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Abstract

This thesis describes the behaviour of cold atoms in optical lattices. In
particular, it explores how transport through the energy bands of the optical
lattice can be used to study quantum chaos and Bose-Einstein condensation.

Firstly, this study examines the dynamics of ultra-cold sodium atoms in
a one-dimensional optical lattice and a three-dimensional harmonic trap, us-
ing both semi-classical and quantum-mechanical analyses. The atoms show
mixed stable-chaotic classical dynamics, which originate from the intrinsi-
cally quantum-mechanical nature of the energy band. The quantised energy
levels exhibit Gutzwiller fluctuations, and the wavefunctions are scarred by
an unstable periodic orbit. Distinct types of wavefunction are identified and
related directly to particular parts of the classical phase space via a Wigner
function analysis.

Secondly, this report studies the dynamics of a rubidium Bose-Einstein
condensate in a one-dimensional optical lattice and three-dimensional har-
monic trap. The condensates are set in motion by displacing the trap and
initially follow simple semi-classical paths, shaped by the lowest energy band.
Above a critical displacement, the condensate undergoes Bragg reflection,
and performs Bloch oscillations. After multiple Bragg reflections, solitons
and vortices form which damp the centre-of-mass motion.

Finally, the dynamics of Bose-Einstein condensates in optical lattices
are investigated for different parameter regimes, as realised in recent exper-
iments. The results reveal how the experiments can be understood, and
identify regimes in which vortices trigger explosive expansion of the conden-

sate.
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Chapter 1

Cold atom dynamics and

band theory

1.1 Introduction

Optical lattices are standing light waves formed by counter-propagating laser
beams [1, 2, 3]. They are used in conjunction with trapped atoms, which
experience the standing wave as a spatially periodic potential. The result-
ing dynamics are analogous to that of an electron moving in the periodic
potential of a crystal lattice, and so can be understood using tools borrowed
from solid state physics. As a result, optical lattices link atomic physics and
quantum optics with the seemingly separate topic of solid state physics.

In many ways, atom dynamics in optical lattices are experimentally more
accessible than electron dynamics in crystal lattices. Firstly, the initial mo-
mentum of the atoms can be tailored to have a narrow distribution around
a chosen value. Secondly, the experimentalist has precise control over the
well depth, lattice period, and acceleration of the atoms. Thirdly, the op-

tical lattice is free of defects, and so the atoms undergo no scattering due



to imperfections in the crystal. Fourthly, the atoms undergo no scattering
due to lattice vibrations. Fifthly, the periodic potential of an optical lat-
tice can be switched off, allowing direct measurement of the momentum of
the atoms. Finally, the atom dynamics in optical lattice occur on a time
scale which is about ten orders of magnitude longer than that of electron
dynamics in crystal lattices. As a result of these points, atom dynamics in
optical lattices can demonstrate effects that can be detected only indirectly
in crystal lattices.

When conducting an experiment on atoms in an optical lattice, the pa-
rameters must be carefully chosen if the dynamics are to faithfully mimic
those of electrons in a crystal lattice. For example, the frequencies of the
lasers must be detuned far from any atomic resonance. Furthermore, the
temperature and the parameters of the optical lattice should be chosen such
that the atomic de Broglie wavelengths extend over several lattice periods.
This ensures that the atoms must be described as quantum mechanical ob-
jects, rather than as classical particles oscillating in individual potential
wells.

The experimental advantages of optical lattices outlined above have en-
couraged physicists to make use them in a great variety of contexts includ-
ing atom diffraction [4], band theory [5, 6, 7] and interferometry [8]. In
this report, optical lattices are employed in the study of quantum chaos and

Bose-Einstein condensation.

1.2 Band theory

Band theory describes the quantum-mechanical behaviour of a particle in a
periodic potential, ignoring any interactions with other particles [9, 10]. The

theory was originally devised to describe the motion of an electron in the



periodic potential of a solid lattice of atoms, but it can equally be applied to
an atom moving in the periodic potential of an optical lattice. The theory
predicts that the particles can propagate only if their energies lie within set
ranges called bands. Between the bands, there are band gap regions where
no propagating states exist.

Consider a particle of energy E in a three-dimensional periodic potential
energy field V' (r), in which r is the position vector. This periodic potential
could be produced by either a lattice of atoms, or an optical lattice, formed
by counter-propagating laser beams. In either case, the lattice is described
by the primitive lattice vectors a;, as and as. These vectors are used to
describe the positions of every lattice point; that is to say the position of
atoms in the case of a crystal lattice, or simply the peaks in the periodic
potential in the case of an optical lattice. The primitive lattice vectors are
combined in the following way to construct the vector R from any given

lattice point to any other given lattice point:
R =nia; 4+ noay 4+ ngas, (1.1)

where n; is an integer. The vector R is known as a lattice vector.
Imagine the particle has energy E, and is in a particular eigenfunction

9 (r). This eigenfunction must satisfy the following Schrédinger equation:

2
(—j—mw +V (r)) Y (r) = Ey(r). (1.2)

Since the potential is periodic, the probability density of the particle is

also expected to be periodic. This is expressed algebraically as follows:

% (r+R)* =y (r)]". (1.3)



Equation 1.3 implies that the wavefunction v has the following property:

¥ (r+R) =y (r), (1.4)

where a (R) is some function of R. Further algebra [10] reveals properties

of @ (R), which allow equation 1.4 to be rewritten as
P (r+R) = T (r), (1.5)
where k is a vector in reciprocal space, defined as
k =11b; + l2bs + I3bs, (1.6)
where b; are the primitive reciprocal lattice vectors, which satisfy
b; - a; = 2md;;. (1.7)

Equation 1.5 is known as Bloch’s theorem, and a wavefunction ¢ which
satisfies it is known as a Bloch function. It can also be stated in the alter-

native form:

P (r) = u(k,r)e*T, (1.8)

where u (k,r) has the periodicity of the lattice. Equation 1.8 shows that
Bloch’s theorem predicts the nature of a particle wavefunction in a periodic
potential. Despite its simple form and derivation [10], Bloch’s theorem has
dramatic repercussions for the particle states and dynamics. Some of these
repercussions shall be explored in the remainder of this section.

The wavefunction % in equation 1.8 is characterised by the quantum

number k, which is known as the wavevector. The vector k has the important



property that it can always be expressed within a range of values known as
the first Brillouin zone. The first Brillouin zone is defined to be the region
of reciprocal space which is closer to k = 0 than to any other reciprocal
lattice point.

In order to prove that the wavevector of a Bloch function can always be
expressed by a value within the first Brillouin zone, imagine a wavefunction
1 that satisfies Bloch’s theorem (equation 1.5) for a wavevector k, which

has a value outside the first Brillouin zone:
i (r + R) = ™Ry (r). (1.9)

The equivalent wavevector inside the first Brillouin zone is k', which is re-
lated to k by
k=k'+K. (1.10)

The wavevector K is a reciprocal lattice vector, defined by
K = nibqy + ngbg + nzbs, (1.11)

where n; is an integer. If equation 1.10 is substituted into equation 1.9, it

follows that:
i (£ + R) = 6 TRy, (r) = KRRy (r). (112)
By definition of K and R, K-R = 2nw, where n is an integer. Consequently,
Yic (e +R) = e Ry (r). (1.13)

Equation 1.13 shows that the wavefunction ) satisfies Bloch’s theorem



for the wavevector k', as well as for the wavevector k. This proves that
any Bloch functions can be characterised by a wavevector within the first
Brillouin zone, and that any wavevectors beyond the first Brillouin zone
have an equivalent within the first Brillouin zone.

