4 Penalties of timetables by using graph heuristic (GH)

and CBR with case bases of simple cases (upper: small
cases; lower: large cases)..101

Figure 6-5 Penalties of timetables by using graph heuristic (GH)
and CBR with case bases of complex cases (upper: small
cases; lower: large case) ...103

Figure 6-6 Penalties of timetables by using graph heuristic (GH)
and CBR with case bases of small cases (upper: complex
cases; lower: simple cases) ...105

Figure 6-7 Retrieve time on case bases of simple cases (upper:
simple cases; lower: complex cases)107

Figure 6-8 GHT and multiple-retrieval CBR with small cases
as the initialisation method for Tabu Search109

CBR for Course Timetabling Table of Content

5

Figure 7-1 Screenshot of the 2-stage knowledge discovery
process for course timetabling ..114

Figure 7-2 Schematic Diagram of Knowledge Discovery on
Featrues and Their Weights ..119

Figure 7-3 Screenshot of the Case Bases and Target Cases
for Course Timetabling Problems...121

CBR for Course Timetabling Table of Content

6

List of Tables

Table 4-1 Node attributes of course timetabling problem..........................58
Table 4-2 Edge attributes of course timetabling problem58
Table 4-3 Solutions after substitution by using isomorphism68
Table 5-1 Percentages of target cases that find case(s) from the

15-course simple case base ...84
Table 5-2 Percentages of target cases that find cases from the

15-course complex case base ..85
Table 5-3 The percentages of target cases that find cases from

the 20-course case base ...86
Table 5-4 Penalties and schedule steps by graph heuristic (GH) and

CBR approach with different 15-course simple case bases88
Table 5-5 Penalties and schedule steps by graph heuristic (GH) and

CBR approach with different 15-course complex case bases ...88
Table 5-6 Penalties and schedule steps by graph heuristic (GH) and

CBR approach with different 20-course case bases..................88
Table 7-1 Accuracies of system performance on initial and trained

case bases ..122

CBR for Course Timetabling Abstract

7

Abstract

The research in this thesis investigates Case-Based Reasoning (CBR), a

Knowledge-Based Reasoning technique that proved to be capable of

providing good solutions in educational course timetabling problems.

Following the basic idea behind CBR, experiences in solving previous

similar timetabling problems are employed to find the solutions for new

problems.

A basic CBR system that is hierarchically organized with structured

knowledge representations by attribute graphs is proposed in Chapter Four.

The system is then further improved to solve a wider range of problems,

which is described in Chapter Five. Evaluations on a large number of

experiments indicate that this approach could provide a significant step

forward in timetabling and scheduling research.

This basic system works well on relatively small problems. To deal with

this drawback a multiple-retrieval approach that partitions large timetabling

problems into small solvable sub-problems is presented in Chapter Six.

Good results are obtained from a wide range of experiments.

CBR for Course Timetabling Abstract

8

In Chapter Seven, a new idea is introduced in CBR for solving timetabling

problems by investigating the approach to select the most appropriate

heuristic method rather than to employ it directly on the problem, in the

attempt to raise the level of generality at which we can operate. All the

evidence obtained from the first stage experiments indicates that there is a

range of promising future directions.

Finally in Chapter Eight the results of the work are evaluated and some

directions for future work are present.

CBR for Course Timetabling Acknowledgements

9

Acknowledgements

I would like to thank my supervisors, Professor Edmund Burke, Dr. Bart

MacCarthy and Dr. Sanja Petrovic for their valuable advice throughout the

whole course of my research.

Also thanks to my husband, YiJun Xue, for his consistent support and my

lovely daughter, Jessica Xue, for giving me immense motivation in my

study. Thanks my parents, this thesis would not have been possible without

their consistent support.

To all the ASAP group members for their effort in making this group a

harmonious environment in which to work.

CBR for Course Timetabling Introduction

10

Chapter 1 Introduction

1.1 Background and Motivation

1.1.1 Background

In real-world problem solving, people usually use experience that was

successful in solving previous, similar problems. Knowledge-Based

techniques in Artificial Intelligence (AI) mimic the reasoning process

people use by modelling the experiences, storing them in a knowledge base

and reusing those experiences when solving new problems. In Expert

Systems, the experiences are usually modelled as rules, which will be used

to construct the solutions for new problems. In Case-Based Reasoning

(CBR) (Kolodner, 1993), experiences are modelled into a different form as

concrete problems with their solutions (cases). New problems are solved

based on solutions of retrieved cases in previous similar situations from the

knowledge base (case base).

The mechanism behind CBR is supported by the study of cognitive

computer science and psychology that human reasoning based on

CBR for Course Timetabling Introduction

11

experiences collected from previous problem solving in similar situations

(Leake, 1996). In many real-world problem solving situations, people

recall experiences in solving previous similar problems and reuse them

with small modifications according to the different requirements from

those of the previous ones. Reasoning is based on the assumption that

‘similar problems may have similar solutions’ and ‘the types of problems

an agent encounters tend to recur’ (Leake, 1996). In problem domains

where that assumption holds, previous solutions may be reused as good

starting points in solving new similar problems. CBR’s problem solving by

reusing the solutions of similar problems mimics the behaviour of experts

and avoids reasoning from scratch.

1.1.2 Motivation

CBR is a knowledge-based paradigm that attempts to reuse previous

knowledge for current, similar problems. This research investigates how

CBR, a quite different methodology from many other AI and Operational

Research (OR) techniques in timetabling, can be employed to solve the

problem effectively. In schools and universities, altering “last year’s

timetable” to create a solution for the problem in hand is an approach

favoured by many timetabling officers. This is because the requirements in

the new problem usually do not change significantly from previous

instances. Thus parts of the previous timetable could be reused and a

significant amount of effort and time could be saved.

CBR for Course Timetabling Introduction

12

1.1.3 Why CBR for Timetabling

One of the important contributions of Knowledge-Based techniques is their

application in problems where rich experiences and knowledge are

available. However, in practice, formalising experiences as a set of rules in

complex domains such as timetabling may lead to the well-known

bottleneck problem of knowledge acquisition. For example, in rule-based

Expert Systems, collecting experiences and knowledge, modelling them in

the form of rules and building up a complete rule base may take a

considerable amount of work. Missing out just one rule may lead to a

complete failure in reasoning. In some problem domains, it is impossible to

ensure completeness. Also, sometimes the knowledge in some

ill-structured domains (such as timetabling), with too many possible

details, is difficult, or impossible, to be modelled explicitly as rules.

CBR is potentially a very good technique for addressing the bottleneck

problems mentioned above (MacCarthy and Jou, 1996; Schmidt, 1998).

Collecting cases, which can implicitly capture the knowledge, rather than

modelling it as rules in timetabling may be relatively easy. When no exact

match can be found from the case base, which is usually the case in

complex problems, a similar case may be retrieved and the solution of this

related problem might also be applicable to provide a good starting point

for the new problem after a small amount of adaptation. By employing

matching, selection and searching techniques, CBR is potentially good at

solving complex timetabling problems, avoiding a large amount of

computation.

CBR for Course Timetabling Introduction

13

Other problems that may exist in Knowledge-Based Systems rise from the

evolved new experiences over time in real-world problem solving. In this

case the whole rule-based system may need to be re-developed to build in

the rules of these new experiences. In CBR, however, the system can be

updated (to reflect new experiences) by retaining the newly solved problem

(learning ability in CBR). Thus system performance can be improved by

learning and embedding new knowledge automatically, saving a lot of

human effort and solving new problems efficiently.

Timetabling problems are usually very large and have complicated

constraints, which can be easily mapped as constraint satisfaction problems

(CSP) (Carter and Laporte, 1995&1997). CBR may also be a valuable

technique for such problems as it puts emphasis indirectly on

constraint-directed search.

The observations presented above provide the motivations for our research

on CBR for timetabling. To our knowledge, no other research has been

reported applying CBR specifically to educational timetabling problems.

However, recent work has been undertaken to investigate using CBR for

nurse rostering problems, which is a special type of timetabling problem

determining the shifts of staff in hospital over a fixed period of time (Scott

and Simpson, 1998; Petrovic, Beddoe and Berghe, 2002).

CBR for Course Timetabling Introduction

14

1.2 Aims and Issues

There are many issues in CBR that have been investigated in research and

practice. They can be mainly classified into the following five groups:

• Representation – How the problem should be represented to

properly describe its situation?

• Indexing – How the indices should be selected so that cases can be

organised in the case base and retrieved in certain situations?

• Retrieval – The most similar and reusable cases need to be retrieved

efficiently and effectively from the case base?

• Adaptation – Retrieved cases need to be adapted using domain

knowledge, according to the different requirements of the new

problem;

• Retention – Newly solved cases need to be selected and stored into

the case base. How should this be done so that the new knowledge

in either success or failure can be learned?

Some surveys are available presenting the research on these issues (Marir

and Watson, 1994; Mantaras and Plaza, 1997). Each of them may form a

significant research topic in its own. To build an effective system in

complex problem domains, these issues need to be addressed dependently

and co-operatively. This thesis will investigate mainly the first four issues

on CBR in timetabling problems. The most important issues addressed are:

CBR for Course Timetabling Introduction

15

• Representation – With the significant complexity in real world

situations, timetabling problems are difficult to formalise. How to

represent them to explore the deeper knowledge forms one of the

most important objectives;

• Case base management – How should cases be indexed in the case

base so that relevant cases can be retrieved effectively?

• Retrieval – How can the retrieval be carried out so that we can find

reusable timetables efficiently from the case base?

• Adaptation – Retrieved cases are usually different from the new case.

Research issues include how to adapt the retrieved timetables into the

new situation concerning the domain knowledge.

Timetabling problems are a special type of scheduling problems, for which

a wide range of techniques and approaches in both AI and OR have been

studied (Burke and Ross, 1995; Barddadym 1995; Carter and Laporte,

1995&1997; Burke and Carter, 1997; Schaerf 1999; Burke and Erben,

2000; Burke, and Causmaecker, 2002). This thesis presents a major

investigation of CBR for course timetabling, aiming at establishing a

general framework of CBR for a range of scheduling problems.

CBR for Course Timetabling Introduction

16

1.3 Organisation of the Thesis

In this chapter we presented the background and motivation of applying

CBR for timetabling problems. The remaining chapters of this thesis are

organised in the following way:

Chapter Two reviews the research classified into different categories and

applications in CBR. In particular, current research on CBR in scheduling

is discussed.

Chapter Three introduces educational timetabling problems and presents

different methods in research and practice for course timetabling.

Chapter Four presents a basic structure of our proposed CBR system

employing a structured representation by attribute graphs. The mechanism

is illustrated theoretically and a simple example is given to explain the

retrieval, re-use and adaptation of structured cases.

Chapter Five investigates the issues of retrieval of a wider range of

reusable cases. Evaluations on the system performance are given by

experiments on a number of systematically constructed case bases.

Showing the promising results on relatively small problems, the system

will be used as the basis for developing a multiple-retrieval approach.

Chapter Six describes a multiple-retrieval approach based on the basic

CBR system already developed, aiming at solving large course timetabling

problems. Partitioning and composition techniques are used to decompose

the problem into solvable sub-problems and to combine the sub-solutions

into a final solution.

CBR for Course Timetabling Introduction

17

Chapter Seven presents a new approach using CBR as the selector of good

problem-solving heuristics/strategies in solving previous similar problems.

Problem-solving heuristics, not the concrete solutions, are reused to help

constructing new timetables.

Chapter 8 presents concluding comments and some directions for future

research work on CBR on timetabling problems.

CBR for Course Timetabling Case-Based Reasoning

18

Chapter 2 Case-Based Reasoning (CBR)

2.1 What is CBR?

Case-Based Reasoning (Kolodner, 1993) is a Knowledge-Based Reasoning

technique that solves problems by retrieving the most similar previous

problems (cases) from a store called the case base and by reusing the

knowledge and experiences from these cases. If necessary, the retrieved

solutions or problem solving strategies are adapted (using domain

knowledge) so that they are applicable for the new problem. The solved

new problems may be retained by updating the case base. Leake (1996)

described CBR as:

“In CBR, new solutions are generated not by chaining, but by

retrieving the most relevant cases from memory and adapting

them to fit the new situations.”

In CBR, all the problems are represented as cases, which were defined by

Kolodner and Leake (1996) as:

CBR for Course Timetabling Case-Based Reasoning

19

“A case is a contextualized piece of knowledge representing an

experience that teaches a lesson fundamental to achieving the

goals of the reasoner.”

A case usually has two major parts: the problem itself with the context

describing the environments it should be retrieved; and the solution of the

problem or the lesson it will teach. Throughout this thesis, source case will

be used to denote the cases in the case base; target case will be used to

denote the new problem to be solved.

2.1.1 CBR Framework

CBR can be seen as a 4 REs’ cyclic process: REtrieve, REuse, REvise and

REtain (Aamodt and Plaza, 1994). This cycle is cited in Figure 2-1 below:

Figure 2-1 The CBR cycle (Aamodt and Plaza, 1994)

CBR for Course Timetabling Case-Based Reasoning

20

From Figure 2-1 we can see that when a target case is input into the CBR

cycle, the following steps will be taken to solve it.

1. Retrieve – the most similar source cases efficiently;

2. Reuse – the retrieved solutions to solve the target case (new case);

3. Revise – the solution concerning the new requirements;

4. Retain – certain solved target cases into the case base.

2.1.2 Methodology and Issues in CBR

CBR methodology usually concerns the following issues so that different

components can work co-operatively, contributing to efficient and effective

system performance.

2.1.2.1 Case Representations

CBR’s problem solving depends heavily upon the case representation that

gives the important information for reasoning. Especially in complex

problem domains, the cases need to be represented in a way that describes

the sensible features of the problem that affect the solutions. Thus

comparisons between cases can be carried out between source cases and

target cases to find really reusable source cases.

CBR for Course Timetabling Case-Based Reasoning

21

2.1.2.2 Indexing

Indexing in CBR includes choosing proper indexing vocabulary that can

distinguish between particular cases in certain situation within the case

base. In different problem domains, indices could be abstract or specific

details of the case, surface features or deep descriptions of the problem, etc.

A good index should cover the correct and complete dimensions of the

problem thus allowing an efficient matching between cases.

2.1.2.3 Case Base Maintenance and Management

It is usually easy to construct the initial case base with just a few cases as

the starting point. Gradually users can update it interactively, or the system

may retain some solved target cases automatically. Thus CBR inherently

has a learning ability and the knowledge stored may evolve, increasing the

system performance during the problem solving.

2.1.2.4 Adaptation

Adaptation, as one of the most difficult tasks (especially in a complex

problem domain) in CBR, relies on both the retrieval of proper cases that

need less adaptations and the utilisation of appropriate domain knowledge.

Traditional methods include substitution method that replaces some part of

the retrieved case, and transformation method that transfer some part of the

retrieved case to fit the constraint to a new situation (see more details in

CBR for Course Timetabling Case-Based Reasoning

22

Kolodner, 1993). Recent research employing heuristic methods provides

many promising prospects. This will be presented in the section under the

heading “Hybridisation with CBR”.

2.1.2.5 Similarity Measure

Similarity assesses the right cases to be retrieved. In most of the CBR

system, it considers the proper features and usually their importance for

comparison between cases. Some researchers judge the similarity by

concerning the adaptation that needs to be carried out (Smyth and Keane,

1998).

2.2 CBR in Research and Applications

CBR has been very successful in a wide range of problems over the last

decade (Kolodner, 1993). A vast amount of work has been carried out

concerning a wide range of issues and different techniques in CBR

(Mantaras and Plaza, 1997). Concerning the interests of this thesis, in the

following sections a review will be given mainly on case representation,

decomposition techniques and hybridisation in CBR, from both the

research and application points of view. Some open issues on CBR in

scheduling are discussed.

CBR for Course Timetabling Case-Based Reasoning

23

2.2.1 Research Topics in CBR

2.2.1.1 Structurally Represented Cases

Case representation forms one of the most important issues in CBR,

especially in problem domains concerning more complicated applications

(e.g. scheduling, design and planning). Traditional case representation

typically used a flat form of feature-value pairs (Kolodner, 1993). A value

is given to describe different scales of these features in the problem. The

nearest-neighbour method is extensively used to measure the similarity

between two cases that gives every feature a weight and results in a

weighted sum. Figure 2-2 presents an example of the similarity measure

between New case and Case0 and Case1 employing the nearest-neighbour

approach shown in the formula. New case, Case0 and Case1 are general

timetabling problems represented in the form of feature-value pairs.

∑ ∑×−=
= =

n

i

n

i
iiiits wwtssimccS

0 0
/])([),(

sim(si-ti)Feature Case0 Case1 Weight New case
Case0 Case1

Name TTP0 TTP1 0 TTP
No. of events 20 40 .5 30 0.33 0.33

No. of timeslots 7 20 .8 12 0.42 0.67
No. of students 600 1500 .2 1200 0.50 0.25
No. of rooms 5 12 .5 4 0.25 2.00
No. of clashes 10 23 .9 11 0.09 1.09

No. of consecutive events 3 10 .5 10 0.70 0.00
No. of non-consecutive events 2 12 .5 7 0.71 0.71

No. of before/after events 3 8 .3 4 0.25 1.00
No. of events with >5 clashes 8 23 .9 12 0.33 0.92

Similarity with new case 0.37 0.83

Figure 2-2 An example of nearest neighbour method with feature-value pair representation

CBR for Course Timetabling Case-Based Reasoning

24

However, in complex domains where problem features are complicated and

heavily interrelated, such as timetabling problems that are seen as

constraint satisfaction problems, this flat representation is not adequate to

represent the important situations where the problems occur, which in turn

raises the problem of recognising the correspondence between the features

in cases and qualities of the solutions. The traditional representation may

lead to the retrieving of cases that are not strongly reusable and the

adaptation may take as much effort as scheduling from scratch. A recent

overview (Mantaras and Plaza, 1997) pointed out that the feature-value

representation is the most severe limitations of existing CBR systems. This

representation is not adequate for knowledge-rich applications that have

higher-order relations between features. Smyth and Keane (1998)

questioned the similarity assumption in CBR and introduced a concept

called “adaptation-guided retrieval”. It is unwarranted to assume that the

most similar case is also the most appropriate from the re-use perspective.

Similarity must be augmented by a deeper knowledge about how easy it is

to modify a case to fit a target problem. Timetabling problems require

much more complex case representations.

As the development of CBR has progressed, research has been conducted

on more complex applications using more sophisticated methods that

structurally represent the cases using graphs, semantic networks or trees,

etc (Gebhardt, 1997), but no general theory or methodology has been

identified.

CBR for Course Timetabling Case-Based Reasoning

25

Jantke (1993) defined the similarity as the mapping into a highly structured

partially ordered space. The approach was studied further (Matuschek and

Jantke, 1997) to formalise the structural similarity, with the aim of making

it more flexible and expressive. Böner et al. (1996) proposed a CBR system

to find the common structures between the target problem and a set of

candidate cases that were transformed into a structural representation.

Structural similarity is defined using maximum common sub-graphs that

are employed as prototypes thus reducing much of the memory retrieval

effort. Two systems, CHIRON and CAPER, were developed (Sanders,

Kettler and Hendler, 1997) to show how the cases in graph-structured

representation organised as semantic networks can support Case-Based

Planning. The benefits and cost associated with graph-structured

representation were discussed. Ricci and Sender (1998) used labelled trees

associated with concepts to represent structured cases and the similarity

measure takes into account both the structures and labels. A set of

algorithms was explored to solve sub-tree-isomorphism problems.

Praehofer and Kerschbaummayr (1999) proposed an approach that applied

CBR in system design. Cases were structurally modelled and the retrieval

was based on a graph matching algorithm (Messmer, 1995), which is also

studied in this thesis. Similarity was assessed by computing the degree of

fulfilment of requirements in the design.

The FABEL project (Gebhardt, 1995) and a survey (Gebhardt, 1997)

provided more details of some existing systems that employed structured

cases, which were classified into five groups: restricted geometric

CBR for Course Timetabling Case-Based Reasoning

26

relationships; graphs; semantic nets; model-based similarities and

hierarchically structured similarities.

2.2.1.2 Hybridisation with CBR

CBR is inherently suitable to be integrated with other AI/OR techniques

especially in complex applications (Hunt and Miles, 1994). Some work

combining CBR with other AI/OR techniques in some domains has shown

the merits of this integration. For example rule-based techniques were used

to solve problems where domain knowledge was understood reasonably

well and CBR can be used when rule-based techniques failed (Leake, 1995;

Surma and Vanhoof, 1998; and Golding and Rosenbloom, 1997).

Constraint satisfaction techniques were also widely employed in

integration with CBR (Sqalli, Purris and Freuder, 1999). This may also

indicate the possible benefits from integrating AI/OR techniques with CBR

in solving complex scheduling problems. One example in Case-Based

Scheduling is CABINS (Miyashita and Sycara, 1994&1995) that utilised

constraint satisfaction techniques to carry out the repair actions retrieved

by CBR in solving dynamic job shop scheduling problems.

From the Cased-Based Reasoning Perspective

In CBR, the matching problems in retrieval could be solved by employing

meta-heuristic methods such as Genetic Algorithms (GAs) (Shin and Han,

CBR for Course Timetabling Case-Based Reasoning

27

1999). Recently, adaptation in a wide range of CBR applications employed

GAs other than traditional adaptation methods and showed promising

results (Purvis and Athalye, 1997; Garza and Maher, 1999). Adaptation is

one of the most difficult steps in CBR as it needs to integrate domain

knowledge. Different AI techniques can be particularly suitable for using

this knowledge to search for better solutions. Some work on constraint

satisfaction techniques (Purvis and Pu, 1995) in adaptation has also been

carried out to formalise this process on ill-structured domains.

From the Artificial Intelligence Search Methods Perspective

In Tabu Search, operator selection can be helped by employing CBR to

improve the performance (Grolimund and Ganascia, 1997). GAs may

benefit in solving optimisation problems from proper injection of cases into

populations during the search (Louis and Li, 2000).

Initialisation plays an important role in Evolutionary Algorithms (Burke

and Newall, 1998). With the assumption that similar problems may have

similar solutions, retrieved good solutions of similar cases may be near to

the good/optimal solution of the target case. Solutions of the source cases

as initial starting points of different heuristic methods can help the search

move toward the high quality/optimal solutions in the search space. This

may indicate a high level of potential in investigating initialisation in AI

search methods by CBR. Research on using CBR to seed GAs has shown

different behaviour in solving optimisation problems (Oman and

CBR for Course Timetabling Case-Based Reasoning

28

Cunningham, 2001). Investigations on many potential issues such as how

to select cases for seeding, etc need to be carried out.

