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Abstract

This thesis applies Smoluchowski’s coagulation-fragmentation equations to
model the mechanical alloying process. Mechanisms operating during the
milling process are reviewed. In the first instance, models are developed that
predict the size distribution of a single milled powder while ignoring mixing
phenomena. A methodology is developed that allows experimentally mea-
sured sieve-fractions to be converted into volumetric cluster size distributions.
Model parameters describing the rate of aggregation and fragmentation are
obtained by fitting the model’s predicted average particle size data over time
to that measured in experiments. Different size-dependent aggregation and
fragmentation rates are tested in many milling scenarios and the most realistic
size-dependence of rates is found.

In the second part of the thesis, the best size-dependent rates are gener-
alised and used with a two-component version of Smoluchowski’s system of
equations. This model also includes binary mixing phenomena by consider-
ing clusters that have two types of component. The two-component models
are applied to experimental situations using the methods developed for one-
component models. Comparing these multi-component models to experimental
measurements verifies the modelling method and gives reasonable agreement.
An improved fragmentation rate is suggested to enhance the model’s accuracy

in the prediction of mixing rates.
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Chapter 1

Introduction

Alloy design is an ancient art. As early as 800 AD the Japanese were processing
metals to hone the performance of their swords. Their meticulous attention
to detail produced cutting blades that are widely regarded as the finest ever
made. Today, with the advent of mass production and new applications for
alloys, the importance of alloy design remains. Alloys are still an active area
of research.

The sword makers of 800 AD sought favourable mechanical properties in
their materials producing a strong, sharp blade. However, alloying can also
affect the chemical, electrical, magnetic and thermal properties of material.
Modern alloys are designed to provide a combination of different properties,
balancing cost against performance. Turbine blades in power generators need
to be strong, light weight and able to function at high temperatures without
chemical decomposition. These properties make the generator more efficient,
giving more power at lower cost and environmental expense.

Continued development in the alloy industry is driven by sensitive appli-
cations of this type, where an improvement in alloy performance provides a
high financial saving. The expense of developing new materials is outweighed

by the potential savings associated with success. To sustain development ad-
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vances must be made on two fronts. Theoretical advances suggest methods for
manufacturing new or better optimised materials, while advances in processing
technology make more theoretical production techniques realisable.

In the past the industry has been limited by the technology at hand. The
Japanese used simple furnaces, oil quenching and deformation techniques to
process their steel. Production was very slow, and only a small amount of
material was processed at one time. Modern processing relies on the same
principles as these ancient techniques, using thermal and deformation pro-
cesses. However, we have more powerful methods of heating, cooling and
deforming material, and finer control. This modern technology allows us to
produce comparatively exotic materials on a large scale.

Technology advance is complemented by a deeper understanding of the al-
loying process. While the Japanese knew that they could alter the properties
of a material using heat treatments, we now know that these treatments ad-
just the structure of the alloy, changing the crystallinity and the intimacy with
which the constituent chemicals are mixed. Quantitative theories allow predic-
tion of the properties resulting from a particular treatment. This gives a high
degree of control over the alloy product and speeds the design process. The
theories also highlight absolute or practical limits of a particular processing
technology, where a desired microstructure cannot be achieved.

The need to overcome these limitations has driven innovation towards
new processing techniques including equal channel angular extrusion (ECAE),
rapid solidification and various powder metallurgy processes. Arguably the
most successful of these new techniques is Mechanical Alloying (MA), her-
alded as the “Alladin’s lamp of powder metallurgy” by T. H. Courtney et al.
[22]. Mechanically alloyed materials are already used for high return applica-
tion in the defence and power industries and several types of apparatus have

been developed to treat powder. Our technology is certainly capable of man-
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ufacturing mechanical alloys and commercial interest has motivated studies
into MA of many different alloy systems. However, the cost of developing MA
materials remains high and prohibits their use in mainstream applications.

Current MA research hopes to lower these development costs through a
better understanding of the process. At present the development cycle involves
a series of experimental trials. The product is gradually refined, first in the
laboratory and then at a production scale. A better understanding of the
processing received by the powder would accelerate development and lower
costs. The ultimate goal is to control this new process as accurately as the
conventional techniques are controlled, allowing confident optimisation of alloy
properties and economical production of materials on a large scale.

The majority of commercially funded MA research has concentrated on
the production of a particular product. Several complex alloy systems have
been studied, and many new phenomena have been observed. These stud-
ies have shown mechanical alloying to be a complex process. Many of the
empirically developed theories of material behaviour in current use cannot be
extrapolated to describe MA material. As a consequence, most current models
describe just some of the changes that are achievable through MA. Examples
include models that concentrate on chemical diffusion within powder particles
[64] or microstructural changes and work hardening of the material [48]. Sim-
ilarly, the models presented in the later chapters of this thesis examine just
the size distribution and mixing characteristics of the milled powders, ignoring
changes in microstructure and chemistry. Note, however, that the parame-
ters in these models are determined empirically so they will, in some way,
account for microstructural and chemical differences between different milling
scenarios.

This introductory chapter looks at all aspects of mechanical alloying. The

next section gives an overview of mechanical alloying, discussing relevant ma-
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chinery and the changes observed within powder particles. Experiments and
models concerned with the machinery and changes in powder properties dur-
ing Mechanical Alloying are reviewed. Then, §1.2 introduces Smoluchowski’s
model, on which our models are based, and discusses the results of some useful
studies conducted on the system.

The later chapters of this thesis are arranged in two parts. Part I deals
with milling of just one metallic powder: Chapter 2 looks at the modelling
theory, Chapter 3 describes a simple milling experiment conducted to verify
the models, Chapter 4 details how the experimental data and models can be
used together, giving results of the study, and Chapter 5 repeats this analysis
with a wide range of experimental data obtained from the literature. Part
IT looks at how binary systems mix in the mill. Chapter 6 generalises the
models from Chapter 2, and Chapter 7 applies these models to data taken

from literature.

1.1 Introducing mechanical alloying

Mechanical alloying is a fundamentally different approach to alloy-manufacture
because it relies on deformation processes to mix material. In contrast, tradi-
tional techniques use heat treatments and chemical reactions to combine alloy
components. The properties of conventional alloys may be adjusted by apply-
ing deformation processes but the degree of deformation attainable is lower
than that achieved through MA.

The extreme deformation experienced by milled material is an intrinsic part
of the MA process. Treated powders are mixed by the balls in a ball milling
machine, similar to that shown in figure 1.3 (§1.1.1 describes milling machinery
in detail). As the balls collide, the powders are trapped causing them to

deform and mix under a continued kneading action (figure 1.1). Although ball
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(a) Approach. (b) Impact. (¢) Separation.

Figure 1.1: Powder is kneaded as milling media collide.

mills had previously been used by pyrotechnicians to mix metallic powders,
Benjamin [7] was the first to specifically refine the structural properties of
metallic material by ball milling. He created a nickel based superalloy using
an attritor mill. The mill was originally designed to mix paints and inks but
he used it to alloy a mix of pure and pre-alloyed metal powders and small sized
ceramic dispersoids. He named the process “Mechanical Alloying.”

Since then Mechanical Alloying has been applied to many different pow-
der mixes. It has been found that different alloy systems react to milling in
different ways depending on the mutual solubility and reactivity of the com-
ponents, their mechanical properties and the type of milling equipment used.
Despite these differences Benjamin and Volin [9] identify five progressive stages

of alloying:
1. Particle flattening: the particles are flattened becoming flake-like.

2. Welding predominance: the flattened particles weld to form lamellar

or layered composite particles.

3. Equiaxed particle formation: the lamellar particles are no longer
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flake like, becoming thicker and rounded. The shape change is caused

by the work hardening of the powders.

4. Random welding orientation: Fragments from the equiaxed particles
start to weld in different orientations and the lamellar structure starts

degrading.

5. Steady state processing: The structure of the material is gradually
refined as fragments are taken from the particles that later weld with

other fragments in different orientations.

Particles in each of the five stages are shown in Figure 1.2. It is commonly ac-
cepted that this five stage model accurately summarises the events observed in
a typical alloying experiment, with some variation when powders with particu-
larly unusual properties are milled. Most milling experiments are long enough
to demonstrate stages 2 and 3, so our models focus on the earlier stages of
milling.

As the MA process is complex it is convenient to look at just part of the
processing when developing a model. Many models looking at changes in the
milled powder can only be applied to a subset of these five milling stages.
Further divisions have also been devised based on scale, with the following

divisions commonly used:

e Mill scale: based on the dimensions of the mill chamber and milling

media. At this scale the powder charge may be modelled as a continuum.

e Powder scale: based on the dimensions of a powder particle. Here only
2 mill balls need be considered to study the effects of a collision on the

powder.

e Micro-scale: based on dimensions orders of magnitude smaller than a
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(a) Initial (b) Stage 1. (c) Stage 2.

powders.

(d) Stage 3. (e) Stage 4. (f) Stage 5.

Figure 1.2: The five stages of Mechanical Alloying described by Benjamin and
Volin [9]. Illustration after Maurice and Courtney [50].
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powder particle (the dimensions of a lattice dislocation). Only the load-

ing regime of the particle need be considered.

It is possible to develop a modelling approach that passes pertinent infor-
mation between models at different scales. Maurice and Courtney [48, 50, 51]
have used this approach to good effect. First they characterise the media col-
lisions in a particular type of mill (mill scale modelling). This information is
passed to a smaller powder scale model to look at the affect of the collisions
on the powder charge. Other authors use energetics to bridge physical scales.
For example Lii et al. [45] calculate typical impact energies in a tumbling mill
and suggest that a minimum value is required for particle welding to occur.

One particular advantage of treating the problem at different scales is that
the behaviour of the milling machinery can be examined without consider-
ing the powder charge, and vice versa. Studies have been made to this end,
characterising different types of milling machinery, and different aspects of
the powder morphology. The next section starts by looking at the mill scale,
describing categories of machine and reviewing the modelling techniques that
have been applied to each category. Further sections look at progressively

smaller scales.

1.1.1 Modelling milling machinery

Characterising the motion of milling media is commercially important. For
convenience, products are developed by milling small quantities of powder in
a laboratory scale mill. The qualities of the powder product depend on the
treatment imparted by the media, so milling parameters are adjusted in the
laboratory to optimise the product. Once a product is finalised it will be
manufactured in a larger production scale mill. The problem of tuning the
production milling parameters to reflect the laboratory process is non-trivial.

Materials scientists have employed different mill designs to obtain a wide
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range of milling conditions. All these designs trap powder using moving media
but various methods can be employed to set the media in motion. Ball mills
are usually classified using their drive mechanism and common mills fit into

these four categories:
e Conventional tumbling ball mills
e Planetary ball mills
e Shaker or vibratory ball mills
e Attritors

The treatment imparted by each type of machine can be characterised using
the distribution of collision frequency, angle and velocity within.

Models of milling machinery allow a laboratory optimised processing regime
to be scaled up for production. Matching the media motion in the production
mill to that in the laboratory mill expedites the process. Many researchers
have suggested suitable characterisation techniques for this purpose, with some
degree of success. The following sections introduce each category of mill, dis-

cussing associated milling characteristics and relevant modelling work.

Conventional Tumbling Ball Mills

Figure 1.3 shows a cross section through a conventional horizontal tumbling
ball mill. The milling media are set in motion by rotating the chamber either
on rollers (as shown) or using a shaft mechanism.

The simplicity of this design allows it to be scaled considerably, from small
bench top mills with a diameters of 10-20 cm to industrial ball mills with
chamber diameters of several metres. Larger diameter chambers produce a
much higher collision intensity. Lii et al. [45] have analysed the motion of

milling media in a tumbling mill using Newtonian mechanics and they state
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Ballsand
Powder

Figure 1.3: Schematic of a conventional or horizontal ball mill (end view).

that powders will not weld in small mill chambers where the collision intensity
is too low, preventing alloying. Lii and Lai [43] suggest that the chamber of
such mills should be at least 1 metre in diameter for efficient alloying to occur.

Watanabe et al. [69] have modelled tumbling mills (and many other types
of mill) using a discrete element method. They track the motion of each
mill ball under the forces of gravity and friction (for ball-ball contact and
ball-wall contact). When collisions occur they account for elastic and plastic
components of the collision by using Hertzian collision theory and a dashpot
damper, respectively. The behaviour of the dashpot damper must accurately
represent the energy absorbed by plastic deformation of the trapped powder.
The necessary constants are obtained from Hashimoto et al. [29] who have
measured the coefficient of restitution when a mill ball is dropped onto a
powder layer of known thickness. Similar restitution experiments have been
conducted by Huang et al. [32], who describe slight alterations to the spring
and dashpot behaviour.

The simplicity of this mill design has many advantages, making it very
practical at production scales. However, at small scales, gravity alone cannot

provide the necessary milling intensity. Alterations have been made to the
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Figure 1.4: Schematic of a magnetically controlled horizontal ball mill (end

view).

design to generate higher intensity collisions by applying additional forces to
the media.

One variant adds magnets to the design as shown in Figure 1.4. The
magnets attract the steel mill balls and increase their effective mass up to a
maximum of 80 times. Magnet M1 increases the speed of cascading balls and
magnifies attrition and abrasion effects. M2 accelerates the balls around the
chamber, aiding the rotational attrition in the well of media near the bottom
of the mill. Milling conditions can be varied by adjusting the magnets’ position
and strength.

The small size and mechanical simplicity of these designs allow extra con-
trols to be added. Using a suitably sealed milling chamber it is possible to
control atmospheric conditions and alter the pressure from vacuum to 500kPa
overpressure. It is also possible to heat the chamber to around 450K by adding

heating elements. These measures make tumbling mills very flexible.
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Figure 1.5: Schematic of a planetary mill (top view).

Planetary Ball Mills

Planetary mills use a centrifuge to boost their milling intensity. They fre-
quently have more than one chamber as shown in Figure 1.5, but each chamber
functions similarly to the horizontal mill. The mill chambers are mounted on
a large rotating disc, forcing the milling media away from the centre of the
disc to the outer-most part of the chamber wall. The chambers rotate in the
opposite sense to the disc, causing the milling media to cascade in a manner
similar to that observed in a horizontal mill, but with far greater intensity.

This type of mill is ideally suited to laboratory use as it has a sample sized
capacity and can process several samples at once. The Pulverisette 5 made by
Fritsch can use the following combinations of chamber number and capacity:
4x225ml, 4 x125ml or 8 x 30ml. It offers a range of milling intensities obtained
by varying the speed at which the components rotate.

Planetary mills have been modelled by Watanabe et al. [69] and by Dal-
limore and McCormick [13]. McCormick et al. [54] have filmed the media

motion using a vial with a clear lid. They have processed their footage us-
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Valve
O-ring
0
feJe) 0%8 8
Bowl Balls and Powder
(a) Schematic of the chamber of (b) A cylindrical chamber em-
a SPEX type mill. ployed on some vibratory mills.

Figure 1.6: Different chamber types used for vibratory milling.

ing image capture and processing software to provide quantitative analysis of

media collisions that has been compared with models.

Shaker or Vibratory Mills

This type of mill provides extremely high milling intensities. The oscillating
movements of the mill chamber cause more direct (head on) impacts than can
be obtained using a rotary mill.

Figure 1.6(a) shows the features of the mill chamber used on the SPEX8000
mill manufactured by SPEX CertiPrep. The chamber is moved in an oscillatory
fashion at frequencies of 50 or 60 Hz, causing the large mill ball to crush the
powder against the chamber walls. The motor used has a power output close
to 250 W.

Figure 1.6(b) shows a cylindrical mill chamber that uses a larger number of
milling media. This type of chamber is used by the Megamill-5 from Dymatron
Inc. The chamber vibrates at 60 Hz with an amplitude up to 2mm. The
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(a) Vertical. (b) Horizontal.

Figure 1.7: Schematic of attritor designs.

amplitude may be adjusted to alter the the milling intensity.

These vibratory mills are commonly used in laboratories, and can process
material much faster than rotary style mills. The high energy collisions can
complete powder reactions that are not observed in rotary mills. Unfortu-
nately, the high energy requirements of these mills and the fierceness of their
operation means they are not available on a production scale.

Models describing vibratory mills have been developed. Maurice and Court-
ney [52] consider the energy dissipation in a SPEX 8000 mill, basing their ideas
on measurements made by Davis et al. [17]. Davis et al. videotaped the mill
chamber and analysed the footage with computer software to determine the
characteristics of collision events. Watanabe et al. [69] have extended their
study to include vibratory mills similar to that made by Dymatron (figure

1.6(b)). Finally, McCormick et al. [54] have studied a vertical vibratory mill.
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Attritors

The final mill type, attritors, are stirred ball mills. They have a cylindrical
chamber filled with media. The media is driven by a rotating impeller. Figure
1.7 shows the two types of attritor, vertical and horizontal. Although the two
designs are conceptually similar, changing the orientation of the mill chamber
alters the milling regime significantly. The media will cascade in a horizontal
attritor under the action of gravity [72]. In a vertical attritor the media form
a close packed array. Rydin et al. [62] have studied the dynamics of the media
in an vertical attritor, identifying packing arrays and measuring ball velocities
at a variety of impeller speeds.

Attritors are flexible because of their simple construction. The chamber
may be heated or cooled by passing liquid through a jacket layer. The impeller
speed may be adjusted to control the milling intensity, and the atmosphere in
the chamber can be altered if an adequate seal is made. The design can be
scaled to suit laboratory work or production. However, even at the highest
impeller speeds, the milling intensity is significantly lower than that obtained

by vibratory ball mills.

1.1.2 Modelling particle geometry and mechanical mix-
ing

The different mill types described in §1.1.1 all treat powders in a similar way.

Deformation of the powder charge leads to the five identifiable stages of milling

shown in Figure 1.2. This section reviews some studies that verify these alloy-

ing stages, looking at how particles weld, fragment and how these processes

cause mixing. These changes occur at scales comparable to the size of a par-

ticle. The mixing that occurs within particles occurs at ever smaller scales

as milling progresses, and links these effects with the detailed microstructural
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Figure 1.8: Idealisation of how average particle size changes during milling.
Benjamin and Volin’s five stages of alloying (see figure 1.2) are labelled. To
summarise, in stage 1 particles are flattened, in stage 2 lamellar welding occurs,
stage 3 forms equiaxed (lamellar) particles, stage 4 introduces random welding

orientation and stage 5 refines particle structure.

changes that are discussed in the next section.

The illustration of Benjamin and Volin’s five stage model in Figure 1.2
concentrates on the shape and structure of the particles, but the observations
include implicit particle size variation. Typically, a milled powder will go
through a stage of welding predominance (stage 2) during which the average
particle size increases quite dramatically. Later in the milling process welding
will be less common, and fragmentation may become prevalent before stage 5,
where the two processes reach equilibrium. Figure 1.8 shows an idealised plot
of average particle size evolving as milling progresses.