In general, the first Brillouin zone can be an awkward shape in reciprocal
space, particularly for a crystal lattice with a complicated geometry. So, it is
helpful to consider a specific and simple example. Let us imagine a periodic
potential in which the first Brillouin zone is centred at the origin in reciprocal
space. Suppose that k = %, which corresponds to the extreme edge of the
first Brillouin zone. The opposite extreme edge of the first Brillouin zone
is at k' = —PL. Note that k and k' are related by k = k' + K, where
K = b;. Hence, from the result in equation 1.13, it follows that k and k'
are equivalent. The possible values of the component of k in the b; direction

is therefore given by:

il b
2 - = 2 d

T
p (1.14)
where d is the periodicity of the lattice in the direction a;.

When the Bloch functions are substituted into the Schrédinger equation
(equation 1.2), it transpires that there are an infinite number of solutions
for a given value of k. Hence, each wavefunction is assigned an additional
quantum number n. The energy E of the Bloch functions is a function
of n and k. This function is known as the dispersion relation. A typical
relationship between E, n and k is shown in figure 1.1, where & is the
component of the wavevector k in the direction b;. The diagram shows
values of k£ in the first Brillouin zone only, since values outside this range

have an equivalent value within this range. If & is increased beyond the



edge of the first Brillouin zone, the pattern of the dispersion relation simply
repeats. The representation of the dispersion relation shown in figure 1.1 is
known as the reduced zone scheme.

The reader will notice that the energy is constrained within set ranges,
and that there are forbidden regions outside these ranges where no prop-
agating states exist. The allowed ranges of energy are called bands, and
the forbidden regions are called band gaps. Each band is labelled by the
quantum number 7, which is known as the band index.

The possible values of k& can be determined by applying a periodic bound-
ary condition known as the Born-Von Karman boundary condition. This

boundary condition requires that:
P (r + Nia;) =1 (r), (1.15)
where N; are integers of order N %, such that
N = N1 Ny N3, (1.16)

where N is the total number of lattice points in the lattice. By applying
this condition to Bloch’s theorem (equation 1.5), it can be shown that k has
the following possible values:

|b;] i2|bi| i3|bi| jE|bz'|

k=0,+ . .
NN N; 2

(1.17)

Hence, there are IV; possible values of k£, and N possible values of k in each

band.



-t/d ald

Figure 1.1: Typical dispersion relation/band structure in a periodic poten-
tial, shown in the reduced zone scheme.
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1.2.1 Bragg reflection and Bloch oscillations

Imagine a wave packet of Bloch states in a given band that has a spread
of wavevector components which is small compared to the width of the
Brillouin zone. This infers that the wavepacket is spread in real space over
many lattice points. If this wavepacket is subject to another field, called field
G, which varies slowly over the dimensions of the wavepacket, the dynamics
can be modelled by a semi-classical model [10]. The model is called semi-
classical as field G is treated classically, but the periodic potential is treated
quantum mechanically.

The model accepts the dispersion relation E, (k) as a given function,
without saying anything about how it is calculated. It ignores the possibility
of transitions between bands, and asserts that field G only effects the value
of k, not n. The force due to field G is equal to the rate of change of fk.
The equations of motion are formally identical to those of a free particle in
field G alone:

hk = Force due to field G = —VVg, (1.18)

where Vi is the potential energy due to field G. However, since the value of
fik is not equal to the total force, which would include the force due to the
periodic potential, ik is not the momentum of the wavepacket. The quantity
hk is known as the crystal momentum, and is not generally conserved.
However, equation 1.18 alone is not sufficient to calculate the dynamics
of the wavepacket. It describes the evolution of k, but does not relate this to
the velocity of the wavepacket. Hence, the semi-classical model uses another
result, derived from perturbation theory [10], which is applied in conjunction

with equation 1.18:
1 9E, (k)
k)= -—2+" 1.1



where v, (k) is the velocity of the wavepacket.

The reader is now asked to consider a simple application of this model.
Imagine a wave packet of Bloch states in the lowest band of a periodic po-
tential. The wavevector of the wavepacket is initially tightly peaked around
k = 0. In addition to the periodic potential, the wavepacket is subject to a
constant accelerating force, F', which is applied in the a; direction. Under

these conditions, equation 1.18 becomes:

dk
—F 1.2
dko
— = 1.21
and

dks

—=0. 1.22
h— =0 (1.22)

Equations 1.20 to 1.22 predict that, as ¢ increases from zero, ko and k3 will
remain zero, and k; will increase linearly from zero.

Let us assume that the relationship between E and k; looks some-
thing like the dispersion relation shown in figure 1.1. Remember that the
wavepacket is in the n = 0 band. As k; increases from zero the gradient
of the dispersion relation becomes positive, and the kinetic energy of the
wavepacket increases. Since the velocity of the wavepacket is proportional
to the gradient of the dispersion curve (equation 1.19), this corresponds in
real space to an acceleration from zero velocity to a positive velocity in the a;
direction. As ky increases further, the gradient of the curve reaches a max-
imum, and then begins to decrease. Hence, the velocity of the wavepacket
reaches a maximum, and then begins to decrease. Eventually, &1 reaches

the Brillouin zone boundary, at which point the gradient of the dispersion

10



curve is zero. Consequently, the wavepacket comes to a halt.

When k; reaches the edge of the first Brillouin zone, it can be equivalently
expressed by the wavevector at the opposite edge of the first Brillouin zone
(see previous section). So, when k; passes beyond the edge of the first
Brillouin zone (k = Z in figure 1.1), it may be imagined to reappear at
the opposite edge of the first Brillouin zone (k = —7% in figure 1.1). The
wavevector k; then continues to increase linearly as a function of ¢. As the
wavevector moves through the Brillouin zone boundary, the gradient of the
dispersion relation decreases from a positive value, passes through zero, and
continues to decrease to negative values. This means that the wavepacket
is slowing to a halt, and then turning back. This process of turning around
at the Brillouin zone boundary is known as Bragg reflection [9, 10].

The gradient of the dispersion relation is negative for negative ki, so
the wavepacket will be travelling in the —a; direction. Since the dispersion
relation is symmetric, the wavepacket will retrace its path exactly. When &;
reaches zero, the wavepacket will have completed a single oscillation in real
space, which is known as a Bloch oscillation [10].

This is a surprising result, since it suggests that electrons in a metal
would oscillate when a voltage is applied, rather than produce a DC current.
In fact, metals conduct because the electron scattering time is far shorter
than the period of a Bloch oscillation. Consequently, the electrons scatter
before completing a Bloch oscillation.

An elementary integration of equation 1.20 with respect to time yields

an expression for the period of the Bloch oscillations:

T=—" (1.23)

11



A similar integration of equation 1.19 yields the amplitude of the Bloch

oscillations, Apo:

A
Apo = ;W, (1.24)

where Agw is the width of the band.

1.3 Atom dynamics and experimental techniques

This section discusses the behaviour of atoms in magnetic fields, electric
fields and laser fields, and explains the techniques involved in cold atom
experiments. In section 1.3.5, the dynamics of atoms in optical lattices are

related to the band theory developed in section 1.2.

1.3.1 Response to Magnetic Fields: The Zeeman effect

This section discusses the Zeeman effect [1, 11, 12], which is the response
of an atom to an applied magnetic field. Before this discussion begins in
earnest, the reader is presented with a brief review of the relevant quantum
numbers.

The quantum numbers I, S and L refer to nuclear spin, electronic spin
and electronic orbital angular momentum respectively. Their corresponding
operators are i, S and L.