2.2.1.3 Decomposition Techniques in CBR

In CBR, decomposition techniques have been mostly employed in design

and planning domains where the cases were decomposed by sub-goals or

abstractions, and the case bases were usually organised hierarchically.

Marir and Watson (1995) proposed an approach that broke down the plans

into small adaptable sub-problems by organising the refurbishment cases as

a hierarchical structure composed of cases and sub-cases. Watson and

Perera (1998) studied a case representation that decomposed problems of

estimating construction costs into sub-problems, which were stored into a

set of small case bases rather than a single large case base. This

representation provided higher accuracy of retrieval than that of simple flat

representations. Smyth, Cunningham and Keane (2001) presented an

approach that decomposed cases by abstraction and solved the problem by

reusing multiple cases at various levels of abstraction.

2.2.2 CBR Applications and Systems

CBR has been studied in many problem-solving applications. Successful

areas include planning, design, explanation and diagnosis, legal advice,

health and education (Mantaras and Plaza, 1997). A timetabling problem

can be thought of as a special case of scheduling problems. The review in

CBR for Course Timetabling Case-Based Reasoning

29

this section will be concentrate on CBR in scheduling and optimisation

problems. Related problems such as planning and design problems will

also be discussed.

2.2.2.1 CBR in Scheduling and Optimisation Problems

There are relatively few publications specifically on Case-Based Reasoning

in scheduling problems. A brief survey of CBR in scheduling was given by

MacCarthy and Jou (1996). Three Case-based scheduling systems in

scheduling, SMARTplan, CBR-1 and CABINS, were reviewed in the

survey and a general framework for applying CBR on a wide range of

scheduling environments concerning the dynamic nature of the real-world

problems was proposed. The authors claimed that CBR is a very good

approach in expert scheduling systems and emphasised potential research

areas in dynamic scheduling environments. A review of the current

research in Case-based scheduling is given in the following two

sub-sections: case-based reactive scheduling and other studies in

case-based scheduling.

Case-Based Reactive Scheduling

One of the critical problems in scheduling is its dynamic nature (which is

also referred to as ‘Reactive Scheduling’ in some research, see Smith,

1994; Szelke and Kerr, 1994), which describes situations where unexpected

events (e.g. new user requirements, real-time changing environments) often

occur. In some knowledge based techniques that solve problems from

CBR for Course Timetabling Case-Based Reasoning

30

scratch, small changes in scheduling may lead to a re-construction and thus

may not provide a high quality new schedule in time.

CBR is inherently a good technique to handle the uncertainty in real-time

dynamic scheduling problems (MacCarthy and Ye, 1997; Schmidt, 1998).

With the ability to “remember” the most appropriate repairing strategies in

previous similar environments, CBR is capable of providing

good/sub-optimal complete solutions in a bounded time, which is one of

the key requirements in real-world scheduling problems to repair a

schedule to satisfy the new requirements quickly. Current case-based

scheduling approaches are focused on applications of reactive scheduling.

The CBR-1 project (Bezirgan, 1993) used CBR in a toy car job-shop

scheduling problem to provide rules in dynamic environment as early as

possible. However, the processing time of the system was not guaranteed

because of the repeated retrieval and adaptation. The demand on memory

may also lead to an efficiency problem.

Miyashita and Sycara (1994&1995) presented the CABINS system that

selected heuristic repair actions in job shop scheduling problems, thus

dynamically guiding the search procedure. Constraint satisfaction

techniques were used incrementally to carry out these retrieved repair

actions on a complete (but sub-optimal) seed schedule.

MacCarthy and Jou (1995) proposed a CBR system to solve scheduling

problems involving sequence dependent set up times. They also reviewed

different research issues and concluded that using CBR techniques might

CBR for Course Timetabling Case-Based Reasoning

31

potentially improve problem solving in scheduling problems that are

inherently dynamic, uncertain and complex.

Dorn (1995) proposed a CBR approach integrated with an iterative

improvement method in the steel industry. The schedules retrieved by CBR

were optimised by an iterative improvement method. Related work and the

possible problems in implementing the approach were discussed.

Szelke and Markus (1997) developed a reactive scheduler, CBR/L, for

complex dynamic manufacturing shop floor problems. Cases modelling the

supervisory behaviours in industry were organised hierarchically to handle

complex schedule repairs in fast changing environments and store the

long-term valuable real-world knowledge.

Schmidt (1998) proposed a problem-solving CBR framework with the

theory of scheduling to interactively make decisions in production planning

problems. Well-known scheduling strategies/tactics associated with

problems, which were represented by “transformation graphs”, were

retrieved to solve target problems. The author claimed that the approach

was applicable in reactive scheduling and pointed out work that needed to

be done to model the scheduling problems mathematically.

Other Studies in Case-Based Scheduling

Research on case-based scheduling in a variety of scheduling and

optimisation problems exist, employing a number of approaches

representing cases in different ways and different techniques including

Constraint Satisfaction techniques and Graph Heuristic methods.

CBR for Course Timetabling Case-Based Reasoning

32

Koton (1989) proposed the SMARTplan CBR system for a large-scale

airlift management problem. The case base was organised into a two-tiered

structure with the abstract features and the actual cases to reduce the

retrieval cost significantly. Abstraction techniques were used in this system

to deal with large problems with many features. However, the information

of the later work in developing the system is not available from the

literature and has not been reported eloquently.

Hennessy and Hinkle (1992) presented a CBR system, Clavier, for solving

the autoclave management and loading problem. The system worked

successfully in easily retrieving the autoclave loads that the experts would

have chosen. The advantages of knowledge acquisition and representation

and the difficulties of validating the CBR system for commercialisation in

industrial scheduling were discussed.

Cunningham and Smyth (1997) illustrated two successful CBR approaches

in scheduling using skeletons and portions of retrieved schedules. The

approaches showed efficient performances in providing good quality

solutions in less-complex scheduling problems. However the successful

reusing of the retrieved cases would depend on proper adaptation methods

and the retrieval time may increase linearly with the size of the case base.

Scott et al. (1998) proposed a CBR approach integrating Constraint Logic

Programming in a nurse rostering problem. Cases of generalised high-level

patterns of workforce allocation were used. However, the cases were

relatively simple and more sophisticated details such as particular nurse

CBR for Course Timetabling Case-Based Reasoning

33

preferences could be added into the cases to make the problem instances

more realistic.

In this thesis we propose a CBR approach to solve educational course

timetabling problem, which are modelled as attribute graphs. The cases in

the case base with similar constraints are retrieved for reuse and a graph

heuristic method is used for adaptation. When dealing with larger

real-world problems, a multiple-retrieval process partitions the attribute

graphs of the target case and a set of retrieved cases is reused by a

combination technique.

Open Issues in Case-Based Scheduling

• Representation Issues in Case-Based Scheduling

As one of the most important issues in CBR, representation needs to

describe the complex scheduling problems concerning indexing and

retrieval. From the work reviewed above on case-based scheduling,

we observed that representations in all the existing systems or

approaches fall into three types:

1) Well-known repair strategies/tactics or optimisation heuristics in

scheduling problems are either modelled as cases or associated

with cases of actual problems. These strategies would be retrieved

to guide the incremental repairs of a seed schedule. (See

references cited in sub-section “Case-Based Reactive Scheduling”

except Dorn, 1995). Application areas of all the reported work of

this type are dynamic/reactive scheduling problems.

CBR for Course Timetabling Case-Based Reasoning

34

2) Whole scheduling problems are represented as cases including all

the necessary details. Parts/components of a set of retrieved

schedules are combined to compose the new schedule. (See

Hennessy and Hinkle, 1992; Cunningham and Smyth, 1997;

Burke et al. 2001b in the sub-section “Other Studies in

Case-Based Scheduling”). The adaptation in these approaches

usually needs to be carefully conducted to retain the highly

optimised structures in components of the retrieved schedules. As

the whole problems with all details are stored in the case base, this

approach may suffer from the efficiency problem of retrieval on

the case base that might be large.

3) Problems are abstracted in the form of high-level knowledge

structures or generalised patterns. (See Koton, 1989; Dorn, 1995;

Scott and Simpson, 1998). Appropriate abstract features or

generalised schedule patterns, and the level of related and

representative details of the cases need to be carefully dealt with

to ensure an efficient retrieval that classifies the target cases to

reusable cases.

Some of the research on case-based scheduling pointed out that it

was impractical to represent the whole problem as a case to solve

target problems (Miyashita and Sycara 1995; Dorn, 1995;

Cunningham and Smyth 1997, Burke et al. 2001b). Real-world

scheduling problems are usually very large and complex, so in

practice it is rare that a whole scheduling problem can be seen as

CBR for Course Timetabling Case-Based Reasoning

35

similar to another previous scheduling problem. Thus all the current

research reported here either reuses repair strategies on a seed

schedule, abstracted structures or patterns of previous schedules. In

the situation where cases represent the whole problem, the

sub-schedules of multiple cases corresponding to small matching

parts of target case were reused to compose the new schedule, aiming

at reusing the knowledge embedded in parts of the retrieved

schedules to build a high quality schedule.

• General Methodology of Case-Based Scheduling

Due to the specific requirements and complicated characteristics in

scheduling problems, so far no general mechanism for CBR in

scheduling can be identified as being applicable in solving a wide

range of scheduling problems. Some work has proposed general

frameworks of CBR in scheduling (MacCarthy and Jou,

1995&1996). However, a deep study on standardisation of CBR in

scheduling needs further investigation to develop an effective and

flexible methodology that can be adopted to scheduling problems

with specific requirements.

• Case Base Maintenance in Case-Based Scheduling

Due to their complexity, scheduling problems have been seen as ill

structured and poor-understood. In case-based scheduling, good case

base management is needed to obtain a high quality performance on

efficient and effective retrieval. The issues include:

CBR for Course Timetabling Case-Based Reasoning

36

1) Selecting appropriate indices to properly organise the source cases

so that retrieval can find reusable cases efficiently;

2) Selecting representative and necessary source cases so that the

memory required does not lead to the efficiency problems;

3) Retaining carefully selected new learned cases for a case base

without redundancy.

Although many researchers claimed that knowledge acquisition is

easier in CBR, some problems do exist because of the complicated

and sometimes interrelated constraints in scheduling problems. In

this poorly understood area, it is difficult to detect the features that

affect the retrieval and reuse of similar source cases. Current

methodology on research in case-based scheduling is still far from

being a mature research mechanism.

2.2.2.2 Case-Based Planning

Scheduling problems can be classified as a specific type of planning

problem, which was one of the most important areas in CBR and has been

heavily studied (Veloso, Munoz-Avila and Bergmann, 1996). It has been

defined to be “constructing a course of actions to achieve a specified set of

goals when starting from an initial situation” (Bergmann et al, 1998).

Scheduling “deals with the allocation of scarce resources to tasks over

time. It is a decision-making process with the goal of optimising one or

CBR for Course Timetabling Case-Based Reasoning

37

more objectives” (Pinedo, 1995). In some research it is also claimed that in

practice there is no distinct differences between them (Smith, Frank and

Jonsson, 2000).

CBR is a suitable methodology for both planning and scheduling

(MacCarthy and Ye, 1997). Case-Based Planning “is the idea of planning

as remembering” (Hammond, 1990) that simulates the real-world planning

problem solving of experts who modify previous plans according to the

new requirements. One of the difficulties in Case-Based Planning is that

there are too many features in the problem and thus representations become

one of the most important issues (Arnold and Janke, 1994; Bergmann and

Wilke, 1995; Marefat, 1997; Tah, Carr and Howes, 1999). Most of the

work employs abstraction techniques (Bergmann and Wilke, 1995&1996)

where different levels of information of source cases are represented and

usually organised hierarchically in the case bases (Arnold and Janke, 1994;

Prasad, 1995; Macedo et al., 1996). In other research, multiple cases are

retrieved and sub-plans are combined for the target case (Tah, Carr and

Howes, 1999). An in-deep study is required on the abstraction that ignores

unnecessary details and also keeps enough concrete information so that the

system can work effectively.

2.3 Knowledge Discovery

CBR works on previous knowledge/experience that are collected in the

system. As mentioned above, representations that models the knowledge

CBR for Course Timetabling Case-Based Reasoning

38

into cases is a key issue especially in complicated problems. In knowledge

engineering, techniques in knowledge discovery and machine learning have

been employed with success in a number of ill-structured domains (which

many timetabling problems belong to). Knowledge discovery is the process

of studying and investigating a collection of implicitly potential useful

dataset to discover information such as rules, regularities, or structures in

the problem domain. It was defined as a “non-trivial process of identifying

valid, novel, potentially useful, and ultimately understandable patterns in

data” (Fayyad, Piatetsky-Shapiro and Smyth, 1996). A key step in the

knowledge discovery process is data mining that may employ a wide range

of techniques in AI, machine learning, knowledge acquisition and statistics,

etc. Knowledge discovery is usually carried out on databases and the

application areas include medicine, finance, law and engineering, etc

(Piatetsky-Shapiro, 1991). This thesis also investigates some issues in

knowledge discovery to model specific heuristics within timetabling

problems (see Burke, MacCarthy, Petrovic and Qu, 2002).

2.4 Chapter Summary

CBR has emerged as a mature research methodology and is extremely

successful in a wide range of application domains over the last decade or

so. Some CBR research in complex problem domains (e.g. planning,

design) has shown promising results. However, its application in

scheduling has just attracted the attention of research community and no

CBR for Course Timetabling Case-Based Reasoning

39

general methodology has formed. In the case of timetabling, this thesis

seeks to address this issue.

Course timetabling may be considered as a proper domain where CBR can

be employed to make contributions in problem solving. Existing research

in a variety of timetabling problems employing different techniques

provides a foundation from both theoretical and application perspectives. It

reveals the potential benefits of utilising CBR in course timetabling

problems.

CBR for Course Timetabling Timetabling Problems

40

Chapter 3 Timetabling Problems

3.1 Timetabling Problems

Timetabling problems arise in many contexts including transportation

timetabling (Wren and Rousseau, 1995), sports events timetabling

(Schreuder, 1997), employee timetabling (Meisels and Lusternik, 1997)

and university timetabling (Barddadym, 1995; Carter and Laporte,

1995&1997). These problems have been the subject of active research over

the last 40 years (Wren, 1995; Burke et al, 1997; Schaef, 1999). However,

this important research field continues to attract the attention of the

scientific community as problems become more complex and as new

breakthroughs provide better ways of solving these problems (Burke and

Erben, 2000; Smith, 2001; Burke and Petrovic, 2002; Burke and

Causmaecker, 2002). Economics and resource utilisation are also important

drivers for improved timetable generation.

CBR for Course Timetabling Timetabling Problems

41

3.1.1 What is the Timetabling Problem?

Timetabling problems are a specific type of scheduling problems that may

be highly constrained and difficult to solve. It was defined by Wren (1995)

as:

“the allocation, subject to constraints, of given resources to

objects being placed in space-time, in such a way as to

satisfy as nearly as possible a set of desirable objectives.”

A general timetabling problem consists of assigning a number of events

(exams, courses, meetings, etc) into a limited number of timeslots (periods

of time) and venues, while minimising the violations of a set of constraints.

Different timetabling problems have different constraints. Constraints

associated with each individual problem are usually classified into two

particular types: hard constraints and soft constraints. Hard constraints

should under no circumstances be violated. A common hard constraint is

‘no person is assigned to two or more courses simultaneously’. Other

constraints known as soft constraints are desirable but it is not essential to

satisfy them. Indeed, it would usually be impossible to satisfy all of them in

a given problem. Examples are when two events with common persons

should or should not be consecutive, or when one event should be before

another.

CBR for Course Timetabling Timetabling Problems

42

3.1.2 Course Timetabling Problems

This thesis addresses educational course timetabling problems. Course

timetabling problem was defined by Carter and Laporte (1997) as:

“a multi-dimensional assignment problem in which students,

teachers (or faculty members) are assigned to courses,

course section or classes; events (individual meetings

between students and teachers) are assigned to classrooms

and times”

In a course timetabling problem, a number of courses are assigned into

classrooms and a limited number of timeslots within a week. Students and

teachers are assigned to courses. Of course, course timetabling also comes

along with a set of constraints that can also been classified as hard and soft

constraints. Individual institutions usually have a variety of specific

constraints and most of research in course timetabling investigated

particular real world problems in their own institutions. The course

timetabling is also referred as the class/lecture/school timetabling problem.

In literature, research on course timetabling are grouped as class-teacher

timetabling, student scheduling, teacher assignment and classroom

assignment. This thesis deals with mainly the student scheduling

concerning room capacities.

CBR for Course Timetabling Timetabling Problems

43

3.2 AI Techniques for Educational Timetabling Problems

3.2.1 Traditional Approaches in Educational Timetabling

Various methods have been investigated to solve educational timetabling

problems (Carter and Laporte, 1995&1997). In the early days of

educational timetabling research, graph theoretic methods represented the

state of the art (Brelaz, 1979; Werra, 1985). Techniques such as graph

colouring were widely used to solve the problems. For example, Burke,

Elliman and Weare (1994) developed a heuristic based on graph colouring

approach that split the exams into groups and schedule them together. The

number of timeslots correspond the number of colours needed. Sequential

assignment approach was also investigated in some recent work, where the

events were ordered by heuristics to be scheduled one by one and

backtracking was usually carried out to obtain a feasible solution (Carter

and Laporte, 1996). Other research techniques that were also widely

employed in the early days of timetabling research included integer linear

programming (ILP), where constraints were modelled into formulas in

which 0-1 variables represented the assignments (Tripathy, 1984; Carter,

1989). However this approach tended to be more impractical for real-world

large timetabling problems.

3.2.2 Meta-Heuristic Methods in Educational Timetabling

More recently, meta-heuristic techniques have been very successful in a

wide range of timetabling problems. A series of international conferences

CBR for Course Timetabling Timetabling Problems

44

on the Practice and Theory of Automated Timetabling (PATAT) provides a

forum for a wide variety of research work on timetabling and many

relevant publications can be found in the proceedings of PATAT (Burke

and Ross, 1995; Burke and Carter, 1997; Burke and Erben, 2001; Burke

and Causmaecker, 2002). It is impossible to give an exhaustive review on

all of the timetabling research. This thesis investigates course timetabling,

and this section will present the work in meta-heuristics mainly for

educational timetabling problems.

3.2.2.1 Tabu Search

In course timetabling, Tabu Search (TS) (Glover and Laguna, 1993) was

mainly investigated on real-world course and general problems in different

institutions with various specific requirements. The results reported were

very well with variant of TS with properly selected parameters such as the

tabu list, initial solutions and objective functions, etc (Hertz, 1991; Costa,

1994; Schaerf, 1996).

Nonobe and Ibaraki (1998) developed a Tabu-Based general problem

solver for a range of constraint satisfaction problems including a high

school timetabling problem. The results shown that this approach was

competitive compare with other specially developed approaches for the

respective problem domains. Alvarez-Valdes, Crespo and Tamarit (2002)

developed a system with friendly user interface based on a Tabu Search

with a set of heuristics. The package was tested and satisfactory results

CBR for Course Timetabling Timetabling Problems

45

were obtained. Approaches that integrated TS with other techniques in

timetabling were also investigated. For example, White and Zhang (1997)

studied an approach that used the output of constraint logic technique as

the starting solutions for TS on general timetabling problems. The results

obtained were better than using either method alone.

Research on examination timetabling problems was also carried out

(Cangalovic, et al., 1998; White and Xie, 2000; Gaspero and Schaerf,

2000), which studied different aspects (length of tabu lists, representations

and initialisation methods of solutions) of utilising TS on timetabling.

3.2.2.2 Simulated Annealing

Simulated Annealing (SA) (Kirkpatrick, Gellat and Vecci, 1983; Reeves,

1996) was also a widely studied method on course/school timetabling

problems. Abramson (1991) studied a SA that were implemented on a

multiprocessor and presented further research issues arise from this

approach. Some work concluded that the implementation of SA is highly

dependent on various settings and parameters (e.g. solution space, cooling

schedule, neighbourhood generation, cost function) on both examination

(Bullnheimer, 1997; Thompson and Dowsland, 1998) and course/school

timetabling problems (Elmohamed, Coddington and Fox, 1997; Melicio,

Caldeira and Rosa, 1998; Abramson, Dang and Krisnamoorthy, 1999) thus

careful selection on parameters and settings on this algorithm are needed.

CBR for Course Timetabling Timetabling Problems

46

3.2.2.3 Evolutionary Algorithms

Genetic Algorithms (GAs) () and Evolutionary Algorithms (EAs) () have

been widely studied by researchers in timetabling, concerning different

aspects of timetabling problems (Corne, Ross and Fang, 1994). In course

timetabling, Abramson and Abela (1992) investigated a parallel GA that

greatly reduced the execution time to solve the problem. Rich (1995)

studied a GA with greedy algorithm that used domain knowledge for room

and timeslot scheduling. Deris, et al. (1999) proposed an approach that

embedded constraint-based techniques with GAs, where potential solutions

for a real course timetabling problem were generated by GAs and then

repaired and improved by using constraint-based techniques. By using the

constraint-based reasoning, the search space for GAs can be significantly

reduced and thus the convergence was much faster to produce nearly

optimal solutions. Erben (2000) investigated a grouping GA in which the

representation was based on the grouping character of the graph colouring

problem. The author tested the GA on real-world examination timetabling

problem and suggested that the fitness function should convey as much

information about the quality of the solution as possible. Approaches that

hybridise GAs with local search techniques during the evolution, which are

known as Memetic Algorithms (Radcliffe and Surrey, 1994), have been

investigated and the results obtained were promising on examination

timetabling (Burke, Newall and Weare, 1995) and course timetabling

(Rankin, 1995; Paechter, Rankin and Cumming, 1997).

CBR for Course Timetabling Timetabling Problems

47

Initialisation is also one of the important issues in GAs and EAs. Corne and

Ross (1995) studied an approach using peckish initialisation and the results

were better than both the greedy and random initialisation. Burke and

Newall (1998) investigated different heuristic initialisation strategies and

the results were very good. The authors suggested that good initial

solutions are generated using heuristics with the condition of having a

sufficient degree of diversity.