The changing balance between welding and fragmentation has been at-

tributed to work hardening and surface effects [48]. Initial milling will deform
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particles and spread any surface layer, exposing pure metal surfaces that easily
cold-weld. As deformation continues the particles harden, becoming less likely
to deform further and more prone to fracture.

Many authors have conducted experiments that study changes in powder
size and shape during milling. Different alloy systems and mill types have been
studied; examples are given in Table 1.1. Often these studies accompany the
assessment of other powder properties, or are part of an experiment designed
to test a particular hypothesis. For example, Rocha et al. [61] study the effect
of adding a wax process control agent to the mill. The wax hinders particle
welding and they find that alloying is delayed.

Population balance models have been used to follow the change in particle
size observed in milled powders. Population balance models track welding
and fragmentation events, calculating changes in the particle size distribution
of the powder. They are based on classical reaction kinetics. The models
presented later in this thesis, and introduced in §1.2, use population balance
ideas so previous work in this area is particularly relevant.

Aikin et al. [3] and Aikin and Courtney [2, 1] have modelled both the size
distribution and mixing characteristics of Cu, Cr, and Nb powders. Their
models are based on the continuous coagulation-fragmentation equation [30,
41], but they later discretise the system. Aikin and Courtney’s models differ
from ours since they assume the frequency of welding and fracture events is
independent of particle size and composition.

Population balance techniques have also been applied extensively to model
the comminution of minerals [5]. Minerals are typically brittle and welding
events are negligible and not considered. Kheifets and Lin [35] have used
modified population balance models. They substitute the amount of energy
supplied to the milling equipment where normally time would appear, and

replace the temperature dependent reaction rate with a rate dependent on
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Authors Material Milling Machinery

Aikin & Courtney [1] Cu-15vol%Cr Vertical Attritor
Cu-15vol%Nb

Aikin & Courtney [2] Cu Vertical Attritor
Nb
Cr
Moshksar & Zebarjad Al Tumbling Mill, =10cm
[55] & (=13.5cm
Rocha et al. [61] Cu-50wt %Ni Horizontal Attritor
(Netszche Molinex

impeller design)

Guerrero-Paz & Jara- Cu-15wt%Al Tumbling Mill,
millo-Vigueras [27] (=12.5cm
Huard et al. [33] Mg-10vol%SiC,, Tumbling Mill, §=29c¢m

Mg-20vol%SiC,,
Mg-30vol%SiC,,
Lu et al. [44] Al-4.5wt%Cu/15wt%SiC | Tumbling mill.

Table 1.1: Some experimental powder size studies. The symbol () denotes the
internal diameter of the mill chamber, an important parameter affecting the

impact velocity in tumbling mills.
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milling intensity.

A more in depth modelling approach is adopted by Maurice and Courtney
[48, 49, 50]. They develop a detailed model describing how a single colli-
sion affects an element of the milled powder. To do this they use empirical
materials science relations and classical mechanics. A computer is used to
repeatedly apply the model, subjecting the modelled powder to repeated col-
lisions. Characteristics of the collisions occurring in certain types of milling
machinery [62, 52, 53] are employed for this step. This method provides rea-
sonable predictions of powder size, particle aspect ratio, the lamellar thickness
within particles and material hardness.

Maurice and Courtney’s study is widely regarded as the most successful
and complete model of mechanical alloying. However, as a consequence of
its complexity the model contains many assumptions that may be broken by
atypical milling conditions or material properties. Also, it is difficult to iden-
tify exactly how changes in a particular parameter will change the model’s
predictions.

Some of the problems addressed by Maurice and Courtney have also been
examined elsewhere in the literature. Huang et al. [32] measure the loading ex-
perienced by powder during a ball-vial collision using a free falling experiment.
This confirms that a modified Kelvin model, previously used in computer sim-
ulations [13], best describes this type of collision. Lii et al. [45] discuss welding
of powder particles, drawing analogies with the welding of two plates under
pressure. Magini and Iasonna [47] have quantified the energy transferred to
powder by a collision in a planetary ball mill. Finally, Podoprigora et al. [59]
look at the loading experienced by particles in a vertical attritor.

Models at this scale are useful industrially. As well as modelling particle
size effects, they are applicable to one of the most commercially viable ap-

plications of mechanical alloying: the production of dispersion strengthened



CHAPTER 1. INTRODUCTION 20

superalloys. Benjamin [7] and Fleetwood [20] develop such alloys based on
the Ni-Al system. These alloys maintain high strength at high temperatures
by combining two forms of hardening: dispersion hardening and «' harden-
ing. Both mechanisms inhibit the ability of the alloy to deform plastically by
introducing hard inclusions that oppose internal flow. Dispersion hardening
introduces inclusions by adding small particles of refractory oxide, nitride or
carbide [20] to the alloy mix. 7" hardening is a more subtle process relying on
properties of the Ni—-Al alloy mixture. The mixture is chosen so that a hard
~" intermetallic phase is precipitated throughout the alloy. Mechanisms that
cause chemical mixing to occur during mechanical alloying are discussed in the
next section.

The dispersion hardening achieved during mechanical alloying is particu-
larly useful. Conventional casting methods often fail because the dispersoids
interact with the solidification front, driving them to the crystal boundaries.
Mechanical alloying encapsulates the dispersoids in the powder particles at the
welding interfaces. As mixing continues and more interfaces develop the disper-
soids become evenly and intimately mixed. Gupta and Lavernia [28] study how
successful this process can be under different milling conditions. Many people
have studied mechanical alloying of Ni-Al alloys [26, 12, 11, 60, 45, 19, 56], fol-
lowing the commercial success of the alloys produced by INCO [20]. Powder
scale models encompass all the processes necessary for prediction of disper-
soid mixing. Maurice and Courtney’s model is particularly successful in this
respect.

The interplay between mechanical and chemical mixing of constituent pow-
ders has proved a particular asset of MA. Benjamin [8] reported that mechan-
ical processing will generate an ever finer lamellar structure within particles
until, eventually, the powders chemically combine to form a true alloy. This

was demonstrated by milling magnetic Ni powder with Cr. Cr is not mag-
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netic, nor is its alloy with Ni. After sufficient processing the milled product
was shown to be non-magnetic, verifying that the powders were truly alloyed.
Models and mechanisms for this alloying process take place at the atomic scale

within powder particles. Such processes are discussed in the next section.

1.1.3 Modelling dislocations, diffusion and reaction pro-

cesses

Mechanical Alloying allows the previously discrete alloying process (where ma-
terial was either alloyed or composite) to be treated in a more continuous way.
As milling progresses, powders combine chemically in new and interesting ways.
The product may or may not resemble the equivalent alloy manufactured by
conventional means.

The continuous nature of the alloying process can be exploited for gain. A
new consolidation process, called self-propagating high-temperature synthesis
(SHS) [42] has been developed in which powders are partially mechanically
alloyed, then cold compacted into a mould, and ignited. The powder mix-
ture must be chosen carefully so that a self propagating reaction is set up in
the compacted powder. The reaction generates heat, softening the powder
and possibly causing expansion (since the product of the reaction may occupy
more volume than the reactants). A consolidated component is obtained that
has very little porosity. Mechanical alloying allows the degree of mixing and
reactivity of the precursor powder to be adjusted to optimise the SHS reac-
tion. A related processes is reactive milling [66] where milled material will
spontaneously react inside the mill once it is sufficiently well mixed.

As has been stated many times before, the source of novel properties in me-
chanically alloyed powders is the deformation process. This generates a highly
disordered structure within the processed particles. Plastic deformation of

metals requires the movement of dislocations within the crystal structure (see
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(a) Edge dislocation.

(b) Screw dislocation.

Figure 1.9: Metallic crystals deform plastically as lattice defects migrate within

the crystal.

Figure 1.9). Movement of dislocations can be inhibited by many factors, for
example foreign solute atoms in the crystal lattice, hard inclusions of foreign
material or, importantly, the presence of other dislocations. Pinned dislo-
cations can form an emitting dislocation source, for example by forming a
Frank-Read source (see figure 1.10). As dislocations become entangled work
hardening occurs. The material becomes more difficult to deform as disloca-
tions snag and pile up. The crystal structure becomes more disjointed and
disordered.

Work hardening of metals [10] is a complex phenomenon under ongoing
investigation (for example, see [38, 4, 39, 31, 40, 57, 36]). It has been noted
that initial work hardening can be related to the strain experienced by the
material. After considerable deformation the crystal grain size within the
material is reduced as dislocations collect, forming new grain boundaries. Once

this process begins the Petch relation is used to relate yield strength, S, and
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Figure 1.10: When a dislocation becomes pinned at two points an emitting
dislocation source may be created. The lines represent the advancing crystal
defect which moves in the direction indicated by the arrows. Locally, the
material is experiencing a shear stress on a plane parallel to the paper, oriented

vertically.

grain size d, such that S = Sy + kd /2, where Sy and k are empirical material
constants [21]. The material hardness then can be calculated using the common
approximation S = 3H,, where H, is the Vickers hardness of the material. No
universally applicable model of hardening has been found, which complicates
modelling of hardness changes in milled powders.

Refinement of grain size is a topic of study in its own right. The highly
disordered structures formed during the deformation process are metastable.
The associated energy can be measured with calorimetric analyses [65]. Amor-
phous structures can be produced, similar to those formed by liquid quenching
and proton irradiation [68]. Structures with small or no grain structure can
be recrystallised with controlled heating (annealing). By aligning the grow-
ing crystals within a component it is possible to create beneficial anisotropic
properties. Small grain size is also required for the new super-plastic forming
process. Here, specially prepared metal sheets are vacuum formed, a form-

ing method more commonly connected with plastics. Godfrey et al. [24, 25]
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have studied Ti-6wt%Al-4wt%V alloys with boron additives suitable for this
purpose.

Structural deformation of the material and chemical alloying phenomena
are closely linked. Jiang et al. [34] have milled Fe and Cu, noting that while Fe
crystals are naturally body-centred cubic (see figure 1.11(a)), milling causes
the material to form a face-centred cubic structure (figure 1.11(b)). The Fe
then dissolves in the face-centred cubic Cu lattice. The formation of super-
saturated solid solutions [23] and intermetallic phases [46] has been studied
and modelled. Ma and Atzmon [46] have found that mechanical alloying can
produce metastable phases that cannot be manufactured using other methods.
Pabi [58] model diffusive intermixing and propose an effective temperature for
diffusion in mechanically alloyed particles that is unrelated to the local temper-
ature increase during collision, but may be related to the liquidus temperature
of the material. Badmos and Bhadeshia [6] apply thermodynamic arguments
to model the formation of solid solutions as a consequence of continued mixing,
predicting energy barriers within certain systems that will prevent mechanical
alloying. Schwarz [64] suggests that dislocations at the interface between lamel-
lae allow accelerated localised interdiffusion. Future deformation will move the
dislocations to new sites, leaving high concentrations of solutes behind. Diffu-
sion is accelerated at the dislocations’ new place of rest, so dislocations act as
mobile solute-pumping stations. Khina [37] reviews many models that look at
reaction phenomena and phase formation.

The complex interplay between chemical and deformation processes makes
models at this scale extremely complex. It is clear that changes in the powder’s
chemistry and structure will affect models at larger scales: if the macroscopic
properties of the powder are changed by variations in structure and composi-
tion then the powder’s propensity to weld or fragment will change also. This

area of modelling is the most complex as different alloy systems behave in
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(a) Body centre cubic (b) Face centre cubic

Figure 1.11: Crystal structures.

different ways, and there is ongoing discussion over which are the pertinent
alloying and work hardening mechanisms.

Our models work on the larger powder scale and are concerned with weld-
ing and fragmentation events. The next section introduces the models used,
explaining that the microscale effects described in this section are, for the most
part, averaged and treated as constant. This is a necessary approximation at
this juncture, as the small scale modelling is too complex to incorporate in a

model such as ours at the moment.

1.2 The coagulation-fragmentation model

There are many systems, like the mechanical alloying process that evolve solely
by some combination of aggregation and fragmentation processes. Mechani-
cal alloying is one example, but others include liquid phase sintering, aerosol
agglomeration [18] and the aggregation of alumina powder in n—heptane or
water [63]. These systems are of interest and are often of industrial impor-
tance, so attempts have been made to model them. Many different models

have been suggested for slightly different situations. The model applied here
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was first proposed by von Smoluchowski in 1917 [67].

Smoluchowski’s model uses clusters of discrete size. The smallest particle
that can be represented is of size 1 and has volume V. These size 1 particles
are referred to as monomers. The next largest particle is of size 2 and has a
volume 2V. Each particle can be viewed as a cluster of monomer particles.
In the following discussion an r-sized cluster is represented by C., and the
concentration of C, clusters (sometimes written [C,] by chemists) is written
¢, or ¢.(t), as the model is concerned with how the cluster size distribution
changes over time. The concentration, c¢,, is the number of r-sized clusters per
unit mill volume.

The concentrations will change as particles weld and fragment. We can
model the welding and fragmentation processes as though they were chemical
reactions between different clusters. For example, a welding event may involve
a cluster of size 5 and one of size 3. The product would be a cluster of size 8.

In the notation of chemical reactions we write
Cs + C3s =5 C. (1.1)

Here a5 3 is the rate at which clusters of size 5 and clusters of size 3 weld. More

generally we can write

Cr + Cy 2% Chys, (1.2)

which describes all possible welding events. Fragmentation events provide the
reverse reaction

Cyrs 225 O, + O, (1.3)

The rate b, s is the rate at which particles of size r + s fragment to particles of
size r and s; this is distinct from the total rate of fragmentation of particles of
size 1 + s.

Now, consider one particular particle size, r, say. The change in the con-

centration of r-clusters due to all the associated welding and fracture events
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can be calculated. There are four categories of event
e gain by welding (two smaller particles weld to give one of size r)

C,_ s +C, =% C,, (1.4)

e loss by fragmentation (the reverse reaction)

C, " Oy + O, (1.5)

e loss by welding (a particle of size r welds with another to form a larger
particle)
Cr +Cy 2% Oy, (1.6)

e gain by fragmentation (a larger particle breaks giving an r-sized frag-
ment)

Cris 225 Cyp + C. (1.7)

The effect each category has on the concentration of r particles, ¢,, can be
calculated in turn. Consequently the time rate of change of concentration, ¢,
can be calculated.

In order for a particular process to take place the reactants must be present.
The likelihood of a particular reaction occurring is therefore proportional to
the concentration of the reactants, for example, the reaction (1.4) will happen
at a rate proportional to ¢,_;c;. The constant of proportionality is the reaction
rate a,_s . The rate at which the concentration of r particles rises as a result
of smaller particles welding can be expressed by summing the contributions

given by each valid value of s,

1 r—1
5 Z Qpr—s,sCr—sCs- (]‘8)
s=1

The factor 1/2 appears because each combination of sizes is counted twice by
the convolution-like term (c; and ¢,_; appear in the term with s = 1 and the

term with s = r — 1).
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The other three contributions can be calculated in a similar way. The
rate at which particles of size r are lost by fragmentation to all fragment

combinations is
1 r—1
5 Z b’r—S,SC'I" (19)
s=1

Calculating the other two terms gives the following system of differential equa-

tions
r—1 0
. 1
Cr = § z: (a’r—s,scr—scs —b,_ s, scr E CL,« sCrCs — Op scr—l—s) (1'10)
s=1 s=1

This is the equation system proposed by Smoluchowski. It is commonly used
to model particle aggregation and fragmentation phenomena and forms the
basis of the modelling to follow. The aggregation rates a, , and b, ; have to be
specified before the model can be used. This topic is addressed in Chapter 2.

Full solutions to Smoluchowski’s model are calculated, when required, using
numerical techniques. However, for particular choices of a,s and b, some
characteristics of the cluster size distribution can be determined analytically.
This fact is used later, in Chapter 2, and is discussed in more detail there. For

now, it is convenient to define the p'" moment of the distribution by

t)=> rPe(t), (1.11)

and note that M, is the total number of particles in the system and M; = p
is the fraction of the system’s volume occupied by particles. The particles
are assumed incompressible, so p is constant. Higher moments could be used
to calculate other quantities like the polydispersity of the size distribution,
MyM,/M?, a quantity analogous to the variance about a mean in statistics.
When solving the full system given in equation (1.10), numerical techniques
are employed. To make this possible the system must be truncated. There
are two commonly applied truncation schemes. In both schemes, the first

summation term is not altered, as it deals exclusively with clusters whose size
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is less than or equal to r. The first scheme,

r N—r

. 1

Cr = 5 E (a"rfs,sc'rfscs - r sscr E ar sCrCs — 'rscr—|—s): (112)
s=1

reduces the upper limit of the second summation term so that interactions
with clusters outside the truncated model are prevented. Mass is conserved as
clusters with size greater than N cannot be formed. Particles of size r may
only weld with particles of size up to N — r. Particles with size approaching
N will experience almost no welding events at all. Thus mass, M; = p, is
conserved. The significance of this depends on the forms chosen for a,; and
by s-
The second truncation scheme does not conserve mass in the same way:

r—1

ér = 5 Z (ar—s,scr—scs - 1" S, scr (Z a"r sCrCs — Z br scr—i—s) . (113)

s=1
Welding is not restricted and material can aggregate to form clusters larger
than N that are not fragmented back into the system. The significance of
these effects depends on the forms of a,; and b, ; chosen. For these truncated
systems it makes sense to use a truncated expression for the moments of the

size distribution M,,.
N
M, = " rPe(t). (1.14)
r=1

Then, the mass conserving case given in equation (1.12) has M; = 0 and the
rate at which material is lost from form the system when using equation (1.13)

1s

N N
—ZrcT Z Qr 5Cs. (1.15)
r=1 s=N—-r+1

If most of the material remains at the small end of the size domain then
the truncation error with either scheme will not be important. Otherwise, the
relative errors must be assessed. The scheme applied in later chapters is the

first, mass conserving case. Experimental reports suggest almost all of the
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material put into a mill is recovered at the end of milling, so this seems the
most appropriate scheme to apply. Ideally NV is chosen large enough that the
difference between the two schemes is negligible, but if N is small (due to

computational constraints) then differences can be relevant.
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Chapter 2

Modelling Theory

In the course of the previous chapter (§1.2) Smoluchowski’s coagulation-frag-
mentation equations were introduced. Here we discuss a method of using these
equations to model milling experiments involving a single powder material.
Part II of the thesis looks at models that involve two powder types.
Smoluchowski’s equations, given in Equation (1.10), require a form to be
specified for the aggregation and fragmentation rates a, ; and b, ;. This chapter
presents some possible choices of a,; and b, s that are suitable for modelling
ball milling. These welding and fragmentation rates are used in different com-
binations to form five distinct models. To illustrate the different behaviour
induced by using different rates, two of the models are directly compared.
Each of the proposed rates includes two factors. The first is a kernel: a
function of r and s specifying a particular dependence on particle size. The
second is a constant rate-parameter that adjusts the propensity for welding or
fragmentation in the model for particles of all sizes. These rate-parameters
allow each model to be matched to experimental results by balancing the
tendency of particles to weld and fragment. The quality of the predictions
made by each model will be assessed in later chapters by applying the models

to experimental data.