These quantum numbers are combined in the following ways to determine
J and F, which are the quantum numbers of electronic angular momentum

and total angular momentum respectively.
|IL—-S|<J<L+S (where] is an integer). (1.25)

[I—J <F<I+J (whereF isan integer). (1.26)

12



The corresponding operators of J and F are J and F respectively.

Alkali atoms are commonly used in the context of optical lattices and
Bose-Einstein condensation, so this group of elements shall serve as an ex-
ample for illustrating the Zeeman effect. Alkali atoms all have a common
pattern to their electronic structure which enables the theorist to make some
generalisations about the values of the quantum numbers discussed above.
All the electrons occupy closed shells, apart from the outer electron, which
is in an s-orbital. Hence, § = % and L = 0. Consequently J = % and
F=I+1.

The coupling between the nuclear spin I and the total angular momen-
tum of the electron J causes a splitting of the energy levels. Consequently,
states which have different values of F' for the same values of I and J are

not degenerate. This is called the hyperfine splitting, and is described by

the following Hamiltonian:
Hye = Apel - J, (1.27)

where Ayt is a constant. If an external magnetic field is applied, the hyperfine
levels are further split into Zeeman sublevels. In order to describe this effect,
extra terms must be added to the hyperfine Hamiltonian. This has been done

below for a magnetic field B which is defined to be in the z-direction [11].
Hgpin = Anl - J + CJ, + DI, (1.28)

where

7
D=--B 1.29
"B, (1.29)

13



and

C=gjupB. (1.30)

The ratio |%| R z—: ~ 2000 (where m, and m, are the proton and electron
mass respectively), so for most purposes D may be neglected. This assump-
tion is made when deriving equation 1.33. The quantity p is the nuclear

magnetic moment, and pp is the Bohr magneton, defined as

h
pp = — (1.31)

C 2m,
The quantity gs is a constant which shall be referred to as the g-factor of

the electron. It is defined as [1]

JUI+1)+S(S+1)—L(L+1)

=1
gr=1+ 57 (J+ 1)

. (1.32)

For the quantum numbers L = 0 and § = % (appropriate for alkali atoms),
g7 =2.

When the eigenvalues of the Hamiltonian in equation 1.28 are deter-
mined, it transpires that in general the Zeeman energies are complicated
functions which depend on the atomic state and the magnetic field. How-
ever, under certain conditions the energy of the atom varies linearly with
magnetic field. For example, for magnetic fields that are small enough to en-
sure that the Zeeman splitting is small compared to the hyperfine splitting,

the following relation holds:
E(F,mp)=E(F)+mrgrupB, (1.33)

where E (F,mp) is the energy of the atom, E (F') is the energy of the atom

in the absence of an applied magnetic field, and mr is the quantum number

14



for the z component of the total angular momentum F. The quantity gr is

a constant known as the Landé g-factor, defined as [1]

 FF+D)+J(J+1)—TI+1)
gr =97 9F (F +1)

. (1.34)

N.B. In deriving equation 1.33 it is assumed that |C| >> |D| (see equa-
tion 1.28).

As explained above, for alkali atoms S = % and L = 0, and consequently
J = % and F =14+ % Typical atoms considered in the context of optical
lattices and Bose-Einstein condensation are 8'Rb, 2>Na and "Li, which all
have a nuclear spin quantum number I = % As a result, F =2 or 1, which
infers Landé g-factors of gr = 1 and —1 respectively.

In section 1.3.3, the effect of Zeeman splitting shall be applied to the ex-
perimental problem of trapping neutral atoms. The reader may find it useful
to note that the response of an atom to a magnetic field depends not only on
the component of total angular momentum in the direction of the field, but
also on the corresponding Landé g-factor. Special note should be made of the
states F =2 mp =2 and F =1 mpr = —1, which are known as the doubly
polarized state and the mazimally stretched state respectively. An inspec-
tion of equation 1.33 reveals that the energy of these states increases linearly
with applied magnetic field (for small magnetic fields). This relationship be-
tween the energy of the state and the applied magnetic field provides the

mechanism for the trapping techniques described in section 1.3.3

1.3.2 Response to Electric fields and Laser fields

Electric and laser fields have been used extensively to realise cold atom

experiments. They play a vital role in trapping and cooling techniques, and

15



have enabled experimentalists to create novel tools like optical lattices. An
understanding of the behaviour of atoms in electric and lasers fields is crucial
for the study of cold atoms [1, 11].

Consider an atom in a static electric field £. The atom’s energy levels
are shifted, and it acquires an electric dipole moment due to distortion of the
electron cloud. The expectation value < d > of the electric dipole moment
is related to the electric field via a quantity «, known as the polarizability
of the atom [11]:

<d>=caf. (1.35)

The energy of the atom can be determined from the following expression for

the change in energy produced by a change in the electric field:
dE = —<d> dE. (1.36)

Upon integration of equation 1.36, the following expression for the energy
of the atom is obtained:

1
AE = —§a52. (1.37)

This equation can be generalised for the case of an oscillating electric field
E(t) = & cos wt:
1
AE = —50/ (w) < & (r,1)* >4, (1.38)

where < ... >; denotes the time average over one oscillation period of the

electric field. The quantity < &€ (r,t)? >, is given by the relation:

52
<E(r, 1) >= 70 (1.39)

The energy shift of the atom may be regarded as an effective potential,

16



through which the atom travels. The associated force on the atom is known

as the dipole force:
1
Fiipole = =VV (r) = 5o/ (w) V < £ (r, ) >;. (1.40)

The result in equation 1.38 is now applied to the specific case of an atom
travelling in an one-dimensional optical lattice [3, 11]. The optical lattice
is formed by two counter-propagating laser beams, whose electric fields are
given by:

&o i{kz—wt}
& (z,t) = 5 ¢ ) (1.41)

and

& (z,t) = ‘Z—Oei{—kz—wt}. (1.42)

Addition of these two fields produces the following standing wave:
E(z,t) = & (2) + &2 (2) = &g cos (kz) e ™1, (1.43)
of which the real part is
Re{€ (2,1)} = Ereal (2,1) = &y cos (kz) cos (wt) . (1.44)

Application of equation 1.38 yields an expression for the energy shift of the

atom, and an effective periodic potential through which the atom may travel.
1
AE = —50/ (@) < Ereal (2,1)? >1= Vg cos? (kz), (1.45)
where V) is a constant, given by

(1.46)

17



Equation 1.45 shows that the period of the optical lattice is equal to half
the wavelength of the counter-propagating laser beams.

In addition to the dipole force, laser fields can also exert a force on atoms
via the momentum exchange on absorption of photons. Classically, this is
the radiation pressure of the laser. Imagine a laser beam of wavevector k,,
which illuminates a particular atom. The atom absorbs a photon, and is
promoted from its ground state to an excited state. The atom acquires the
photon’s momentum, which is k,. The atom returns to the ground state by
emitting a photon in a random direction, assuming that the decay occurs via
spontaneous emission. Since the photon emission is in a random direction,
the emission process has no net effect on the atom’s momentum over a large
number of absorption/emission events. Hence, the total force on the atom

due to the absorption processes is given by:

Froq = hk,T, (1.47)

where I'y is the rate of excitation of the ground state.
Both this force and the dipole force are exploited in laser cooling tech-

niques, as shall be discussed in section 1.3.4.

1.3.3 Magnetic trapping

Neutral atoms can be trapped magnetically by means of the Zeeman effect,
which was described in section 1.3.1. Since the energy of an atomic state
is a function of magnetic field, an atom travelling in an inhomogeneous
magnetic field experiences a spatially-varying potential. If the spatially-
varying potential is engineered to have a minimum, the atom may be caught

in a trap [1, 11]. As the atom approaches the extremity of the trap, its

18



kinetic energy is converted to potential energy, which is stored as a shift in
the atomic energy levels.