Of particular interests is that recently the encoding in GA/EA has attracted

some research on timetabling problems. Paechter, Cumming and Luchian

(1994) investigate an EA on general timetabling where chromosomes

encode the suggestion lists for events to be scheduled to build the solutions.

Ross, Hart and Corne (1997) carried out an extensive study on a GA with a

direct encoding. Based on the observations that the direct encoding tended

to lead the failure of solving parts of the problems, the authors suggested

GA to be used for searching good heuristics rather than specific solutions

in specific problems. Terashima-Marin, Ross and Valenzuela-Rendon

(1999) also investigated an EA with un-direct representation in exam

timetabling to evolve among the Constraint Satisfaction strategies,

heuristics and conditions of changing from one strategy to another. The

name “hyper-heuristic” is termed to name the heuristic that choose

heuristics in later research using this method (see the sub-section

“Hyper-heuristic methods”).

CBR for Course Timetabling Timetabling Problems

48

3.2.2.4 Comparisons of Different Approaches

Comparisons concerning a range of issues in heuristic and meta-heuristic

methods for timetabling have been also carried out. Ross and Corne (1995)

compared GA, SA and stochastic hillclimbing with certain representation

on a collection of real timetabling problems, concerning the solution

quality and number of distinct useful solutions. The conclusions were that

the stochastic algorithms perform generally well with respect of the

solution quality. However different conclusions may be obtained if

different representations and operators were employed. Dowsland (1997)

investigated SA and TS on various timetabling problems and suggested

that there is plenty of potential work to make it possible to develop general

algorithms based on SA and TS, which work generally well on families of

problems. Colorni, Dorigo and Maniezzo (1998) compared SA, TS, GA

and GA with local search (known as Memetic Algorithm) on a high school

timetabling problem. The authors claimed that TS obtained the best result

and GA with local search was capable of giving a set of good quality

solutions thus was much flexible to users who may have a variety of

objectives.

Different algorithms within specific circumstances may perform differently

on particular timetabling problems. In general, GA/EA is able of giving a

number of useful distinct solutions thus in real-world problem solving may

be more flexible on providing the users solutions that satisfy different

aspects of requirements. There is much potential work on studying the real

mechanism behind the reason why particular algorithms outperform others

CBR for Course Timetabling Timetabling Problems

49

for a particular family of timetabling problems. The discoveries and

knowledge/experiences on particular heuristics/meta-heuristics in specific

circumstances on specific timetabling problem may lead to more effective

knowledge-based techniques on solving a wide range of timetabling

problems, which is the subject of this thesis.

3.2.3 Constraint Logic Techniques

Timetabling problems is a type of assignment problems with large amount

of complex constraints thus usually can be easily modelled as Constraint

Satisfaction Problems (CSP) (Brailsford, Potts and Smith, 1999).

Constraint Logic programming (CLP) are suitable methods and have also

been widely employed in course timetabling problems.

Most of research has been carried out to develop techniques that can be

easily adapted into different problems. Two of the declarative languages:

CHIP and ECLiPSe developed for modelling and solving CSP problems

were widely used for course timetabling problems (Kambi and Gilber,

1996; Stamatopoulos, Viglas and Karaboyas, 1998; Goltz, 2000;

Abdennadher and Marte, 2000). Other declarative languages developed for

different specific timetabling problems included WPROLOG (Kang and

White, 1992), COASTOOL (Yoshikawa, 1994), Oz (Henz and Wurtz,

1995) and EaCL (Tsang, Mills and Williams, 1999). Zervoudakis and

Stamatopoulos (2000) also developed a constraint programming

object-oriented C++ library that can model the possible common

CBR for Course Timetabling Timetabling Problems

50

constraints within every problem, thus can be easily extended to instantiate

different timetabling problems. Deris, Omatu and Ohta (2000) proposed an

object-oriented approach in which course timetabling problems were

formulated as constraint satisfaction model with forward checking and

constraint propagation procedures. The author claimed that the approach

would be potentially applicable in various environments by specifying

different parameters.

Other work concerned different aspects in CLP for timetabling problems.

Fahrion and Dollansky (1992) developed a Prolog rule system with simple

heuristic priority scheme for a faculty (teacher) assignment problem.

Boizumault, Delon and Peridy (1996) proposed an efficient CLP approach

with finite domains for a real-world examination timetabling problem and

presented potential future work. Banks, Beek and Meisles (1998) employed

an approach in which constraints were iteratively added to the CSP

representation before backtracking for high school course timetabling.

Blanco and Khatib (1998) split a real course timetabling problem into two

phases, each was modelled as a CSP and solved using optimisation

techniques. Weekly lectures were grouped into timeslots and thus the

domains of variables were greatly reduced. Also a variety of research on

CLP for timetabling problems (Cheng et al, 1995; Gueret, et al. 1995;

Lajos, 1995; David, 1997; Zervoudakis and Stamatopoulos, 2000) can be

found in proceedings of PATAT conferences (Burke and Ross, 1995;

Burke and Carter, 1997; Burke and Erben, 2000).

CBR for Course Timetabling Timetabling Problems

51

In timetabling research usually constraint-based techniques are used to

model the problem into a CSP. The assignment of variables significantly

affect the efficiency thus different special-purposed search heuristics were

used to solve specific constraints. Most of CLP approaches produced

feasible rather than optimal solutions, which were then improved by

employing different techniques. For example, using CLP to produce the

starting points for TS not only produce better quality results but also saved

a lot amount of computation time (White and Zhang, 1997). Yoshikawa et

al. (1994) proposed a constraint relaxation problem (the same as constraint

satisfaction problem except constraints are associated with penalties) solver

to produce good initial assignment, which was then improved using

hill-climbing for a real course timetabling problem.

3.2.4 Knowledge-Based Techniques

The overall objective of using knowledge-based techniques for timetabling

is to model the human knowledge for timetabling. Due to the complexity of

constraints and implicit knowledge embedded in problem solving of

timetabling, representations come to be one of the critical issues in using

knowledge-based techniques for the problem.

A mixed approach was presented employing knowledge-based techniques

and constraint networks on real-world employee timetabling (Meisels,

Gudes and Solotoresky, 1995). The problems were explicitly represented

on some constraints in the constraint-based processing and rules were

CBR for Course Timetabling Timetabling Problems

52

incorporated into the scheduling process. The preliminary results shown

that the explicit representation and the ordering heuristic are efficient for

solving employ timetabling problems.

Gunadhi, Anand and Yong (1996) designed a timetable scheduler that used

the knowledge modelled as rules, incorporated with heuristics, within

course timetabling process to schedule data that was stored in separate

bases. The results obtained were promising for real world timetabling

problems and the authors claimed that the scheduler was flexible and

general and thus was applicable to other university timetabling with the use

of an object-oriented methodology.

Kong and Kwok (1999) proposed a conceptual model within a

knowledge-based approach. The knowledge was modelled into heuristics

that applied the rules to guide the scheduling process for course timetabling

problems.

Foulds and Johnson (2000) developed a database decision support system

for a real world course timetabling problem and emphasised that human

judgement was crucial in timetabling processing. The system was designed

to assist experienced timetabling officers in evolving a timetable from one

year to the next by necessary modifications rather than automatically

creating timetables from scratch.

All the existing knowledge-based techniques on timetabling use expert

system, which models the knowledge of timetabling as rules, to generate

course timetables. One possible problem with this is that usually the

CBR for Course Timetabling Timetabling Problems

53

knowledge within the scheduling is implicit thus difficult to be modelled.

This may be resolved by either the careful design of specific problems, or

by employing techniques that can use the knowledge and avoid large

amounts of work in modelling it. This thesis investigates an approach using

case-based reasoning, which could be one of the solutions for this problem.

3.2.5 Hyper-Heuristic Methods

As mentioned before, hyper-heuristics are “heuristics that choose

heuristics” (Cowling, Kendall and Soubeiga, 2000&2001, Cowling,

Kendall and Han, 2002). The main difference between hyper-heuristics and

the widely used meta-heuristics in timetabling is that hyper-heuristics is a

method of using heuristics to select from a variety of different heuristics

that may include meta-heuristics. So hyper-heuristics are potentially more

general-purpose methods.

Some research in scheduling has investigated this approach although it may

not have used the term “hyper-heuristics”. Some approaches used Genetic

Algorithms (GAs) to select from a set of heuristics encoded in the search

space and quite good results were obtained. An approach was presented in

(Fang, Ross and Corne, 1994) on open shop scheduling problems using

GAs to search a space of abstractions of solutions to “evolve the heuristic

choice”. In a real-world scheduling problem for catching and transportation

of large amount of chickens, GAs are used to construct a schedule builder

that chooses the optimal combinations of heuristics (Hart, Ross and

CBR for Course Timetabling Timetabling Problems

54

Nelson, 1998). Another approach in (Terashima-Marin, Rossa and

Valenzuela-Rendon, 1999) used a GA to select the heuristic to order the

exam in a sequential approach for exam timetabling problems. A hybrid

GA investigated on vehicle routing problems has also obtained promising

results (Shaw, 1998; Berger, Sassi, and Salois, 1999).

Some research on hyper-heuristics has also been carried out on solving a

variety of scheduling problems. Guided local search was used to select

from a set of heuristics and also different parameters in these heuristics in

the traveling salesman problems (Voudouris and Tsang, 1999). Cowling,

Kendall and Soubeiga (2000&2001) used a hyper-heuristic approach to

select from a set of lower level heuristics according to the characteristics of

the current search space in a sales summit scheduling problem.

3.2.6 Decomposition in Timetabling

Real-world timetabling problems are usually very large and complex. To

address this problem, decomposition and partition techniques have been

studied with some success. The basic idea is to decompose the problem

into a set of sub-problems that are small enough to be solved by using

simple approaches. Then these (hopefully high quality) sub-solutions will

be combined for the original problems. Robert and Hertz (1995) presented

an algorithm decomposing the course timetabling problems into a series of

easier assignment type sub-problems. An approach of decomposing the

timetabling data to produce shorter flexible length timetables was studied

CBR for Course Timetabling Timetabling Problems

55

by Weare (1995). Burke and Newall (1999) employed a multi-stage

algorithm in an evolutionary approach to solve examination timetabling

problems that were decomposed using graph colouring heuristics, and the

sub-problems were solved by using the memetic approach presented in

(Burke, Newall and Weare, 1995). Cangalovic, et al. (1998) used an

approach that modelled a real exam timetabling problem into specially

structured weighted graph and decomposed it into maximal cliques. Special

purposed heuristic was used to generate a feasible good solution, which

was then improved using TS. Carter (2000) presented an algorithm in

course timetabling which decomposed the problem into relatively

independent clusters that can be solved more easily using relatively simple

approaches.

3.3 Chapter Summary

A large number of promising methodologies and algorithms have been

investigated for university timetabling problems. Both problem specific

and global techniques have been studied on a wide range of problems

concerning variety of aspects.

Traditional techniques such as graph theoretical and integer programming

can easily encode relatively simple timetabling problems and perform

generally well. However, they are usually incapable of dealing with

problems with large size and complex constraints. Global techniques in AI

(e.g. GAs, TS, SA) have been reported to obtain generally good results on

CBR for Course Timetabling Timetabling Problems

56

various problems. They are capable of performing well on a wide range of

problems of different sizes but careful refinement concerning certain issues

is usually needed for them to be fitted into different environments.

Examples of these issues include initialisations and different parameters

within different algorithms.

Research has shown that hybridised methods often perform better than

individual approaches as they are benefited from the advantages of both

techniques with careful design. For example, CLP can be easily applied on

timetabling problems and solve problems quickly. It might be good

initialisation techniques for GAs, TS or SA, whose starting points in the

search space sometimes affect the quality of the evolved solutions

significantly.

Timetabling as an example of a scheduling problem has become an

application area with rich knowledge and experience. Comparisons have

been carried out between different techniques and experiences on the

problem solving have been accumulated. These provide the premises and

foundation for utilising knowledge-based techniques like CBR in this area.

All of the current knowledge-based systems on timetabling used the rule

base to incorporate knowledge of problem solving. Due to the difficulties

in modelling the knowledge that is implicit with complex constraints, most

of these systems aim at assisting rather than reusing the deep knowledge

within the timetabling process. This thesis investigates the benefits that

CBR may offer on course timetabling problems.

CBR for Course Timetabling Structured CBR for Course Timetabling

57

Chapter 4 Structured Cases in CBR for

Course Timetabling Problems

The work presented in this chapter was published in journal of

Knowledge-Based Systems (Burke, MacCarthy, Petrovic, and Qu, 2000) as

it was selected as one of the best six technical papers in the

ES’99conference. The aim of this work is to present the possibilities and

advantages of using attribute graphs to structurally model the course

timetabling problems as cases in a CBR system. The attribute graphs are

capable of describing the relations (constraints) between the events in a

timetabling problem more concisely and explicitly, thus deeper knowledge

such as the correspondence between structures of events and characteristics

of the solutions can be expressed in cases. The retrieval aims at adaptability

and reusability of the solutions of the retrieved cases, which are easy to be

reused for the target case that has similar constraints.

CBR for Course Timetabling Structured CBR for Course Timetabling

58

4.1 Attribute Graphs for Course Timetabling Problems

In attribute graphs that model the course timetabling problems, nodes

indicate courses and edges show the relation between any pair of courses.

Nodes and edges have attributes that represent the problem more precisely.

Each attribute corresponds to a label assigned to nodes and edges. Table

4-1 and Table 4-2 present the labels and attributes of nodes and edges that

are used in our problems.

Label Attribute Value(s) Notes
0 Ordinary course N/A Takes place once a week
1 Multiple course N (No. of times) Takes place N times a week
2 Pre-fixed course S (Slot No.) Assigned to timeslot S
3 Exclusive course S (Slot No.) Not assigned to timeslot S

Table 4-1 Node attributes of course timetabling problem

Label Attribute Values(s) Notes
4 Before/after 1 or 0 (direction) One before/after another course
5 Consecutive N/A Be consecutive with each other
6 Non-consecutive N/A Not consecutive with each other
7 Conflict N/A Conflict with each other

Table 4-2 Edge attributes of course timetabling problem

A simple example is shown in Figure 4-1 to illustrate a course timetabling

problem represented by an attribute graph. Nodes represent courses. Solid

edges indicate hard constraints (labelled 7) which means that the adjacent

courses cannot be held simultaneously. Dotted lines indicate soft

constraints labelled 4, 5 or 6. The labels on the edges and inside the nodes

CBR for Course Timetabling Structured CBR for Course Timetabling

59

7

5
4:1

7

7

7

7

67

7
7

Chemistry
1:2

Physics
1:3

SpanishA
0

Geography
0

Maths
1:2

English
0

SpanishB
0

correspond to the attributes shown in Table 4-1 and Table 4-2. For

example, Maths, Physics and Chemistry are labelled with a 1 (to indicate

that they are multiple courses) and with values 2, 3 and 2 that denote that

they should be held 2, 3 and 2 times a week respectively. Other courses are

labelled 0 (ordinary courses), which denote that they should be held just

once a week. SpanishA should not be consecutive to Physics (because the

edge between them is labelled by a 6) and Chemistry should be consecutive

to SpanishB (labelled by a 5). The directed line between SpanishA and

SpanishB has the label 4 (with value 1) which denotes that SpanishA

should be held before SpanishB.

Figure 4-1 Attribute graph of a course timetabling problem

Using this approach, the course timetabling problems can be represented

structurally. It enables us to describe the relations between events in the

problem that is not possible by using feature-value pairs. Also the different

cases of the problems can have different structures, unlike in traditional

CBR for Course Timetabling Structured CBR for Course Timetabling

60

case representation using the list of feature-values pairs where all the cases

have the same form of feature slots.

4.2 Implementation of the CBR System

4.2.1 The Graph Isomorphism Problem

Using attribute graphs to represent cases has many advantages. However,

the matching problem between the structured cases is equivalent to that of

the graph isomorphism or sub-graph isomorphism problem that is known to

be NP-Complete (Garey and Johnson, 1979). A graph, G, is isomorphic to

graph G' if there exists a one to one correspondence between nodes and

edges of the two graphs. A graph G is sub-graph isomorphic to graph G' if

G is isomorphic to a sub-graph of G'. Some methods have been attempted

to solve this problem in CBR by detecting cliques of the graph (Borner,

1993). The system being proposed here is based on Messmer’s algorithm

(Messmer, 1995) where graphs are organised in a decision tree.

The attribute graph is represented by its adjacency matrix M = mi,j, where

mi,j Le indicates the attribute of the edge between node i and node j and

mi,i Ln indicates the attribute of node i. Le and Ln are the sets of labels

defined in Table 4-2 and Table 4-1. There are n! different adjacency

matrices for an n-node attribute graph when the nodes are in different

permutations. The idea of Messmer’s algorithm is to pre-store all the

adjacency matrices of some known graphs with their permutation matrices

P = pi,j to the corresponding nodes in a decision tree. If graph G is

CBR for Course Timetabling Structured CBR for Course Timetabling

61

isomorphic to graph G’, then if pi,j = 1, node i in graph G corresponds to

node j in graph G’. If a target graph can be classified to a node in the

decision tree at level k, then the permutation matrix(matrices) stored in this

node indicate the matching between the k nodes of the target graph and that

of previously stored graph(s). If the time spent on building up the decision

tree is ignored, this algorithm guarantees that all the graph isomorphism(s)

or sub-graph isomorphism(s) stored in the tree can be found in polynomial

time (quadratic to the number of nodes of the target graph).

For example, in Figure 4-2, attribute graph G represents a 3-course

timetabling problem. Maths is labelled 1 with value 2 (multiple course,

held twice a week). Physics and Spanish are labelled 0 (ordinary course,

held once a week). Physics should be held before Maths. Spanish should

not be scheduled simultaneously with Physics as Maths. There are 6

adjacency matrices M0~M5 representing graph G, X denotes that there is

no edge between two nodes and the labels in the matrices are described in

Table 4-1 and Table 4-2.

a b c a c b b a c b c a c a b c b a
a 0 7 7 a 0 7 7 b 0 7 4 b 0 4 7 c 1 7 x c 1 x 7
b 7 0 4 c 7 1 X a 7 0 7 c x 1 7 a 7 0 7 b 4 0 7
c 7 x 1 b 7 4 0 c x 7 1 a 7 7 0 b 4 7 0 a 7 7 0

M0 M1 M2 M3 M4 M5

Figure 4-2 Matrices of attribute graph G of a course timetabling problem

4:1
cb

a

7
7

Physics
0

Spanish
0

Maths
1:2

Graph G

CBR for Course Timetabling Structured CBR for Course Timetabling

62

These matrices are used to build the decision tree (see Figure 4-3). If a

matrix M can be seen as consisting of an array of so-called row-column

elements ai = (m1i, m2i, … mii, mi(i-1), …, mi1), then a 3 X 3 matrix consists

of 3 elements: a1 = a11, a2 = a21a22a12 and a3 = a31a32a33a23a13. The first

element of each of the matrices M0~M5 can be 1 or 0, and therefore there

are two branches from the root node with label 0 and 1 on the first level.

The second level under branch 1 can be 707 and 40x in M4 and M5, thus

two branches below branch 1 are built. Then the following levels of the

decision tree can be built by the same process, each branch on level i leads

to a successor node that is associated with a specific value for the ith

element of M0~M5. Each permutation matrix is stored in the

corresponding node in the decision. Then all the other known attribute

graphs can be added into the tree in the same way.

1 0

Figure 4-3 A decision tree storing matrices of attribute graph G

Let us suppose that we are presented with a target problem represented by

matrix M for attribute graph G' (see Figure 4-4). The matrix M is inserted

7
7 0

M2M0M4

7
4

7 x 1

X

x
4 0

7
7 0

4
7

x 7 1

x
7

4 7 0

7
7 1

7
x

7 4 0

M1

4
x 1

7
7

7 7 0

M3

7
7

7 7 0

M5

CBR for Course Timetabling Structured CBR for Course Timetabling

63

into the tree and can be classified to node X according to the values of each

branch. The permutation stored to node X gives the isomorphism that tells

us that Maths(c), Physics(b) and Spanish(a) in attribute graph G correspond

to English(b), Chemistry(a) and Maths(c) in attribute graph G' respectively.

c a b
c 0 7 7
a 7 0 4
b 7 x 1

M

Figure 4-4 Matrices of attribute graph G’ for a target course timetabling problem

4.2.2 Retrieving Structurally Similar Cases

Some course timetabling problems are generated randomly and their

attribute graphs are used to build up a decision tree in the proposed system.

The solutions to these problems are obtained by using a heuristic graph

colouring method described in (Burke, Newall and Weare, 1998).

Penalties are associated (see Appendix A) with pairs of labels described in

Table 4-1 and Table 4-2 and are used in the retrieval process. A threshold

is also set to judge whether two labels are similar or not. When the system

tries to match each pair of events in the target problem with source cases,

the events can be seen as similar if the penalty between their labels is

below the threshold. They are identified as similar and returned to be

matched with each other. The penalties are set so that the constraints of the

c b
7

7 4:0

a

Maths
0

English
0

Chemistry
0 Graph G’

CBR for Course Timetabling Structured CBR for Course Timetabling

64

target problem are never released. For example, soft constraints in source

cases cannot be mapped to hard constraints in target cases so the solutions

of the retrieved source cases will guaranteed to be feasible for the target

problem.

If an event in the target problem has the same label and the same value as

the source case, then they match with no penalty. Two events that are

labelled the same are further analysed to see if they have the same values.

Penalties are given for the differences between the values and are taken

into account in the similarity measure.

Every label is also given a weight using domain knowledge for the

similarity measure. The similarity measure is thus given by formula (1):

where symbols are defined as following:

n: the total number of the labels

pi,j: the penalty between label i of node or edge in the target problem and

label j of node or edge of source cases

wi: the weight of label i in the target problem

P: the sum of the penalty for every pair of labels times the weight of

every label.

∑
=

×−=
n

0j,i
iij P/wp1S (1)

CBR for Course Timetabling Structured CBR for Course Timetabling

65

Figure 4-5 presents an example of how the similarities are calculated

between two pairs of cases, New Case and Case0, and New Case and

Case1. By employing the similarity measure shown in formula (1) with

penalties and weights presented in Appendix A, similarities are calculated

as 0.86 and 0.78 for New Case between Case0 and Case1, indicating New

Case is more similar with Case0 than with Case1.