32
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The kernels have been chosen so that My(t) can be determined or ap-
proximated analytically. This is key in later chapters that make comparisons
between the model and experimental results; comparisons require a simple so-
lution for My(t). The rate-parameters appear in the solution for My(¢) and can
be determined by fitting the solution to experimental measurements. The anal-
ysis used to determine My () for each model is presented in §2.2. Experimental
measurements of My (t) are made in two stages. The next chapter presents a
experimental procedure that measures the size distribution of milled material.
The subsequent chapter discusses how My may be estimated from experimen-
tally measurable quantities before comparing these experimental distributions

to those predicted by the models.

2.1 Size dependent kernels

The aggregation and fragmentation rates used take the form

ars =af(r,s), (2.1)

brs =bg(r,s). (2.2)

’

To model aggregation, three kernel functions, f(r, s), are considered: 1, (r+s)
and (rs). The first two of these three forms forms are also used for g(r, s)
(fragmentation). Kernels are combined to form five models, employing the
combinations of aggregation and fragmentation rates given in Table 2.1. In
order to be consistent with later definitions we refer to the constants of pro-
portionality, a and b, as the aggregation rate parameter and the fragmentation
rate parameter respectively. These terms are used to refer to the size inde-
pendent part of the aggregation and fragmentation rates, which describes the
material’s overall or averaged tendency to weld or fracture.

The forms given in Equations (2.1)—(2.2) make the implicit assumption that

aggregation and fragmentation rates, a, s and b, ; depend only on the sizes of
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Model Qs by s
1 a b
2 a(r+s) b
3 a(r+s) b(r+s)
4 a(rs)  b(r+s)
5 a(rs) b

Table 2.1: Welding and fracture rates used in the various models. In each case,

a and b are constant rate-parameters to be determined.

the particles involved, namely r and s. In reality, a number of factors will
cause the rates will vary throughout the milling. For example work-hardening
will cause the material to become more brittle, increasing the fragmentation
rate as milling progresses. In a similar way the presence of surface impurities
may reduce early aggregation rates and the heat generated during milling may
increase aggregation rates at later times. Variation can affect both the size
independent rate-parameter and the size-dependent kernel form, but it is as-
sumed that all these effects are secondary to size dependent factors. The aggre-
gation and fragmentation rates presented here are averaged over the duration
of the milling process. A more refined model could consider time-dependence,
though this would add considerable complexity to the model, with many more
parameters to be determined.

In order for a particle to aggregate or fragment it must be involved in a
collision between milling media. Particles will experience collisions at different
frequencies depending on their size and this variation must be reflected in both
aggregation or fragmentation rates. Given that a particle of a certain size is
involved in a collision, the chances of it aggregating or fragmenting will also
be size-dependent. Both contributions must be present in an accurate model.

Our first model is the simplest of all, having no size dependence. The
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aggregation and fragmentation rates are constant, i.e. a,s = a and b, ; = b.
This model is similar to that employed by Aikin and Courtney [2] and has been
shown to provide a good first approximation to the observed behaviour. In this
simple size independent case, the rates and rate-parameters are synonymous,
but this is not true of the other models.

Models 2 and 5 generalise model 1, using aggregation rates that are size-
dependent while maintaining a size-independent fragmentation rate. In model
2 the aggregation rate is proportional to the sum of the sizes of the aggregated
particles or equivalently the size of the agglomerate formed. In model 5 the
rate depends on the product of the sizes of the particles before combination.
This shows a more pronounced size dependence: consider a system of sizes
r=1...N, where N is a large number; then in model 2 rates vary from 2a to
2Na, whereas in model 5 they range from a to N2a. To compensate for this,
it is expected that model 5 will give a smaller value of a when both model 5
and model 2 are fitted to the same data.

Models 3 and 4 also use the same size-dependent aggregation rates as mod-
els 2 and 5 but introduce a size-dependent fragmentation rate as well. We
consider a rate that depends linearly on the size of the particle before frag-
mentation, and is independent of the sizes of fragments produced. In this
case the constant of proportionality is defined to be b, and reflects the average
fracture characteristics of the material.

Previous mathematical analysis [15] has shown that the rate a,s = ars
represents a very strong aggregation effect. In the absence of any fragmentation
process this effect is so strong that the model will lose powder through a
process called gelation. After a certain time, ¢4, the strong aggregation leads
to a divergence in the system, where an “infinitely large” particle forms. The
divergence is interpreted as the limit of a process in which larger clusters

collide forming even larger clusters at an accelerating rate, to form a single
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macroscopic entity. Such models may apply to experiments where significant
amounts of powder are lost due to adhesion to the milling equipment. However,
finding the parameters for these models is a difficult task as the solution for
My(t) is altered by the divergence. The time at which the divergence occurs
is, in turn, determined by the rate parameters. The effect of gelation on the
models is discussed further in §2.2.4.

It is possible to show that a particle’s likelihood of experiencing collision is
proportional to its size. This proportionality is incorporated in the aggregation
rate a, s = a(rs) (in models 4 and 5) and the fragmentation rate b, ; = b(r +s)
(in models 3 and 4). These rates assume that when a large particle experiences
a collision it is just as likely to fragment as a small particle experiencing the
same collision. The other aggregation and fragmentation rates do not increase
as quickly with size, as they incorporate a component that reduces the likeli-
hood of an impacted particle aggregating or fragmenting as the particle’s size
increases.

Many factors which influence the likelihood of particles aggregating or frag-
menting are not size-dependent, for example powder hardness and milling in-
tensity. These contributions are averaged over time and incorporated in the
model through aggregation and fragmentation rate parameters, a and b. The
values of @ and b are determined from experimental data using a matching

technique, so the influence of each factor does not need to be found explicitly.

2.2 Solutions for M;(t)

The previous section established size dependencies for the rates a, s and b, ;.
This section provides one of the tools used to systematically determine the
rate-parameters, a and b: an analytic solution for My(t) is found for each

model. The rate-parameters are found by fitting these solutions to experimen-
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tal estimates of M, calculated in Chapter 4 from the measurements made in
Chapter 3.

The analysis required to determine a solution for each model is presented
in the following sections. Solutions can be calculated from Equation (1.10)
by substituting for a, and b, , then summing from r = 1 to r = 0o using
generating function techniques described in [15, 16]. The resulting differential
equations are solved exactly or, if necessary, using asymptotic approximations
based small fragmentation rate.

To avoid repetition it is convenient to re-order this process. Summing
equation (1.10) first, then re-ordering the summations reduces the amount of
analysis required after model specific substitutions are made. In general, the
change in the p® moment of the distribution with respect to time may be

written
o0
My =Y 1%, (2.3)
r=1

Substituting for ¢, from equation (1.10) gives

D) I >3 (2.4)

where w, ; = a,s¢.cs — by 5¢r45. Re-ordering the first summation gives
. 1 n X
M, = 3 Z Z rPwp_s s — Z Zr”wr,s. (2.5)
s=1 r=s+1 r=1 s=1
Then re-scaling the first » summation using ' = r — s yields
. 1 el *
M, = 3 Z Z(r' + ) Pwpr 5 — Z Z rPwy s, (2.6)
s=1 /=1 r=1 s=1
which allows the sums to be combined

M, = %ZZwm{(r%— s)P —2rP}.

r=1 s=1
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Finally, substituting for w; ;,

M, = %i i arsCrCs { (1 + )P — 2rP} — %i i brsCris { (1 + s)P — 2rP}

r=1 s=1 r=1 s=1

(2.7)
or,
M, = A,—-B, (2.8)
1 o o0
where 4, = 5 ; ; arscrcs {(r+ s)P — 2rP} (2.9)

oo S

~1
1
and B, = 5 Z Cs Z brs—r {s? —2rP}. (2.10)
5=2 r=1

These relationships make it easy to determine differential equations for M.
After setting p = 0, the forms for a, ; and b, 5 given in Table 2.1 are substituted

in equations (2.8)—(2.10) for each model in turn.

2.2.1 Model 1

In model 1, a,,s = @ and b, ; = b. From equation (2.9)

I 2 = 1
Ay = —iaZcr ch = —§CLM02 (2.11)

r=1 s=1

and from equation (2.10)
B——lbi (r—1) = —2b(p — Mo) (2.12)
0= 3t erlr = 1) = =3blp - Mo) -
Hence (equation (2.8))
. 1.,
My = —5laMy = b(p = Mo)], (2.13)

which is a Ricatti equation solved exactly by

K (p2—p1)t
p1+ Kipoe ) , (2.14)

1 + Kjelp2—p1)t

Mo(t) = (
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where e _p— W’ by — —b+ W, (2.15)
so that
P2 —p1 = \/b(ap+ b/4) (2.16)
From initial conditions,
2p1 — aM,
K= 2 (2.17)

which completely specifies the solution.

2.2.2 Model 2

Model 2 uses the same fragmentation kernel as model 1, so By is given by

equation (2.12). The aggregation rate, a, = a(r + s) gives

AO = —apMO (218)
SO
. 1
My = —E[QGPMO — b(p — My)]. (2.19)
This has solution
Mo(t) bp (1 _ ef(ap+b/2)t) + MO(O)ef(a/H—b/?)t_ (2_20)

- 2ap+b

2.2.3 Model 3

The fragmentation rate for model 3 is b, ; = b(r + s), but the aggregation rate

is unchanged from model 2. Applying similar methods,
. 1
which includes the second moment Ms. M, is unknown, but determined by

: b
M2 = QGMQIO - 6[M4 - MQ] (222)
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This equation (found using equations (2.8)—(2.10)) involves terms in My, again
unknown. The equation for M, will contain terms with higher order mo-
ments, so some other method of solution must be found. We apply asymp-
totic methods to equations (2.21)—(2.22) assuming b to be a small parameter,
giving a first order solution for systems with weak fragmentation: My(t) ~
M5(0) exp (2atM>(0)) and hence

My (t) ~ My(0)e " + 6% [3(1 — e %) + 7M2p(0) (e*t — e~ ") } . (2.23)

The approximation cannot be valid if the leading order term is smaller than

the first correction term, so the solution is valid for a finite time

1 6apMy(0)
b < by = —— 1 . 9.24
< 3ap 0g< bM>(0) (224)

The accuracy of the solution falls dramatically as ¢ approaches t;... The

consequences of this limitation are discussed later.

2.2.4 Model 4
Asymptotic methods are applied to model 4, where
: 1
Mo = =3 lap® = b(M; = p)], (2.25)

and

: b
My = aM; — 6[M2 — My, (2.26)

giving an approximate solution My ~ M5(0)/(1 — aM5(0)t) and

1 1 1
My(t) ~ My(0) — iapzt - Eb (pt + . log(1 — aMz(O)t)> : (2.27)
for
1 _ o—2aMo(0)/b
t < tmax = 2.28
aMg(O) ( )

This model uses the last aggregation rate, a,s = a(rs), which causes a

phenomenon called gelation. Gelation has been studied by Davies et al. [15],
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and is discussed in §2.1. Davies et al. study a purely aggregating system that
can be obtained from equation (1.10) (with the appropriate rates) by setting
b= 0. In this case B, =0V p and

T

A, = 5 Z Z a(rs)eycs {(r + s)P — 2rP}. (2.29)

r=1 s=1

When p = 1 this simplifies to
1
Al = §G(M1M2 — MlMQ) = 0, (230)

suggesting that M; is constant (by equation (2.8)). However, when p = 2,

Ay = aMy? so
M, (0)
My(t) = —2—~
2(0) = 1= M,(0)at

which has a finite time singularity at ¢ = ¢, = 1/aM>(0). The divergence cor-

(2.31)

responds to the formation of a macroscopic particle or gel. Material aggregates
from the system to the gel-particle and is effectively lost from {¢,(¢)}2,, so
the number of clusters will also be affected. Physically, the presence of weak
fragmentation in the system should be of little significance but will slow the
onset of gelation slightly. Consequently, we can safely say that the solution,
equation (2.27), is valid provided the asymptotics hold and ¢ < ¢,. For times
before gelation (¢ < t,), M; = 0 so we will be concerned with the interval

0 <t < t, where M (t) = M;(0) = p.

2.2.5 Model 5

Although model 5 uses the gelating aggregation kernel, the corresponding dif-

ferential equation
d M, 1

gy _ _i[ap2 . b(,O— MO)]’ (232)

can be solved exactly by

b _ 2
My(t) = %(1 — e M) 1 My(0)e M2, (2.33)
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The leading order expression for the gel-time, ¢, = 1/aM;(0) is the same as
for model 4.

Having found these solutions for M (t) it is easy to illustrate how the differ-
ent kernel forms affect the progress of the model. Solutions for models 2 and 5
have the same functional form (equation (2.20) and equation (2.33)). Values for
the rate-parameters a and b can be devised such that Méz) (t) = M(§5) (t) for all
t, where Méx) (t) is My(t) for model X. Size distributions can be calculated by
numerically integrating Equation (1.12) to show how the different kernels pro-
duce different size distribution characteristics. Even though MéQ) (t) = Mé5) (t),
the cluster size distributions functions will be different since they show more

detailed information.

2.3 Idealised calculations

This section compares the size distributions generated by models 2 and 5 to
illustrate the behavioural differences of the kernel forms used. Initial conditions
are chosen that represent a hypothetical monodispersed powder, as shown in
Figure 2.2(a). This makes it clear which particles have been formed through
welding and which through fragmentation. Values of @ and b have been chosen

so that Méz) (t) = Mé5) (t). The solution functions are equivalent if

(5)
a? = “7 (2.34)

b@ = p® O ), (2.35)
so values of a and b are chosen to satisfy these conditions. Furthermore, to
avoid problems with gelation in model 5 it is prudent to ensure that a® <
1/(M5(0)t), for all values of ¢ considered.

The parameter values given in Table 2.2 adhere to these relationships and
avoid problems with gelation. The corresponding change in Mj(¢) is shown in

Figure 2.1. Of course, the curves for model 2 and model 5 are identical. Note
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Model ‘ a ‘ b
2 0.0005 | 0.0010
5 0.0010 | 0.0020

Table 2.2: Parameters used to illustrate the differences between models 2 and

3.

0.07 T T T T T T

0.06

0.05

0.04

0.03 - |

0.02 .

0.01

Calculated using model 2
Calclulated usilng modell 5 ————- ;

0 10 20 30 40 50 60

Figure 2.1: Mj(t) for models 2 and 5 calculated using equations (2.20) and
(2.33) and the values of @ and b given in Table 2.2. The two curves are identical

by design.

that an increase in M, (the concentration of particles in the mill) reflects a
reduction in average particle size as the volume of the milled material remains
constant.

Figure 2.2 illustrates how the monodispersed particles between r = 25 and
r = 30 weld freely under these conditions, creating peaks around r = 55, r =
82.5, r = 110 etc. Particle fragments of all sizes are created more slowly, filling
the gaps between the peaks. If no fragmentation occurred then particles of
certain sizes would not be formed — there would be a peak where 25 < r < 30

and one at 50 < 60 with no material between r = 30 and r» = 50.
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Figure 2.2: Cluster size distributions calculated numerically from equation

(1.12) using the parameter values in Table 2.2.
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As time progresses the distributions become smoother as more fragments
are generated and recombined, forming clusters of all sizes. The profile that
develops is influenced by the choice of aggregation and fragmentation rates a, s
and b, ;. Model 5 welds more rapidly than model 2, so the cluster distribution
develops a shallower gradient (see figure 2.2(h)). The distribution in model 2
is progressing toward a smooth convex curve, while the distribution for model
5 will remain concave (however, note the logarithmic scales). This means that
the particle size distribution in model 5 is more even — model 5 has a larger
variation in particle size that model 2. The greater number of large particles is
important, as it incurs a greater truncation error. As discussed in §2.2.4 and
§2.2.5, the aggregation kernel used in model 5 is strong enough to generate
particles of infinite size in finite time. When fragmentation is absent this
occurs after time ¢, = 1/(aM;). A similar phenomenon will occur in model 4.

These calculations have been made using an idealised initial distribution
different from those used experimentally to highlight which particles have been
formed by aggregation and which by fragmentation. The processes described
here and and the qualitative differences between the models will be exhibited
irrespective of the the initial conditions. Model 5 was shown to have higher
concentrations of larger and smaller particles than model 2, despite both mod-
els having the same average particle size (the size variation is much larger in
model 5). M;(t) solutions for the other models have slightly different func-
tional forms but all (except that for model 4) are exponential in ¢ and they
can be closely matched.

The predicted size distributions are compared to experimental measure-
ments to identify which model gives the most accurate predictions. For exam-
ple, if an experiment gave a wide variation in particle size then model 5 would
be more useful than model 2 and wvice versa. By comparing the models to a

wide variety of experimental situations it is possible to identify which model
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is best overall. The next chapter describes a suitable milling experiment using
ferro-silicon powder. The experimental data is analysed in Chapter 4. Further

data sets obtained from the literature are analysed in Chapter 5.



Chapter 3

Experimental Method and
Results

The previous chapter developed a procedure capable of predicting the size
distribution of a milled metallic powder. This chapter describes experimental
work used to test the procedure. Data from the experiments will be compared
to predictions made by the models. The results of this comparison show which
of the proposed aggregation and fragmentation rates mimic the mechanical
alloying process most accurately. From this knowledge we infer some details
of the processing received by the powder from the milling machinery. The
comparison of models and experimental data is made in later chapters.

For the experimental study several samples of ferro-silicon powder were
milled in a horizontal attritor. The size distribution of each sample was de-
termined using a sieve stack mounted on an automated shaker machine (see
Figure 3.3 for an illustration). Each sample was milled for a different length
of time. It is assumed that each sample will be treated in the same way, so the
samples milled for shorter times reflect a state surpassed by samples enduring
longer milling times. Hence the results describe the size distribution of the

milled powder at specific points in time. Two separate sets of experiments

47
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were conducted using different milling speeds.
A successfully processed sample experiences three stages of preparation and

then a final stage of analysis:
1. Sample preparation and standardisation.
2. Milling.
3. Sample division.
4. Size analysis (sieving) and other studies.

These processing stages are described in the sections that follow. The sample
preparation and division stages serve only to ensure that the experimental
results are accurate so the necessary actions are noted quite briefly. However
the milling and analysis stages require more careful thought and involve many

more parameters so they will be discussed at more length.