In general, the Zeeman energies are complicated functions which depend
on the atomic state and the magnetic field. Consequently, in order to ensure
that the atoms behave in a similar manner, the atoms are all stored in one
particular atomic state. There are two states which are generally favoured
for trapping alkali atoms: the doubly polarized state and the mazimally
stretched state. The doubly polarized state has the largest possible values
of nuclear and electronic spin components in the direction of the magnetic
field, i.e. F =1+ 4 and mp = I + § (see section 1.3.1 for an explanation
of these quantum numbers). The maximally stretched state is characterised
by the quantum numbers F = I — % and mp = — (I — %) The reasons why
these two atomic states are important will be revealed later in this section.

As was discussed in section 1.3.1, the energy of a state is in general a
complicated function of magnetic field. However, when trapping neutral
atoms, the parameters are usually chosen such that the energy of the state
is linear in magnetic field. As a result, the energy of an atom in the state 2
can be written as

E; = C;— wiB, (1.48)

where C; is a constant, y; is the magnetic moment of the state and B is the
magnetic field. Equation 1.48 holds for the doubly polarised states, and is
a good approximation for the other states if the Zeeman splitting is either
very large or very small compared to the hyperfine splitting,.

The magnetic moment u; can be either positive or negative. If y; is pos-
itive, the atom is attracted towards regions of higher magnetic field where
its energy is lower (see equation 1.48), and so it is known as a high field

seeker. If y; is negative, the atom is attracted towards regions of lower mag-
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netic field, and so it is known as a low field seeker. The theorist might now
imagine that a local maximum in the magnetic field would trap high field
seekers, and a local minimum of magnetic field would trap low field seekers.
Unfortunately, it is impossible to create a maximum in a magnetic field in
a region where there are no electric currents. Hence, neutral atoms can be
trapped magnetically only if they have a negative magnetic moment. The
doubly polarized state and the maximally stretched state are good candi-
dates for magnetic trapping, as both these states have a negative magnetic
moment .

It is important that the atoms contained in a magnetic trap remain in the
same atomic state. In particular, a transition from a low-field seeker state
into a high field-seeker state would result in the atom being ejected from
the trap. As an atom moves through a magnetic trap, it experiences a time-
dependent magnetic field, which can induce transitions between Zeeman
sublevels. These transitions become more probable as the frequency of the
time-dependent magnetic field approaches or exceeds the frequencies of the
transitions. The energies of transitions between different magnetic sublevels
are of order upB, and vanish if B = (0. Consequently, transitions between
atomic states may become significant if the magnetic field minimum in a
magnetic trap is zero. In other words, a magnetic trap may have an effective
“hole” near a node in the magnetic field.

Various solutions to this problem have been explored. One possibility
is to continually shift the position of the node in the magnetic field. This
is the principle of the time-averaged orbiting potential trap, or TOP trap.
The TOP trap is characterised by a static magnetic field minimum, supple-

mented by a rotating, spatially-uniform, magnetic field. The frequency of

'In the case of the maximally stretched state, this is only true if the Zeeman splitting
is very small compared to the hyperfine splitting (see equation 1.33).
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the rotating magnetic field is chosen to be much less than the frequencies
of transitions between magnetic substates, which ensures that the atoms
remain in the same quantum state relative to the instantaneous magnetic
field. The frequency of the rotating magnetic field is also chosen to be
much greater than the frequencies of atomic motions, which ensures that
the atoms feel an effective potential given by the time-average of the instan-
taneous potential over one period of the rotating field. These conditions
typically require that the frequency of the rotating magnetic field is in the
kilohertz range.

The problem of transitions between atomic states can also be overcome
by creating a non-zero magnetic field minimum. A method of creating such
a field profile was proposed by Ioffe [13], and so the associated trap is usually
known as a Ioffe trap. loffe’s method was applied to the problem of trapping
neutral atoms by Pritchard [14], so the trap is alternatively known as a Ioffe-
Pritchard trap.

Finally, the reader should also be familiar with the magneto-optical trap,
or MOT. The MOT both traps and cools the atoms, and so is a ubiquitous
feature of experiments on cold atoms. Experimentalists often find it con-
venient to initially trap and cool atoms in a MOT, and then transfer them
to a second trap for the latter stages of the experiment. The MOT works
on the principle that the radiation pressure of laser light depends on the
energy levels, which are a function of the magnetic field. If the magnetic
field is a function of position, then so is the radiation pressure of the laser
light. By applying a counter-propagating pair of laser beams along each
axis, it is possible to create a three-dimensional trap. This trap cools the
atoms by the Doppler and the Sisyphus processes, which shall be described

in section 1.3.4.
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Generally, and for the systems considered in this thesis, the confining
potential of a magnetic trap is parabolic. The potential energy of an atom
in the trap can be written

m
Virap(2,9,2) = 5 (wW2z® + wly® + wiz?), (1.49)

where m is the mass of the atom, and z, y and z are the Cartesian position
coordinates. The quantities w;, wy and w, are constants, known as the trap
frequencies. The trap frequencies are in units of rad s~! in equation 1.49,

but are often quoted in Hz in the literature.

1.3.4 Cooling techniques

The initial cooling of atoms is usually performed by a Zeeman slower [1, 11].
This device illuminates the atoms with a laser beam, which propagates in
the opposite direction to the atoms. The atoms are slowed by the radiation
force due to absorption of photons. The situation is complicated by the
Doppler effect, since the frequency of the laser varies in the rest frame of
the atoms as they slow down. This effect is counteracted by applying an in-
homogeneous magnetic field. If the Zeeman shifts of the ground and excited
state are different, the magnetic field can be tailored such that the Doppler
and Zeeman effects cancel. As a result, a laser beam of fixed frequency in the
laboratory frame resonantly excites the atoms, irrespective of their position
and local velocity. Alternatively, the frequency of the laser can be varied in
time, which is a process known as “chirping”.

After the initial cooling in the Zeeman slower, the atoms usually un-
dergo further cooling via a technique known as the Doppler process [1, 11],

which works in a similar way to the Zeeman slower. Imagine two counter-
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propagating laser beams whose frequencies lie just below a transition be-
tween the atomic ground state and an excited state. The frequency of the
laser beams in the rest frame of a particular atom depends on the velocity of
the atom, according to the Doppler effect [1, 11]. Consequently, in the rest
frame of a leftward-moving atom, the rightward-moving photons are Doppler
shifted closer to the transition frequency, while the leftward-moving photons
are Doppler shifted away from resonance. Conversely, in the rest frame of
a rightward-moving atom, the leftward-moving photons are Doppler shifted
closer to the transition frequency, while the rightward-moving photons are
Doppler shifted away from resonance. Hence, a leftward-moving atom is
more likely to absorb a rightward-moving photon, and a rightward-moving
atom is more likely to absorb a leftward-moving photon. As a result, the
atoms will lose kinetic energy, since they preferentially absorb photons which
have momentum in an opposing direction.

The excited atoms decay back into the ground state by spontaneous
emission. The photons are emitted in a random direction, so the emission
process has no nett effect on the atoms’ momentum over a large number of
absorption/emission events.

The lowest temperature attainable through Doppler cooling is limited
by the discrete size of the momentum change that the atoms undergo at
each emission or absorption event. An atom at rest is equally likely to
absorb a photon from either laser, and hence it performs a “random walk”.
Although its average momentum is zero, its root-mean-square momentum is
not, and consequently the atom has a finite energy and temperature. This
temperature is known as the Doppler limit, and is typically several hundred
microkelvin.