New case
Case0 Case1Case0

labels
Case1
labels labels wi pij pij*wi pij pij*wi

7 7 7 0.9 0 0 0 0
6 6 4 0.6 0.7 0.42 0.7 0.42
7 7 5 0.6 0.8 0.48 0.8 0.48
4 5 4 0.4 0 0 0.7 0.28
0 1 0 0.5 0 0 0.4 0.2
3 3 1 0.6 0.5 0.3 0.5 0.3
7 7 6 0.4 0.7 0.28 0.7 0.28
1 2 1 0.6 0 0 0.7 0.42

P = 10.6 ∑ = 1.48 ∑ = 2.38
S = 1- ∑pij*wi / P S = 0.86 S = 0.78

Figure 4-5 An example of similarity measure between cases

Using the penalties assigned to each pair of labels in the course timetabling

problems, the retrieval is targeted at matching between every pair of

events, not just a single judgement between the whole cases. The system

4

6

7

7

7

1

1

0

0

3

Case0

5

6

7

7

7

0

2

1

0

3

Case1

4

5

7

5

6

2

1

0

0

1

New Case

CBR for Course Timetabling Structured CBR for Course Timetabling

66

can retrieve the case(s) suitable for adaptation for the target problem from

the case base.

When a target problem is entered in the system, it is classified to a node in

the decision tree and the system retrieves all the cases stored in and below

that node as candidates. As the tree stores cases hierarchically, all the cases

that have more events and/or more relations are stored below those having

less events and/or relations. It is observed that solutions of more

constrained cases can be adapted easily for less constrained problems. Thus

all the cases in and below the node are retrieved.

Using the penalties for every pair of the labels of nodes and edges, the

system calculates the similarity between the target problem and the

candidate cases in and below the node. The most similar case(s) are

selected for adaptation.

4.2.3 Reuse and Adaptation of the Solutions

After the system finds the most similar case(s), the solutions or part of the

solutions of the retrieved case(s) can be reused. The system substitutes the

events in the solution(s) of the retrieved case(s) with the matching events in

the target problem according to the isomorphism(s) found. After the

substitution, a partial solution for the target problem can be obtained

although there may be some violations of constraints. If there is no

violation of hard constraint in the retrieved solutions, there is also no

violation of hard constraint in the solutions after substitution.

CBR for Course Timetabling Structured CBR for Course Timetabling

67

The graph heuristic method which tries to minimise the violations of

constraints is used in the adaptation process. Events that violate the

constraints are collected from the partial solution, and all the unscheduled

events are ordered first by their degrees (number of conflicts of an event

with other events) decreasingly and then are assigned one by one to the

first available timeslot. If some events cannot be assigned to a timeslot

without violation of constraints, they will be kept until all the other events

have been scheduled. Then they are scheduled to the timeslots that lead to

the fewest number of violations of constraints.

4.3 A Simple Illustrative Example

Let us suppose that the problem shown in Figure 4-1 is the target problem.

All the cases and their isomorphism are retrieved from the node that the

target problem is classified to in the case base. Not only the case(s) that are

graph isomorphic to the target problem can be adapted, but also the case(s)

which the target problem is sub-graph isomorphic can be adapted, although

they may not be “good” solutions for the target problem. Two cases whose

similarities pass a given threshold (a score set) are considered to be the

most similar to the target problem and are retrieved from the case base. The

structures of these two cases are shown in Figure 4-6. It is possible to find

more than one isomorphism between two graphs. Two isomorphism were

found for each of the retrieved cases in this example.

CBR for Course Timetabling Structured CBR for Course Timetabling

68

Figure 4-6 Two retrieved cases from case base

After substituting the events of the retrieved cases shown in Figure 4-4 by

matching events indicated by the isomorphism, four solutions can be

obtained for the target problem (see Table 4-3).

Timeslot1 Timeslot2 Timeslot3 Timeslot4 Timeslot5
Solution1 Physics,

Maths,
Chemistry

English,
Geography

SpanishA SpanishB,
Physics,
Maths

Chemistry,
Maths

Solution2 Maths,
Physics,

Chemistry

English,
Geography

SpanishA SpanishB,
Maths,
Physics

SpanishB,
Physics

Solution3 Physics,
Maths,

Chemistry

English,
Geography

SpanishA SpanishB,
Physics,
Maths

Chemistry,
Maths

Solution4 Maths,
Physics,

Chemistry

English,
Geography

SpanishA SpanishB,
Maths,
Physics

Chemistry,
Physics

Table 4-3 Solutions after substitution by using isomorphism

It can be seen that there are 3 violations of soft constraints in solution 1:

SpanishA is consecutive to Physics, Physics is held only 2 times and Maths

is scheduled one more time. Using the graph heuristic method takes 2

adaptation steps: It deletes Maths from timeslot1 and adds another Physics

to timeslot 5. It can also be seen that there are 1, 3 and 1 violation(s) of soft

4:1

6

7
5

5

77

4:0

77

77

7

7

7
7

7

7
7

7

7

7

7

71:2 1:2

1:2

1:2

0

0

0

1:2

1:21:2

1:2

2:2

1:3

3:4 0

CBR for Course Timetabling Structured CBR for Course Timetabling

69

constraints in solution 2, 3 and 4 respectively. Using the graph heuristic

method takes 1 and 2 adaptation step(s) respectively for solution 2 and 3.

There is no adaptation for solution 4. After adaptation, there is only one

violation of a soft constraint in each solution.

The simple example has demonstrated that only a few adaptations are

needed to get solutions for the target problem on the basis of the solutions

of the retrieved similar cases. Cases can explore deeper knowledge in

course timetabling problems by the structural representation. Retrieval that

targets the adaptability of every pair of events between the target problem

and the retrieved case(s) finds the most adaptable cases for the target

problem, thus a corresponding relation between the events and adaptation

requirements is built up. Employing the adaptation requirements in the

definition of the similarity between every event pair gives a more elaborate

description for the similarity measure. Thus the knowledge and experiences

previously stored in the retrieved cases’ solutions can be exploited for

re-use for target similar problems. It is noted that the CBR can re-use the

sub-solutions of previously solved problems within the case-base, a manner

similar to that of experts in timetabling.

4.4 Chapter Summary

In this chapter, a CBR approach is proposed in which attribute graphs are

used to represent cases for course timetabling problems. To our knowledge,

the CBR approach proposed in this chapter is new in solving the

CBR for Course Timetabling Structured CBR for Course Timetabling

70

timetabling problems. Retrieval targets every pair of nodes and edges

between the cases so that the retrieved case(s) are the most adaptable for

the target problem. The retrieved cases’ solutions store optimised or

sub-optimised schedules for the previously solved problems. These

schedules can be exploited and re-used for the new similar cases, after only

limited adaptations for solutions that are then applicable for the target

problem. The graph data structure gives a detailed description of the

timetabling problem. The relations between any events can be described

clearly, and therefore the application of this method to timetabling

problems is likely to find the similar cases that are adaptable for the target

problem. In the next chapter, this method is improved and systematically

analysed to solve a wider range of course timetabling problems.

CBR for Course Timetabling Improved CBR Attribute Graph Approach

71

Chapter 5 Improved CBR Attribute

Graph Approach

In the CBR system presented in the last chapter, it is assumed that some

pre-compiled cases exist so that the target problems can find isomorphic or

sub-graph isomorphic source cases. The overriding motivation is that

previous timetables with similar constraints will provide a sensible starting

point for solving a target problem. However, attribute graphs of source

cases that have common or partially similar (sub-)structures could also be

reusable for the target case. The work, which is published in the Fourth

International Conference on Case-Based Reasoning (ICCBR’01) and

presented in this chapter (Burke, MacCarthy, Petrovic, and Qu, 2001a)

improves the previous CBR system to deal with a wider range of problems

than those dealt with in the last chapter.

CBR for Course Timetabling Improved CBR Attribute Graph Approach

72

5.1 Improved Retrieval of Structurally Similar Cases

5.1.1 Partially Similar Cases with Differences

In the improved approach, not only the source cases that are graph or

sub-graph isomorphic to the target case are retrieved, but also (partial)

matches with some differences are examined. Source cases do not need to

contain all the corresponding similar edges to be reused for the target cases.

For example in Figure 5-1, graph B is neither graph nor sub-graph

isomorphic to graph A shown in Figure 5-2. However, graph B can be

graph isomorphic to graph A if some vertices and edges are inserted. When

dealing with difficult real world timetabling problems our approach has to

be more flexible than just considering cases in the case base that are graph

isomorphic to the target case. Note that graph B is partially similar to graph

A. In graph A, not all of its vertices and edges can match those of graph C

in Figure 5-1 (Physics, ComputerA and ComputerB cannot find a matching

course in graph C). Also, not all of the vertices and edges in graph C can

find a match with those in graph A (the course labelled with 1:2 with

adjacent edges illustrated by light lines does not have a matching course

with matching edges in graph A). These two cases have common parts that

are partially similar with each other in either vertices or edges.

CBR for Course Timetabling Improved CBR Attribute Graph Approach

73

Figure 5-1 Cases partially similar with some differences with case in Figure 5-2

Figure 5-2 A course timetabling problem represented by an attribute graph

In the approach developed here, target cases like graphs B and C can all be

seen as partially similar (but clearly have some significant differences) to

graph A. The timetable associated with graph A could be reusable for the

cases of graph B and C. This approach retrieves a large number of useful

cases thus allowing an investigation of a much wider range of timetabling

problems.

7

7

6

7

7

7

7

7

57

7
7

MathA
1:2

Lab
1:3

Database
0

Geography
0

Physics
1:2

English
0

MathB
0

Graph A

ComputerA
0

ComputerB
0

4:1

5

Graph B

5

4:1

7

5

67

5 7

1:2

1:31:2

0

0

0

0

3:2 1

Graph C

5

4:1

7

5

6

7

1:2

1:3

0

0

0

0

1:2

7

CBR for Course Timetabling Improved CBR Attribute Graph Approach

74

5.1.2 Similarity Measure

The similarity measure takes into account the costs assigned to the

substitutions, deletions and insertions of vertices and edges labelled with

particular attributes from or into the target case. Deleting vertices and

edges with different attributes from the cases in the case base are assigned

lower costs than those of inserting vertices and edges into them. Also

inserting and deleting the edges of hard constraints is assigned a higher

cost than for the soft constraints. Costs are assigned so that the operations

of deletion, insertion and substitution on the attribute graphs simulate the

adaptation steps (explained in the later subsection) on the timetables

retrieved. Deleting, inserting and substituting the less important vertices

and edges have less of an effect on adapting the timetables. Thus such

cases have lower costs assigned because of the need for less adaptation.

The similarity measure between target case C2 and source case C1 is

presented in formula (2).

(2)

The notations in formula (2) represent the following:

n: number of matched vertices

m, k: numbers of the vertices or edges needed to be inserted into and

deleted from C2 respectively

DAP

dap

CCS

n

ji

m

a

k

d
daji

++

∑ ∑ ∑++
−= = = =0, 0 0

,

21 1),(

CBR for Course Timetabling Improved CBR Attribute Graph Approach

75

pi,j: cost assigned for substituting vertex or edge i in C2 with vertex or

edge j of C1

aa, dd: costs assigned for inserting and deleting a vertex or edge labelled

with attribute into and from C2

P: the sum of the costs of substitution of every possible pair of vertices

or edges in C2 to those of C1

A, D: the sum of the costs of inserting and deleting all of the vertices or

edges into and from C2 respectively

We can see that the closer the value S(C1, C2) is to 1, the more similar C1

and C2 are.

5.1.3 Branch and Bound in Retrieval

The retrieval needs to search through the decision tree to find all the cases

in the case base that are similar to the target case. The size of the decision

tree storing all the possible permutations of the previous cases may be

large, resulting in extensive searching. Thus the retrieval process may be

difficult and time consuming. Branch and bound (Williams, 1999) is

employed to reduce the size of the search tree in the retrieval phase. When

the permutation of the courses of the target case is input into the case base,

the retrieval starts from the root node and first searches down along the

branches as far as possible in the tree that stores the most similar

(sub-)structures. All of the possible candidate branches under one node that

have a similar sub-structure and attributes with the target case are sorted by

CBR for Course Timetabling Improved CBR Attribute Graph Approach

76

their summed costs. The branches storing the (sub-)structures whose costs

exceed the given threshold are considered not to be similar to the

(sub-)structures of the target cases and are all discarded. Thus the size of

the search tree for retrieval can be greatly reduced because the retrieval

does not need to search all the branches in the decision tree.

Backtracking is used when the retrieval cannot find a complete match. The

retrieval backtracks to the parent node and the branch that has the lowest

cost among the remaining branches will be chosen. This process continues

until a complete match is found. All the complete and partial matches

identified during the retrieval will be collected for potential adaptation.

Usually in timetabling problems, the more conflicts a course has with the

other courses, the more difficult it is to schedule it. All the courses of the

target case are sorted by their difficulties (here the degrees of the vertices

in the attribute graph) in decreasing order and input into the decision tree

for retrieval. Thus the retrieval process can first try to find a match for the

more important courses.

5.1.4 Reuse and Adaptation of the Solutions

Adaptation of the timetables of all the retrieved cases is performed

according to the (partial) matches found. The adaptation steps for each

retrieved case are:

1. According to the match found, matched courses are substituted and

all the un-matched courses in the retrieved case are deleted.

CBR for Course Timetabling Improved CBR Attribute Graph Approach

77

2. All the courses that violate the constraints in the newly formed

timetable are removed and inserted into an unscheduled list sorted by

their difficulties in decreasing order. The courses in the target case

that are not yet scheduled are also inserted into the sorted

unscheduled list.

3. All the courses in the unscheduled list are rescheduled by the graph

heuristic method described below.

Different constructive methods can be used to generate the timetables

based on the partial solutions. The CBR approach presented here employs a

simple graph heuristic method in the adaptation that is the same as that

employed in (Burke, Elliman and Weare, 1994) to construct a timetable

based on the retrieved cases. It is briefly described below.

1. From the first one that is the most important, the courses in the

unscheduled list are scheduled to the first timeslot with no violations

(penalty-free);

2. The courses that cannot be assigned to a penalty-free timeslot will be

scheduled to the timeslots that lead to the lowest penalty after all the

others have been scheduled;

3. In the case of a tie, randomly assign the course to the first timeslot

available.

The best timetable with the lowest penalty is selected as the solution of the

target case.

CBR for Course Timetabling Improved CBR Attribute Graph Approach

78

5.1.5 Penalty Function

Every timetable generated for the target case is evaluated by the following

formula (3):

Penalty = H X 100 + S X 5 (3)

H is the number of violations of hard constraints (the clashes between

courses). It is assigned a cost of 100 to ensure that an infeasible timetable

has a high cost. S is the total number of the violations of the soft

constraints. They are assigned lower costs (at 5) because it is desirable to

avoid them but not essential when a penalty-free timetable cannot be

found.

To test our system and carry out the comparisons, the cost of violations of

soft constraints is set as 5. In the experiments we found this value is not

critical but should be limited within 20 when the cost of violations of hard

constraints is set as 100. In different real-world timetabling problems, soft

constraints could have different weights.

5.2 Experiments with Different Case Bases

To test the computational performance of the system on different case

bases, different groups of random cases with different features have been

defined systematically and stored in the case base. The determination of a

CBR for Course Timetabling Improved CBR Attribute Graph Approach

79

number of cases needed to build a case base is not an easy task. In order to

have different case bases, cases with a range of properties that real-world

problems may have are generated. Thus an investigation of the system on a

range of possible case bases can be carried out. Also different target cases

are randomly generated so that the general performance of the system can

be tested on a set of different target cases that the system may meet.

Figure 5-3 Schematic diagram of the CBR system used for evaluation

A schematic diagram of the system is given in Figure 5-3. Case bases with

three different types of random cases were produced to solve a group of

small target cases. These are 15-course simple, 15-course complex and

20-course simple cases. The complex cases have vertices whose degrees

are at the lowest 1 and at the highest 4. The degrees of vertices in simple

cases are at the lowest 1 and at the highest 3. The complex cases have more

constraints than those simple cases and are usually more difficult to solve.

The attributes are randomly selected from Table 4-1 and Table 4-2. The

15-simple cases 20-simple cases15-complex cases

new case
selection

5-course
new cases

15-course
new cases

10-course
new cases

5, 10, 15 or 20 cases

Case
base

retrieval
adaptation by

graph heuristic
method

timetable for
target cases

CBR for Course Timetabling Improved CBR Attribute Graph Approach

80

timetables of these cases are generated by using the graph heuristic method

and stored in the case base. Small target cases with 5, 10 and 15 courses,

also randomly generated, are tested to give an easy evaluation on the CBR

approach developed. The system is developed in C++ and the experiments

are run on Pentium 450Mhz PC with 128MB of RAM under the Windows

environment.

5.2.1 Algorithm Complexity Evaluation

5.2.1.1 Time and Memory Needed to Build the Decision Tree

In every case base 5, 10, 15 or 20 of the three types of cases are stored.

Figure 5-4 gives the time spent and space needed to build these 12 different

case bases. In the notation x/y in the table, x gives the time in seconds and

y is the number of nodes in the decision tree.

We can see that from the table that because the number of permutations

grows rapidly (but not exponentially) with the number of vertices in the

graph, adding 20-course cases into the case base takes much more time and

space than for both simple and complex 15-course cases. We can also

observe from the charts shown that the time and number of nodes grows

rapidly but not explosively with the number of cases in the case base. This

is because many of the (partial) permutations of the cases may be stored

under the node that is built for previous cases if they have the same

(sub-)structures.

CBR for Course Timetabling Improved CBR Attribute Graph Approach

81

0

100

200

300

400

500

600

5 7 9 11 13 15 17 19

number of cases added to case bases

ti
m

e
o

f
b

u
ild

in
g

ca
se

b
as

es

20-simple

15-complex

15-simple

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

5 10 15 20

number of cases added to case bases

n
u

n
b

er
o

f
n

o
d

es
in

th
e

tr
ee

20-simple

15-complex

15-simple

5 10 15 20
15-simple 5.04/12689 12.58/32647 16.57/32647 24.83/52153

15-complex 8.48/23569 22.76/58475 46.88/93523 77.69/132750
20-simple 125.85/92449 273.84/141163 373.09/160887 598.36/193473

Figure 5-4 Time of building case bases of 15-simple, 15-complex and 20-simple cases

CBR for Course Timetabling Improved CBR Attribute Graph Approach

82

5.2.1.2 Time Spent in Retrieval

Figure 5-5 gives the retrieval time for different target cases of 5-course,

10-course and 15-course, respectively. We can see that the retrieval time

changes in the same way as that for building the same case bases. With the

number of source cases increase, the retrieval time grows rapidly but not

exponentially as many of the permutations of source cases added into the

decision tree are stored under the same nodes previously built for the

similar sub-graphs.

CBR for Course Timetabling Improved CBR Attribute Graph Approach

83

0

1

2

3

4

5

6

5 10 15 20

number of source cases

re
tr

ie
va

lt
im

e
(s

ec
o

n
d

s) 20-complex

15-complex

15-simple

0

1

2

3

4

5

6

5 10 15 20

number of source cases

re
tr

ie
va

lt
im

e
(s

ec
o

n
d

s)

20-simple

15-complex

15-simple

0

1

2

3

4

5

6

5 10 15 20
number of source cases

re
tr

ie
va

lt
im

e
(s

ec
o

n
d

s)

20-simple

15-complex

15-simple

Figure 5-5 Retrieval time in different case bases for target cases (upper: 5-course; middle:

10-course; lower: 15-course target cases)

CBR for Course Timetabling Improved CBR Attribute Graph Approach

84

5.2.2 Performance Evaluation

5.2.2.1 The Number of Target Cases That Find Matches

With too few matched vertices, the retrieved cases cannot provide enough

information for adaptation. Only matches that have enough courses (here

more than half) in the retrieved cases are seen as helpful and retrieved for

adaptation. From all the retrieved cases, a set of the most similar cases is

selected as a set of candidates for the adaptation.

To test how many target cases can retrieve cases from the case base with

different complexity, two groups of experiments were conducted on the

case bases storing simple or complex 15-course cases. The results are given

in Tables 5 and 6 respectively. The values before and after ‘/’ give the

percentages of target cases that could retrieve partial and complete matches

from the case base respectively. The values in parentheses give the overall

percentage, as either partial or complete matches found.

No. of 15-simple
cases in case base

5-course
target case

10-course
target cases

15-course
target case

Average
percentages

5 100/100 (100) 100/0 (100) 30/0 (30) 76.67
10 100/100 (100) 100/0 (100) 70/0 (70) 90
15 100/100 (100) 100/0 (100) 70/0 (70) 90
20 100/100 (100) 100/45 (100) 70/0 (70) 90

Table 5-1 Percentages of target cases that find case(s) from the 15-course simple case base

CBR for Course Timetabling Improved CBR Attribute Graph Approach

85

No. of 15-complex
cases in case base

5-course
target case

10-course
target cases

15-course
target case

Average
percentages

5 100/100(100) 100/0(100) 35/5(35) 78.3
10 100/100(100) 100/0(100) 70/5(70) 90
15 100/100(100) 100/70(100) 85/75(85) 98.33
20 100/100(100) 100/70(100) 85/80(85) 98.33

Table 5-2 Percentages of target cases that find cases from the 15-course complex case base

It can be seen from Table 5-1 that all of the 5-course and 10-course target

cases can find (partial) match(es) from a case base with simple 15-course

cases. No complete match can be found for target cases with 10 or more

courses when the case base consists of less than 20 cases. Table 5-2 shows

that storing complex cases in the case base enables more target cases to

find matches. Higher percentages of larger target cases (10-course and

15-course target cases) retrieve cases (complete or partial matches) from

the case base.

We can also see that when 10, 15 or 20 simple cases are stored in the case

base, the same number of target cases (90 percent) can retrieve matches.

Also, the same number of target cases (98.3 percent) can find matched

cases in the case bases with 15 or 20 complex cases. This is because the

attribute graphs of a certain number of cases in the case base provide a

certain number of different (sub-)structures in the decision tree. Additional

cases do not provide new (sub-)structures in the decision tree. Attribute

graphs of complex cases can provide more (sub-)structures, thus more

target cases can retrieve cases from the case base with more than 10 or

15-course complex cases.

CBR for Course Timetabling Improved CBR Attribute Graph Approach

86

The effect of storing larger cases with 20 courses in the case base is tested

in a further experiment and the results are given in Table 5-3. The overall

percentages of successful retrievals are higher than those with smaller

simple cases but lower than those with smaller complex cases.