3.1 Sample preparation

A 10kg drum of ferro-silicon powder was obtained from Hogénas. A kilogram of
this powder was taken for each experiment and mixed thoroughly within itself
using a Turbula mixer! before being carefully weighed into 100g samples. The
mixing procedure ensures that each sample is representative, or statistically

identical, notably having identical size distribution characteristics.

3.2 Sample processing

The samples were processed using a Zoz Simoloyer CM012. This machine has

a horizontal attritor design; a schematic is shown in Figure 3.1. The cham-

ltype T2C, made by Willy A Bachofen ACT Maschinenfabrik, Basel, Switzerland.
2Zoz Maschinenbau GmbH
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Mill Chamber P Pressure Gauge
M \V ~<— Valve
to Vacuum
! [ Pump

to Argon
Cylinder

Data connection

Figure 3.1: Schematic of experimental apparatus.

ber had been used previously to manufacture an aluminium-nickel alloy and
to mill limestone so it was cleaned using sand blasting equipment. The first
two milling experiments were discarded as they may have been affected by
transient behaviour resulting from the cleaning process and by ferro-silicon
adhering to the chamber walls. After a couple of batches have been processed
a steady state develops. The amount of material adhering to the chamber wall
will be approximately equal to the amount detaching from the wall, having
been deposited from previous batches. Although our model does not explicitly
account for these events, such mixing is inevitable in any batch milling tech-
nique. A useful model must work under these circumstances so no attempt was
made to stop this “historical contamination”. We expect the errors incurred
to be small because only a small amount of material will be involved in the
process, particularly when using a hard material like ferro-silicon.

The rotational speed of the Zoz milling machinery is computer controlled,

allowing the operator to prescribe a sequence of milling speeds for the machine
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to follow. A previous study conducted by Zoz et al. [71] has shown that the
amount of material recovered after milling can be greatly improved (increased)
by varying the milling speed in a cyclic way. This operation avoids what Zoz
et al. term critical milling behaviour — the phenomenon where one area of the
mill consistently experiences conditions that promote deposition of material
onto the chamber wall. Cyclical operation moves such “dead” regions. By
carefully selecting milling speeds it is possible to ensure material deposited
during one speed regime is dislodged while the machine is running at a different
speed or during transitional periods. In reference [71] a cycle in which the
machine runs at 1300 rpm for 4 minutes and 900 rpm for 1 minute was used
to manufacture a Ti-Al-Nb alloy in a machine identical to the one used here.
The milling cycle was complemented by a discharged cycle in which the timings
were reversed (i.e. 1300rpm for 1 minute, 900 rpm for 4 minutes).

Preliminary tests showed that almost all of our ferro-silicon powder was
recovered using these cycles, so they were adopted for a full experiment. A
second experiment was conducted in which all the milling speeds were reduced
using a factor 1/v/2, giving 919 rpm instead of 1300 rpm and 636 rpm instead of
900 rpm. The idea behind this scaling was to reduce the velocity of the balls by
a factor 1/ v/2 and consequently reduce the kinetic energy dissipated at impact
by a factor 1/2. The scaling ignores a lot of geometric factors and does not
take account of the fact that the balls cascade in significantly different ways at
different mill speeds [72], but this approximation provides an interesting way
to choose a second set of milling conditions.

Milling was conducted under an inert argon atmosphere, allowing the pow-
der to develop consistent characteristics after the dispersion of initially oxidised
surface material. This makes the experiment more suitable for comparison
with our model, which assumes constant aggregation and fracture rates for the

powder. If the powder gradually accrued more oxidised material one would
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Figure 3.2: Zoz Simoloyer CM01 with the chamber in two different modes.

expect it to become harder and more brittle after longer milling times, and so
weld less and fracture more.

The selected milling times increase geometrically, reflecting our expectation
that the process will exponentially tend to a limiting equilibrium. In the high
power experiment that used rotational speeds of 1300rpm and 900rpm, samples
were milled for times of 1, 2, 4 and 8 hours. For the half power experiment,
these times were doubled, giving a range from 2 hours to 16 hours. After a
sample has been treated for the prescribed milling period, the chamber was
inverted to the discharging position (see Figure 3.2) and run for a further half
hour under the dicharging cycle to ensure that all of the material from the mill
was collected for analysis. This means that the collected powder may have
been in the mill for up to half an hour longer than the specified time. This is
not ideal, but we anticipate that the majority of the powder will be discharged

from the mill early in the discharging period, and recognise that any error
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incurred will be systematic.

3.3 Sample division

After milling, the samples were mixed in the Turbula mixer again, before being
divided into a 50g sample used for sieve analysis, and a 15g sample saved for
SEM and EDX work. The remaining material was saved for future unforeseen

analyses.

3.4 Sample analysis

The size distribution of the samples have been examined by sieving. Some SEM
work has been carried out to determine the shape of the particles before and
during milling. The SEM study was not exhaustive but sufficient to determine
the general characteristics of particle shape. EDX was used to check that
contamination of the samples during milling was low. The techniques used for
each study are described below. Results of the sieving and SEM work are also

shown.

3.4.1 Sieving

Sieved data are usually presented using a bar chart. Powder is passed through a
stack of sieves of decreasing mesh size. The passage of the powder through the
sieves is aided by a standardised shaking method that ensures reproducibility.
The percentage of the powder mass passing through each sieve mesh, but
remaining on the mesh below is then plotted against the larger mesh size.
Figure 3.3 shows a fictitious size distribution and the corresponding sieve stack,
with the positions of the different size fractions labelled.

Our sieve analyses were conducted using a regular set of woven wire test
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Sieve size (microns)
425
300
212
150
106
75
23
38

Table 3.1: Sieve sizes used for particle size analysis.

425 pm~
300 pm~ ———
212 pm~
150 pm~ ———
106 pm~, ————
pm~,
53 pm »
38 pm = O N

Mass percentage

>wmOOmMmTO I —

38 53 75 106 150 212 300 425 1000
Sieve size (microns)

(a) Sieve stack (b) Size distribution

Figure 3.3: Generating a size distribution bar chart from a sieving experi-
ment. (a) shows a sieve stack, with the powder fractions labelled A-I. The
corresponding bars are shown in (b). Note the labelling of the z-axis. The
final bar, labelled 1000 microns represents all material that will not pass the
425 micron sieve. The figure 1000 has been chosen by examining the particles:

all would pass through a 1 mm sieve mesh.
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sieves manufactured by Endecotts and conforming to BS. 410: 1986. The range
of sieve apertures used was not changed; a list of the apertures is presented
in Table 3.1. The material was sieved while dry, using an Endecotts Octagon
Digital sieve shaking machine. Initial tests showed no discernible difference in
measurements made by sieving a test powder for 5, 10 and 20 minutes, so all
the samples were sieved for 10 minutes to ensure completion.

The size distribution data presented in Figure 3.4 were obtained by fol-
lowing this procedure. When the mill was run at full power, the powder
quickly aggregated forming relatively large particles in a bimodal distribution,
as shown by Figure 3.4(a). At later times more intermediate-sized particles
are formed from both the smallest and largest particle classes, smoothing the
distribution profile over time. The half power experiment shows a discernibly
different pattern. In this case the particle size gets progressively larger over
time, as shown in Figure 3.4(b), indicating a trend of gentle aggregation.

As with any experimental measurements, these sieved size-distribution data
are subject to error. Several possible sources of error have been eliminated. It
was noted that more than 97% of the milled powder was recovered after every
experiment, so losses of powder are not large. The small loss observed could
be attributed to residues remaining in the filling column and receiving flask.
It was also noted that small amounts of fine powder are inevitably lost when
handling the powder, so it is thought that inaccuracies would be greater for
the smaller size ranges.

There are also systematic errors associated with the use of sieving equip-
ment. While the size of the apertures in a sieve mesh should be identical there
will always be some variation, with some apertures being larger than others.
This sort of error increases with the age of the sieve as the mesh deteriorates
with use. Despite these errors, it is felt that the distributions give and rea-

sonably accurate and reproducible representation of the particle size changes
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Figure 3.4: Temporal change in particle size distribution of ferro-silicon powder

obtained using a Zoz Simoloyer at different speeds.
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occuring within the powder.

3.4.2 SEM and EDX analyses

Brief SEM and EDX studies were conducted on the powders. SEM analyses
looked at the shape and structure of the milled powder particles while the
EDX study investigates the chemical composition to determine whether the
samples were being contaminated by material from the mill wall.

Approximations of particle shape are used by our modelling procedure to
convert sieved size analyses to volumetric particle size measurements. Con-
firming the shape of powder particles by SEM is therefore important. Our
models assume that particles can be represented by disk shapes or short cylin-
ders. This assumption is valid for the early stages of milling, during stages 1
and 2 of Benjamin and Volin’s five stages description [9] (see figure 1.2). In
stage 3 the particles become equiaxed so these assumptions are invalid.

Some of the powders from the full power ferro-silicon milling experiment
have been examined using a Jeol WINSEM JSM-6400 scanning electron micro-
scope. The investigation showed flake particles developing from the equiaxed
(gas atomised) starting powders (see Figure 3.5). Samples taken after 2, 4 and
8 hours of milling were examined. It was subjectively noted that as milling
time progresses, the number of flake-shaped particles increased. There were no
signs of equiaxed particle formation (stage 3 in Figure 1.2). This suggests that
our assumption of disk-like particle shape will be suitable for this experiment.

In addition to the SEM work, a cursory EDX analysis was made of the
early samples to see if there was significant contamination of the material. No
traces of contamination could be found when analysing 3 or 4 spots on each

sample.
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Figure 3.5: Micrographs of the milled ferro-silicon powders. Small, equiaxed
particles are shown that have escaped heavy processing during their time in the

mill. The larger flake-like particles become more common as milling progresses.



Chapter 4

Verifying The Models

The previous chapter describes the experimental procedure used to determine
changes in the particle size distribution of ferro-silicon powder during milling.
Results of the experimental study are summarised in Figure 3.4. In this chap-
ter, the models presented in Chapter 2 will be used to calculate size distribu-
tions that are are compared with the experimental results, identifying which
models are the most realistic.

Two technical issues must be resolved before making such comparisons.
The first concerns the different methods of quantifying particle size used by
experiments and the model. These differences are resolved using the technique
presented in §4.1. The second issue concerns finding suitable aggregation and
fragmentation rate-parameters for use with the model. A fitting technique
suitable for this purpose is presented in §4.2.

Having resolved these issues, §4.3 makes the comparison between the model
predictions and experimental results. The comparison is discussed at some
length, noting reasons why some models succeed and others fail. Chapter 5
makes many similar comparisons, using experimental data taken from litera-

ture to cover a wide range of milling scenarios.

28
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" Diameter d "~ Diameter d

Figure 4.1: Particle geometry is important when interpreting size measure-
ments obtained by sieving. Both the particles shown will pass through a sieve
with aperture greater than d but the particle on the left has a much higher

volume.

4.1 Converting size measures

There are many techniques available for measuring the size distribution of
metallic powders but the most commonly used technique is sieving. This
choice is economic, easy to understand and convenient to use. However, the
measurements obtained are rather abstract and can be difficult to interpret.
Sieving measures the second largest dimension of a particle, as shown in Figure
4.1. This is not the most useful or intuitive measure of particle size in the
context of our models. The volume of a sieved particle will depend on the
particle geometry. In addition, practical limits on the number of sieve meshes
available allow only a relatively coarse discretisation of the size distribution.
The cluster models described in Chapter 2 provide a more detailed dis-
cretisation of the powder distribution, often employing thousands of different
cluster sizes. However, these sizes are a measure of volume and a prior: take
no account of the aspect ratio of particles. An accurate conversion between the

sieve measurements and volumetric size measurement relies on a resampling
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Figure 4.2: Interpolating a cumulative undersize size distribution. The data
is taken from the initial powder used in the full power experiment. The data
points are determined experimentally and the three near-identical lines are

generated by different interpolation techniques.

of the size distribution using interpolation techniques. Accurate resampling is
achieved by considering the cumulative size distribution of the powder. Figure
4.2 shows the cumulative distribution associated with the unmilled powder
from the full power experiment. The data points in Figure 4.2 are determined
experimentally while the distribution at intermediate sizes is readily interpo-
lated using a number of techniques.

Three interpolation techniques were considered: cubic splines, quadratic
splines and linear interpolation. Figure 4.2 shows that both cubic and quadratic
spline fitting techniques produce a marginally smoother fit to the size distribu-
tion between 200 and 400 pym. Nonetheless, linear interpolation was selected
for use with all data sets because it eliminates the possibility of generating a

fitted function which has a locally negative gradient. Such a fitted function
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Figure 4.3: Quadratic or cubic spline fitting may interpolate a monotonically

increasing data set with regions of negative gradient.

would be a problem as a cumulative distribution must, by definition, be mono-
tonically increasing. With quadratic and cubic splines the possibility exists for
oscillations (regions of negative gradient) to develop, as illustrated in Figure
4.3. These oscillations occur when the gradient of the cumulative distribution
changes abruptly.

Linear interpolation is used to construct a continuous approximation of the
cumulative particle size distribution, measuring the particles’ sizes in terms of
sieve mesh sizes. A volumetric particle size distribution must be calculated
from this data, but making the conversion requires knowledge of the particle
geometry. The following work assumes that particle shape can be approxi-
mated by a disc, as shown in Figure 4.4. This assumption is typically valid
for early milling times. Equiaxed particles begin to form at later times, as the
material hardens (Figure 1.2). When assuming disc-like geometry it follows
that the sieve mesh-size measures the disc’s diameter directly, so the calcu-
lation required to convert sieve mesh sizes to a volumetric measure is not as
problematic as Figure 4.1 suggests.

The proposed models allow the thickness of the disc to vary with diame-
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Figure 4.4: Geometry used to model a powder particle.

ter. A suitable relationship has not been determined from the experiments.
Instead we have tried two ad hoc assumptions. SEM observations suggest that
particle thickness may not vary significantly, so a constant particle thickness
is assumed. This first approximation is called the “constant thickness disc
approximation”. A different approximation was found necessary for less mal-
leable powders. A second case is proposed for these particles, where larger
particles are thinner according to the relationship 7' = k/v/D. This case is re-
ferred to as the “thinning disc approximation” of particle size. Both methods
are applied to a set of data, and the more successful relationship is selected a
posteriori.

This transformation represents a non-dimensionalisation of the size data.
Sizes are now expressed in terms of an arbitrarily sized monomer. For each
experiment, the disc diameter associated with a monomer is chosen so that the
smallest particles measured experimentally can be represented by the model.
This ensures that, at worst, the smallest sieve size is represented by ¢;(t), and
the next sieve size by c¢o(t). Meeting this criteria will ensure that larger sieve
sizes are represented by many different cluster sizes as the larger sieve sizes
cover a wider range of particle volumes. The largest particle size present in
the model is fixed by selecting a suitable point of truncation. The truncation
size N (discussed in §1.2) is chosen so that the model can generate particles

at least as large as those observed experimentally. Reducing the monomer
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size and increasing N will increase the accuracy of the computed solution but
it is important to balance these benefits against the assosciated increase in
computational requirements. A typical compromise would be N = 1000.

It is not always possible to infer the largest size of particle present in the mill
directly from sieving results. The largest sieve mesh will catch any particles
too large to pass through, with no upper size limit. It is good practise to
choose a sieve stack so that the largest sieve mesh allows all or nearly all of
the material to pass through. Where this is not the case common sense must
be applied. In the absence of any other indication it may be assumed that
the next sieve size in the series would not catch much powder. In the case
of systems with very strong aggregation it may be necessary to consider the
size of the milling media as an upper limit to particle size. Often, though,
some evidence of maximum size is present, for example SEM micrographs or
commentary in the text.

These interpolation and transformation algorithms provide approximate
volumetric cluster size distributions from the experimental data. The ini-
tial powder distribution for each experiment is converted to provide an initial
condition for the models. Then distributions at later times are calculated
by numerically integrating the Smoluchowski coagulation-fragmentation equa-
tions (equation (1.12)) from this initial state. Calculated distributions are
compared to those measured experimentally. However, before it is possible to
make such calculations, the rate parameters a and b must be fixed, using the

following method.

4.2 Determination of rate parameters a and b

The rate parameters, a and b, impose a time scale and a balance between the

welding and fracture events in each model. When choosing parameters the goal
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is to make the model’s behaviour closely mimic the experimental behaviour.
Optimal values of a and b must be chosen to achieve this. Values are found by
fitting the average particle size to that measured experimentally. Then each
model is run using the same initial conditions. The different model systems
evolve different particle size distributions over time because each uses a unique
combination of kernels. The distributions can be compared with experimental
measurements to see which model reflects the experiment most accurately and
hence which combination of kernel forms is the most realistic.

The previous section discussed interpolation and transformation techniques
that generate volumetric cluster size distributions from experimental measure-
ments. It is trivial to calculate a value of Mj (the total number of particles
in the system) from such a distribution. Since experimental measurements are
made at a range of times, data points can be obtained that chart changes in
My(t). The analytic functions for My(t) obtained in §2.2 (equations (2.14),
(2.20), (2.23), (2.27), (2.33)) are fitted to these data points to obtain best-fit
values of a and b. For convenience, this is done with Gnuplot [70] which has a
preprogrammed least-squares fitting function, using the Marquardt-Levenberg
algorithm to iterate to a best fit solution. Figure 4.5 shows the fitting curves
used when applying this methodology to data from the full power experiment,
converting experimental size distributions to cluster size distributions using
constant thickness particle geometry. The reason for omitting Model 4 from
this fitting is discussed later. Table 4.1(a) shows the corresponding values for
a and b. Figure 4.6 and Table 4.1(b) are obtained by treating the same data
but use the thinning disc particle geometry.

The values of @ and b in Table 4.1 are governed by many aspects of the ex-
perimental system. The most detailed models of welding and fracture events
are provided by Maurice and Courtney [48]. They state that welding is re-

stricted by the presence of impurities (e.g. oxide) on the particles’ surface. To
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Figure 4.5: Fitting aggregation and fragmentation rate-parameters ¢ and b
to data from the full power ferro-silicon experiment. Constant thickness disc

particle geometry is used.
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Model a b

1.51 x 10° | 1.12 x 10"
6.07 x 10~ | 3.79 x 10*
1.60 x 1073 | 1.26 x 1073
8.19 x 107* | —1.46 x 1072
391 x 107! | 5.13 x 10

Ot = W NN =

(a) Constant thickness disc scaling.

Model a b

3.20x 107! | 3.40 x 1071
3.15x 1072 | 6.84 x 107!
1.52 x 1073 | 1.80 x 10~*
1.50 x 10~* | —=5.72 x 10~*
6.30 x 1072 | 6.98 x 10°

Tt = W N =

(b) Thinning disc scaling.