More sophisticated laser cooling techniques have enabled experimental-
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ists to cool atoms to temperatures orders of magnitude smaller than the
Doppler limit. Some of these methods are known collectively as Sisyphus
cooling [1, 11]. The atoms are illuminated by two counter-propagating laser
beams, which propagate along, say, the z and negative z-direction. The elec-
tric field vectors of the laser beams are polarised in the z and y-directions
respectively. The laser field produces periodic shifts in the energies of ground
state magnetic substates, and pumps transitions between them. The atoms
are continually forced to climb potential hills caused by the shifts in the
substate energy, thus losing kinetic energy, before being pumped into a sub-
state of lower energy. The energy lost by the atoms is radiated away. This
method is called Sisyphus cooling because it is analogous to the punishment
of Sisyphus, who, according to Greek myth, was condemned to push a rock
up a hill for eternity in Tartarus.

Sisyphus cooling can cool atoms to a temperature Tr corresponding to
a single photon recoil. This is known as the recoil energy Egr, defined as

h2k?

ER = kBTR = % . (150)

The recoil energy typically corresponds to a temperature of a few microkelvin.
It is generally regarded as the limit of laser cooling schemes, although there
are some ingenious cooling methods which cool below it.

Laser cooling techniques have enabled experimentalists to reach impres-
sively low temperatures; but even these temperatures are not low enough for
some applications, such as Bose-Einstein condensation. This problem was
overcome using evaporative cooling techniques [1, 11]. Evaporative cooling
involves removing atoms which have energies higher than the average en-

ergy, and then letting the remaining gas rethermalise by elastic collisions.
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This process lowers the average energy of the gas.

The theorist might imagine that high energy atoms could be removed
from the gas cloud by creating a “hole” high up one side of the trap. Only
atoms of energy greater than or equal to the trap potential energy at the
hole would be able to escape. In practice a “hole” is created by using radio-
frequency radiation to flip the spin state of the atoms from a low-field seeking
state to a high-field seeking state (see section 1.3.3 for an explanation of these
terms). The technique works as follows.

The energy level shifts due to the Zeeman effect are a function of the posi-
tion of the atom in the magnetic trap. Consequently, the resonant frequency
of a transition to a particular high-field seeking state is also a function of po-
sition. It is hence possible to tune the frequency of the rf radiation in order
to control where atoms are flipped into a high-field seeking state. Thus the
experimentalist controls the position of the “hole” in the trap. Gas clouds
are progressively cooled by adjusting the frequency of the radiation to expel

atoms of lower and lower energy from the trap.

1.3.5 Atom dynamics in a band structure

As explained in section 1.3.2, atoms experience an optical lattice as a peri-
odic potential (see equation 1.45). Similarly, electrons experience a crystal
lattice as a periodic potential. Hence, the physics of both systems is de-
scribed by band theory (see section 1.2), and their dynamics are qualita-
tively similar. However, due to the differences in the physical nature of the
two systems, the atom dynamics are far more experimentally accessible than
the electron dynamics (the reasons for this were explained in section 1.1).
As a result, atoms in optical lattices represent an experimental opportunity

to investigate some of the predictions of solid state physics.
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Atoms in optical lattices can demonstrate both semi-classical and full
quantum-mechanical band transport. The semi-classical approach to band
theory predicts that particles in a band undergo oscillations when subject
to a linear accelerating force. These oscillations are known as Bloch oscil-
lations (see section 1.2). They are not observed in normal crystal lattices
because the electron scattering time is far shorter than the period of the
Bloch oscillations. Consequently, the electrons scatter before completing a
Bloch oscillation. Electrons can perform Bloch oscillations in semiconduc-
tor superlattices, since these structures have far greater lattice constants,
and hence far shorter Bloch periods (see equation 1.23). Bloch oscillations
in superlattices have been observed indirectly by detecting THz radiation
emitted by the oscillating electrons [15].

Bloch oscillations with far longer periods can occur in optical lattices
since the atoms undergo virtually no scattering. This is because the optical
lattice has no defects and no lattice vibrations. In contrast to the super-
lattice experiments, the Bloch oscillations of atoms in optical lattices can
be observed directly. After a given evolution time, the optical potential is
switched off abruptly and the momentum of the atoms is measured. This
technique allows the experimentalist to plot the velocity-time curves of the
atoms. Bloch oscillations of atoms in optical lattices were first observed in
this way by Ben Dahan et al. in 1995 [5].

In the full quantum-mechanical picture, a periodic potential with a lin-
ear accelerating force produces equally-spaced energy levels, known as a
Wannier-Stark ladder. These energy levels are the quantised states corre-
sponding to the semi-classical Bloch oscillations. Wannier-Stark ladders in

optical lattices were first observed by S.R. Wilkinson et. al. in 1996 [7].
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Chapter 2

Chaos theory

2.1 Introduction

The term chaos was coined to describe complex motion observed in seem-
ingly simple experiments and theoretical simulations [16]. Chaotic systems
are characterised by erratic, apparently random motion. Chaotic trajecto-
ries are aperiodic, and show extreme sensitivity to the initial conditions.
The motion is typically reminiscent of random “noise”.

Despite this complexity, chaos is found in systems which are determinis-
tic [17, 18]. This means that given a set of initial conditions, the parameters
of the system, and the equations of motion, it is hypothetically possible to
calculate the dynamics for all times. If the equations of motion are known,
then the theorist is, in principle, able to predict future behaviour for par-
ticular parameters, and the system is called a dynamical system [17, 18].
The theorist may then wonder how to reconcile the ideas of determinism
with chaos. The future behaviour of the system is completely described by
known, and often very simple equations of motion; and yet, the dynamics

show no obvious pattern or order.
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A detailed study of chaos reveals that beyond the initial discovery of the
apparently random dynamics there are common features of chaos. Many,
often very different, chaotic systems show similar behaviour which can be
categorised and treated in the same way. This chapter examines the threads

which link chaotic systems, and hence shows how chaos can be understood.

2.2 Classical chaos

Chaos was originally conceived in terms of classical mechanics, and was
subsequently investigated in the quantum mechanical regime. A study of
quantum chaos requires a prior understanding of classical chaos. This section
examines the ideas of classical chaos, and section 2.3 explains how those ideas

are embodied in the quantum mechanics.

2.2.1 Hamiltonian systems

Chaos is studied in two types of system: dissipative systems and Hamiltonian
systems (also known as conservative systems) [17, 18, 19]. In dissipative
systems, the trajectories approach a limiting set, known as an attractor, as
time or the number of iterations goes to infinity. This process is known
as dissipation. In contrast, Hamiltonian systems are dynamical systems
which have no dissipation, and so the trajectories do not converge onto a
limiting set, no matter how long the experiment or simulation runs. This
study of chaos is limited to Hamiltonian systems. This section describes the
properties of Hamiltonian systems, and the equations which govern them.
The dynamics of a Hamiltonian system are described in terms of the
position and momentum of the particle or particles. Conventionally, each
component of position and momentum is denoted by the symbols ¢; and

p; respectively. If the system involves the motion of just one particle, the
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subscript ¢ denotes a particular coordinate axis. If the system consists of
more than one moving particle, the subscript ¢ denotes a particular coordi-
nate axis and a particular particle. Each pair ¢;, p; is known as a degree of
freedom of the system.

For each Hamiltonian system there is a corresponding function H (p, q, t),
known as the Hamiltonian, which completely specifies the dynamics [17, 18,
19]. The Hamiltonian is related to the g; and p; variables via Hamilton’s

equations [17, 18, 19], given by

dgi _ 9H (q,p,1) @2.1)

dt Op;

and

% _ _92{ap.b) ((;lq’ip’t) : (2.2)
If a Hamiltonian system has N degrees-of-freedom, the corresponding Hamil-
ton’s equations are a set of 2N coupled differential equations.