No. of 20-simple
cases in case base

5-course
target case

10-course
target cases

15-course
target case

Average
percentages

5 100/100(100) 100/0(100) 85/0(85) 95
10 100/100(100) 100/0(100) 85/0(85) 95
15 100/100(100) 100/0(100) 85/0(85) 95
20 100/100(100) 100/45(100) 85/0(85) 95

Table 5-3 The percentages of target cases that find cases from the 20-course case base

Figure 5-6 gives a chart of average percentages of target cases that can

retrieve case(s) from the case base with different numbers of three types of

cases. We can observe that storing more than 15 complex 15-course cases

provides a higher percentage of success in retrieval than storing both

simple 15-course and simple 20-course cases. By storing a sufficient

number of complex cases, sufficient (sub-)structures can be stored in the

decision tree for reuse. It is actually the number of (sub-)structures, not the

number and size of the cases, that affects the percentage of successful

retrievals. Thus it is not necessary to store more cases.

CBR for Course Timetabling Improved CBR Attribute Graph Approach

87

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of cases in case base

P
er

ce
nt

ag
es

of
ne

w
ca

se
s

th
at

fin
d

m
at

ch
ed

ca
se

(s
)

15-simple

15-complex

20-simple

Figure 5-6 Percentage of target cases that retrieve case(s) from different case bases

5.2.2.2 Adaptation of Retrieved Cases

20 different cases with 5, 10 or 15 courses are tested on the case bases with

5, 10 15 or 20 of the three types of cases respectively. So altogether 720

(=20×3×4×3) experiments were carried out. The graph heuristic method

described in Section 3 is used in the adaptation to adapt all the retrieved

cases and the timetable that has the lowest penalty is used as the solution

for the target cases. For comparison, the same graph heuristic method is

also used to generate a timetable from scratch for each target case that can

retrieve cases from the case base. All the timetables generated by these

methods are evaluated by using the penalty function given in (2). The

number of schedule steps needed during adaptation is also taken into

account in the comparison. The average penalties and schedule steps for

these two methods are presented in Table 5-4, Table 5-5 and Table 5-6.

CBR for Course Timetabling Improved CBR Attribute Graph Approach

88

The y in ‘x/y’ gives the number of schedule steps needed to obtain a

timetable that has a penalty x. Values in parentheses give the penalty and

schedule steps of the timetables generated by adapting complete matches

for the target cases.

5-course target case 10-course target cases 15-course target caseNo. of
cases CBR GH CBR GH CBR GH

5 6/7(6/8) 11/15 22.8/35.8 30.5/45.6 39.2/68 39.2/76
10 6/6(5/6) 11/15 16.5/30.2 30.5/45.6 33.2/59 36.1/59
15 6/6(5/6) 11/15 16.5/30.3 30.5/45.6 33/59.8 36.1/69
20 6/5(5/6) 11/15 17/28(23/40) 30.5/45.6 30/54.3 34/66.1

Table 5-4 Penalties and schedule steps by graph heuristic (GH) and CBR approach with

different 15-course simple case bases

5-course target case 10-course target cases 15-course target caseNo. of
cases CBR GH CBR GH CBR GH

5 7/7(6/5) 11/15 19.3/30.5 30.5/45.6 30/49 15/50
10 6/6(6/5) 11/15 18.5/31.2 30.5/45.6 30/49 15/50
15 6/6(5/5) 11/15 17/31(28/39) 30.5/45.6 30/60(39/65) 39.7/69
20 6/6(5/5) 11/15 16/27(28/39) 30.5/45.6 27/61(39/68) 39.7/69

Table 5-5 Penalties and schedule steps by graph heuristic (GH) and CBR approach with

different 15-course complex case bases

5-course target case 10-course target cases 15-course target caseNo. of
cases CBR GH CBR GH CBR GH

5 6/6.7(5/6) 11/15 16.5/28.7 30.5/45.6 37.9/55 40/66.4
10 6/6(5/5.5) 11/15 15.8/28.3 30.5/45.6 36.8/55.7 39.4/67
15 6/6.5(5/5.3) 11/15 16.4/27.3 30.5/45.6 61.7/79.3 53.4/81
20 6/6(5.3/5.4) 11/15 18/29(10/4) 30.5/45.6 62.2/76.5 46/72.4

Table 5-6 Penalties and schedule steps by graph heuristic (GH) and CBR approach with

different 20-course case bases

CBR for Course Timetabling Improved CBR Attribute Graph Approach

89

From the results shown in Table 5-4, Table 5-5 and Table 5-6 we can see

that in all of the experiments solving 5-course and 10-course target cases,

the timetables constructed by the graph heuristic method based on the

partial solutions from the proposed CBR approach need much fewer

scheduling steps and have less penalties than those constructed from

scratch using the graph heuristic (GH) approach. The knowledge and

experiences stored in the previously solved problems that are structurally

similar to the target problems are re-used and not too much effort needs to

be taken to get high quality results.

In solving the larger 15-course target cases by the case base with 5 or 10

15-course complex cases, the CBR approach finds timetables with higher

penalties than those from the graph heuristic approach and takes almost the

same number of schedule steps in adaptation. This is because only storing a

small number of (less than 10) complex cases cannot provide enough good

cases (sub-structures) and the complexity of the retrieved cases makes the

adaptation difficult. Storing more complex cases provides much better

results. Also, larger retrieved cases may cause more adaptation because

more courses in the timetables of these cases may need more adaptation.

This is why in Table 5-6 some of the retrieved larger cases provide high

penalty timetables for the target cases.

It can also be seen that not all of the timetables adapted from the complete

matching cases are better than those from the partial matching cases

(although most of them are much better than those generated by the graph

heuristic approach). This might be because the larger good structures of the

CBR for Course Timetabling Improved CBR Attribute Graph Approach

90

complete matches in the timetables are more likely to be destroyed in the

adaptations for the target cases.

5.3 Chapter Summary

The improved CBR approach presented in this chapter shows that the

retrieved cases that have similar (sub-)structures can provide high quality

partial solutions for the target cases. This is because by retrieving

structurally similar cases from the case base, solutions generated on similar

constraints may be easily reused for the target case without significant

adaptations. Timetables constructed by using the graph heuristic method on

the basis of these partial solutions take less scheduling effort to get lower

penalty solutions than those constructed by only using the same graph

heuristic method from scratch.

The CBR system also shows that storing a certain number of cases in the

case base can provide the same number of (sub-)structures as those

obtained by storing more cases. Also storing a certain number of complex

cases works better than storing larger or more simple cases for providing

the sub-structures for re-use. It is the number of (sub-)structures, not the

number of cases in the case base that contributes to the successful retrieval

of partial solutions for adaptation. It is important to build a case base with

just a certain number of cases because the size of the decision tree grows

rapidly when the size and the number of the cases in the case base

increases. The work presented in the next chapter is to tackle this issue.

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

91

Chapter 6 Multiple-Retrieval CBR for

Course Timetabling

In previous chapters we have shown that a basic structured CBR approach

worked well in solving course timetabling problems but was incapable of

providing good solutions for large problems. This is mainly because the

case base storing the cases represented as attribute graphs grows

significantly when the size of the cases increases. Also a large timetabling

problem with complicated constraints and attributes will rarely match a

case of the same size in the case base. With the limited help from a single

retrieved case of small, the larger new case may not obtain good solutions

based on the small matched part.

Based on the CBR system presented in the last chapters, this chapter will

present an approach that partitions large timetabling problems into smaller

solvable sub-problems, whose solutions can be obtained by retrieving

multiple cases from the case base. The work (Burke, MacCarthy, Petrovic,

and Qu, 2001b) presented in this chapter has been resubmitted to the

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

92

Journal of Operational Research Society. It draws upon the structured CBR

approach presented in previous chapters.

6.1 Multiple-Retrieval Approach on a Decision Tree

The partition is made by carrying out the retrieval process recursively. In

each retrieval, cases that are similar to part of the un-matched new case are

retrieved and the matched part of the new case is partitioned from it as a

sub-problem. The recursive retrievals partition the problem into smaller

solvable sub-problems based on the retrieval process employed in the

previous CBR system. A schematic diagram illustrating the process is

presented in Figure 6-1.

Figure 6-1 Schematic Diagram of the Multiple-Retrieval CBR System

A new graph is produced to represent the remaining part of the new case in

each retrieval based on that of the last retrieval cycle. The matched part in

Program

Data flow

Retrieval

Case Base

yes no

new case

Adaptation

retrieved cases
for sub-problem0

retrieved cases
for sub-problem0

new case
produced?

original
case

solution

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

93

the attribute graph of the new case in the last cycle is combined into one

vertex, which we call a super vertex. Edges that are originally adjacent to

the matched vertices are combined and adjacent to the super vertex. The

attributes of the newly combined edges are decided by the following:

• If one of the original edges is labelled 7 (conflict), the new attribute

will be set as conflict.

• In other cases, the new attribute will be set as one of the original

ones.

By never releasing the constraints (attributes) using above rules, we can

guarantee that the combined final solutions (combining process shown in

the next section) will always be feasible with hard constraints.

Figure 6-2 New attribute graph generated after each retrieval

Figure 6-2 illustrates in some of the cases how the new attribute graphs are

generated. The vertices 1, 2 and 5 that match a case in the i-1th retrieval are

combined into a super vertex Si for the ith retrieval. All the edges adjacent

1 2 3 4

5 6 7

n8

Old attribute graph i-1

Si

3 4

6 7

n8

New attribute graph i

Sj

n8

New attribute graph j

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

94

to these matched vertices are now adjacent to Si. In each retrieval, the

matched part of the problem is partitioned as a sub-problem that may be

solved by adapting the retrieved cases for it. The same process is carried

out for the i+1th retrieval. This process stops when no more matched cases

can be retrieved for a newly produced graph.

This multiple-retrieval approach is carried out on the same decision tree

and partitions the problem upon the case base rather than by employing

fixed rules. It generates sub-problems automatically depending on the cases

in the case base. Usually more than one possible match can be found for

each sub-problem partitioned. The most similar cases are used to generate a

number of candidate timetables. The one with the lowest penalty

(calculated by formula (3)) is selected as the best solution for the new

timetabling problem.

The new multiple-retrieval approach requires some changes on the

similarity measure that was used in the single retrieval process. In the new

similarity measure, the individual similarity between each sub-problem and

the retrieved cases for it is calculated in the same way as when using single

retrieval, considering the costs of the substitutions, deletions and insertions

of the vertices and edges. In our approach we assign costs by their effect on

adaptation: substitution costs are lower than deletion and insertion costs;

deletion costs are lower than insertion costs. The costs are set based on

experience. The sum of all the individual similarities is divided by the sum

of the overall costs in all retrievals (P + A + D) and subtracted from 1. This

new similarity measure is shown in formula (4):

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

95

(4)

The notation used in formula (4) is described as follows:

r is the number of retrievals that need to be carried out on the new case

until no more sub-problems can be partitioned from the new case;

pb is the cost of substituting a vertex or edge of the new case with the

corresponding vertex or edge in the retrieved case in every

retrieval;

dj and ai are the costs of deleting and inserting a vertex or edge into or

from the new case;

n is the number of the matched vertices and edges in every retrieval;

m and k are the numbers of vertices and edges needed to be inserted into

or deleted from the new case, respectively;

P is the sum of the substitution cost of every possible pair of vertices or

edges;

D and A are the sums of costs of inserting and deleting all of the

vertices or edges into or from the new case, respectively.

)(

)(

1 1 0 0 0

DAPr

dap

S

r n

b

m

i

k

j
jib

++

++
−=
∑ ∑ ∑ ∑

= = =

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

96

6.2 Adaptation on Multiple Cases Retrieved

Before generating the whole solution we need to identify the sub-solutions

based on each retrieved case. The sub-solution for each sub-problem is

firstly obtained by substituting every matched course in the retrieved

solution and deleting all the courses that are not matched. Then we will

have a set of sub-solutions for all the sub-problems.

6.2.1 Combining Sub-Solutions

Starting from the sub-solution of the last sub-problem, we combine all

these sub-solutions into a final solution for the original new case by

substituting the corresponding super vertices with their sub-solutions

repeatedly. The combined solution is guaranteed to be feasible as we never

release the constraints and all the sub-problems are feasible.

Figure 6-3 illustrates the combining process. Suppose we have the ith and

jth sub-solutions obtained based on the retrieved cases for the ith and jth

sub-problems partitioned in Figure 6-2. We present the sub-solutions as

lists of courses in timeslots, represented as boxes in Figure 6-3. These sub-

solutions are combined by substituting the corresponding super vertices Si

by the ith sub-solution 2 5 1 and Sj by the jth sub-solution 3 6 7 Si 4 etc.

Then Si again by 2 5 1. After substituting all the super vertices, a partial

solution combining all the sub-solutions is generated for the original new

case.

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

97

… c0 c1 c2 Si c1 c2 … c0 c1 c2 Sj c3 c4 c5 …

… c0 c1 c2 2 5 1 c1 c2 … c0 c1 c2 3 6 7 Si 4 c3 c4 c5 …

… c0 c1 c2 2 5 1 c1 c2 … c0 c1 c2 3 6 7 2 5 1 4 c3 c4 c5 …

Figure 6-3 Combining the solutions of the sub-problems

The combined partial solution is adapted by the following steps to generate

the final solution. The adaptation process uses a basic timetabling method

to allocate rooms and improve the CBR generated solution with soft

constraints.

1. All the courses in the combined solution are assigned to the

smallest feasible rooms available;

2. All the courses that cannot be assigned to rooms or violate the soft

constraints are unscheduled and inserted into an unscheduled list.

The courses that are not yet scheduled are also collected;

3. The courses in the unscheduled list are then rescheduled by a graph

heuristic method with tournament selection considering the room

constraints, which we explain below.

ith sub-solution

2 5 1

jth sub-solution

3 6 7 Si 4

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

98

6.2.2 Graph Heuristic Method with Tournament Selection

The graph heuristic with tournament selection (GHT) presented by Burke,

Newall and Weare (1998) is used to schedule the courses in the

unscheduled list one by one to the first timeslot and room with no

violations (penalty-free). Tournament selection is used to select the first

course every time from a subset of courses of the unscheduled list sorted

decreasingly by their importance (number of constraints with the other

courses). Those courses that cannot be assigned to a penalty-free timeslot

will be scheduled to the timeslots that lead to the lowest penalty after all

the others have been scheduled. When a tie is met, the course is randomly

assigned to an available timeslot. A course will be left as unscheduled if it

cannot be scheduled without violating hard constraint or no room is

available.

6.2.3 Penalty Function

The penalty function given in formula (3) is used to evaluate every

timetable generated in the experiments carried out in the next session. The

violations of unscheduled courses are assigned a high cost of 100.

Violations of soft constraints, indicated by S, are assigned a relatively low

cost of 5.

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

99

6.3 Experiments and Results

In this section we carry out an extensive series of experiments on specially

constructed data sets. At this stage, we need to analyse the behaviour of the

multiple-retrieval approach on data that has been constructed in a

systematic way. We are specifically not working with real data at this stage

because we do not understand the structure of arbitrary large real world

data sets and it is very important for the analysis of the CBR approach that

we understand exactly the structure of the sets that we are working with.

A large number of experiments have been carried out to solve timetabling

problems of different size on case bases with different types and sizes of

cases. We use two types of cases in the case bases: simple and complex (of

small or large size). In complex cases, every course has at most 4 and at

least 1 constraints. Courses in simple cases have at most 3 and at least 1

constraints. Small cases have 6 to 10 courses and larger cases have 10 to 15

courses. Attributes of the courses are randomly generated. The solutions of

these cases in the case bases are obtained by using GHT (Burke, Newall

and Weare, 1998).

Nine sets of new cases are considered each with 20 different new cases of

the same size. The first of these sets has 10 courses; the second has 15

courses and so on up to 50 courses. The GHT is used to solve these cases

from scratch. These solutions are then compared with those from the

multiple-retrieval CBR approach on different case bases. Also, we

investigated the employment of the multiple-retrieval CBR as the

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

100

initialisation approach for Tabu Search in order to determine whether CBR

might provide solutions which are a good starting point for meta-heuristic

methods.

6.3.1 Case Bases with Simple Cases

The first group of experiments is carried out on a set of case bases

containing 5, 10 or 15 simple cases of small or large size (3 X 2 = 6 case

bases in all). All the new cases are then input to these 6 case bases to be

solved by using multiple-retrieval approach with adaptation employing the

GHT. These solutions are compared with those generated from scratch by

the same GHT. Figure 6-4 presents two charts and a table displaying the

average penalties of the timetables of 20 different new cases in each of the

nine sets on the 6 case bases, and those generated by GHT alone. The best

average result for each new case type is highlighted in the table.

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

101

n-course
new case GHT 5 small 10 small 15 small 5 large 10 large 15 large

10 28.5 19 20 21.5 22 21 20.5
15 61.4 37 46.5 50.5 48.5 54.5 56.5
20 80.5 56.5 61.5 67 60 65.5 74
25 104 81 78.5 99 90.5 94.5 94
30 95.5 77.5 82.5 79 78 82 91
35 128.5 121 113 108.5 117.5 112.5 124
40 158.5 140 132.5 142.5 137.5 139.5 148
45 136.5 129 126.5 127 130 128.5 119.5
50 200.5 200 193.9 199.5 176 182.5 193

20

40

60

80

100

120

140

160

180

200

10 15 20 25 30 35 40 45 50

n-course new cases

p
en

al
ti

es
o

f
ti

m
et

ab
le

s

GH

5 small

10 small

15 small

20

40

60

80

100

120

140

160

180

200

10 15 20 25 30 35 40 45 50

n-course new cases

p
en

al
ti

es
o

f
ti

m
et

ab
le

s

GH

5 large

10 large

15 large

Figure 6-4 Penalties of timetables by using graph heuristic (GH) and CBR with case bases

of simple cases (upper: small cases; lower: large cases)

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

102

We can see that the multiple-retrieval CBR approach with GHT as the

adaptation method produces lower penalty timetables than those obtained

by using the GHT alone to generate the timetables from scratch. The

penalties of the timetables obtained by using the CBR approach with

different case bases are close to each other but, in general (7 out of 9), case

bases with larger cases provide timetables with slightly higher penalties,

although we have not tested this statistically.

6.3.2 Case Bases with Complex Cases

Another group of experiments have been conducted on the nine sets of new

cases to investigate the use of case bases with complex cases. Figure 6-5

shows the average penalties of the timetables obtained from case bases

with 5, 10 or 15 large and small complex cases. Again, in general, case

bases with small cases provide better results than those with large cases (7

out of 9). In all of these cases, GHT on its own obtained solutions with a

higher penalty value than the CBR approach that uses GHT as the

adaptation method.

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

103

0

20

40

60

80

100

120

140

160

180

200

10 15 20 25 30 35 40 45 50

n-course new cases

p
en

al
ti

es
o

f
ti

m
et

ab
le

s

GH

5 small

10 small

15 small

n-course
new case GHT 5 small 10 small 15 small 5 large 10 large 15 large

10 28.5 12.5 12.5 15 15 10 12
15 61.4 20 30 40 30 34.4 36.9
20 80.5 35 47.5 52.5 37.5 55 60
25 104 57.5 45 57.5 70 57.5 70
30 95.5 70 110 75 70 95 102.5
35 128.5 97.5 112.5 97.5 110 100 125
40 158.5 90 108.8 100 122.5 97.5 123.5
45 136.5 117.5 140 130 110 120 143.5
50 200.5 125 150 112.5 130 140 167.5

Figure 6-5 Penalties of timetables by using graph heuristic (GH) and CBR with case bases

of complex cases (upper: small cases; lower: large case)

0

20

40

60

80

100

120

140

160

180

200

10 15 20 25 30 35 40 45 50

n-course new cases

p
en

al
ti

es
o

f
ti

m
et

ab
le

s

GH

5 large

10 large

15 large

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

104

6.3.3 Evaluation on Case Bases with Small Cases

From all the experiments carried out on different case bases, we can

observe that case bases with both large and small cases provide better

results than those obtained by the GHT without employing the CBR

approach. CBR with case bases of smaller cases has better performance in

terms of lower penalty timetables for the new cases of different size than

CBR with large cases. Smaller sub-graphs in the retrieved multiple

sub-solutions seem to provide a better basis for the adaptation to produce

timetables of higher quality. Timetables combined from larger

sub-solutions also have lower penalties than those obtained by the GHT

method alone. However, the sub-solutions provided by retrieving larger

cases are much more likely to be destroyed in the adaptation to fulfil the

new constraints of the new cases and thus reusing smaller sub-solutions

performs better than reusing larger sub-solutions on solving the same

problems.

The results of experiments on case bases of small simple and complex

cases are illustrated in Figure 6-6. We can see that CBR with case bases of

complex cases provides better results than those produced by case bases of

simple cases. Also our previous tests showed that complex cases in the case

base provide more scheduling structures and lead to a higher proportion of

successful retrievals than those from simple cases. So by building a case

base of small complex cases, the multiple-retrieval CBR approach will

perform the best in reusing previous small scheduling structures to provide

a good basis for generating high quality timetables.

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

105

0

20

40

60

80

100

120

140

160

180

200

10 15 20 25 30 35 40 45 50

n-course new cases

p
en

al
ti

es
o

f
ti

m
et

ab
le

s

GH

5 complex

10 complex

15 complex

20

40

60

80

100

120

140

160

180

200

10 15 20 25 30 35 40 45 50

n-course new cases

p
en

al
ti

es
o

f
ti

m
et

ab
le

s

GH

5 simple

10 simple

15 simple

Figure 6-6 Penalties of timetables by using graph heuristic (GH) and CBR with case bases

of small cases (upper: complex cases; lower: simple cases)

6.3.4 Comparison on Retrieval Time in Different Case Bases

The retrieval time of the multiple-retrieval CBR approach varies on

different case bases for different new cases. The overall retrieval times for

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

106

new problems on the case bases with simple and complex cases are

presented in Figure 6-7, showing that retrieval in case bases with small

cases takes longer than with large cases. Retrieval in the case base with 5

small cases requires the longest time because the case base will provide

small sub-solutions in every retrieval. Thus more retrievals for the case

base are needed for the new case. With the limited number of scheduling

structures that 5 simple cases can provide, a longer time is needed to find a

match from the case base. Large cases provide larger sub-solutions for the

new cases and thus less retrievals are needed, so retrievals in case bases of

large simple course cases need less time.