Table 4.1: Best fit values for a and b for each of the models 1-5 (see §2.1) as
obtained by Gnuplot [70] for data from the full power experiment, presented
in §3.4.1.



CHAPTER 4. VERIFYING THE MODELS 67

14 T T T T T T 14 T T T T
P Fit for model 1 -~ -~ X Fit for model 2 - - --
22 s Calculated using model 1 --——+--_{ PR Calculated using model 2 ---+---_|
g \ Experiment —x— H Experiment —x—
> N >
g0 ) E| g 10 !
3 3
8 8 7 8 8F ]
3 3
3 st 1 L ]
£ 6 £ 6
2 2
e 4r J e 4r J
kS s
g ?r 7 g ?r 7]

0 I I I I I I I 0 I I I I I I I

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Time (hours) Time (hours)

(a) Model 1, thinning (b) Model 2, thinning

disc scaling,. disc scaling.

14 —— 1t 14 45 —————
— Fit for model 3 - - . N Fit from model.5. ==-=-=
2 Calculated using Model 3 -+ _| RPN Calculated using model 5 -+ |
H Experiment —%— H N Experiment —%—
g0 g0 B
3 T 3 i
g 8r * b g 8p b
3 3 i
A 1 A 1
2 5 :
o 4r 1 e 4r 1
S S
€ € !
8 2+ — 8 2 ﬂ‘ —

0 I I I I I I I ol I I I I I I I

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Time (hours) Time (hours)

(¢) Model 3, thinning (d) Model 5, thinning

disc scaling. disc scaling.

Figure 4.6: Fitting aggregation and fragmentation rate-parameters a and b
to data from the full power ferro-silicon experiment. Thinning disc particle

geometry is used.
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account for this, they first calculate the amount of bare metal surface exposed
through deformation as a powder particle experiences a collision. Metal-metal
interfaces are assumed to bond by cold-welding. The strength of bonding at
metal-to-metal contact regions is balanced against elastic recovery forces to
give a welding criteria. Fracture criteria are determined similarly. The likely
fracture mechanism is forging fracture, which Maurice and Courtney analyse,
arriving at a fracture criteria governed by the amount of compression imparted
to the powder layer during a collision (this compression is equivalent to the
approach of the mill balls). These criteria relate only to one collision event,
however, and are complex in themselves. The speed at which welding and frac-
ture processes occur in the context of our model will depend on the geometry
of the milling machinery, and the milling conditions (for example the kinetic
energy carried by the balls in the mill).

These complex relationships make it difficult to infer welding and frac-
ture rate-parameters directly from the experimental conditions. The fitting
technique described above avoids the need to directly address this problem.
Work-hardening of the powder, powder chemistry and collision geometry are
accounted for without being explicitly or directly addressed. The rates we ob-
tain are constant, so time-dependent factors, for example the hardness of the
milled material, are implicitly averaged.

Model parameters, a and b, are not explicitly associated with milling pa-
rameters but it is still possible to determine how the rates are altered by
changes in milling conditions. For example, the ferro-silicon experiments have
been repeated with the milling velocities reduced by a factor v/2. The inten-
tion was to reduce the milling intensity by a factor 2. The values of a and b
obtained from this half power experiment might be expected, rather naively,
to be one half of those for the full power experiment. Fitting the results from

the half power experiment gives the values shown in Table 4.2. Corresponding
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plots of experimental data and fitted curves are shown in Figure 4.11.

The comparison of these results is given later in the chapter, in §4.3. Size
distributions are calculated and examined to see which model represents the
experiments most accurately. The values of a and b given by that model are
used to test the hypothesis that milling progresses at half the original speed
when the impeller speed is reduced.

Figure 4.6 and Figure 4.5 raise some important issues with the fitting tech-
nique. Fits for model 4 are not shown because the model is not suitable for
this data. The function Mj(¢), equation (2.27), has a leading-order finite-time
singularity at ¢ = 1/aM>(0), as discussed in §2.2.4. If the parameters are
such that the singularity falls in the fitted time-range then fitting the model
becomes difficult or impossible. Furthermore, if it is possible to fit model 4
to the experimental data, perhaps only using data at earlier times, the frag-
mentation rate parameter is negative, as shown in Table 4.1. In order to meet
the fitting requirements, the model must employ “reverse-fragmentation”, us-
ing a negative fragmentation rate to augment the aggregation process. The
combination of kernels used by model 4 is not suitable for this application; the
aggregation kernel is overwhelmed by the strong fragmentation. Since this is
always found to be the case model 4 is not discussed further.

Models 3 and 5 are also difficult to fit because the solutions found for M ()
have limited validity. Model 3 is solved using asymptotics based on small
fragmentation rate, b. The solution obtained is only valid when b is small and
for a finite time, ¢t < tyax, given by equation (2.24). If the fitted value of b
is large enough that ¢, falls inside the fitting interval then the asymptotic
solution is invalid. It follows that the values of a and b obtained using this
inaccurate function are invalid. Since the numerics accurately approximate the
true solution to the system, they diverge from the inaccurate fitted function

and the experimental results as they are calculated using inaccurate values of
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a and b. A good example of this situation is shown in Figure 4.6(c), where
tmax 1s clearly labelled at about 7 hours.

The aggregation kernel used in Model 5 allows gelation, as discussed in
§2.2.4. The pre-gel solution, equation (2.33), is not valid after time ¢, =
1/aM5(0). In both the full and half power experiments, ¢, occurs very early
on so the fitting is substantially affected. Figure 4.6(d) shows the numerical
solution diverging significantly from the fitted solution. The effect of gelation
may or may not be significant. Although the onset of the phenomena has
been quantified, the strength or speed at which gelation occurs has not been
considered. Figure 4.5(d) is not as badly affected by gelation, because it uses a
different scaling to convert the experimental data. Different particle geometries
alter the skew of the cluster distributions generated from the experimental
data. The constant thickness disc scaling places less emphasis on the larger
cluster sizes, as cluster size increases more quickly with sieve size, so material is
spread among more cluster sizes and concentrations are lower. This reduces the
aggregation rate required for the model to calculate equivalent distributions,
slowing gelation. Comparing Figure 4.9 and Figure 4.10 illustrates this effect;
Figure 4.10 uses the thinning disc geometry and has a higher concentration of
larger particles throughout the calculation.

Finally it should be noted that the fits for the full power experiment pre-
sented in Figure 4.5 and Figure 4.6 are not as accurate as those for the half
power experiment (Figure 4.11) and those in the next chapter. Our mod-
elling technique is not ideally suited to data from the full power experiment,
as changes in M, occur only at very early times. This reduces fitting accu-
racy, because the fitted curve is matched only to the initial gradient of the
experimental My data (which is inaccurate due to under sampling), and to the
static level achieved. Measurements for shorter times would add detail to the

transition region and increase fitting accuracy but such measurements are not
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practical because of the 30 minute discharge cycle used during milling. Reduc-
ing the milling time significantly below 1 hour gives a sample in which some
of the particles have been milled twice as long others. Later results suggest
that such fitting difficulties are common to brittle powders, where most of the
size change occurs early in the milling. Therefore our models may be most
useful for ductile samples. This is not a severe restriction as milling is most
commonly conducted with ductile metals. Our modelling efforts have been
successful despite a somewhat inaccurate fit to this experiment, as the next

section shows.

4.3 Calculating size distributions

A fitting process has been applied to data from the full power experiment in
§3.4.1 and suitable values have been chosen for the model’s rate-parameters,
a and b (see Table 4.1). It is now possible to use the model to calculate full
size distributions at arbitrary times. This requires the application of numer-
ical methods. A NAG! routine was selected to solve the problem. It uses a
variable-order, variable-step algorithm implementing the backward differenti-
ation formulae. For the purpose of this discussion, in which the model predic-
tions are compared to experimental measurements, the routine is configured to
give output at times suitable for comparison with experimental measurements.
However, the models can interpolate and extrapolate over time and provide a
detailed sampling of the powder’s particle size distribution.

Figure 4.7 compares measurements made during the full power ferro-silicon
experiment with corresponding predictions made by the models. The calcu-

lations are made using constant thickness disc particle geometry, and use the

'Numerical Algorithms Group, Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR,
United Kingdom.
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rates listed in Table 4.1(a), obtained from the fit lines in Figure 4.5. Figure
4.8 shows the equivalent data calculated using the thinning disc scaling. The
data is displayed as a line plot for clarity and brevity. It is important to note,
though, that only the points represent data, while the joining lines emphasise
the position of the various points and provide a convenient shape that aids
comparison of the models and the experiment.

First, examining figure 4.7 shows that model 5 has followed the experiment
most closely over time, although it consistently over-estimates the amount of
material found in the largest and smallest size fractions. Although problems
with gelation were predicted, validity of the numerical solution for model 5 can
be assessed by calculating values of M;(¢) from the distributions produced.
These values are plotted in figure 4.5, where they are labelled “Calculated
using model z” with z € {1,2,3,5}. They indicate that the numerics pro-
vide a good approximation to the analytical solution. The absence of gelation
can be explained by the presence of strong fragmentation in this calculation.
Table 4.1(a) shows the fragmentation rate-parameter, b, is two orders of mag-
nitude higher than a, the welding rate parameter. The gel-time calculations
are leading order, assuming weak fragmentation (b < 1).

Still looking at figure 4.7, models 2 and 3 have also produced reasonably
good matches to the experimental data. They consistently underestimate the
amount of material in the largest and smallest size fractions, over estimating
intermediate sizes. The size distribution calculated by model 3 at 8 hours is
more inaccurate than the others, as the rate-parameters cannot be accurately
determined for use over such long times; the limitations are imposed by the
asymptotics used to calculate the leading order solution for My(t) (see figure
4.5(c) and equation (2.23)). Model 1 is the least accurate model, showing the
least correlation between predictions and experiment.

When using the thinning disc scaling to process the same data (figure 4.8)
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Figure 4.8: Sieved size distributions generated by applying the models to data

from the full power experiment. Size conversions use the thinning disc scaling.
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Model a b

1 4.97 x 1072 | 3.19 x 1072
2 [423x10°%|7.06 x 102
3 1.02x 1073 | 5.34 x 107°
4 1.22x 1074 | —5.26 x 10™*
5 |846x107%|9.26 x 10~!

Table 4.2: Best fit values of ¢ and b for each of the models 1-5 for the half

power experiment data from §3.4.1. The thinning disc size scaling is used.

the models are, in general, better matched to the experiment. This suggests
that this scaling is the better one to use. Model 5 now suffers the affects of
gelation (figure 4.6(d)) as fragmentation is less prolific (Table 4.1(a)). This is
a consequence of using the thinning disc scaling, as it places more emphasis
on the larger cluster sizes (there are higher cluster concentrations there, see
figure 4.9 and figure 4.10). In terms of accuracy, there is little to choose
between models 2 and 3 at short times (2 hours and 4 hours), but model 2 is
clearly better at longer times, when the asymptotics used to calculate M;(t)
for model 3 become invalid. Again, model 1 is not very accurate, but it is
better than model 5 in this case.

It is not clear from these plots that the models do, in fact, provide more
detailed size distributions than obtained experimentally from sieved size mea-
surements. To demonstrate this, the cluster size distributions calculated from
the models are plotted in Figure 4.9 and Figure 4.10. These plots also illustrate
the results of the size conversion procedure that uses experimental sieved size
distributions to generate the cluster distributions shown. Finally, the figures
show how the different models diverge over time.

Similar techniques have been applied to the half power experiments. It was

found that the thinning disc size scaling is more appropriate, so only results
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Figure 4.9: Cluster size distributions generated by applying the models to data

from the full power experiment. Size conversions use the constant thickness

disc scaling.
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data from the full power experiment. Size conversions use the thinning disc

scaling.
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Figure 4.11: Fitting aggregation and fragmentation rate-parameters ¢ and b
to data from the half power ferro-silicon experiment. The thinning disc size

scaling is used.
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Experiment a b

Full power | 3.15 x 1072 | 6.84 x 10!

Half power | 4.23 x 1073 | 7.06 x 102

Table 4.3: Comparing of values of a and b found for different milling speeds.
The parameters are found using model 2 and the thinning disc particle geom-

etry.

using this scaling are presented. Figure 4.11 shows the fitting procedure, giving
the values of @ and b shown in Table 4.2. These values have been used to
generate sieved size distributions from the models, as shown in Figure 4.12.
Here, models 2 and 3 are the most accurate, with model 2 probably being
the most successful. Model 3 has been affected by asymptotic considerations,
though. Model 5 has suffered the effects of gelation and Model 1, though well
fitted, is not well suited to this data set. Overall, the results produced by
model 2 closely match the experiment, as do those for model 3 in the interval
0<t<8.

Since model 2 has modelled both the full and half power experiments rea-
sonably accurately, the values of a and b found using the thinning disc scaling
may be compared directly. The pertinent results from Table 4.1(b) and Table
4.2 are listed in Table 4.3 for easy comparison. These values show that aggre-
gation progresses approximately 7.4 times faster in the full power experiment,
and that fragmentation occurs nearly 9.7 times faster at the higher milling
speed. This suggests the hypothesis that milling speed is proportional to the
square of the mill impeller speed is false. In this case the induced change is
much larger.

By applying the models to the full power and half power experiments this
chapter has shown that the models are suitable for their intended purpose.

Models 2 and 3 have proved the most useful in the current context, indicating
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that the aggregation rate a,s = a(r + s) is the most appropriate for Zoz
milling ferro-silicon. The difficulty of fitting model parameters to data from the
full power experiment was noted, as were more universal problems concerning
models 3, 4 and 5. The half power experiment produced more easily fitted
data, and the models have provided correspondingly more accurate results.
Of course, all the results presented in this chapter only relate to one mill and
one material. The next chapter briefly demonstrates how the models may be

applied to several milling scenarios taken from the literature.



Chapter 5

Applying the Models

The outlined procedure has been used to match the models to experimental
data taken from Lu et al. [44], Moshksar and Zebarjad [55], Huard et al. [33]
and Aikin and Courtney [1]. In each case the experimental data is converted
to volume size measure and values of a and b are determined using the fitting
procedure. Size distributions are calculated and compared with those mea-
sured experimentally. Table 1.1 lists the materials and equipment used by the
authors of each publication.

The models are tested against experimental results obtained using a vari-
ety of equipment and materials. Using different experimental scenarios shows
that the models are widely applicable. In addition, Aikin and Courtney [1]
present results obtained by treating different materials using identical milling
conditions. Applying the models to each material in turn, and comparing
the rate-parameters obtained demonstrates that more brittle materials have a
higher fragmentation rate and lower aggregation rate than more ductile mate-
rials. Huard et al. [33] manufacture differently proportioned composites using
identical milling conditions, and similar comparisons are made.

The following sections examine the data obtained from each of the four

publications in turn. To begin with, single milling experiments are examined:
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Figure 5.1: Experimental, fitted and calculated particle totals for aluminium

converted using the constant disc thickness approximation for particle shape.

data from the Al milling experiment conducted by Moshksar and Zebarjad [55]
and the Al-Cu-SiC mix milled by Lu et al. [44] are used. Then the sets of

milling experiments discussed above are examined, starting with Huard et al.

[33] who treat Mg—SiC composites, then examining the results of Aikin and

Courtney who treat elemental Cu, Ni and Cr powders.
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5.1 Al in a horizontal ball mill

Moshksar and Zebarjad [55] have milled pure aluminium in a horizontal ball
mill and studied how various mill parameters affect the powder evolution.
They publish a detailed sieve analysis of the powder suitable for use with our
models.

The parameters a and b are found as outlined in Chapter 4, using measures
of particle number (average size). The lines of best fit found using the constant
thickness disc scaling of particle size are shown in Figure 5.1. Models 1 and
2 show a good fit, but models 3 and 5 do not fit the data so well; the frag-
mentation rate for model 4 was negative. The asymptotic solution for model
3 is not valid after 4 hours, as shown in Figure 5.1(c). However, the fit routine
assumes that the derived solution is accurate, and fits it through all the data
points, causing large discrepancies between the average size in the model and
in the experiment. Gelation has adversely affected model 5. After time ¢,
the truncated system of equations used to generate the numeric solution will
artificially restrict the aggregation process. Although the average particle sizes
match quite closely, the behaviour of the system is not representative of the
underlying theory because of these restricted aggregation conditions.

The corresponding size distributions are presented as mass fractions on
each experimental sieve, as shown in Figure 5.2. No model matches the data
exceptionally closely. Model 3 provides a close match at early times but our
approximation for My(t), equation (2.23), fails at large ¢ so the resulting values
for @ and b are inaccurate and give poor results at later times. Model 5 does
not match the data well at all. This data set highlights potential weaknesses
in the fitting techniques rather than demonstrating which size dependent rates

give solutions that are more accurate.
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5.2 Al-Cu-SiC in a horizontal ball mill

Lu et al. [44] have made a dispersion strengthened composite by MA. They
mill a powder mixture with nominal composition Al-4.5wt%Cu/15wt%SiC in
a horizontal ball mill. The initial size distributions of their powders are not
published; instead, they publish results after 1, 5, 10, 15 and 20 hours of
milling. Since there is no explicit time dependence in our model the size
distribution of powder milled for 1 hour has been used as an initial condition.
The fit curves used to establish values of a and b together with corresponding
values calculated from the numerics are shown in Figure 5.3. The constant
thickness disc scaling has been used to convert particle sizes.

Figure 5.3 shows the effect of gelation on model 5 at very early times,
so model 5 will be neglected. The accuracy of a and b values obtained for
model 3 is restricted by the asymptotic solution. However, the calculated
curve follows the experiment quite closely so inaccuracies are only expected to
become significant around 15 hours. Figure 5.4 confirms this, showing the size
distribution predicted by model 3 to be a reasonable fit before 15 hours. Model
2 provides a consistently good match at all times, and is therefore considered

the most appropriate model for this data.

5.3 Mg with SiC particulate in low energy ball
mill

Huard et al. [33] have milled three Mg powders, with additions of 10, 20 and
30 volume percent SiC particulates. The Mg powder had a mean diameter of
60 pm while the SiC particulates were 2 um on average, with 90% of them
smaller than 6 ym. Data for all three compositions have been analysed. Huard

et al. [33] use a low energy horizontal ball mill similar to that used by Lu et
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Figure 5.3: Experimental, fitted and calculated particle totals for Al-4.5wt%

Cu/15wt% SiC converted using the constant thickness disc approximation of

particle shape.
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vol%SiC a b
10 3.3895 x 10~%  3.0852 x 10~°
20 1.9673 x 1073 5.2343 x 10~
30 1.0720 x 1073 2.8059 x 104

Table 5.1: Variation in aggregation tendency, a, and fracture tendency, b for
Mg with different additions of SiC. The values have been found using model 3

with the thinning disc approximation of particle size.

al..