Now consider the temporal derivative of the Hamiltonian. This is deter-

mined via the chain rule of differentiation:

(2.3)

L (p.0,t) _ 5 (0o O dy) | 0F
dt Op; dt Oq; dt ot -

i
The temporal derivative is composed of contributions from two sources: the
explicit and implicit time-dependence of the Hamiltonian. Explicit time-
dependence of the Hamiltonian refers to terms in the Hamiltonian which
directly (or explicitly) contain t. Differentiation of such terms make up the
final term on the right-hand side of equation 2.3. Implicit time-dependence
of the Hamiltonian refers to terms in the Hamiltonian which have an indirect

(or implicit) dependence on t. Specifically, the Hamiltonian contains terms
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in p; and ¢g; which (in general) depend on ¢. This implicit time-dependence
is responsible for the terms within the summation on the right-hand side of
equation 2.3.

Equation 2.3 can be simplified by using Hamilton’s equations to make

appropriate substitutions:

dH (p,q,t) OH OH OH (O0H OH
DY - —_— 2.4
dt Z Op; 0¢; + dq; \ Op; + ot ’ ( )

)

which reduces to
dH (p,q,t) OH

I il (2.5)
In the special case of Hamiltonians with no explicit time-dependence, H (p, q)
is a constant. If H represents the total energy of the system, (as is usually
the case), then it follows that the energy is conserved. We now see why
Hamiltonian systems are sometimes called conservative systems: they often
have one or more physical properties which remain constant in time, which
are usually referred to as conserved quantities. Sometimes these properties
are quantities which are commonly known to be conserved, such as energy
or momentum. Sometimes the conserved properties are more obscure, and
difficult to discover.

The reader should note the implication that by defining Hamiltonian
systems as “dynamical systems with no dissipation”, it does not follow
that energy is necessarily conserved. The Hamiltonian could be periodic
in time, due to, say, an externally-applied time-dependent force. However,
the Hamiltonian studied in this report (chapter 4) has no explicit time-
dependence, so the energy of the system in this particular case is conserved.

It is possible to test whether a particular function f is conserved by

calculating a quantity known as the Poisson bracket of f and H. Consider
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the temporal derivative of f:

4 _0f  9fda ofdp

= - ; 2.
dt Ot O0qdt Opdt (26)

By using Hamilton’s equations to make substitutions, equation 2.6 becomes:

df _of , 9f0H _9f9H _9f

_ _9F i m 9.7
&t~ at Taqop apoq ot T HD (2.7)

where

[f,H]za—fa—H—a—fa—H. (2.8)

The quantity [f, H| is known as the Poisson bracket of f and H. It follows

from equation 2.7 that if the function f is conserved then it must have the

property
of
H fl=—. 2.9
7, =2 (29)
If f has no explicit time-dependence, then equation 2.9 simplifies to:
[H, f]=0. (2.10)

N.B. If H is not time-independent then the Poisson Bracket [H, f] may also
not be time-independent. Consequently, to be sure that f is a conserved
quantity equation 2.10 must hold, f must have no explicit time-dependence,
and H must be time-independent.

At this point, it is appropriate to introduce the concept of phase space
[18, 19]. This is a useful tool to aid understanding of the dynamics of Hamil-
tonian systems. When considering the motion of an object, it is natural to
imagine the trajectory being traced out in real space. Real space is simply a

region with the dimensionality of the problem, in which the axes give posi-
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tion values (g; values). In short, real space corresponds to what is normally
considered as space. However, it is also possible to trace out trajectories in
phase space, in which the axes give both position (g;) and momentum (p;)
values. As there is both a p; and a g; associated with each degree-of-freedom,
the phase space for a Hamiltonian system with N degrees-of-freedom is 2NV-
dimensional. Plotting trajectories in this way provides the theorist with a
more comprehensive description of the system’s behaviour, since the combi-
nation of all the p; and ¢; values completely specifies the dynamics at that
instant.

As the complexity of the system increases, it rapidly becomes difficult to
visualise the corresponding multi-dimensional phase space. Hence, it is often
more convenient to consider a particular plane in the phase space, rather
than the phase space in its entirety. This idea is explored in section 2.2.4.

It was established earlier in this section that in the special case of Hamil-
tonians with no explicit time-dependence, the value H (p,q) is a constant
(see equation 2.5). If this is the case, every point on a particular trajectory
in phase space must have the same value of H (p,q). This restricts the
number of dimensions through which the trajectory can travel. Specifically,
if such a system has N degrees-of-freedom, the trajectory is restricted to a
(2N — 1)-dimensional surface in a 2N-dimensional phase space.

It was also established earlier in this section that a particular Hamilto-
nian system may have more than one conserved quantity (a physical prop-
erty which remains constant in time). If this is the case, there will be
further restrictions on the dimensionality of the phase space trajectories.
Generally, if a particular system has N degrees-of-freedom and & conserved
quantities, the trajectory is restricted to a (2N — k)-dimensional surface in

a 2N-dimensional phase space. If k£ is equal to N, there are profound im-
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plications for the behaviour of the system, which shall be discussed in the

following section.

2.2.2 Integrable systems, non-integrable systems and chaos

Hamiltonian systems can be divided into two classes: integrable systems and
non-integrable systems [17, 18, 19, 20]. This classification is important in
the study of chaos, since chaotic behaviour can only occur in non-integrable
systems. The transition to chaos takes place when a small change in the
conditions results in a formerly integrable system becoming non-integrable.

An integrable system is defined as a Hamiltonian system which has as
many independent conserved quantities as degrees-of-freedom. A set of N
conserved quantities J;,2 = 1,2,..., N are said to be independent if no one
of them can be expressed as a function of the (N — 1) other quantities.
Strictly, any pair of the N conserved quantities must have a Poisson bracket
equal to zero, i.e. [J;, Jy] = 0 for all 4 and k. If this condition is fulfilled, the
conserved quantities are said to be in involution. A non-integrable system is
defined as a Hamiltonian system which has fewer conserved quantities than
degrees-of-freedom. !

Consider the trajectories of an integrable system in phase space. An
integrable system with N degrees-of-freedom must have N conserved quan-
tities, and so the trajectory is restricted to an N-dimensional surface in
a 2N-dimensional phase space. This surface is known as a torus, and is
represented schematically in figure 2.1(a). The trajectory is free to move
anywhere on the surface of the torus, but it is forbidden to leave the surface

of the torus. This representation of the motion enables the theorist to define

Tt is a simplification to imagine that there is a clear distinction between integrable and
non-integrable systems. Some systems have both integrable and non-integrable regions in
their phase space.
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(a)

Figure 2.1: (a) Schematic representation of a phase space trajectory which
lies on the surface of a torus. (b) The irreducible paths -y; defined by action-
angle variables J; and 9;.

a quantity known as the winding number. The winding number is the num-
ber of times a trajectory winds around the small cross-section of the torus
in one complete circuit of the large cross-section of the torus.

The reader should be aware that figure 2.1(a) is just a representation
to aid understanding, and is not strictly correct. As was explained in the
previous section, the phase space for a Hamiltonian system with N degrees-
of-freedom is 2 N-dimensional. Consequently, the phase space of any Hamil-
tonian system must have an even number of dimensions. However, the

torus in figure 2.1(a) resides in a three-dimensional space. To correctly
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Figure 2.2: Schematic representation of nested tori in phase space.

represent the phase space of an integrable system with, say, two degrees-of-
freedom, it is required to draw the two-dimensional surface of a torus in a
four-dimensional space. This is obviously impossible, so figure 2.1(a) must
suffice as a representation of the phase space for an integrable system.