The retrieval time for case bases of complex cases shows a similar pattern

to that of simple cases. The longest retrieval time is needed for the case

base with 5 small complex cases. The case bases storing complex cases are

much larger than those of simple cases, so the retrieval time is longer than

that for the simple cases addressing the same new case.

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

107

0

1

2

3

4

5

6

7

8

9

10 15 20 25 30 35 40 45 50

size of new cases

re
tr

ie
ve

tim
e

(s
ec

on
ds

)

5 small

10 small

15 small

5 large

10 large

15 large

0

5

10

15

20

25

30

35

10 15 20 25 30 35 40 45 50

size of new cases

re
tr

ie
ve

ti
m

e
(s

ec
o

n
d

s)

5 small

10 small

15 small

10 large

5 large

15 large

Figure 6-7 Retrieve time on case bases of simple cases (upper: simple cases; lower:

complex cases)

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

108

6.3.5 Multiple-Retrieval CBR as the Initialisation Method for Tabu

Search

The results of our experiments led to a natural question: would the

suggested CBR approach provide good starting point for local search

meta-heuristics such as Tabu Search. The motivation here is that the CBR

approach might be able to generate good solutions which Tabu Search

could “fine tune”. With this question in mind, we carried out another set of

experiments to investigate the possibility of employing the

multiple-retrieval CBR with small cases as an initialisation method for

Tabu Search. We compare this with the results of Tabu Search with

initialisation from GHT alone. The table in Figure 6-8 presents the

penalties of timetables generated by Tabu Search with the

multiple-retrieval CBR and with GHT alone as the initialisation methods.

We can observe that Tabu Search with multiple-retrieval CBR as

initialisation outperforms that of Tabu Search with GHT as initialisation.

The significant improvement on the penalties of the timetables generated

from the multiple-retrieval CBR over GHT as initialisation is drawn in the

charts in Figure 6-8. The multiple-retrieval CBR does indeed provide a

good starting point for the Tabu Search algorithm for these problems. By

reusing good schedule structures in timetables of previous similar

problems, the multiple-retrieval CBR approach may also decrease the

possibility of becoming stuck in a local optimum.

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

109

n-course
new case

Tabu Search
+ GHT

5
simple

10
simple

15
simple

5
complex

10
complex

15
complex

10 150 50 50 37 36 51 100
20 156 80 65 65 83 90 136
30 256 161 97 87 100 115 187
40 253 150 152 158 161 191 207
50 302 177 137 181 180 291 192
60 245 148 141 132 148 199 235
70 220 198 164 150 181 186 245
80 235 205.6 134 135 118 174 181
90 235 193 147 157 166 187 196

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50 60 70 80 90

size of new cases

im
rp

ov
em

en
to

n
pe

na
lti

es

5 simple

10 simple

15 simple

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 15 20 25 30 35 40 45 50

size of new cases

im
pr

ov
em

en
to

n
pe

na
lti

es

5 complex

10 complex

15 complex

Figure 6-8 GHT and multiple-retrieval CBR with small cases as the initialisation method

for Tabu Search

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

110

6.4 Chapter Summary

Real-world timetabling problems are usually very large and complex with a

number of complicated constraints. The multiple-retrieval CBR approach

provides promising results quickly on solving timetabling problems of

different sizes. Large timetabling problems are tackled by a partitioning

process that is carried out recursively on the same case base to

automatically decompose the problems into small solvable sub-problems.

The solutions of the partitioned sub-problem can be obtained by adapting

high quality timetables of the retrieved problems that have common similar

constraints. High quality scheduling structures in the sub-solutions found

by multiple retrievals are retained after the combination in the adaptation

phase and provide good scheduling blocks for the final solution of the new

problem. By employing this approach, cases in the case base that are much

smaller than the new problem to be solved can be reused repeatedly for

solving parts of the new problem, thus the case base does not have to

contain a large amount of large cases. This avoids the memory problem

that plagues many structured CBR systems.

For every sub-problem partitioned, there are always some retrieved cases

(though with different similarities) for reuse. The differences between the

retrieved cases and parts of the new problem are recorded and provide the

adaptation information, leading to an efficient adaptation-guided retrieval.

Thus the retrieved cases are guaranteed to be adaptable. A similarity

measure takes into consideration how difficult it is to adapt these blocks in

CBR for Course Timetabling Multiple-Retrieval CBR for Timetabling

111

the retrieved cases according to the differences recorded to fulfil the

constraints of the original problem.

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

112

Chapter 7 Knowledge Discovery in

Hyper-Heuristic using CBR on Course

Timetabling

The work presented in the previous chapters investigated the contributions

that CBR can make to solve course timetabling problems by reusing

previous good quality timetables. In real-world problem solving, people

also reason by reusing the heuristics or procedures that were successful in

solving previous similar problems. In timetabling (and also other

scheduling problems), sometimes a small change in the constraints may

lead to a quite different solution, thus research issues in representation and

similarity need to be carefully conducted in CBR to detect the differences

in solutions that result from the differences in problems. Modelling and

reusing the knowledge of methods people use rather than the actual

timetables in solving similar problems would also be useful.

This chapter presents a new hyper-heuristic method using CBR for solving

course timetabling problems (Burke, MacCarthy, Petrovic, and Qu, 2002).

One of the overriding motivations of hyper-heuristic methods is the attempt

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

113

to develop techniques that can operate with greater generality than is

currently possible. The basic idea behind this is that we maintain a case

base of the information about the most successful heuristics for a range of

previous timetabling problems to predict the best heuristic for the new

problem in hand using the previous knowledge. Knowledge discovery

techniques are used to carry out the training on the CBR system to improve

the system performance on the prediction.

7.1 CBR as a Heuristic Selector

The overall goal of our approach is to investigate CBR as a selector to

choose (predict) the best (or a reasonably good) heuristic for the problem in

hand according to the knowledge in solving previous similar problems,

thus to avoid a large amount of computation time and effort on the

comparison and choosing of different heuristics. A large number of

approaches and techniques in AI and OR have been studied to solve a wide

range of timetabling problems successfully over the years. Comparisons

have been carried out in some papers on using different approaches in

solving a specific range of problems. Thus the development of heuristics

for timetabling is very well established and a reasonable amount of

knowledge does exist on which specific heuristic works well on what

specific range of timetabling problems. This provides a large number of

cases that can be collected, studied and stored in the case base, providing a

good starting point in solving new course timetabling problems.

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

114

7.1.1 Knowledge Discovery on Heuristic Selection

In our CBR system the previous most similar cases provide information

that facilitates the prediction of the best heuristic for the target case. The

retrieval in CBR is a similarity-driven process that is carried out on cases

described in specific forms. Thus the key issues are the case representation

that should be in a proper form to describe the relevant context within the

timetabling problem, and how it influences the similarity between cases

that drives the retrieval to provide an accurate prediction on heuristic

selection.

Figure 7-1 Screenshot of the 2-stage knowledge discovery process for course timetabling

Knowledge discovery techniques are employed to extract the knowledge of

meaningful relationships within the case-based heuristic selector via

iterative training processes on cases of course timetabling problems. There

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

115

are two iterative training stages used in the process. Figure 7-1 presents the

screenshot of this 2-stage process. The first stage tries to discover the

representation of cases with a proper set of features and weights. The

second stage trains the case base so that it contains the proper collection of

source cases. Both of the processes are carried out iteratively. The overall

objective is to obtain the highest accuracy on retrievals for predictions of

heuristics for target cases.

7.1.2 Getting Started

Our approach starts from the system and data preparation. Cases in the

system are represented by a list of feature-value pairs where a set of

features is used to describe the relevant characteristics of the problems, and

a value is given for each of these features. In the first stage of the system

development, systematic analysis needs to be carried out. The current CBR

system examines the source cases and target cases that are produced

artificially with specific characteristics as their problem part. These include

problems with different size, different timeslots, different rooms, etc. Some

heuristics will work well on some problems and less well on others. This

means that the system has many types of problems that are studied and

collected. Appendix B presents a description of the problem specifications.

For every source case and target case, 5 heuristics (described in Appendix

C) are used to solve the problem beforehand. By checking the penalties of

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

116

the timetables produced, these heuristics are stored with each case in an

ascending order as its solution part.

The retrieval is a similarity-driven process that searches through the case

base to find the most similar source cases. The similarity measure employs

a nearest-neighbor method that calculates a weighted sum of the

similarities between each pair of individual features between cases.

Formula (6) presents the similarity measure between the source case Cs and

the target case Ct in the system:

(6)

the notation is described as follows:

j: the number of features in the case representation

wi: the weight of the ith feature reflecting the relevance on the prediction

fsi, fti: the values of the ith feature in source case Cs and target case Ct

respectively

The possible values of the features describing timetabling problems are all

integers (see Appendix D). So the higher the value of S(Cs, Ct), the more

similar the two cases are.

The performance of the system is tested on different sets of target cases.

The training on the system is targeted at a reasonably high accuracy on all

of the retrievals for the target cases quickly. Within each retrieval, the best

∑ +−
=

=

j

i
iii

ts

ftfsw

CCS

0

2 1)(*

1
),(

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

117

two heuristics of the retrieved case are compared with the best heuristic of

the target case. If the best heuristic of the target case maps onto any of the

best two heuristics of the retrieved case, the retrieval is concluded as

successful. Actually, in the training processes, we found that sometimes

penalties of the timetables produced by different heuristics are close or

equal to each other.

7.1.3 Training on the Case Representation

An initial case base is built up containing a set of different source cases

with artificially selected specific constraints and requirements from

Appendix B. An initial list of features is firstly randomly selected to

represent cases. Each of the features is initially assigned with the same

normalized weights. There are 11 features (details of the which are given in

Appendix D) in the initial case representation.

Our knowledge discovery on the case representation to train the features

and their weights in the system adopts the iterative methodology

(Cunningham and Bonzano, 1999). In every iteration, we:

a) Analyse the retrieval failures.

b) Propose new features to address retrieval failures.

c) Select a discriminating set of features for the new case

representation.

d) Evaluate the competence of this representation.

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

118

In the CBR system, the training for case representation is a recursive

failure-driven process carried out to refine the initial features and their

weights. A schematic diagram of the knowledge discovery on case

representation is given in Figure 7-2. The knowledge discovery process in

the system includes the following steps:

Adjusting feature weights. The best two heuristics of the retrieved case

are compared with the best one of the target case to see if the

retrieval is successful (the best heuristic of the target case mapped

onto one of the best two of the retrieved case). Adjustments on

feature weights are iterative error-driven processes: the weights of

the features that result in the failures of the retrieval are penalized

(decreased) and those that can contribute successful retrievals are

rewarded (increased) to discriminate the source cases that should be

retrieved from the others that should not be retrieved.

Removing irrelevant features. After certain rounds of iterative

adjustments, the weights of some of the features may be small

enough to be removed from the feature list. This means that these

features are either irrelevant or less important, thus are not needed in

the case representation. Retaining the irrelevant features may confuse

the retrieval process, as the similarities between cases maybe too

close to each other, thus reduce the number of the successful

retrievals and decrease the system performance (John, G.H. Kohavi,

R. and Pfleger, K., 1994).

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

119

Introducing new features. When the adjustment of feature weights does

not result in a successful retrieval for a target case, new relevant

features are added. New features are proposed by studying if they can

distinguish the correct source case from the others, if they can give

the prediction of the success, or if they can express the specific

characteristics in a particular case.

Figure 7-2 Schematic Diagram of Knowledge Discovery on Featrues and Their Weights

Due to the complexity of the problem, at the beginning we do not know

what features are relevant to the similarity-driven retrieval and which

should be used to represent cases. Also we do not know their weights as we

do not know how important they are to properly calculate the similarity

that influences the heuristic selection. By using the recursive knowledge

discovery process presented above, irrelevant and less important features

no

yes

Knowledge Discovery

Introduce new
features

Adjust
Weights Remove

irrelevant
features

Knowledge
Discovery

Case Base

Initial
Features Satisfied?

Discovery
Features

Retrieval

Target
Cases

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

120

are removed from the initial feature list. The feature vector that gives the

highest accuracy on retrievals for all of the target cases will be employed as

the basis for the second stage of the knowledge discovery. The trained case

representation (with 6 features left) after the first stage of training is given

in Appendix E.

7.1.4 Training on the Case Base

Case selection is a particularly important issue in building up a case base.

Sometimes, keeping irrelevant source cases can decrease the system

performance and increase the space and time requirements of the system.

The objective of the second stage training is to select a collection of

relevant cases without redundancy for the case base.

Firstly we build up two initial case bases with source cases of 9 different

sizes with 10, 15, … to 50 courses in them:

“OneSet” – For each size, 5 source cases are produced, each has one of

the 5 heuristics in Appendix B as its best heuristic. We name this

case base “OneSet” as it contains one set of the 5 heuristics for cases

with different sizes (thus in OneSet there are 9 * 5 = 45 source

cases).

“TwoSet” – The case base consists of two sets of the 5 heuristics for

each source case with 9 different sizes (in total 9 * 5 * 2 = 90 source

cases).

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

121

A database is built up containing these two case bases and the target case

set. Figure 7-3 presents a screenshot of the database.

The target cases are produced with the size of 10, 20, 30, … to 100 courses,

for each size with 10 instances. Thus there are 10 * 10 = 100 target cases to

be tested on the two initial case bases. The best heuristics for each of them

is obtained beforehand to evaluate the retrieval.

Figure 7-3 Screenshot of the Case Bases and Target Cases for Course Timetabling

Problems

The training process on these two initial case bases is carried out

recursively using the “Leave-One-Out” strategy: Each time when a source

case is removed from the case base we test to see if the number of

successful retrievals on the case bases for all of the target cases are

increased. If removing a source case decreases the number of successful

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

122

retrievals, it will be restored back to the case base as it may contribute to

successful retrievals for certain types of cases. Otherwise if the number of

successful retrievals increases or does not change, it will be removed from

the case base as a redundant case, or because it may not be a representative

case for a specific type of cases. The process stops when the highest

number of retrievals is obtained on all the target cases. The process is

presented at the right part of the screenshot in Figure 7-1.

After the second stage of training, finally there are 14 and 15 source cases

left in the original two case bases, respectively. To test the system

performance, an experiment is carried out on both the initial and trained

case bases for another set of target cases that are, of course, not the same as

those of the training set. The accuracies of the system performance on these

case bases are shown in Table 7-1.

Case Base Retrieval Accuracy
OneSet (45 cases) 42%
TwoSet (90 cases) 60%

Trained OneSet (15 cases) 70%
Trained TwoSet (14 cases) 71%

Table 7-1 Accuracies of system performance on initial and trained case bases

We can see that the second training process removes quite a lot of source

cases that are redundant or that are harmful for the performance of the CBR

system. With a smaller number of relevant source cases retained in the case

bases, the system performance is improved to provide higher accuracies of

predictions on heuristics.

CBR for Course Timetabling Knowledge Discovery in Course Timetabling

123

7.2 Chapter Summary

This chapter presents the first step of our work on a hyper-heuristic method

using CBR for heuristic selection on course timetabling problems.

Knowledge discovery techniques employ relatively simple methods and

just a few training processes are carried out to obtain the good results. This

approach is applicable of using the CBR as the heuristic selector for

guiding the problem solving using previous experience. It may provide

potential benefits in course timetabling when a good solution is needed

within a limited time. Further work may to be carried out to fulfil the

possible advantages of employing knowledge discovery techniques in the

course timetabling domain.

CBR for Course Timetabling Conclusions and Future Work

124

Chapter 8 Conclusions and Future Work

This thesis investigates the CBR for solving course timetabling problems.

The overall objective is to study how CBR can help to solve this type of

scheduling problem by reusing previous knowledge collected and stored in

a case base. Mainly in two ways, by reusing good quality solutions, and by

reusing good heuristics, CBR will help solving the course timetabling

problem. We will conclude these in the following sections, which are

followed by future work on using CBR for timetabling problems.

8.1 Summary of the Structured CBR

8.1.1 Structured Representation in CBR

Structured representation has attracted more attention along with the wider

and more complicated application areas being conducted in CBR research.

The approach investigated in this thesis showed some potential benefits

that can be obtained through the structured representation in course

timetabling by attribute graphs.

CBR for Course Timetabling Conclusions and Future Work

125

The similarity measure considers the actions need to be taken in the

adaptation thus is adaptation targeted. Different costs are associated with

necessary actions in adaptation and recorded in similarity measure

according to their difficulties. Adaptations are associated with the matching

information on constraints of the retrieved cases and the new case, which is

provided by (sub-)graph isomorphism. Based on the retrieval and similarity

measure used in the structured CBR, good scheduling structures within

previous problem solutions with similar constraints can be retrieved and

reused as the components of the starting point, contributing high quality

schedules in solving similar new course timetabling problems quickly.

The work presented in this thesis in course timetabling is trying to provide

a CBR mechanism that can be easily adopted to solve a range of course

timetabling problems. We also believe that, because of the general

modelling method used, the basic mechanism of our structured

multiple-retrieval CBR approach will be applicable in a range of problems

(where the problems can be modelled as attribute graphs) like educational

exam timetabling, and other type of constraint satisfaction problems.

8.1.2 Multiple-Retrieval Approach

In Case-based Scheduling, complex problems usually need to borrow

several previous schedules, each of which contributes different parts of the

problem. The multiple-retrieval CBR approach conducted here partitions

the large timetabling problems on a small case base pre-built. One of the

CBR for Course Timetabling Conclusions and Future Work

126

differences between many of the approaches investigated and the approach

here is that the sub-problems are not partitioned by the rules but according

to the source cases in the case base. This provides more flexibility when

dealing with the complicated timetabling problems. Also once a

sub-problem is partitioned, it is guaranteed that a sub-solution will always

be obtained based on the corresponding source cases retrieved.

8.2 Summary on CBR as a Heuristic Selector

This thesis also presents the first step of the work on using CBR for

heuristic selection on course timetabling problems. The results are good

and indicate more potential on employing CBR within the hyper-heuristic

approach in the course timetabling domain. Knowledge on what specific

heuristics are good for solving which types of problems can be discovered

and stored in the system. This on a higher level improves the generality of

the problem solving, providing generally good heuristics quickly and

avoiding the comparisons between different heuristics.

8.3 Future Work

8.3.1 Improving the Current Structured CBR Approach

8.3.1.1 Similarity Measure

When consider the similarity between the target problem and a set of cases,

one of the problems in the current multiple-retrieval similarity measure is

CBR for Course Timetabling Conclusions and Future Work

127

that sometimes it cannot precisely define the similarity due to some

unexpected possibilities on characteristics in multiple cases. For example,

during the multiple-retrieval process, the previously matched parts of the

target case are combined into one super vertex and the adjacent edges

between the matched and un-matched parts are combined with certain new

attributes accordingly. This may in some way affect the accuracy of the

similarity measure and thus the existing similarity measure needs to be

refined in a more precise way.

8.3.1.2 Issues on Real World Course Timetabling Problems

A large number of experiments have been carried out on the current system

concerning issues of time and space complexities. In real-world

educational timetabling, it is well known that different institutions have

their own specific requirements for course timetabling. Much of the

research work carried out in the literature is aimed at problems in the

authors’ own institution. It is known that so far there is no exclusive set of

real-world benchmark course timetabling problems available upon which

to test our multiple-retrieval CBR system and compare it with other

research results. We are currently putting together these benchmark course

timetabling problems. They will be available at

http://www.asap.cs.nott.ac.uk/themes/tt and the authors welcome further

contribution from other timetabling researchers.

CBR for Course Timetabling Conclusions and Future Work

128

Much of the current work on course timetabling employs meta-heuristics

methods and constraint logic programming, in which the problems are

represented in quite different ways. Reformatting the real data will also

form part of our future work.

8.3.2 Hybridisation within the Structured CBR Approach

Recent research in timetabling has reported many promising results by

employing a variety of heuristic and meta-heuristic techniques, which are

much flexible in solving a wide range of complex problems and thus is also

adoptable to be hybridised to the CBR approach studied here.

This thesis presents some results in which the CBR approach works as the

initialisation method for tabu search. Initialisation as one of the important

factors on searching in meta-heuristic methods has formed an important

research subject. Good initial solutions usually provide good starting points

and save a significant amount of computing time. From the heuristic

perspective, the multiple-retrieval CBR approach here fit well to provide

good initial solutions embed good scheduling blocks. The future work will

study more potential contributions of the hybridisation in solving more

general complex timetabling problems.

The retrieval phase that finds the (sub-)graph isomorphism can be seen as a

searching process, which the meta-heuristic methods are good at and may

potentially be beneficial. Some state-search approaches such as

Meta-heuristic methods (Williams, Wilson and Hancock, 1999) and

CBR for Course Timetabling Conclusions and Future Work

129

Memetic Algorithms (Cross, Myers and Hancock, 2000) are recently

studied for graph matching in research. Investigation may be carried out on

using meta-heuristic method to search for matching parts between the

attribute graphs. The case base then can be organised into a flat structure to

store a list of attribute graphs and the size of it will grow linearly thus

reducing the storage complexity. However, the required searching time of

the meta-heuristic for (sub-) graph isomorphism might be increased and it

is not guaranteed the meta-heuristic will find all of the good matched

(sub-)structures.

8.3.3 CBR as the Heuristic Selector

The approach that uses CBR as the heuristics selector presented in the

thesis employed relatively simple techniques in knowledge discovery.

There are many more complex and elaborate techniques that can be

investigated and integrated into the CBR system to improve its

performance. For example, for the case representation we currently use a

simple technique that is manually carried out to choose the features and

adjust their weights. This can be seen as a feature selection task, which is

the problem of selecting a set of features to be used as the data format in

the system to achieve high accuracy of prediction. Feature selection is an

important issue in machine learning (Hall and Smith, 1996) for which a

variety of traditional techniques exist (e.g. wrappers Kohavi and John,

1997; relief Kononenko, 1994 models). Some recent work employing AI

CBR for Course Timetabling Conclusions and Future Work

130

methods such as hill climbing (Caruana and Freitag, 1994) and

evolutionary algorithms (Freitas, 2002) to optimise the feature selection

also provide a wider range of possible research. For complex timetabling

problems, these more efficient algorithms can be employed to carry out the

searching on features more effectively when dealing with larger data sets.