In our models, the material is assumed to be homogeneously mixed at the
start of the experiment. The SiC particulates mix into the Mg matrix very
early in the milling experiment so the errors introduced by this assumption are
minimal. We have found that these approximations work well and our models
can be applied to the data giving good results.

Experimental, best-fit and calculated particle number curves relating to a
20 vol% addition of SiC are shown in Figure 5.5. The corresponding particle
size distributions in Figure 5.6 show that model 3 fits the data best. The other
compositions have been treated similarly. The asymptotic approximation for
M, has failed earlier with the 30 volume percent data because the fragmenta-
tion rate, b, is higher. The calculated value of M, increases a little too quickly,
implying that the aggregation rate is too high and/or the fragmentation rate
is too low. Consequently, small errors are incurred in this data set at later
times.

Since model 3 fits the data most closely, values of a and b are presented in
Table 5.1. Huard et al. do not alter their milling conditions, so the observed
variations in aggregation rate parameter, a, and fragmentation rate parameter,
b, are due to differences in the milled material.

Table 5.1 shows a gradual decrease in the aggregation rate parameter, a
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with increasing SiC content. The cold welding process relies on clean metal-
metal contact between powder particles. The concentration of SiC particulates
caught between compressed metallic particles will be greater for the higher
addition mixtures, reducing their tendency to weld or aggregate. Agglomerates
are more likely to form in the higher addition mixtures rather than strong
cold-welded particles. Subsequent fragmentation of agglomerates will be easier
and more frequent, giving one explanation for the higher fragmentation rate
parameter. Also, high particulate additions will pin dislocations, hardening
the powder, reducing ductility, and making the particles more brittle. This
is particularly true for the 30 vol% mixture, which will be almost saturated
with SiC particles and will contain a semi-contiguous network of SiC additions
bound by small isolated pockets of metallic material. The sharp increase in
the fragmentation rate parameter, b, with SiC content may be attributed to
these two mechanisms.

Huard et al. measure one particularly interesting quantity, a powder output
ratio that indicates the amount of powder cold welded to the components of
the mill. It is interesting to note that the gelation times found for model
5 correlate with times during the experimental procedure when significant
amounts of material cold weld to the mill. The numerical calculations for
model 5 are inaccurate because gelation affects are not correctly incorporated.
Accurate values for a and b may be obtained before gelation occurs, but these
values are not suitable for post gelation calculations. The obtained values are
of the correct order, and development of more accurate matching techniques

may allow model 5 to predict the loss of material stuck to the mill.
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5.4 Analysis of data published by Aikin and
Courtney

Aikin and Courtney have milled copper, niobium and chromium powders in a
vertical attritor. The media collisions in this type of mill have higher energies
than those in the horizontal mills used in the other experiments. The fitting
procedure conducted on the copper data using the thinning disc approximation
of particle size is shown in Figure 5.7.

For copper, model 3 will not predict the experimental size distribution
measured after 16 hours of milling. Model 5 will not give a good match because
of gelation affects, but may be able to predict the size distribution after 1 hour
of milling, before ¢, is reached.

Figure 5.8 shows the corresponding size distributions. If all the times shown
are considered, model 2 provides the best match. However, model 3 provides
a better match to the data collected up to 8 hours of milling. This is probably
because the average size in model 3 is closer to that measured experimentally
for early times (Figure 5.7(c)). Experimental and predicted size distributions
for Cu are shown in Figure 5.8. Model 5 matches the results for 1 hour well,
but calculations at further times are numerically inaccurate because of the
truncation used. Models 2 and 3 show a close match at all times.

The matches for niobium are similar to those for copper shown. The
chromium experiment is more difficult to model because the average size of
the powder oscillates about a mean value (Figure 5.9). Models for this data
do not show a large variation in particle size distribution over time, and should
not be considered as accurate as those for niobium and copper.

Aikin and Courtney have used identical milling conditions for the three
powders, so changes in the rate parameters a and b are caused by differences

in the powder material. The three powders are very different in nature. Copper
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Figure 5.7: Experimental, fitted and calculated particle totals for copper con-

verted using thinning disc approximation of particle shape.
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Material a b

Copper  4.5095 x 10~3  5.1878 x 1072
Niobium  1.9689 x 103 1.1427 x 102
Chromium 1.4427 x 107! 8.9882 x 10°

Table 5.2: Variation in aggregation tendency, a, and fracture tendency, b for
different materials. The values have been found using model 2 with the thin-

ning disc approximation of particle size.

is soft and would be expected to aggregate readily, chromium is a fairly brittle
material at room temperature, and may be expected to fragment readily and
niobium will fall somewhere between the two extremes.

The values of aggregation and fragmentation rate parameters used with
model 2 are listed in Table 5.2. Results for copper and niobium reflect the ex-
pected trends, having aggregation and fragmentation rate parameters of simi-
lar order. Copper is milled more quickly than niobium, with aggregation and
fragmentation occurring more frequently. The rate parameters suggest that
chromium mills two orders of magnitude faster than the other two powders.
The size evolution of chromium is significantly different to that of copper and
niobium, possibly due to the BCC structure of chromium making it brittle and
giving it a significantly greater increase in work-hardening, which our model

cannot take account of.

5.5 Summary of one-component modelling

The one-component models have proved successful. While there are problems
associated with asymptotic solutions and gelation effects, either model 2 or
model 3 offers reasonable agreement with experimental data in all the scenarios

studied. This suggests that the aggregation rate a,, = a(r + s) is the most
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Figure 5.8: Mass distributions for copper using thinning disc approximation

of particle shape.
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Figure 5.9: Experimental particle totals from Aikin and Courtney’s chrom-
ium experiment [2] plotted alongside fitted and calculated particle totals from

model 2 using the thinning disc approximation of particle shape.

realistic of those tested. Since the chance of a particle experiencing a collision
is proportional to its volume, this indicates that, when involved in a collision,
larger particles are less likely to aggregate than smaller particles.

It is difficult to determine which fragmentation rate is most appropriate.
Model 3 has not been accurately applied to situations of strong fragmentation
because the asymptotic methods used to obtain an expression for M ((t) as-
sume that b < 1. It is also possible that different materials are accurately
modelled by different fragmentation rates.

Model 2 has the most advantageous combination of properties, as the size
dependent rates used are adequate for all the experiments examined and allow
an exact solution for Mjo(¢) to be obtained. Part II of this thesis presents
models that predict mixing phenomena as well as changes in size distribution.
These models generalise models 1 and 2 to consider clusters that contain two
types of volume element. The two types of element represent different materials
so the composition of each particle is known. Model 1 is studied as it is the
most mathematically simple case and model 2 is studied as it has proved most

useful in the one-component study. The methods of size conversion (§4.1) and
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fitting (§4.2) developed for these one-component models are also generalised

so that the two-component mixing models can be tested against experimental

measurements.



Part 11

Two Component Systems
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Chapter 6

Modelling Theory

A generalisation of Smoluchowski’s coagulation fragmentation model is pro-
posed, where each cluster contains two different types of volume element.
Composite mixing is modelled by using the different types of volume element
to represent different materials. The discussion refers to elements of material
A (type A elements) and elements of material (or type) B. A cluster contain-
ing r elements of material A and s elements of material B is denoted C, ;.
The concentration of such clusters is written ¢, ;. Elements of material A and
material B need not occupy the same amount of volume, so a cluster C, ; has
volume V4 + sV, where Vy is the size of a volume element of material A and
Vg is similarly defined for material B.

The generalised Smoluchowski model allows mixing to occur between two
different powders as a consequence of welding and fragmentation events. Me-
chanical alloying can be modelled by choosing initial conditions so that clusters
contain only type A or type B elements. Mixing occurs when a type A cluster
welds with a type B cluster. Subsequent fragmentation is unlikely to separate
the two materials perfectly so, after adequate repetition, the two materials
become evenly dispersed. Figure 6.1 illustrates how mixing occurs as a conse-

quence of welding and fragmentation events.

100



CHAPTER 6. MODELLING THEORY 101

F raclure

Figure 6.1: Cluster composition is altered as particles weld and fracture.

Of course, the size distribution of the powder particles will also be altered as
mixing takes place. Fitting methods similar to those presented in §4.2 can be
used with this two-component case to determine the model’s parameters. The
mixing information obtained form the two component model supplements the
size predictions that have already been demonstrated. The variance in particle
composition indicates the degree of mixing in the system, a measurement that
has proved elusive in the past. The model is limited, though, by its inability
to predict chemical interactions within a powder particle. Accuracy is lost if
milling progresses beyond the early stages and small-scale processes such as
chemical reactions become important. This is especially true when these pro-
cesses radically alter the mechanical properties the material, affecting welding
and fracture frequencies.

The following sections describe a modelling procedure that parallels the
one-component model presented in Part I. The generalisation of Smoluchow-
ski’s equations is described in the next section. Then kernels are chosen for
aggregation and fragmentation rates that depend on both the size and compo-
sition of the particles involved. With these dependencies specified, it is possible
to obtain an analytic expression for the number of clusters present in the model

at any time, . The next chapter describes the fitting techniques used to de-
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termine model parameters. Model predictions of particle size and composition
found using these parameters are compared to experimental measurements of
particle size taken from the literature. The success of the models is therefore
assessed, and finally an improved model is proposed. The next section begins

this analysis by introducing the generalised Smoluchowski model.

6.1 Generalising Smoluchowski’s equations to
two-component systems

The welding and fragmentation processes shown in Figure 6.1 may be written,

respectively,
Cj,k+0r.s GMS Cj—l—r,s-}-ka (61)
b; 7,8
Citr stk LR Cii + Crs, (6.2)

for general particle size and composition. These reaction equations are anal-
ogous to the one-component forms given in equations (1.2) and (1.3). Note,
in particular, that the two-component reaction equations conserve volume and
that the welding rate depends on both the size and composition of the welding
particles while the fracture rate depends on the make up of the fragmented
pieces.

As with one component systems, one cluster size, C; ;, is examined closely
to determine modes in which (7, s)-clusters are gained and lost. The same
four mechanisms operate on clusters of size (r,s) as were listed for the one-

component clusters C,:
: . Q5 k,r—j,s—k
e gain by welding, Cx + Cr_js—r ~—  Cis,
Di e io
e loss by fragmentation, C,, "% Cj .+ Cp_j &

. aj k.r,
e loss by welding, Cj s + C s =" Crij stk
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. . b', 7,8
e gain by fragmentation, Cy4; sy 2k Cik+ Crys.

Each reaction contributes to the change (over time) in the concentration of
(r, s)-clusters, ¢, 5. First order reaction kinetics are applied, as before, to eval-
uate the magnitude of each contribution. The first two processes describe how
an (7, s)-cluster interacts with clusters of smaller size, C;j and C,_; s_j, where
j < rand k < s. To obtain the total gain by welding and total loss by frag-
mentation all possible values of 7 and k£ are considered, giving the following

terms:
. . 1 T S !
L4 galn by Weldlng’ 52]:0 Zk:o a/j;k;"‘_jrg_k c]ak C’I‘—j,s—k7
. !
e loss by fragmentation, %Z;ZO > 0 bjkr—jis—k Cr,s-

The primed double-summation denotes summation over all but the first and
last terms; that is those where the indices are simultaneously maximal or
minimal (in this case the excluded terms are those where j =k = 0 and j = r,
k = s). The omitted terms correspond to reactions that would concern (0, 0)-
clusters, that is, clusters with no volume. The factor 1/2 is included because
each combination of clusters will be counted twice.

The remaining processes, loss by welding and gain by fragmentation, de-
scribe interactions between (r, s)-clusters and clusters of any size. The cor-
responding contributions to the change in concentration of (r, s)-clusters are

therefore

. o0 oo !

. . 00 o !
e gain by fragmentation, > -7 > ;7 'bjkr,sCrjs+k-

Combining all these terms gives the generalised Smoluchowski system

dey g

1 r s !
dt _§ E : E : (ajakar_jas_k C]7k Cr—j,s—k: - bjaka"‘_jrg_k C"';S)
=0 k=0
, (6.3)

o0 o0
Y (ks Cik Cris — biskirys Crsoscih) -

=0 k=0
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When the one-component system was studied, the cluster size distribu-
tion was characterised by moments, M,(¢). Similar moments, M, ,(t), can be

defined for the two component system,

oo oo !

Myo(t) =) " rPste, (t). (6.4)

r=0 s=0

These moments are doubly useful, as they contain information about both
cluster size and composition. Noteworthy cases include Mo, My, M, and
M, ;. My, represents the total concentration of clusters (of all sizes) in the
system. A low value of M indicates large average particle size, and vice versa.
The quantity M o denotes the number of volume elements of material A in the
system, while M, is the equivalent quantity for material B. Both M, and
M, are conserved over time, as our model does not allow the material in the
mill to react or convert from one form to the other. The quantity M, ; indicates
the level of mixing within the mill. If all the clusters are elemental then the

powder may be regarded as two separate one-component distributions:

(
c&A), s=0,
Crs = 9 ch), T =0, (6 5)
0, both r and s non-zero.
\

Hence M ; = 0 for this unmixed distribution.

The highest values of M ; are attained when high values of the product rs
coincide with high concentrations of particles. The factor rs is influenced by
two effects: larger particles and well mixed particles have higher rs values. It is
possible to remove some size dependence and obtain a better mixing measure

by using the non-dimensional construct

¢ = 1100 (6.6)

Note that My, will fall as the average particle size increases, while M; ; will

rise. The denominator is constant throughout milling.
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In the remainder of this chapter we study equation (6.3). The next section
introduces some kernel forms, a; s and b, s, that have particular physical
significance. Then, using these particular kernel combinations, solutions are
found for Mjo(t). The solutions are used to determine model parameters
that match experimental data. The two-component modelling process is more
fruitful than the one-component case because simple sieved size measurements
allow predictions of both particle composition and the degree of mixing to be

made. Mixing and composition are not easily measured experimentally.

6.2 Choosing kernel forms

This section identifies kernel forms which model the mechanical alloying pro-
cess. As with one component systems, the likelihood of welding and fracture
events is expected to depend primarily on the size and composition of the
particles involved. The rate at which (r, s)-clusters weld with (j, k)-clusters
depends on 7, s, j and k, or equivalently the particle sizes, (Var + Vzs) and
(Vaj + Vgk), and particle compositions, (Var)/(Vgs) and (Vaj)/(Vsk).
Particle size dependencies are treated as in Part I, while composition adds
extra complexity. The model still can not account for changes in powder prop-
erties that affect welding and fracture processes as milling progresses. Such
pertinent changes include work-hardening effects and chemical changes occur-
ring within the powder particles. It is hoped that these effects are secondary.
The studies in Part I show that one-component modelling is successful with-
out accounting for work-hardening. The rate at which reactions occur and the
consequent effects on powder properties will depend on the chemistry of the
powders being milled. However, it is common for composites to form during
the early stages of milling, as observed by Benjamin and Volin [9] (see Figure

1.2). Our models can predict the formation of composites and give some mea-
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sure of the increasing intimacy of mixing within particles. It may be possible
to predict when significant chemical changes will occur by using a measure
such as ¢ (equation (6.6)) to measure the intimacy of mixing. For example the
onset of reaction phenomena in the mill may be predicted and measures of the
intimacy of mixing may be used to design highly reactive powders suitable for
SHS reactions [42].

The simplest possible kernels, a,;x = a and b, ;, = b, are used by the
first model. These kernels have no dependency on particle size or composition,
and are analogous to model 1 in the one-component study (see §2.1). This
simple case is a convenient first approximation, but model 1 was not the most
accurate one-component model. This generalisation is not expected to be
particularly accurate but will serve as an instructive example. The second
choice of aggregation kernel is influenced by the findings of the one-component
study. The most useful single component aggregation kernel was found to be

ars = a(r + s) which is generalised to two-component systems, giving
Ursgk = G(J +71)+a(s+ k). (6.7)

This rate is both size and composition dependent. To understand the signifi-
cance of the aggregation rate-parameters, a and a, consider an initial cluster

distribution where there are no material A volume elements:

crs(0) = (6.8)

Using this distribution, the system reduces to a one-component system, with

a welding rate a(s + k). Similarly, the distribution
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Model Qrs.,j.k brs.j.k

1 a b

2 a(r+j)+a(s+k)| b

Table 6.1: Aggregation and fragmentation rates used by models 1 and 2. In

both cases a and b are constant rate-parameters to be determined.

produces a one component system with welding rate a(j + 7). This demon-
strates that, in the absence of intermixing, a is the welding rate-parameter for
material B and a is the welding rate-parameter for material A.

By summing the two rates, welding events involving only material A or
material B are properly modelled. Intermixing is also allowed. When a type
A cluster, C,, welds with a type B cluster, Cyx, the corresponding rate would
be ar + ak (since s = j = 0). If material A welds more easily than material B
then a will be higher than a. Welding events where r is large relative to k£ will
occur more frequently than instances where £ is larger than r. In general the
two particles will not be pure. The welding rate will depend on the ease with
which the materials weld with themselves, and on the aggregate quantities of
material involved. More material A, in this case, increases the likelihood of
welding, as would be expected.

Table 6.1 summarises the rates that will be used in models 1 and 2. So far,
the only fragmentation rate considered, b, ;x = b, is independent of particle
size and composition. The next section analyses these kernel combinations to
find analytic expressions for My (t). The solutions found are used in Chapter

7 to determine the model’s parameters, a, a, @ and b.
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6.3 Analysis of the model

As with the one-component model, it is possible to determine analytic ex-
pressions for Myo(t) to fit against experimental data. The aggregation and
fragmentation rate-parameters a and b (Model 1) or @, @ and b (Model 2) are
determined by the fitting process. First, the general model is manipulated to
a more convenient form, then kernel-specific analyses are conducted for each

model.

6.3.1 Kernel independent analysis

The two component Smoluchowski equation, equation (6.3), can be written

1 T s ! oo oo !
CT’S = 5 : : : : wj,k,r—j,s—k: - : : : : wjakz’rzs (6'10)
j=0 k=0 j=0 k=0
where
wjak:T:S = a'j,k:,r,scj,kzc'r,s - bj,k,T,Scj+T,k+S‘ (6'11)

The analysis of this equation is simplified by the introduction of a generating

function

Clz,y,t) =YY cra(t)e =), (6.12)

, , (6.13)

|
M8
M8
[M]8
[M]8
Cbl
S
£
r

This approach is an extension of that presented by Davies [14] in her analysis
of one-component systems. The generating function is useful because taking
the limit of equation (6.13) as x — 0 and y — 0 gives a differential equation

fOI‘ MO,O (t) .
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Equation (6.13) is simplified by manipulating the first of the two summation
terms. Taking the first summation and re-ordering the summation pairs j-r
and s-k, then applying transformations ' = r — j and s’ = s — k gives

! !