The surface of each torus in phase space represents a particular set of
values of the N conserved quantities. Hence, two tori corresponding to
different sets of values of the conserved quantities cannot meet or cross each
other. Consequently, the phase space of an integrable system is filled with
nested tori (see figure 2.2).

Hitherto, the dynamics of Hamiltonian systems have been described in
terms of position and momentum variables, ¢; and p;. For a Hamiltonian
system with N degrees-of-freedom there have been N ¢ variables and N
corresponding p variables. Given an integrable system, it is possible to
perform a change of variables such that the system is described by N J
variables which are conserved quantities, and N corresponding ¥ variables.
This approach considerably simplifies the problem, and consequently the
dynamics become easier to solve.

The J; and 9; values (where i = 1,2,3,... N) are called action variables

and angle variables respectively. They are chosen such that Hamilton’s
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equations can be re-written in terms of J; and ¢;, without altering their

original mathematical forms:

d9; OH
A (2.11)
dJ; OH
it (2.12)

Changes of variables such as this which preserve the original form of the
equations are known as canonical changes of variables.

Consider the trajectories of an integrable system in the new phase space,
in which the axes denote J; values and ¢; values. As before, the trajecto-
ries are constrained to move on the surface of a torus, as represented in
figure 2.1(b). Position on the torus is denoted by the sum of two vectors,
whose lengths are J; and Jo, and whose orientations are described by the
angles ¢ and ¥2. The trajectory around the torus can be described in
terms of the irreducible paths y; and . These irreducible paths are traced
out by holding one value of ¥; constant, while the other is varied. (As be-
fore, the reader should be aware that figure 2.1(b) is merely a schematic
representation of phase space.)

Several conditions have already been set on the values of J; and ¥;, but
these do not provide an ezclusive definition of the action-angle variables.
Usually, J; is defined precisely as follows:

1
Ji = —j{ p-dq, (2.13)

27 [y,

where the symbol f% represents an integral around the i** irreducible path.

The integral [ p - dq is referred to as the action integral, or the classical
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action, or simply the action, and is usually denoted by the symbol S:

S:/p-dq. (2.14)

The action of a closed orbit is a measure of the phase space area enclosed
by the trajectory. The action is a ubiquitous quantity in mechanics, and
several important results are derived from it. A lengthy proof [20] shows
that the derivative of the action of a particular closed orbit with respect to

energy is equal to the period of the orbit T

S

2z =T (2.15)

Since the action variables J; are chosen to be constants of the motion,

% = 0. Consequently, equation 2.12 shows that the Hamiltonian function
depends on the J;’s only, and not on the 9;’s. These considerations enable

us to re-write equation 2.11 with the following amendments:

dd; OH(J) _
&= an =wd) (2.16)

The variable w; is a number which depends on all the J;’s. Since the J;’s
are all constants of the motion, w; must also be a constant of the motion.

Hence, equation 2.16 can be immediately integrated:

¥ = wit + 9; (0) . (2.17)

Amazingly, equation 2.17 represents a complete solution of the dynamics for
an integrable system.
Equation 2.17 states that ¥; — oo as ¢ — oo. This suggests that some

measurable parameter might tend to infinity, which is impossible to un-
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derstand if the system is spatially bounded. In fact, it transpires that ;
increases by 27 upon one circuit around the irreducible path «; on the torus
in phase space. Hence, increasing ¢; by 27 results in no net change of po-
sition in phase space. This is why the 4J;’s are called angle variables. This
result can be proved as follows.

Canonical changes of variables can be specified by means of a generating
function G, which is a function of one ‘old’ variable and one ‘new’ variable

(and possibly time t). G can be defined as follows:

oG (J,q,t)
=\ 2.1
v oJ ’ (2.18)
oG (J,q,t)
= — 2.1
p oq (2.19)

So, a change of variables from {p, q} to {J, 9} could be performed by solving
equation 2.19 for J in terms of p and q, and then substituting the solution
into equation 2.18 to obtain 1 in terms of p and q.

The proof proceeds by integrating both sides of equation 2.19 with re-

spect to q around one circuit of the irreducible path ~;:

AG :j{ p - dq, (2.20)
-

T

where A;G is the change in the generating function upon one circuit around

the irreducible path ;. By the definition of J; given in equation 2.13,
AG =27 J;. (2.21)

From equation 2.18 it follows thait:

0

AG, (2.22)
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where A;9 is the change in 9 upon one circuit around the irreducible path

~;. By substituting for A;G using equation 2.21,

0
A9 = 2 o= J;. (2.23)
Hence,
Ai’ﬂj = 27T5Z'j, (2.24)

which is the desired result (6;; =1 if i = j and 6;; =0 if ¢ # j).

From these considerations the reader will conclude that the winding
number for the torus in the action-angle phase space is simply the ratio
of the angular frequencies w; in equation 2.17. For the torus in figure 2.1(b),
the winding number is 2.

As a consequence of the result obtained in equation 2.24, equation 2.17
for a particular ¢ is now recognised as oscillatory motion. The overall dynam-
ics depend on the relative values of the w;’s. If the w;’s are commensurate
(i.e. have a rational ratio), then the trajectories are periodic in phase space.
(Equivalently, if the winding number is rational, then the trajectories are
periodic in phase space.) This means that the trajectories return to their
starting conditions after a time ¢. If the trajectories return to the same
point in phase space after a time ¢, they must also return to the same point
in real space after a time ¢{. Consequently, periodic motion in phase space
corresponds to periodic motion in real space. If the w;’s are not commensu-
rate (i.e. have an irrational ratio), then the trajectories are quasi-periodic
in phase space. (Equivalently, if the winding number is irrational, then
the trajectories are quasi-periodic in phase space.) This means that they
eventually explore the entire surface of the torus in phase space, and return

arbitrarily close to their starting conditions after a time t. If the trajecto-
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ries return arbitrarily close to the same point in phase space after a time ¢,
they must also return arbitrarily close to the same point in real space after
a time {. Consequently, quasi-periodic motion in phase space corresponds
to quasi-periodic motion in real space. By means of this reasoning, the
reader will conclude that integrable systems must produce either periodic
or quasi-periodic motion.

Although chaos has not yet been strictly defined, it will be obvious to
the reader that the periodic or quasi-periodic motion of integrable systeins
cannot produce its distinctive apparently random motion. Chaotic systeins
must be non-integrable. However, non-integrability is not the definition of
chaos, although the vast majority of non-integrable systems are chaotic?.
Chaos is defined in terms of the divergence of the trajectories, which shall

be discussed in the following section.

2.2.3 The definition of chaos and the Lyapunov exponent

Chaotic motion is defined by its exponential sensitivity to the initial condi-
tions [17, 18, 19]. Imagine two trajectories which initially have an arbitrarily
small separation, Ay, in phase space. If the motion is chaotic, the separation
of these two trajectories in phase space A, (t) must increase exponentially

in time, as follows:

A, () = Age. (2.25)

(If the system is not chaotic, the divergence of the two trajectories is, at
worst, polynomial in time.) The quantity ¢ determines the rate of divergence.
It is known as the Lyaponuv exponent [17, 18, 19]. If the motion is chaotic

then it must have a real positive value.

2There is a class of “pseudo-integrable” systems which are non-integrable but not
chaotic. However, such systems are unusual and are not considered in this thesis.
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Given the equations which govern a chaotic system, and the initial con-
ditions, a theorist might naively suppose that he could determine the future
motion for all time. A system which has this property is known as a deter-
ministic system. However, in any real experiment, or for that matter any real
numerical simulation, the initial conditions are specified to a finite accuracy.
Since chaotic systems are so sensitive to initial conditions, for a sufficiently
large elapsed time the theorist’s predictions will be incorrect. Consequently,
chaotic systems are unpredictable, despite being deterministic.