Our future work will study and compare these different techniques to

optimise the case representation and improve the system performance on

wider range of larger timetabling problems. New features are being studied

and introduced into the system. For example, some refined features such as

the number of rooms with a range of capacities, the number of courses with

more than a certain number of constraints, etc can be introduced to give a

more specific description of problems. Other issues of knowledge

discovery in the CBR system may include how to deal with the incomplete

data in case bases and how to involve the domain knowledge in the system.

User interaction in knowledge discovery is also important on tasks like

judgment and decision-making, for which human usually do better than a

machine.

The current system uses 5 simple heuristic to implement the analysis and

testing on the case-based heuristic selection. Future work will study more

heuristics in the system. Also the testing cases are artificially produced to

give a systematic analysis on as many possible types of problem as

possible. After the initial study of using CBR as a heuristic selector we

have increased our understanding of the area. Real-world benchmark

timetabling data (such as that presented in Carter and Laporte, 1996) will

CBR for Course Timetabling Conclusions and Future Work

131

be collected and stored in the case base for solving real-world problems.

Adaptation may also need to be conducted to utilize domain knowledge on

some of the heuristics retrieved for the new problem.

The knowledge discovery techniques we studied in choosing heuristics may

also be employed to discover knowledge in the search space that may guide

the search towards a more promising region in problem solving using a

variety of AI methods. In the Case-Based heuristic selection presented in

this thesis, knowledge of what specific heuristic work well on what types

of problems is modelled as cases. It is also possible that the knowledge of

heuristics worked well during the problem solving within a particular

periods of problem solving can be modelled and memorized in a case base

and suggests heuristics during the problem solving process by employing

heuristics which worked well on previous similar situations. Our future

work will also investigate more complicated hyper-heuristic methods using

CBR for general timetabling problems.

CBR for Course Timetabling References

132

References

AAMODT, A. and PLAZA, E. (1994) Case-based reasoning: foundational issues,

methodological variations and system approaches. AI Communications, 7(1),

39 – 59.

ABDENNADHER, S. and MARTE, M. (2000) University course timetabling

using constraint handling rules. Journal of Applied Artificial Intelligence,

14(4), 311 – 326.

ABRAMSON, D. (1991) Constructing school timetables using simulated

annealing: sequential and parallel algorithms. Management Science, 37, 98 –

113.

ABRAMSON, D. and ABELA, J. (1992) A parallel genetic algorithm for solving

school timetabling problem. The fifteenth Australian Computer Science

Conference, 1 – 11.

ABRAMSON, D.A. DANG, H. and KRISNAMOORTHY, M. (1999) Simulated

annealing cooling schedules for the school timetabling problem, Asia-Pacific

Journal of Operational Research, 16, 1 – 22.

CBR for Course Timetabling References

133

ALVAREZ-VALDES, R. CRESPO, E. and TAMARIT, J.M. (2002) Design and

implementation of a course scheduling system using tabu search. EJOR, 137,

512 – 523.

ARNOLD, O. and JANKE, K. (1994) Therapy plans as hierarchically structured

graphs. The Fifth International Workshop on Graph Grammars and Their

Applications to Computer Science. Virginia, USA.

BANKS, D. BEEL, P. and MEISLES (1998) A heuristic incremental modelling

approach to course timetabling. Proceedings of the Canadian Conference on

Artificial Intelligence, 16 – 29.

BARDDADYM, V. (1995) Computer-aided school and university timetabling: the

new wave. In: BURKE, E.K. and ROSS, P. (eds.) Practice and Theory of

Automated Timetabling: Selected Papers from the First International

Conference, 22 – 45, Lecture Notes in Computer Science 1153,

Springer-Verlag: Berlin.

BERGER, J. SASSI, M. and SALOIS, S. (1999) A hybrid genetic algorithm for

the vehicle routing problem with windows and itinerary constraints.

Proceedings of the Genetic and Evolutionary Computation Conference 1999

(GECCO-99), Morgan Kaufmann, 44 – 51.

BERGMANN, R. and WILKE, W. (1995) Building and refining abstract planning

cases by change of representation language. Journal of Artificial Intelligence

Research, 3, 53 – 118.

BERGMANN, R. M-AVILA, H. VELOSO, M. and MELIS E. (1998) Case-based

reasoning applied to planning. In: LENZ, M. BARTSCH, B. BURARD, H-D.

CBR for Course Timetabling References

134

and WESS, S. (eds.) Case-Based Reasoning Technology From Foundation to

Applications, pp. 169 – 200, Lecture Notes in Artificial Intelligence 1400,

Springer-Verlag.

BERGMANN, R. and WILKE, W. (1996) On the role of abstraction in CBR.

European Workshop on Case-Based Reasoning. Lecture Notes on Computer

Science 1168, 28 – 43.

BEZIRGAN, A. (1993) A case-based approach to scheduling constraints. In:

DORN, J. and FROESCHL, K.A. (eds.) 48 – 60. Scheduling of Production

Processes. Ellis Horwood Limited.

BLANCO, J.J. and KHATIB, L. (1998) Course scheduling as a constraint

satisfaction problem. Proceedings of PACT98.

BOIZUMAULT, P. Delon, Y. and PERIDY, L. (1996) Constraint logic

programming for examination timetabling. The Journal of Logic

Programming, 26, 217 – 233.

BÖRNER, K. PIPPIG, E. TAMMER, E.C. COULON, C.H. and (1996) Structural

similarity and adaptation. In: SMITH, I. and FALTINGS, B. (eds.) Advances

in Case-based Reasoning, 58 – 75. Springer-Verlag, Switzerland.

BRAILSFORD, S.C. POTTS, C.N. and SMITH, B.M. (1999) Constraint

satisfaction problems: algorithms and applications. EJOR, 119, 557 – 581.

BRELAZ, D. (1979) New methods to colour the vertices of a graph.

Communication of the Association for Computing Machinery, 22, 251 – 256.

CBR for Course Timetabling References

135

BULLNHEIMER, B. (1997) An examination scheduling model to maximize

students’ study time. In: BURKE, E.K. and CARTER W. (eds.) The Practice

and Theory of Automated Timetabling: Selected papers from the Second

International Conference, 78 – 91. Lecture Notes in Computer Science 1408.

Springer-Verlag: Berlin.

BURKE, E.K. ELLIMAN, D.G. and WEARE, R.F. (1994) A university

timetabling system based on graph colouring and constraint manipulation.

Journal of Research on Computing in Education, 27, 1 – 18.

BURKE, E.K. NEWELL J.P. and WEARE, R.F. (1995) A memetic algorithm for

university exam timetabling. In: BURKE, E.K. and ROSS, P. (eds.) The

Practice and Theory of Automated Timetabling: Selected Papers from the First

International Conference. 241 – 250. Lecture Notes in Computer Science

1153. Springer-Verlag: Berlin.

BURKE, E.K. and ROSS, P. (eds.) (1995) The Practice and Theory of Automated

Timetabling: Selected Papers from the First International Conference. Lecture

Notes in Computer Science 1153. Springer-Verlag, Berlin.

BURKE, E.K. and CARTER, M. (eds.) (1997) The Practice and Theory of

Automated Timetabling: Selected Papers from the Second International

Conference. Lecture Notes In Computer Science 1408. Springer-Verlag,

Berlin.

BURKE, E.K. JACKSON, K.S. KINGSTON, J.H. and WEARE, R.F. (1997)

Automated timetabling: the sate of the art. The Computer Journal, 40(9), 565 –

571.

CBR for Course Timetabling References

136

BURKE, E.K. and NEWALL, J. (1998) Initialisation strategies and diversity in

evolutionary timetabling. Evolutionary Computation, 6(1), 81 – 103.

BURKE, E.K. NEWALL, J. and WEARE, R. (1998) A simple heuristically

guided search for the timetable problem. Proceedings of the International

ICSC Symposium on Engineering of Intelligent Systems (EIS'98), 574 – 579.

BURKE, E.K. and NEWALL, J.P. (1999) A multi-stage evolutionary algorithm

for the timetable problem. IEEE Transactions on Evolutionary Computation, 3,

63 – 74.

BURKE, E.K. and ERBEN, W. (eds.) (2000) The Practice and Theory of

Automated Timetabling: Selected Papers from the Third International

Conference. Lecture Notes in Computer Science 2079. Springer-Verlag,

Berlin.

BURKE, E.K. MACCARTHY, B. PETROVIC, S. and QU, R. (2000) Structured

cases in CBR – re-using and adapting cases for timetabling problems. Journal

of Knowledge-based System, 13(2-3), 159 – 165. (Also published in ES’99 as

one of the best technique papers).

BURKE, E.K. MACCARTHY, B.L. PETROVIC, S. and QU, R. (2001a)

Case-based reasoning in course timetabling: an attribute graph approach. In:

AHA, D.W. and WATSON, I. (eds.) Case-Based Reasoning Research and

Development. Proceedings of the Fourth International Conference on

Case-Based Reasoning (ICCBR2001). 90 – 104. Lecture Notes in Artificial

Intelligence 2080. Vancouver, Canada.

CBR for Course Timetabling References

137

BURKE, E.K. MACCARTHY, B.L. PETROVIC, S. and QU, R. (2001b). A

multiple-retrieval case-based reasoning system for course timetabling

problems. Technical Report NOTTCS-TR-2001-7. School of Computer

Science and Information Technology, University of Nottingham.

BURKE, E.K. MACCARTHY, B.L. PETROVIC, S. and QU, R. (2002).

Knowledge discovery in a hyper-heuristic for course timetabling using

case-based reasoning. In: BURKE, E.K. and CAUSMAECKER, P. (eds.)

Proceedings of the Fourth International Conference on the Practice and

Theory of Automated Timetabling.

BURKE, E.K. and CAUSMAECKER, P. (eds.) (2002) Proceedings of the Fourth

International Conference on the Practice and Theory of Automated

Timetabling.

BURKE, E.K. and PETROVIC, S. (2002) Recent research directions in automated

timetabling. European Journal of Operational Research 140(2), 266 – 280.

CANGALOVIC, M. KOVACEVIC-VUJCIC, V. IVANOVIC, L. and DRAZIC,

M. (1998) Modelling and solving a real-life assignment problem at

universities. EJOR, 110, 223 – 233.

CARTER, M.W. (1989) A Langrangian relaxation approach to the classroom

assignment problem. INFOR, 2, 230 – 246.

CARTER, M.W. and LAPORTE, G. (1995) Recent developments in practical

examination timetabling. In: BURKE, E.K. and ROSS, P. (eds.) The Practice

and Theory of Automated Timetabling: Selected Papers from the First

CBR for Course Timetabling References

138

International Conference. 3 – 21. Lecture Notes in Computer Science 1153.

Springer-Verlag: Berlin.

CARTER, M.W. and LAPORTE, G. (1996) Examination timetabling: algorithmic

Strategies and applications, Journal of the Operational Research Society, 74,

373 – 383.

CARTER, M.W. and LAPORTE, G. (1997). Recent developments in practical

course timetabling. In: BURKE, E.K. and CARTER W. (eds.) The Practice

and Theory of Automated Timetabling: Selected papers from the Second

International Conference, 3 – 19. Lecture Notes in Computer Science 1408.

Springer-Verlag: Berlin.

CARTER M.W. (2000). A comprehensive course timetabling and student

scheduling system at the university of waterloo. In: BURKE, E.K. and

ERBEN, W. (eds.) The Practice and Theory of Automated Timetabling:

Selected papers from the third International Conference, 64 – 82. Lecture

Notes in Computer Science 2079. Springer-Verlag: Berlin.

CARUANA, R. and FREITAG, D. (1994) Greedy attribute selection. In:

Proceedings of the International Conference on Machine Learning, 28 – 36.

CHENG, C., KANG, L., LEUNG, N. and WHITE, G.M. (1995) Investigations of

a constraint logic programming approach to university timetabling. In:

BURKE, E.K. and ROSS, P. (eds.) The Practice and Theory of Automated

Timetabling: Selected Papers from the First International Conference. 112 –

129. Lecture Notes in Computer Science 1153. Springer-Verlag: Berlin.

CBR for Course Timetabling References

139

COLORNI, A. DORIGO, M. and MANIEZZO, V. (1998) Metaheuristics for

school timetabling. Computational Optimisation and Applications, 9(3), 277 –

298.

CORNE, D. ROSS, P. and FANG, H.L. (1994) Evolutionary timetabling: practice,

prospects and work in progress. Proceedings of UK Planning and Scheduling

SIG Workshop,

CORNE, D. and ROSS, P. (1995) Peckish initialisation strategies for evolutionary

timetabling. In: BURKE, E.K. and ROSS, P. (eds.) The Practice and Theory of

Automated Timetabling: Selected papers from the First International

Conference. 227 – 240. Lecture Notes in Computer Science 1153.

Springer-Verlag: Berlin.

COSTA, D. (1994) A tabu search for computing an operational timetable. EJOR,

76, 98 – 110.

COWLING, P. KENDALL, G. and SOUBEIGA, E. (2000) A hyperheuristic

approach to scheduling a sales summit. In: BURKE, E.K. and ERBEN, W.

(eds.) Proceedings of the Third International Conference on the Practice and

Theory of Automated Timetabling. 176 – 190.

COWLING, P. KENDALL, G. and SOUBEIGA, E. (2001) Hyperheuristic: a tool

for rapid prototyping in scheduling and optimisation. Second European

Conference on Evolutionary Computing for Combinatorial Optimisation

(EvoCop 2002), 1 – 10.

COWLING, P. KENDALL, G. and HAN, L. (2002) An investigation of a

hyperheuristic genetic algorithm to a training scheduling problem. Proceedings

CBR for Course Timetabling References

140

of 2002 World Congress on Computational Intelligence (CEC 2002), 1185 –

1190.

CROSS, A.D.J. MYERS, R. and HANCOCK, E.R. (2000) Convergence of a

hill-climbing genetic algorithm for graph matching. Pattern Recognition, 33,

1863 –1880.

CUNNINGHAM, P. and SMYTH, B. (1997) Case-based reasoning in scheduling:

reusing solution components. The International Journal of Production

Research. 35, 2947 – 2961.

CUNNINGHAM, P. and BONZANO, A. (1999) Knowledge engineering issues in

developing a case-based reasoning application. Knowledge-Based Systems, 12,

371 – 379.

DAVID, P. (1997) In: BURKE, E.K. and CARTER, M.W. (eds.) Practice and

Theory of Automated Timetabling: Selected papers from the Second

International Conference, 169 – 186. Lecture Notes in Computer Science

1408. Springer-Verlag, Berlin.

DERIS, S. OMATU, S. and OHTA, H. (2000) Timetable planning using the

constraint-based reasoning. Computers & Operations Research, 27, 819 – 840.

DERIS, S. OMATU, S. OHTA, H. and SAAD, P. (1999) Incorporating constraint

propagation in genetic algorithm for university timetable planning.

Engineering Applications of Artificial Intelligence, 12, 241 – 253.

DORN, J. (1995) Case-based reactive scheduling. Technical Report CD-TR

95/75.

CBR for Course Timetabling References

141

DOWSLAND, K.A. (1997) Off-the-peg or made to measure? Timetabling and

scheduling with SA and TS, In: BURKE E.K. and CARTER M.W. (eds.) The

Practice and Theory of Automated Timetabling: Selected Papers from the

Second International Conference, 37 – 52. Lecture Notes in Computer Science

1408. Springer-Verlag: Berlin.

ELMOHAMED, M.A.S. CODDINGTON, P. and FOX, G. (1997) A comparison

of annealing techniques for academic course timetabling. In: BURKE E.K. and

CARTER M.W. (eds.) The Practice and Theory of Automated Timetabling:

Selected Papers from the Second International Conference. 92 – 112. Lecture

Notes in Computer Science 1408, Springer-Verlag: Berlin.

ERBEN, W. (2000) A grouping genetic algorithm for graph colouring and exam

timetabling. In: BURKE, E.K. and ERBEN, W. (eds.) Practice and Theory of

Automated Timetabling: Selected papers from the Third International

Conference, 132 – 156. Lecture Notes in Computer Science 2079.

Springer-Verlag, Berlin.

FAHRION, R. and DOLLANSKY, G. (1992) Construction of university faculty

timetables using logic programming. Discrete Applied Mathematics. 35(3),

221 – 236.

FANG, H.L., ROSS P. and CORNE, D. (1994) A promising hybrid GA/heuristic

approach for open-shop scheduling problems. The Eleventh European

Conference on Artificial Intelligence (ECAI’94). John Wiley & Sons, Ltd.

FAYYAD, U., PIATETSKY-SHAPIRO, G., SMYTH, P. (1996) From data

mining to knowledge discovery in databases. In: FAYYAD, U.,

PIATETSKY-SHAPIRO, G., SMYTH, P. and UTHURUSAMY, R. (eds.):

CBR for Course Timetabling References

142

Advances in Knowledge Discovery and Data Mining. AAAI Press, Melo Park,

CA, 1 – 34.

FOULDS, L.R. and JOHNSON, D.G. (2000) SlotManager: a

microcomputer-based decision support system for university timetabling.

Decision Support Systems, 27, 307 – 381.

FREITAS, A. (2002) A survey of evolutionary algorithms for data mining and

knowledge discovery. To appear in: GHOSH, A. and TSUTSUI, S. (eds.):

Advances in Evolutionary Computation, Springer.

FUCHS, B. MILLE, A and CHIRON, B. (1996) Using explanations to guide

adaptation. Proceedings of Workshop on Adaptation in Case-Based Reasoning,

ECAI96.

GAREY, M.R. and JOHNSON, D.S. (1979) Computers and Intractability: A

Guide to the Theory of NP-Completeness. Freeman and Company. New York.

GARZA, A.G.S. and MAHER, M.L. (1999) An evolutionary approach to case

adaptation. Proceedings of the Third International Conference on Case-Based

Reasoning.

GASPERO, L.D. and SCHAERF, A. (2000) Tabu search techniques for

examination timetabling. In: BURKE, E.K. and ERBEN, W. (eds.) Practice

and Theory of Automated Timetabling: Selected papers from the Third

International Conference, 104 – 117. Lecture Notes in Computer Science

2079. Springer-Verlag, Berlin.

GEBHARDT, F. (1995) Methods and systems for case retrieval exploiting the

case structure. FABEL-Report 39, GMD, Sankt Augustin.

CBR for Course Timetabling References

143

GEBHARDT, F. (1997) Survey on structure-based case retrieval. The Knowledge

Engineering Review, 12(1), 41 – 58.

GLOVER, F. and LAGUNA, M. (1993) Tabu search. In: REEVES, C.R. (eds.)

Modern Heuristic Techniques for Combinational Problems. Scientific

Publications, Oxford.

GOLDING, A.R. and ROSEBLOOM, P.S. (1997) Improving rule-based systems

through case-based reasoning. 22 – 27. Proceedings of the Ninth National

Conference on Artificial Intelligence.

GOLTZ, H.J. (2000) On methods of constraint-based timetabling. Proceedings of

PACLP’2000, 167 – 177.

GROLIMUND, S. and GANASCIA, J. (1997) Driving tabu search with

case-based reasoning. EJOR. 103, 326 – 338.

GUERET, G. JUSSIEN, N. BOIZUMAULT, P. and PRINS, C. (1995) Building

university timetables using constraint logic programming. In: BURKE, E.K.

and ROSS, P. (eds.) The Practice and Theory of Automated Timetabling:

Selected Papers from the First International Conference, 130 – 145. Lecture

Notes in Computer Science 1153. Springer-Verlag, Berlin.

GUNADHI, H. ANAND, V.J. and YONG, Y.W. (1996) Automated timetabling

using an object-oriented scheduler. Expert Systems with Applications, 10(2),

243 – 256.

HALL, M.A. and SMITH, L. (1996) Practical feature subset selection machine

learning. Proceedings of the Australian Computer Science Conference.

CBR for Course Timetabling References

144

HAMMOND, K.J. (1990) Case-based planning: A framework for planning from

experience. Cognitive Science, 14(3), 385 – 443.

HART, E. ROSS, P. and NELSON, J. (1998) Solving a real-world problem using

an evolving heuristically driven schedule. Evolutionary Computation, 6, 61 –

80.

HENNESSY, D. and HINKLE, D. (1992) Applying case-based reasoning to

autoclave loading. IEEE Expert, 7, 21 – 26.

HENZ, M. and WURTZ, J. (1995) Using oz for college timetabling. In: BURKE,

E.K. and ROSS, P. (eds.) Practice and Theory of Automated Timetabling:

Selected Papers from the First International Conference, 162 – 180. Lecture

Notes in Computer Science 1153. Springer-Verlag, Berlin.

HERTZ, A. (1991) Tabu search for large scale timetabling problems. EJOR, 54,

39 – 47.

HUNT, J. and MILES, R. (1994) Hybrid case-based reasoning. The Knowledge

Engineering Review, 9(4), 383 – 397.

JANTKE, K.P. (1993) Nonstandard concepts of similarity in case-based

reasoning. Proceedings of the Seventeenth Annual Conference of the GfKI,

Springer-Verlag, Kaiderslautern.

JOHN, G.H. KOHAVI, R. and PFLEGER, K. (1994) Irrelevant features and the

subset selection problem. Proceedings of the Eleventh International

Conference on Machine Learning, 121 – 129.

CBR for Course Timetabling References

145

KAMBI, M. and GILBER, D. (1996) Timetabling in constraint logic

programming. Proceedings of the INAP-96: Symposium and Exhibition on

Industrial Applications of Prolog, 79 – 88.

KANG, L. and WHITE, G.M. (1992) A logic approach to the resolution of

constraints in timetabling. EJOR, 61, 306 – 317.

KIRKPATRICK, S. GELLAT, JCD and VECCI, MP (1983) Optimisation by

Simulated Annealing. Science, 220, 671 – 680.

KOHAVI, R. and JOHN, G.H. (1997) Wrappers for feature subset selection. AI,

97(1-2), 273 – 324.

KOLODNER, J.L. (1993) Case-Based Reasoning. Morgan Kaufmann.

KOLODNER, J.L. and LEAKE, D (1996) A tutorial introduction to case-based

reasoning. In: LEAKE, D. (ed.) Case-Based Reasoning: Experiences, Lessons,

and Future Directions, 31 – 65. AAAI Press/The MIT Press.

KONG, S.C. and KWOK, L.F. (1999) A conceptual model of knowledge-based

timetabling system. Knowledge-Based Systems, 12, 81 – 93.

KONONENKO, I. (1994) Estimating attributes: analysis and extensions of relief.