%f: io: f: f: 6_((T+j)z+(s+k)y)wj,k,r,s- (614)

(6_(]$+ky) - 2) e_(rw—i—sy)wj:karas' (6'15)

OC(2,9,1) 1= = o=
T3
Then substituting for w; , s allows the expression to be split into aggregation

and fragmentation components:

oC(x,y,t)

o - Awwt) - By (6.16)
oo oo ! 0o oo !
Alz,y,t) = _ZZ Cro€” rz+sy)ZZ 0k rsCin (707D — 2)(6.17)
r=0 s=0 =0 k=0
0o oo ! oo oo !
B(w’ Y t) = %Z Z e_("'$+5y)z Z b',k,'r‘,scr—l—j,s—l—k ( ]$+ky 206, 18
r=0 s=0 j=0 k=0

B(z,y,t) can be expressed in a more useful form by reversing the transforma-

tions and changing the summation orders again, giving

SRS r s !
B(z,y,t Z Z cr,se’(mﬂy)z Z bjsr—jrs—k (1 — 26(j‘”+ky)) . (6.19)

r=0 5=0 j=0 k=0
Note that these manipulations are applied to a combined sum representing
both summation terms in Equation (6.13). Finally, taking limits as x — 0 and

y — 0 gives
dMO,()

T 11m {A(z,y,1)} — lxlil(} {B(z,y,1)} . (6.20)

?/H y—0

The terms involving A(z,y,t) and B(z,y,t) are further simplified for cases

where a;, and b, , s take the values given in Table 6.1.
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6.3.2 Model 1

In model 1, the kernels used are a;,, = @ and b, s = b. First, substituting

this form for the aggregation kernel in equation (6.17)

aCl(z,y,t
A(SE, Y, t) = % (C(JI, Y, t) - 2*7\40,0) ; (621)
and
M 2
A(0,0,1) = -2 - (6.22)

The fragmentation term B(z,y,t) simplifies to

b (0*°C oC oC
b

=eni—en
+C(z,y,t) (1 —e ™ —e7¥) + MO,O(t)(e_(”y) —e ¥ — e_y)} )

+ e °C(z,0,t) +eYC(0,y,1)

(6.23)
Taking limits we find,
B(0,0,t) = lmi_g(}B(m, y,t) = —g (Mg + Mo+ My, — Mpy) - (6.24)
V=0
So, from equation (6.20), My for model 1 is given by
dMop(t) _aMg’O + b (My1+ Mo+ Moy — Moy) - (6.25)

a2 2
M, 1 is not known, but can be found by differentiating equation (6.16) with

respect to z and y, then taking the limit as ¢ — 0 and y — 0,

dMy, .. (9°C . [ 0’A . (9B
=] =1 —1 . 2
dt o <6£an) ;lgt} <8x8y ;lgt} 0z0y (6:26)

N
y—0 0 0

Asymptotics will be used to solve the system, assuming b < a = O(1), giving

solutions of the form

(6.27)
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By differentiating equation (6.21), then taking limits,
dMl,l

T aMo 1Mo+ O(b) (6.28)
to leading order. Therefore, to leading order, solutions are
2M,0(0)
Mg () = ———ih 6.29
0,0( ) atMO,o(O)-i-Q, ( )
M1(01) (t) = aMoi Mot + M;;(0). (6.30)

To simplify the calculation of the first correction term, M(g,lo) , a new timescale,

T = M()’o(())at +2 (631)
(with 7 > 2), is introduced. Using this timescale, the form of the solution is

Moo(t) =Moo(7) = MY (7) + bMY (7) + 2N (1) + ...,

. o o - (6.32)
My (t) =My (1) = M (r) + bMY (1) + B ME (1) + ..,
and by inference,
~ 2My,0(0)
Mip(t) = Mig(r) = ——>= (6.33)
. My M, o(T — 2
MO =mOF) = =4 10(T — 2) + Mi4(0). (6.34)
’ ’ Mo ,0(0)

The first correction term, Mélo) (1), is found by re-expressing Equation (6.25)

in terms of 7, and equating terms of order b, giving

dM&’OJrQ 1! ! [Mi,oMo1 (T — 2) 4+ Moo(0)(M;,(0)
— -_—— @ @@ T —
dr %0 T 2aMye(0)2 T "0 o (6.35)

+Mo1 + M) — 2M0,0(0)2/T] .

Then to O(b) we have

- 2M;(0) b L .
M(),() = - 24aM00(0)2T2 |:M0,1M1’0{3(T 2 ) 8(7' 2 )}
+ 4 Moo (0)(M1,1(0) + Mo1 + My )(7° — 2°) —12M,0(0)* (7% — 2%)] ,

(6.36)

with 7 given by equation (6.31). This solution is suitable for use in the fitting
procedure described in Chapter 7, which is similar to that described in §4.2.
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6.3.3 Model 2

Model 2 uses the same fragmentation kernel as model 1, but introduces a new

aggregation kernel, a; s = a(j + 7) + a(k + s). Using this kernel,

Az, y,t) = (&@ + a@> (Moo — C) —C(aMip+ aMy ). (6.37)
ox oy
SO
A(0,0,8) = —Myo(aMy o+ aMy,). (6.38)
Hence
dMy, b

T —Moygp(aMpg+aMy,) + 2 (M + Mo+ My, — Myp).  (6.39)

As before, Mj,(t) is required to find a solution. The more complicated
rate means that the differential equation for M, ; includes terms in M, and
M ,. Differential equations for M, and M; o can be found by differentiating
equation (6.16) twice with respect to z to obtain M, and twice with respect

to y to obtain M. This procedure gives the system of equations,

dM.
72’0 = Mao(2aM, ) + My, (2aM ) + O(b), (6.40)
dM ) ) _ _

dtl’l = Myo(aMy) + My (Mg +aMy,) + Moo (aM, o) + O(b)6.41)
dM,

dt"’? = My 1(2aMos) + Mo2(2aMo4) + O(b), (6.42)

which is decoupled from equation (6.39). For b < a,a = O(1), to leading

order the solution to equation (6.39) is

Moo = My (0)e M, (6.43)
where

p=(aMio+aMyy). (6.44)
Equations (6.40)—(6.42) form a linear system

M2,0 Q&MI,O QC_LMLO 0 M2,0
My, | = aMy, aM,p+aMy;, aMy My, | (6.45)
M0,2 0 Q&M(),l 2@MO,1 MO,Q-

dt
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solved by
My aja —aM g M, /My,
My | =K1 | -1 | +K| )2 [+ Ks 1 e (6.46)
My o aja aMy, Mo /Mg

where

A = &Ml,() - &M()’l. (647)

Using general initial conditions, the constants of integration, K, Ky and K3

are given by

Ko— aa(aMoo(0) Mg, + aMo2(0) M7y — My M,y Mo,p1) (6.48)

T @MPgaMo, + @M, + aMy @ Mg, + M3 @ '
" - M, 1(0) (@M —aMyy) — aMao(0) Moy + aMy oMo (0)

2= a2M2, + a2 M? » (6.49)

0,1 1,0
M oMo 1 (@ My 1 Mo 2(0) + a® M o Ms0(0))
(@2 Mg, + a2 M3)
N aaM 1(0)
(@2Mg, + a>M7 )

K3:

(6.50)

The correction term for Mé,lo) is found by solving
MY o 1
“a Mo @My + aM,y) =3 (K1 + Koe" (aM g — aMy,)/2

+K362“t =+ Ml,() + M()yl — MO,O(O)e_“t) y

(6.51)
which yields
1
MY =5 [6Ki(e7" 1) + 3Ka(aMyg — aMoy,) sinh (1)
! Iz
+2K3(62“t - 671“5) + 6(M1,() + M(),l)(l - €7Mt) - 6/,LM0’0(0)t67Nt] y
(6.52)

SO

b
M()y()(t) :M(),O(O)@_ut + @ [6K1 (e_“t - 1) + 3K2(CALM1,0 - C_lMo,l) smh((,ut))

+2K3(€2Mt - e_"t) + 6(M1’0 =+ Mo,l)(l — e_“t) — 6,LLMO’0(0)t€_ut]
(6.53)
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with u given by equation (6.44).

Having found this solution and the equivalent solution for model 1 (equa-
tion (6.36)), it is possible to test the models by fitting them to data taken from
the literature. The fitting procedure determines the model parameters, a, or
a and @, and b. The next chapter explains how this is achieved, describing
methods that reconcile differences between experimental sieved size measure-
ments and the cluster predictions made by the model. The fitting procedure

is demonstrated and numerical solutions to the mixing system are presented.



Chapter 7

Experimental Comparison

A generalised Smoluchowski model was proposed in Chapter 6. The accompa-
nying analysis gave approximations for M o(t) for the two kernel combinations
listed in Table 6.1. This chapter discusses how parameters and initial condi-
tions can be determined from experimental data. The model is able to predict
changes in the size distribution and composition of a binary powder mixture
using this information.

Fitting techniques are used to obtain parameters. The fitting method is
adapted from the method used for one-component systems (described in Chap-
ter 4). Once parameters are obtained the models are solved numerically, and
the calculated size and composition distributions are compared to those mea-
sured experimentally. Data presented by Aikin and Courtney [1] has been used
for this task, as they have carefully estimated the rate at which the powder
has mixed using a detailed energy dispersive X-ray (EDX) analysis.

The next section describes how experimental size distributions from mixing
experiments can be compared to two-component cluster size distributions. In
many cases only the size distribution of the material is measured and mixing
is not accurately quantified. The fitting method described can establish pa-

rameters for the models from size data alone, and mixing characteristics are

115
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calculated using these parameters giving more in-depth data on phenomena

that are difficult to measure.

7.1 Two-component cluster distributions and
sieved size measurements and

Size distributions are measured experimentally by sieving the powder. The
thinning disc and constant thickness disc approximations of particle shape
have been used to convert sieve size measurements into volumetric cluster size
distributions, as in the one-component case (§4.1). However, a two-component
cluster distribution cannot be obtained from sieved size data without measur-
ing the composition of a representative sample of individual particles, which
is an extremely time consuming task.

This limitation does not affect the fitting techniques proposed here. The
fitting matches the total number of particles in the model (irrespective of size
and composition), My, to a similar quantity calculated from the experimental

data. The moment M is the sum of all the concentrations ¢, s

M(),O = Z Z Cr,s- (71)

The sum can be re-ordered, so that clusters with different compositions but
the same volumetric size are summed, giving a one-component cluster size
distribution. The value of M, for this distribution can the be calculated, and
is equivalent to the M; value of the two-component distribution.

Reducing the two-component distribution to a one-component size distri-
bution is easily achieved if V4 = Vg. The volumetric size of a cluster is given

by Va(r + s), and lines of equal cluster size are oriented as shown in Figure
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Figure 7.1: The size domain of a two-component cluster distribution ¢, is
shown, with lines of equal volumetric cluster size marked. Two relationships
between the volume of monomers of different materials (V4 and V) are con-

sidered.

7.1(a). The definition of Mg can be re-expressed

MO,O - Z Z Cs,r—s, (72)

r=1 s=0
or,
Moo =My =73 e, (7.3)
r=1
where

651) = Z Csr—s- (74)
s=0

The two-component distribution is collapsed to a one-component size distri-
bution by removing information concerning composition. The sub-total c&l) is
the total of all clusters lying on the r*® line from the origin in Figure 7.1(a).
The fitting algorithm does not need to assign a value to each concentration,

¢r,s, but instead approximates the value of cgl) for each r.
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If V4 # Vg then the conversion of the two-component distribution to a
one-component distribution becomes more complicated. In general, where
Vi = aVp for any a > 0, the problem is non-trivial. The case where V, = 2Vp
is illustrated in Figure 7.1(b). The lines of equal cluster size are more steeply
inclined, and it is more difficult to write a closed form definition of csl). Al-
though the conversion process does not require such a definition, the conversion
is more straight forward if V4 = Vg and this condition is assumed for the rest
of this discussion. The more general case allows the model to be numerically
solved with greater efficiency, so if the model were to be widely adopted then a
conversion should be implemented that accounts for different monomer sizes.

Adopting the condition V4 = Vp allows the two-component distribution to
be easily collapsed to form a one-component size distribution. The method
presented in §4.1 allows the experimental sieved size results to be converted to
a one-component distribution and values of M can be calculated by equation
(7.3). The value of M provided by this procedure gives sufficient information
for our purposes at all times ¢ > 0. However, the initial size distribution at
t = 0 must be determined completely to provide an initial condition from
which to start the model. The initial powders used by Aikin and Courtney
will not contain mixed composition particles, however, so the initial cluster
distribution, ¢, 4(0), can be constructed from two one-component distributions
mixed in the correct proportions. These one-component distributions will lie
along the r and s axes, as the initial clusters contain only one type of volume
element.

Finally, since the system will be solved numerically a suitable truncation
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must be determined. Equation (6.3) may be truncated to conserve mass, giving

r s !
de,s 1
dt 25 z : z : (ajakar_jas_k cjyk cT—j,S—k - bj,k,r—j,s—k C”';S)
j=0 k=0
N—r M—s' (75)
- E : z : (a/j,k,T,S c.],k CT,S - bj,k,r,s CT+],S+k) )
j=0 k=0

here N and M are the size of the system, Cy i being the largest cluster size
considered. This form is analogous to equation (1.12). Values of N and M
must be chosen so that the numerical calculation is computationally efficient,
but also so that accuracy is maintained. Although the maximum particle size
is easily measured in an experiment, the composition of such large particles
is much harder to determine. The safest truncation is therefore to allow the
largest observed particles to be formed entirely from one material or the other.
However, particle size often increases substantially during milling, and under
these circumstances the largest particles are most likely well mixed. If the
largest particle found in the system is 85% material A and 15% material B
then M can be set considerably lower than /N reducing the number of clusters
in the size domain considerably. This approach, based on assumed mixing,
is used for the calculations presented in §7.3. However, for systems where
welding is not the dominant event, or where mixing can not be guaranteed, a

larger (r, s)-domain should be considered.

7.2 Experimental mixing measures

The values of My and the initial conditions obtained from the experimental
data provide sufficient information for the model to be matched to the exper-
iment. A fitting procedure is used to determine the model parameters using
Gnuplot, as before (see §4.2). The data used to verify the two-component
models are taken from a paper published by Aikin and Courtney [1]. Aikin
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Material | Molar volume (cm?)

Cu 7.11
Cr 7.23
Nb 10.83

Table 7.1: Molar volumes for Cu, Cr, Nb at 298 Kelvin.

and Courtney use a vertical attritor to mechanically alloy two different powder
mixtures, Cu-15vol%Nb and Cu-15vol%Cr. The particle size data published
by Aikin and Courtney has particular value in this context because it is ac-
companied by measurements of particle composition. This data was obtained
by studying a representative sample of powder particles using an EDX sys-
tem, measuring the composition of each of the particles in turn. They classify
particles as either elemental A, elemental B or composite according to certain
composition thresholds. A particle is counted as elemental Cu if the EDX
analysis returns a 95% purity reading or greater. The threshold for a pure Nb
or Cr particle is set lower, at 90%. All other particles are classified as com-
posite. It is suggested that the background signal generated by Cu material
in the sample holder justifies the higher threshold value of 95% used to define
a pure Cu particle.

The distributions calculated by our model can be compared to Aikin and
Courtney’s findings to determine whether the two-component models accu-
rately model mixing phenomena. When making this comparison it is impor-
tant to note that the EDX analyses measure the proportion of different atoms
present in the material. Corresponding volumetric percentages can be calcu-
lated using the molar volumes presented in Table 7.1. Having set volumetric
thresholds, the clusters concentrations calculated by the model can be sub-
jected to Aikin and Courtney’s classification procedure and the results can be

compared to their experimental equivalents.
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Figure 7.2: Obtaining model parameters by fitting total particle size in the
model (fitted function) to data from Aikin and Courtney’s Cu-15vol%Cr

milling experiment (experimental data).

7.3 Experimental comparison

The data presented by Aikin and Courtney has been processed using the meth-
ods outlined above. Sieve size measurements are converted to derive suitable
values for My from the experimental data. These values are used to fit the
model parameters, a and b (model 1) or @, @ and b (model 2) by programming
equations (6.36) and (6.53) into Gnuplot. The lines of best fit shown in Figure
7.2 and Figure 7.3 are obtained in this way. Corresponding parameter values
are shown in Table 7.2.

Unfortunately, the results of the fitting procedure are not good. The frac-
ture rates produced are negative, except for model 2 with data from the Cu—
15%Cr experiment. This implies that the balance between welding and fracture
events in the proposed models is tipped too heavily in favour of fragmentation,
or that the assumed distribution of fragments is inappropriate. It is reasonable
that a strong fragmentation kernel is more suited to experiments where more
brittle alloys are created, such as Cu—15vol%Cer.

Notwithstanding this disappointment, model 2 has been applied to Aikin
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Figure 7.3: Obtaining model parameters (as above) for data from Aikin and

Courtney’s Cu—-15vol%Nb milling experiment.

Experiment a b
Cu-15vol%Cr | 1.147 x 1072 | —1.031 x 102
Cu-15vol%Nb | 1.587 x 1072 | —4.499 x 102

(a) Model 1.

Experiment a a b
Cu-15vol%Cr | 4.407 x 1072 | 5.621 x 10™* | 3.721 x 10
Cu—15vol%NDb | 1.493 x 10~* | 5.130 x 1073 | —4.208 x 1073

(b) Model 2.

Table 7.2: Parameter values obtained by fitting the models to Aikin and Court-

ney’s milling experiments.
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and Courtney’s Cu—15vol%Cr data to determine how well the model mimics
the experiment. Figure 7.4 shows the cluster size distributions calculated by
the model. The cluster distribution can be summed along lines of equal volume
and compared to experimental sieved size distributions. This comparison is
made in Figure 7.6. The two-component model has predicted changes in the
powder’s size distribution with a reasonable degree of accuracy.

Figure 7.6 compares the rate of mixing in the model to that measured by
Aikin and Courtney using EDX analysis. Mixing proceeds more slowly in the
model than in the experiment. However, the calculations demonstrate the po-
tential of this modelling approach. The predicted cluster distribution curves
(Figure 7.4) match changes in particle size well, but are spread too widely.
The distribution should form a more concentrated ridge. A revised model is
proposed to increase the slow mixing rate and increase the number of clusters
with an even mix of constituents. Models 1 and 2 assume simple constant
fragmentation behaviour, where all the possible fragment combinations from
a particular fragmented particle are equally likely. An improved kernel is pre-
sented in the following section that is derived from a more thorough statistical

analysis of a fragmentation event.