Proceedings of the Seventh European Conference on Machine Learning, 171 –

182.

KOTON, P. (1989) SMARTlan: A case-based resource allocation and scheduling

system. Proceedings of Workshop on Case-Based Reasoning (DARPA), 285 –

289.

CBR for Course Timetabling References

146

KUSIAK, A. and CHEN, M. (1998) Expert systems in planning and scheduling

manufacturing systems. EJOR, 3, 113 – 130.

LAJOS, G. (1995) Complete university modular timetabling using constraint logic

programming. In: BURKE, E.K. and ROSS, P. (eds.) Practice and Theory of

Automated Timetabling: Selected Papers from the First International

Conference, 146 – 161. Lecture Notes in Computer Science 1153.

Springer-Verlag, Berlin.

LEAKE, D. (1995) Combining rules and cases to learn case adaptation.

Proceedings of the Seventh Annual Conference of Cognitive Science Society.

LEAKE, D. (ed.) (1996) Case-Based Reasoning: Experiences, Lessons and

Future Directions. AAAI Press, Menlo Park, CA.

LOUIS, S.J. and LI, G. (2000) Case injected genetic algorithms for travelling

salesman problems. Information Sciences, 122, 201 – 225.

MACCARTHY, B.L. and JOU, P. (1995) A case-based expert system for

scheduling problems with sequence dependent set up times. In: ADEY, R.A.

and RZEVSKI, G. (eds.) Applications of Artificial Intelligence in Engineering

X. 89 – 96. Computational Machines Publications, Southampton.

MACCARTHY, B.L. and JOU, P. (1996) Case-based reasoning in scheduling. In:

Khan MK, Wright CS (eds.). Proceedings of the Symposium on Advanced

Manufacturing Processes, Systems and Techniques (AMPST96), (MEP

Publications Ltd, 1996) 211 – 218.

CBR for Course Timetabling References

147

MACCARTHY, B.L. and YE, R. (1997) Intelligent planning and scheduling: the

state of the art. The Third International Symposium on Logistics, 275 – 280.

SGE publications Padova.

MACCARTHY, B.L. and WILSON, J.R. (eds.) (2001) Human Performance in

Planning and Scheduling: Fieldwork Studies, Methodologies and Research

Issues. Taylor and Francis, London.

MACEDO, L., PEREIRA, F.C., GRILO, C. and CARDOSO, A. (1996) Plans as

structured networks of hierarchically and temporally related case pieces. The

Third European Workshop on Case-Based Reasoning. 234 – 248, Lecture

Notes on Artificial Intelligence 1168.

MANTARAS, R.L. and PLAZA, E. (1997) Case-based reasoning: an overview.

AI Communications, 10, 21 – 29.

MAREFAT, M. (1997) Case-based process planning using an object oriented

model representation. Robotics and Computer Integrated Manufacturing,

13(3), 229 – 251.

MARIR, F. and WATSON, I. (1994) Case-based reasoning: a categorised

bibliography. The Knowledge Engineering Review, 9(4), 355 – 381.

MARIR, F. and WATSON, I.D. (1995) Representation and indexing building

refurbishment cases for multiple retrieval of adaptable pieces of cases. In:

MATUSCHEK, D. and JANTKE, K.P. (1997) Axiomatic characterizations of

structural similarity for case-based reasoning. FLAIRS-97, 432 – 436.

CBR for Course Timetabling References

148

MCKENNA, E and SMYTH, B. (1998) A competence model for case-based

reasoning. Proceedings of the Ninth Irish Conference on Artificial Intelligence

and Cognitive Science.

MEISELS, A. and GUDES, E. and SOLOTOREVSKY, G. (1995) Employee

Timetabling, Constraint Networks and Knowledge-Based Rules: A Mixed

Approach. In: BURKE, E.K. and ROSS, P. (eds.) Practice and Theory of

Automated Timetabling: Selected papers from the First International

Conference, 93 – 105. Lecture Notes in Computer Science 1153.

Springer-Verlag, Berlin.

MEISELS, A. and LUSTERNIK, N. (1997) Experiments on networks of

employee timetabling problems. In: BURKE, E.K. and CARTER, M.W. (eds.)

Practice and Theory of Automated Timetabling: Selected papers from the

Second International Conference, 130 – 141. Lecture Notes in Computer

Science 1408. Springer-Verlag, Berlin.

MESSMER, B.T. (1995) Efficient graph matching algorithms for preprocessed

model graph. PhD thesis, University of Bern, Switzerland.

MELICIO, F. CALDEIRA, J.P. and ROSA, A.C. (1998) Timetabling

implementation aspects by Simulated Annealing. In: GU J. (ed.) IEEE -

Systems Science and Systems Engineering, 553 – 557.

MIYASHITA, K. and SYCARA, K. (1994) Adaptive case-based control of

scheduling revision. In: ZWEBEN, M. and FOX, M.S. (eds.) Intelligent

Scheduling, 291 – 308.

CBR for Course Timetabling References

149

MIYASHITA, K. and SYCARA, K. (1995) CABINS: A framework of knowledge

acquisition and iterative revision for schedule improvement and reactive repair.

AI, 76, 377 – 426.

Nonobe K. and Ibaraki T. (1998) A tabu search approach to the constraint

satisfaction problem as a general problem solver, European Journal of

Operational Research, 106(2-3), 599 – 623.

NORONHA, S.J. and SARMA, V.V.S. (1991) Knowledge-based approaches for

scheduling system in a job shop. IEEE Transactions on Knowledge and Data

Engineering, 3(2), 160 – 171.

OMAN, S. and CUNNINGHAM, P. (2001) Using case retrieval to seed genetic

algorithms. International Journal of Computational Intelligence and

Applications, 1(1), 71 – 82.

PAECHTER, B. CUMMING, A. and LUCHIAN, H. (1995) The use of local

search suggestion lists for improving the solution of timetable problems with

evolutionary algorithms. In: GOOS, G. HARTMANIS, J. and LEEUWEN, J.

(eds.) Evolutionary Computation, AISB Workshop, 86 – 93. Lecture Notes in

Computer Science 993. Springer-Verlag, Sheffield.

PAECHTER, B. RANKIN, R.C. and CUMMING, A. (1997) Improving a lecture

timetabling system for university-wide use. In: BURKE, E.K. and CARTER,

M.W. (eds.) Practice and Theory of Automated Timetabling: Selected papers

from the Second International Conference, 156 – 168. Lecture Notes in

Computer Science 1408. Springer-Verlag, Berlin.

CBR for Course Timetabling References

150

PAUL, J. (1993) Building expert systems for knowledge-poor domains.

Proceedings of Expert Systems 93, 223 - 233. Cambridge.

PETROVIC, S. BEDDOE G.R. and BERGHE G.V. (2002) Storing and adapting

repair experiences in personnel rostering. In: BURKE, E.K. and

CAUSMAECKER, P. (eds.) Proceedings of the Fourth International

Conference on the Practice and Theory of Automated Timetabling. 185 – 186.

PRAEHOFER, H. and KERSCHBAUMMAYR, J. (1999) Case-based reasoning

to support reusability in a requirement engineering and system design tool.

Engineering Applications of Artificial Intelligence, 12, 717 – 731.

PIATETSKY-SHAPIRO, G. (1991) Knowledge Discovery in Databases. AAAI

Press.

PINEDO, M. (1995) Scheduling Theory, Algorithms and Systems. Prentice Hall.

PLAZA, E. (2000) The ABC of adaptation: towards a software architecture for

adaptation-centred case-based reasoning system. Foundations of Intelligent

Systems, Twelfth International Symposium, ISMIS.

PRASAD, B. (1995) Planning with case-based structures. In: AHA, D. JONES, E.

LEAKE, D. and RAM A. (eds.) Proceedings of the American Association for

Artificial Intelligence (AAAI) Fall Symposium on Adaptation of Knowledge

For Reuse, MIT, Cambridge, USA.

PURVIS, L. and ATHALYE, S. (1997) Towards improving case adaptability with

a genetic algorithm. Proceedings of the Second International Conference on

Case-Based Reasoning. 403 – 412.

CBR for Course Timetabling References

151

PURVIS, L. and PU, P. (1995) Adaptation using constraint satisfaction

techniques. In: VELOSO, M.M. and AAMODT, A. (eds.) Case-Based

Reasoning Research and Development, Proceedings of the First International

Conference on Case-Based Reasoning, ICCBR-95, 289 – 300, Lecture Notes in

Computer Science 1010. Springer.

QUINLAN, J.R. (1986) Induction of decision trees. Machine Learning, 1, 81 –

106.

RADCLIFFE, N.J. and SURREY, P.D. (1994) Formal memetic algorithms. In

FORGARTY, T.C. (ed.): Lecture Notes in Computer Science 865, 1 – 16.

RANDHAWA, S.U. and MACDOWELL, E.D. (1990) An investigation of the

applicability of expert system to job shop scheduling. International Journal on

Man-Machine Studies, 32, 203 – 213.

RANKIN, R.C. (1995) Automatic timetabling in practice. In: BURKE, E.K. and

ROSS, P. (eds.) The Practice and Theory of Automated Timetabling: Selected

Papers from the First International Conference, 266 – 282. Lecture Notes in

Computer Science 1153. Springer-Verlag, Berlin.

REEVES, C.R. (1996) Modern heuristic techniques. Modern Heuristic Search

Methods. John Willey & Sons Ltd.

RICCI, F. and SENTER, L. (1998) Structured cases, trees and efficient retrieval.

Proceedings of the Fourth European Workshop on Case-based Reasoning.

Springer-Verlag, Dublin.

RICH, D.C. (1995) A smart genetic algorithm for university timetabling. In:

BURKE, E.K. and ROSS, P. (eds.) The Practice and Theory of Automated

CBR for Course Timetabling References

152

Timetabling: Selected Papers from the First International Conference, 181 –

197. Lecture Notes in Computer Science 1153. Springer-Verlag, Berlin.

ROBERT, V. and HERTZ, A. (1995) How to decompose constrained course

scheduling problems into easier assignment type subproblems. In: BURKE,

E.K. and ROSS, P. (eds.) Practice and Theory of Automated Timetabling:

Selected Papers from the First International Conference, 364 – 373. Lecture

Notes in Computer Science 1153. Springer-Verlag, Berlin.

ROSS, P. and CORNE, D. (1995) Comparing genetic algorithms, simulated

annealing, and stochastic hillclimbing on timetabling problems. In: GOOS, G.

HARTMANIS, J. and LEEUWEN, J. (eds.) Evolutionary Computation, AISB

Workshop, 94 – 102. Lecture Notes in Computer Science 993.

Springer-Verlag, Sheffield.

ROSS, P. HART, E. and CORNE, D. (1997) Some observations about GA-based

exam timetabling. In: BURKE, E.K. and CARTER, M.W. (eds.) Practice and

Theory of Automated Timetabling: Selected Papers from the Second

International Conference, 115 – 129. Lecture Notes in Computer Science

1408. Springer-Verlag, Berlin.

SANDERS, K.E. KETTLER, B.P. and HENDLER, J.A. (1997) The case for

graph-structured representations. Proceedings of the Second International

Conference on Case-Based Reasoning. Springer-Verlag, Berlin.

SCHAERF, A. (1996) Tabu search for large high-school timetabling problems.

IEEE Transactions on Systems, Man, and Cybernetics, 29(4), 368 – 377.

CBR for Course Timetabling References

153

SCHAERF, A. (1999) A survey of automated timetabling. Artificial Intelligence

Review, 13, 87 – 127.

SCHMIDT, G. (1998) Case-based reasoning for production scheduling.

International Journal of Production Economics, 56-57, 537 – 546.

SCHREUDER, JAN A.M. (1997) Historical developments, present situation and

future perspectives on sports timetabling. Proceedings of the Second

International Conference on the Practice and Theory of Automated

Timetabling. 353 – 357. Lecture Notes in Computer Science 1408.

Springer-Verlag, Berlin.

SCOTT S, SIMPSON, R. (1998) Case-based incorporating scheduling constraint

dimensions – experiences in nurse rostering. In: SMYTH, B. and

CUNNINGHAM, P. (eds.) Advances in Case-Based Reasoning. The Fourth

European Workshop on Case-Based Reasoning. Lecture Notes on Artificial

Intelligence 1488. 392 – 401.

SHAW, P. (1998) Using constraint programming and local search methods to

solve vehicle routing problems. Proceedings of CP-98. 417 – 431.

SHIN, K.-S. and HAN, I. (1999) Case-based reasoning supported by genetic

algorithm for corporate bonding rating. Expert Systems with Applications. 16,

85 – 95.

SMITH, D.E., FRANK, J. and JONSSON, A.K. (2000) Bridging the Gap

Between Planning and Scheduling. Knowledge Engineering Review. 15(1), 61

– 94.

CBR for Course Timetabling References

154

SMITH, S. (2001) Is scheduling a solved problem? Special Session “The Next 10

Years of Scheduling Research” on Genetic and Evolutionary Computation

Conference 2001. 116 – 120.

SMITH, S.F. (1994) OPIS: An architecture and methodology for reactive

scheduling. In ZWEBEN, M. and FOX, M.S. (eds.) Intelligent Scheduling.

Morgan Kaufmann Publishers, Inc.

SMYTH, B. and KEANE, M.L. (1998) Adaptation-guided retrieval: questioning

the similarity assumption in reasoning. Artificial Intelligence, 102, 249 – 293.

SMYTH, B. CUNNINGHAM, P. and KEANE, M. (2001) Hierarchical

case-based reasoning. IEEE Transactions on Knowledge and Data

Engineering, 13, 793 – 812.

SQALLI, M.H. PURVIS, L. and FREUDER, E.C. (1999) Survey of applications

integrating constraint satisfaction and case-based reasoning. Proceedings of the

First International Conference and Exhibition on the Practical Application of

Constraint Technologies and Logic Programming.

STAMATOPOULOS, P. VIGLAS, E. and KARABOYAS, S. (1998) Nearly

optimum timetable construction through CLP and intelligent search.

International Journal on Artificial Intelligence Tools, 7(4), 415 – 442.

SURMA, J. and VANHOOF, K. (1998) Integrating rules and cases for the

classification task. Proceedings of the AAAI’98 Spring Symposium on

Multimodel Reasoning, 130 – 136.

SZELKE, E. and KERR, R.M. (1994) Knowledge based reactive scheduling.

International Journal of Production Planning and Control. 5, 124 – 145.

CBR for Course Timetabling References

155

SZELKE, E. and MARKUS, G. (1997) A learning reactive scheduler using

CBR/L. Computer Industry, 33, 31 – 46.

TAH, J.H.M., CARR, V. and HOWES, R. (1999) information Modelling for

Case-Based Construction Planning of Highway Bridge Projects. Advances in

Engineering Software, 30, 495 – 509.

TERASHIMA-MARIN, H. ROSS, P. and VALENZUELA-RENDON, M. (1999)

Evolution of constraint satisfaction strategies in examination timetabling.

Proceedings of the Genetic and Evolutionary Computation Conference 1999

(GECCO-99), Morgan Kaufmann, 635 – 642.

THOMPSON, J.M. and DOWSLAND, K.A. (1998) A robust simulated annealing

based examination timetabling system. Computers and Operations Research,

25, 637 – 648.

TRIPATHY, A. (1984) School timetabling - A case in large binary integer linear

programming. Management Science, 30, 1473 – 1489.

TSANG, E. MILLS, P. and WILLIAMS, R. (1999) A computer aided constraint

programming system. The First International Conference on the Practical

Application of Constraint Technologies and Logic Programming, 81 – 93.

VELOSO, M. MUNIOZ, H. and BERGMANN, R. (1996) Case-based planning:

selected methods and systems. AI Communications 9(3), 128 – 137.

VOUDOURIS, C. and TSANG, E.P.K. (1999) Guided local search and its

application to the travelling salesman problem. EJOR, 113(2), 469 – 499.

CBR for Course Timetabling References

156

WATSON, I. and PERERA, S. (1998) A hierarchical case representation using

context guided retrieval. Knowledge-Based Systems, 11, 285 – 292.

WEARE, R.F. (1995) Automated examination timetabling. PhD dissertation,

University of Nottingham, Department of Computer Science.

WERRA, D. (1985) Graphs, hypergraphs and timetabling. Methods of Operations

Research (Germany F.R.), 49, 201 – 213.

WHITE, G.M. and ZHANG, J. (1997) Generating complete university timetables

by combining tabu search with constraint logic. In: BURKE, E.K. and

CARTER, M.W. (eds.) Practice and Theory of Automated Timetabling:

Selected papers from the Second International Conference, 187 – 200. Lecture

Notes in Computer Science 1408. Springer-Verlag, Berlin.

WHITE, G.M. and XIE, B.S. (2000) Examination timetables and tabu search with

long-term memory. In: BURKE, E.K. and ERBEN, W. (eds.) Practice and

Theory of Automated Timetabling: Selected papers from the Third

International Conference, 85 – 103. Lecture Notes in Computer Science 2079.

Springer-Verlag, Berlin.

WILLIAMS, H.P. (1999) Model Building in Mathematical Programming. Wiley:

Chichester.

WILLIAMS, M.L. WILSON, R.C. and HANCOCK, E.R. (1999) Deterministic

search for relational graph matching. Patter Recognition 32(7), 1255 – 1271.

WREN, V. (1995) Scheduling, timetabling and rostering – a special relationship?

In: BURKE, E.K. and ROSS, P. (eds.) Practice and Theory of Automated

CBR for Course Timetabling References

157

Timetabling: Selected Papers from the First International Conference 46 – 75.

Lecture Notes in Computer Science 1153. Springer-Verlag: Berlin.

WREN, A. and ROUSSEAU, J.-M. (1995) Bus driver scheduling - an overview.

In DADUNA, J.R. BRANCO, I. And PAIX'AO, J.M.P. (eds.) Computer-Aided

Transit Scheduling, 173 – 187. Springer-Verlag.

YE, P. and HUGHES, J.G. (1994) A method for solving the job shop scheduling

problem in the CLP paradigm. Proceedings of Expert Systems 94. Cambridge.

YOSHIKAWA, M. KANEKO, K. NOMURA, Y. and WATANABE, M. (1994)

A constraint-based approach to high-school timetabling problems: a case

study. Proceedings of the twelfth National Conference on Artificial

Intelligence (AAAI-94), 1111 – 1116.

ZERVOUDAKIS, K. and STAMATOPOULOS, P. (2000) A generic

object-oriented constraint-based model for university course timetabling. In:

BURKE, E.K. and ERBEN, W. (eds.) (2000) The Practice and Theory of

Automated Timetabling: Selected Papers from the Third International

Conference, 28 – 47. Lecture Notes in Computer Science 2079.

Springer-Verlag, Berlin.

ZWEBEN, M. and FOX, M.S. (eds.) (1994) Intelligent Scheduling. Morgan

Kaufmann Publishers, Inc.

CBR for Course Timetabling Appendices

158

Appendices

Appendix A: Penalties Between Mapped Attributes

The values in Table A 1 the give the penalties of mapping the nodes or the

edges of labels on rows in source attribute graph with those in the target

attribute graphs. Threshold is set as 1 to define if the nodes or edges are

similar (values below 1) or not similar (values above 1).

Labels Weights 0 1 2 3 4 5 6 7
0 0.5 0 0.7 0.9 0.8 / / / /
1 0.6 0.4 0 1.2 1.2 / / / /
2 0.7 0.1 0.7 0 0.8 / / / /
3 0.4 0.1 0.5 0.8 0 / / / /
4 0.4 / / / / 0 0.7 0.5 1.2
5 0.6 / / / / 0.7 0 1.2 1.2
6 0.4 / / / / 0.7 1.2 0 1.2
7 0.9 / / / / 0.7 0.8 0.7 0

Table A 1 Penalties of Mapping Attributes of Nodes and Edges

Appendix B: Course Timetabling Problems Specification

Hard constraints:

CBR for Course Timetabling Appendices

159

• A course is in conflict with another thus they can not be scheduled

into the same timeslot

• A course should be carried out n times a week

• Each course has a specific room requirement with type and capacity

• Certain number of periods is given for each problem

Soft constraints:

• One course should be scheduled before or after another

• Inclusive/exclusive - a course should/should not be scheduled into a

fixed timeslot

• Consecutive - a course should/should not be scheduled into a

timeslot consecutive to that of another

Appendix C: Heuristics Used in the System

• LD – Largest degree first

All the courses not yet scheduled are inserted into an “unscheduled

list” in descending order according to the number of constraints the

course has with the other courses. This heuristic tries to schedule the

most difficult courses first.

• LDT – Largest degree first with tournament selection

CBR for Course Timetabling Appendices

160

It is similar with the LD except every time the most difficult course is

selected from a subset of the “unscheduled list” by a percentage

given. Here 30 percent is used to get a subset from the list. This

heuristic tries to schedule the most difficult courses first but also give

some randomness.

• HC – Hill climbing

An initial timetable is constructed randomly then is improved by hill

climbing.

• CD – Colour degree

Courses in the “unscheduled list” are ordered by the number of

constraints it has with those courses that are already scheduled in the

timetable. Usually these courses left are more difficult to be

scheduled than those with less number of constraints with already

scheduled ones.

• SD – Saturation degree

Courses in the “unscheduled list” are ordered by the number of

periods left in the timetable for it to be scheduled validly. This

heuristic gives higher priority to courses with fewer periods available

thus usually more difficult to be scheduled.

CBR for Course Timetabling Appendices

161

Appendix D: Initial Features and Their Weights for Cases

f0: number of hard constraints / number of events

f1: number of soft constraints / number of events

f2: number of constraints / number of events

f3: number of periods / number of events

f4: number of rooms / number of events

f5: number of not consecutive courses / number of constraints

f6: number of consecutive courses / number of constraints

f7: number of hard constraints / number of constraints

f8: number of soft constraints / number of constraints

f9: number of hard constraints / number of periods

f10: number of soft constraints / number of periods

normalized weight wi = factori * 1 / sum of weights of all the features

initial factori = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

Appendix E: Trained Features and Their Weights

f0: number of exclusive courses / number of events

f1: number of inclusive courses / number of events

f2: number of constraints / number of events

f3: number of rooms / number of events

CBR for Course Timetabling Appendices

162

f4: number of hard constraints / number of periods

f5: number of not consecutive courses / number of constraints

normalized weight wi = factori * 1 / sum of weights of all the features

factori = {45, 10, 10, 15, 30, 6}