7.4 An improved fragmentation kernel

Both of the two models already proposed use the simple fragmentation kernel
bjknrs = b. This kernel is simple mathematically but makes the counterintu-
itive assumption that the rate of particle fragmentation is independent of both
size and composition. Comparison with experiments (Figure 7.6) suggest that
this assumption is invalid. A more accurate composition dependence for frag-
mentation is proposed. The current kernel assumes all fragment combinations

are equally likely, whereas the new kernel assumes that fracture will split a
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(a) Initial Distribution. (b) 2 hours.

(¢) 4 hours. (d) 8 hours.

(e) 16 hours.

Figure 7.4: Cluster distributions calculated using model 2 and parameters

fitted to Aikin and Courtney’s Cu-15vol%Cr milling experiment.
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Figure 7.5: Sieved size distributions calculated by model 2 are compared with

the results from Aikin and Courtney’s Cu-15vol%Cr milling experiment.
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Figure 7.6: Fractions of pure and composite particles predicted by the model

are compared with experimental measurements made by Aikin and Courtney.
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particle entirely at random, so that any part of the original particle is equally
likely to appear in either fragment.

This new fragmentation rate does not account for factors related to the
geometry of the particles. There will be areas in the particle rich in material
A and areas rich in material B. One of the materials may fracture more easily
than the other or the interface region might be particularly weak. However,
these factors are ignored for the time being, as the approximation given is an
improvement over the rate b;;,, =b. .

To derive the required kernel from the given assumption, the reaction
b‘,k,?‘,s
Cj+r,k+s i Cj,k + 07«75 (76)

is considered. It is assumed that fragmentation occurs such that the elements
of the fragmented cluster are equally likely to end up in either fragment. When
a cluster Cj4, x4, fractures, the probability of obtaining fragments C; ;, and C,

° (r+s)lr+H(s+ k)G +k)!

7.7
JEIIS\G+k+r+s)! (7.7)
so a new fragmentation rate is defined such that
! )! )+ k)!
b plr SN (s )G B! s

JUkr!sl(G + k 47+ s)!
This composition dependent fragmentation rate is used with the aggregation
rate a, s = a(r + j) + a(s + k) giving a new model, model 3.

This model has been analysed and a solution for M o(t) has been found.

The solution is found by imposing the conditions

a =a + a,
(7.9)

a=a— a,

and assuming @,b < a = O(1). These conditions restrict the applicability of
the results and make it difficult to obtain suitable parameters. However, a sig-

nificant subset of mechanical alloying experiments will satisfy these conditions,
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so the model remains useful. Many mechanical alloying experiments are dom-
inated by welding events and involve two materials that weld at roughly the
same rate. The requirements placed on initial conditions during the derivation
may limit the applicability of the model more severely; this is currently under
investigation.

Using equation (6.37), the conditions given in equation (7.9) give a leading

order problem,

10C oCc oC
aa — (M0,0 - C) (8_$ + a—y> - C(MI,O + MO,l)‘ (7']‘0)

Setting z = y = 0 gives the equation

Moy = =Moo a (Mg + Mo,), (7.11)
solved by
Mo = Mp(0) e, (7.12)
where
v=a(Myo+ Mos). (7.13)

This is the leading order solution for M;,o. However, in order to find the
correction term it is necessary to solve the partial differential equation (7.10)
and find a leading order solution for c¢; ().

Equation (7.10) can be solved for all z and y by the method of characteris-
tics, subject to initial conditions. Experimental measurements give the initial

powder distribution, ¢;;(0), and consequently

C(z,y,0) = Z Z ¢k (0) e UTTRY), (7.14)

oo !
j=0 k=0

These conditions are imposed on s = 0 and parameterised by ¢ and 7 so

that z = 0, y = 7 and C = Y2 Y72 '¢; (0) e U7+, Then the following
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characteristic equations can be derived,

j—f: — —a(My, — C), (7.15)
Y= (Mo - 0), (7.16)
% _ (7.17)
% e (7.18)

These equations are solved, subject to the initial conditions given, by

t = s, (7.19)
C = C(o,1,0)e ", (7.20)
M()()(O)—C(O',T,O) _
= : vi—1 7.21
! Mo+ My, (e ) T ( )

M()’()(O) — C(O', T, 0) o

i1 . .22
Mo+ My, ( ) T (7.22)

The three unknowns, o, 7 and s are eliminated between these four equations
leaving a single relationship between z, y, t and C. First, s is eliminated in

favour of ¢ throughout. Noting that

Myo(0)e ™ —-C , _,,
c = x-— (o + Mop)e " (e —1), (7.23)

Moo(0)e ™ =C , _,,
= y— 0 vt 1), 7.24
T Yy (Ml,O + MO,l)e_Vt (6 ) ( )

and substituting for o and 7 in equation (7.20) gives an implicit relationship
for C(z,y,t). However, this relationship involves C(o, 7,0) which, in general,
is too complex to allow an explicit solution to be found. An explicit solution
can be found if the initial conditions contain only monomer clusters, that is if
cik = 0 for all j and k except

C1,0 = PA,
(7.25)

€o,1 = PB-
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T

In this case, C(0,7,0) = pae~7 + pge” 7, and equation (7.20) yields
C(z,y,t) = (pae "+ pge ") e (7.26)
or, substituting for o and 7, while noting that A, 0(0) = v/a,
C(z,y,t)e’" exp [(%C@”t - 1) (e — 1)} =pae "+ pge ¥ =e*.  (7.27)

Davies et al. [14, 15] have previously shown that

1
e ?=Cexp(l+ §t — e'?) exp(—(e'? — 1)C) (7.28)
implies
e fk—1
C= Ze‘sze_t/Q(l — e exp(—k(1 — e7¥?)). (7.29)
k=1 )

Applying the change of variables £ = 2vt, C' = aC/v to equation (7.27) makes
the expression directly comparable with equation (7.28), and it follows that
C= i e_kzﬁ (g)kl e M1 —e ™) lexp (—k(1—e*)). (7.30)
k=1 KU

= (pae™™ + ppe™)7*,
_ —1
(r+s)*""pa"pp* (a>r+s eH (1 — emHlyrHsTLy

r!s! 1

Then expanding e~*?

Cjk =

(7.31)
exp (—(r +s)(1 —e ™).
This is the leading order solution for c;, or the exact solution where & = a
and b = 0. It is only valid for the initial conditions given by equation (7.25).
Returning to the calculation of the correction term for M, the full equa-

tion,
M(),() = —a(pA -+ pB)M(),() — &(pA - pB)M(),() — B(O, 0, t), (732)

is considered. The leading order solution to this problem has already been
found, and is stated in equation (7.13). The first correction term, Mélo) (t), can
be found by solving

vy

a
T — —yMé,lo) — gy(pA — pB)efvt _ B(0,0,t). (7.33)
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which is linear, and solved by the integrating factor e”*. Hence

t
MES (et = vl — p)t - / B(0,0, )¢ dt', (7.34)
0

which requires

B(0,0,t)e”" = —%Z Z Z Z bjkrsCrjsti(t) (7.35)

to be integrable for an explicit solution to be found. An approximation of
equation (7.8) is sought to this end. First, a more convenient way to express

the leading order solution for ¢, s is obtained by defining

T = (1—e*)exp(—(1—e*)), (7.36)
. 2Tpa

= e 7.37

pa oa t o) (7.37)
~ QTPB

— P 7.38

PB e(pa + pB) ( )

p = pa+ps- (7.39)

Then, from equation (7.31),

YT Gk s
nE rl sl (et —1)

(7.40)

so that equation (7.35) becomes

' !
bp NN (r+s)(J+ k)
B(0,0,t) = —
0.0.0) = 5y L 2 2 T s st R
ﬁt‘q-l—j ﬁ?—k (T +s5+j+ k)r+s+j+k71 Tr+stitk

(7.41)

ﬂ
Il
o
@
Il
o
<.
Il
)
bl
Il
o

This more manageable expression is approximated using Stirling’s formula, so

that
(r+s)!
r! s!

—(r —s)?
~ 275 ex (7 . 7.42
P ( 8(r + s) ) (742)
The more accurate approximation,

(r+s)! 2rts —(r — 5)?
e quaﬂp(—7—zj’ (7.43)




CHAPTER 7. EXPERIMENTAL COMPARISON 132

where ¢ = 2rs/(r+s) or ¢ = (r+s)/2 could be used, but doing so complicates

later calculations. Using the approximation given in equation (7.42) yields

~r+j ~s+k

bp o o Pa " Pp
B(O,O,t)=mzzzz(g+k+r+s)x

(7.44)

The denominator, (j + k + r + s) can be neglected as it is of similar order to

the neglected terms from Stirling’s formula. Taking the continuum limit gives

B(0,0,1) / / / / pzﬂpi;rk exp (M)
eyt_l r=0Js=0 J j=0 J k=0 8(r +s)

(j —k)? :
xexp( S+ k) dkdjdsdr.

Then changing variables so that u=r+s, v=j7+k, 2 =r—s,y=7 -k,

B(0,0,1) = eut_l/uo/_uexp( >

1
X exp ( u(log pa + log pp) + Qx(logpA — long)) dz du

S (5)

1
X exp (-U(logpA +log pg) + y(logpA — long)> dy dv.

(7.45)

(7.46)

The two integrals are identical, and can be evaluated using the Maple software

package to show that

B(0,0,t) = bpI?/2(e”* — 1) (7.47)
where
. é 20&1 2&2 L 1 L 1
ﬁ<a1+4ﬂ a%+4ﬂ+\/ﬁtan 2\/_+\/_tan 2\/5), (7.48)
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and 8= (La+Lp) — (La— L)%, o1 =1+2Ly — 2Ly, 0o =1 — 2L, + 2L,
Ly = —1og(2Tpa/e(pa + pp)), Lp = —1og(2Tpp/e(pa + pp))-

At small times the log(7) term dominates and Ly ~ Lg ~ —log(T),
B~ —2log(T), a; ~ 1+ 2log(ps/pa), as ~ 1+ 2log(pa/pr)- It follows that
I ~ 3/2(logT)? and therefore

9bp

B(0,0.1) ~ s =D log T

(7.49)

A naive small-¢t expansion of T'(t) as log(ut), is too crude, since it generates
a singularity at ¢ = 1/v. Using Aikin and Courtney’s data, this singularity
occurs at 4 hours, so the data points at 8 and 16 hours can not be used for
fitting purposes and using the point at 4 hours introduces significant inaccu-
racy. A more accurate approximation of 7'(¢) must be found that additionally
allows the integral in equation (7.34) to be evaluated.

The integral has the form

_ [ 9bp :
7= | s (7.50)

t

which can be evaluated by applying the substitution e* =1 — e~*, giving
log(1—e™?) dz
J= . 7.51
A (50

The denominator, f(z) = (z—e®)*(1—e%), is approximated so that the integral
can be calculated explicitly. Noting that x is negative for all ¢ > 0 and that
f(z) = —zasz — 0, f(z) — z* as * — —o0, the approximation f(z) = z*—z
is constructed. The relative error incurred by using this approximation is

shown in Figure 7.7. Using this approximation, it follows that

J= 3b8p” []og (1 — mﬂ , (7.52)

and consequently, the expression for the number of clusters in the model is

- 3bpv 1
— —vt 2 2 —vt
Moo (t) = pe™" +a(pa”—pp°)te e [log (1 " og(l— e e—”t))] . (7.53)
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Figure 7.7: The relative error incurred when approximating f(z) = (z —

e*) (1 —e*) by f(z) = 2* — =

This expression for My (t) has been used to obtain parameters for model
3 that correspond to Aikin and Courtney’s Cu-15%Nb experiment. The fitted
parameters have been used to obtain a corresponding numerical solution for
crs(t). However, values of My derived from the numerical solution diverge
from those used for the fitting, indicating some inaccuracy in the process. It
is possible that the approximation used for Stirling’s formula is responsible
for the inaccuracy. The exact cause of the discrepancy is a topic for further

investigation.



Chapter 8

Conclusions

8.1 Summary

This thesis has modelled aspects of the mechanical alloying process using Smol-
uchowski’s coagulation-fragmentation equations, a specific type of population
balance model. The difficulties associated with applying this model have been
addressed and resolved.

Part I of this thesis looks at one-component systems, where a powder of
constant composition is milled. Changes in powder particle size distribution
can be predicted for a wide range of milling conditions and powder materials.
Different kernel forms have been investigated to determine which forms model
the process most accurately. When using kernels of the form a, s = a(r+s) and
b, = b the model is both accurate and robust, with no asymptotics required
to complete the fitting procedure and no gelation effects. These kernels suit
most milling experiments well, indicating that the rate of particle welding
is proportional to the size of both the particles involved. Larger particles
are more likely to be involved in a collision as they occupy a larger volume.
Accounting for this factor alone gives the rates a, s = a(rs) and b, ; = b(r +s).

The accuracy of the rates used in model 2 suggests that, when involved in

135
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a collision, larger particles are less likely to weld or fragment than smaller
particles.

With the fracture rate b, ; = b, as used in model 2, fracture occurs in such a
way that all combinations of fragment size are equally likely. Chipping events
yielding a small fragment and a large fragment are as likely as events that
split a cluster into two equal parts. Since large particles are more likely to be
involved in a collision than smaller particles by a factor (r + s) (the size of
the fragmenting particle), the success of this constant rate suggests that, when
involved in a collision, large particles are less likely to fragment than small
particles. This conclusion is not universal, though, as model 3 is sometimes
more accurate than model 2. It is difficult to assess the overall accuracy of
model 3, which uses a fragmentation rate b, ; = b(r + s), because asymptotic
methods are used to obtain a solution for My(t). In cases where model 3
is more accurate than model 2, different size particles are equally likely to
fracture when they experience a collision.

Many difficulties have been overcome to apply Smoluchowski’s models to
mechanical alloying. The different methods used to measure particle-size in the
model and experiments have been reconciled and a fitting procedure has been
developed to determine model parameters. Using the fitting method avoids
the need to explicitly specify the dependence of welding and fracture rates on
milling conditions. The fitted rate parameters are influenced by many prop-
erties of the experimental setup including the mill geometry, the mechanical
properties of the powder, and properties of the milling media and mill chamber
material. Properties that alter over time as a consequence of work hardening
or changes in temperature are implicitly averaged over the time period con-
sidered. The values obtained by fitting the parameters show that rates alter
with milling conditions in an intuitive way. For example a greater emphasis

is placed on fracture events when more brittle materials are milled and both
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welding and fracture rates become greater if the milling intensity is increased.

The models presented in Part I are similar to those developed by Aikin and
Courtney. Our models examine the size dependence of welding and fracture
events more closely, and use a refined method to determine parameter values.
In addition we have applied them to more milling scenarios and found that
they may be applied to hard and soft metals and different milling apparatus.

Part IT introduces a generalisation of Smoluchowski’s model that uses two-
component clusters to model the mixing which occurs during mechanical al-
loying. The model is applied to experimental data using a similar method to
that developed in Part I. The most simple and most successful kernels from
Part I have been generalised to two-components, demonstrating the potential
of this type of model. Changes in particle size distribution are predicted by
the two-component model in a similar way to the one-component model. In
addition, the two-component models predict composite formation, but mixing
proceeds at a slower rate than that observed in experiments. A more accurate
composition-dependent fragmentation kernel has been proposed to resolve this
problem. The full application of this kernel has not yet been completed, but
the application seems possible. Hopefully more accurate results will achieved.

The models, in their current form are valuable to materials scientists. The
one-component model is a powerful interpolation and extrapolation tool, al-
lowing more rapid development of powders with particular size distribution
characteristics. The basis of the modelling is sound, and accurate kernel forms
have been determined. With more work it may be possible to estimate the
change in welding and fracture rates associated with the use of process control
agents or adjustments in milling parameters. It would certainly be possible
to determine how the rates are affected by adjustments to milling parameters
within a particular scenario.

The two-component mixing models offer more detailed information con-
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cerning the size and composition distribution of the powder than similar mod-
els proposed by Aikin and Courtney [1]. Some refinement of the kernel forms
is required before the models will accurately reflect the mixing in Aikin and
Courtney’s experiments. However, the groundwork has been laid for the de-
velopment of such models. The future work proposed in the following section

would add significant value to what has already been achieved.

8.2 Future work

Analysing the composition-dependent two-component kernel given in equation
(7.8) is an important piece of future work. There are also many other avenues
open to investigation. Mixing indicators from the model could be examined
to establish whether it is possible to predict reaction phenomena in the mill.
The widespread application of the one-component model 2 may suggest empir-
ical relationships between the rate-parameters a and b and milling parameters
such as mill speed, mill size and the charge ratio. Similarly, the different
rates observed when milling different powders could be connected with pow-
der properties. Lastly, refinements of the kernel forms may be possible, for
example, time-dependence may be introduced to account for work hardening
and reaction effects.

Including work hardening effects will produce the most significant improve-
ment in the model’s accuracy at early times. Mechanisms are available that
will generate work hardening behaviour in the model, but the work hardening
process itself is not well understood. The introduction discussed how work
hardening is caused by dislocations §1.1.3, but for extreme deformations the
behaviour of the material is complex and difficult to describe in a model. Dis-
locations can be included in the model, either by counting them directly or

using energy considerations. However both methods rely on an approximate
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description of how dislocations multiply and move within the material.
For example, one mechanism for counting dislocations directly uses a clus-
ter C, 4 having size r containing d dislocations. Aggregation and fragmentation

events conserve the number of dislocations in the material, so
C,n,d + Cs,e = Cr—i—s,d—i—e- (81)

Although some dislocations may be gained or lost during welding and frag-
mentation, these effects are ignored in a first approximation. Aggregation and
fragmentation rates depend on the size of the particles involved and the num-
ber of dislocations present. It is easy to calculate the dislocation density from
these quantities, which will relate to the hardness of the material.

The model allows work hardening to occur by increasing the number of
dislocations in the system using a non-reversible reaction,

hy,
Cr,d —d) Cr,d—}—la (82)

where h, 4 is the hardening rate. This rate depends on the size of the particle
and the dislocation density, so differential effects can be accommodated like
rapid hardening of small particles and a reduced hardening of the hardest
particles. Unfortunately it is not clear exactly what form the hardening rate,
hrq, and the dislocation dependent welding and fragmentation rates, a, 4z,
and b, 4., should take. Some features of these functions can be identified,
for example the fragmentation rate, b, 4., Will increase with the number of
dislocations in the fragmenting particle, d + e, because harder particles with
more dislocations are more prone to fracture. Also, hardening will not continue
indefinitely so the hardening rate, h, 4, will tend to zero for a finite value of d.

It is hoped that work hardening theories can be simplified and incorporated
in the model without adding too much complexity. While the introduction
of a dislocation component increases the computational requirements when

solving the model numerically it also opens the possibility for analysis using



CHAPTER 8. CONCLUSIONS 140

similar techniques to those employed for the model with two different material
components. Using a suitable approximation of work hardening would provide
the greatest improvement to the existing models for short times where reaction

phenomena are not significant.
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