Since integrable systems only exhibit periodic and quasi-periodic mo-
tion, their phase spaces cannot have real positive Lyaponuv exponents. If
the Lyaponuv exponents are not real positive, the motion is said to be stable.
The transition to chaos in Hamiltonian systems occurs when a perturbation
results in a formerly integrable system becoming non-integrable, allowing the
Lyaponuv exponent in particular regions of phase space to become real pos-
itive. In the regions of phase space where the Lyaponuv exponent becomes
real positive, the trajectories move off their respective tori, and explore the
phase space more freely. In the regions of phase space where the Lyaponuv
exponent does not become real positive, the tori remain, but are distorted
by the perturbation. If the phase space shows a mix of stable and chaotic
behaviour, it is said to exhibit weak chaos. If the system continues to be
perturbed such that all of the tori break up and the entire phase space has

a positive Lyaponuv exponent, the system is said to exhibit strong chaos.

2.2.4 Poincaré sections

As the complexity of the system increases, it rapidly becomes difficult to
visualise the corresponding multi-dimensional phase space. Hence, it is often

more convenient to consider a particular plane, rather than the phase space
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in its entirety. Such a plane is known as a Poincaré section [18, 19, 20].

For example, consider a Hamiltonian system that has two degrees of
freedom, and obeys conservation of energy. The corresponding phase space
is four-dimensional, but is effectively reduced to three dimensions due to
the constraint imposed by conservation of energy. A plane in phase space
is now selected, defined by, say, p1 = 0. This plane cuts through any tori
or chaotic regions that reside in the phase space. For example, figure 2.3(a)
shows a set of nested tori intersecting a suitable plane in phase space. In
general, the pattern on the chosen plane will resemble one of the diagrams
in figure 2.3.

First, imagine the trajectory under consideration is periodic, and it
strikes the Poincaré section at a point (x,y) at time ¢ = 0. It will return to
this point exactly after the period of the orbit, T', has elapsed. Between the
times t = 0 and ¢t = T, the trajectory may have struck the Poincaré section
many times, or it may not have struck it at all. However, it must have struck
the Poincaré section a finite number of times. Hence, the Poincaré section
will consist of a finite number of dots, as is illustrated in figure 2.3(b).

Now imagine a similar quasi-periodic orbit. If the system is allowed to
evolve for a sufficiently long time, the trajectory will explore the entire sur-
face of its torus. Hence, the trajectory will eventually strike the Poincaré
section at every point where its torus intersects the Poincaré section. Con-
sequently, the points on the Poincaré section will lie on a closed loop, which
corresponds to the cross-section of the torus in the chosen plane of phase
space, as shown in figure 2.3(c).

If the motion is chaotic, the trajectories will not be constrained to lie
on tori. Consequently, they may strike the chosen plane in phase space

at any point, their only constraint being conservation of energy. The re-
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Figure 2.3: Schematic representation of (a) nested tori intersecting a plane
in phase space (b) Poincaré section of a periodic orbit (c¢) Poincaré section
of a quasi-periodic orbit (d) Poincaré section of mixed stable/chaotic phase
space (e) Poincaré section of a strongly chaotic phase space
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sulting Poincaré section is an apparently random distribution of points (see
figure 2.3(e)), which is often referred to as a chaotic sea. If the system ex-
hibits a mix of stable and chaotic motion, the Poincaré section will show a
combination of closed loops, corresponding to stable tori, and chaotic seas,
indicating the chaotic regions of phase space (figure 2.3(d)).

The choice of plane is generally not crucial, as long as the trajectories
cut it approximately transversely. In other words, they do not run parallel
or approximately parallel to the plane.

N.B. Poincaré sections are only easy to understand and interpret if the
phase space is effectively three-dimensional. If the phase space has more
than three dimensions, a two-dimensional Poincaré section could in principle
be defined by constraining more than one variable. However, it is likely that
many trajectories would not strike a plane defined in this way, and so the
Poincaré section would be unlikely to contain enough information to be an

adequate representation of the phase space as a whole.

2.3 Quantum chaos

Hitherto, the entire discussion of chaos and its definition have relied on the
concept of the trajectory. It is therefore difficult to envisage how these ideas
will translate into quantum mechanics since the concept of the trajectory
is meaningless on a quantum level. This problem can be expressed more
fundamentally by considering the classical phase space, and the quantum
equivalent. The continuous nature of a trajectory infers that it is possible
to precisely define a point in phase space. Furthermore, chaotic trajectories
are aperiodic, and can pass arbitrarily close to any given point in phase
space (subject to the constraints of the system), which suggests that the

description of chaos requires an infinitely detailed phase space. The very
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definition of chaos is in terms of trajectories which are initially arbitrarily
close in phase space. However, in quantum mechanics, the detail of the phase

space is limited by Heisenberg’s position-momentum uncertainty principle:

N | S

AzAp > —. (2.26)

Hence, the classical description and definition of chaos breaks down in a
quantum-mechanical picture.

The reader may then ask what the term “quantum chaos” actually
means. In fact, the term is misleading, because chaos as defined classi-
cally cannot exist on a quantum level. A more precise, but less concise
name of this topic might be “the study of quantum systems which have a
chaotic classical analogue.” However, despite its unfortunate connotations,
the name “quantum chaos” has now become the accepted name of this topic.

The reader may now ask whether quantum chaos is an interesting topic
if quantum mechanics cannot display the intriguing behaviour which has
been demonstrated in the classical regime. In response to this question, the
reader is asked to recall that the Correspondence Principle dictates that the
classical and quantum descriptions of any given system should converge in
the limit of high quantum numbers, when the spacing between energy levels
is much less than the energy. Equivalently, the condition is met as h — 0,
whilst holding all other system parameters constant. Hence, the theorist
would expect there to be some links between the classical and quantum
analysis, at least in the limit of high quantum numbers. The topic of quan-

tum chaos is largely concerned with discovering these links.
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2.3.1 Energy level statistics

In any quantum mechanical system the number of energy levels below a

particular energy F is given by the following ‘staircase’ function:
N(BE)=) ©(E-Ey,), (2.27)
n

where O is the step function of unit height (0 (z) =1ifz >0and © (z) =0
if z < 0). Due to energy quantisation, N (E) is necessarily a series of abrupt
jumps of unit height. However, over large ranges of energy this series of
discontinuities approximately follows a smooth curve. Hence N (E) can be
expressed as the sum of a slowly-varying component N4y (E), and a rapidly-

oscillating component Npg (E):
N (E) = Nav (E) + Nos (E). (2.28)
Equivalently, this can be expressed in terms of the density of states of

the system, defined as follows [19, 20, 21]:

pE) =" _ by (B) + Dos (2). (2.20)

where D4y (E) = del‘];(E) and Dog (E) = dN?;E(E).

This section examines N4y and Npg (or equivalently D4y and Dpg) for
quantum systems which have chaotic classical analogues. It discusses the
meanings of Ny and Npg, and how they can be approximated from the

corresponding classical mechanics.
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The Weyl formula

As explained in the previous section, the number of levels below an en-
ergy E is composed of a slowly-varying component N4y (E) and a rapidly-
oscillating component Nog (E). The Weyl formula [17, 20, 22] enables the
theorist to calculate Nyy (F) from the classical mechanics. The formula
is based on the idea that a state in a system with N degrees of freedom
occupies, on average, a volume of A" in phase space. Hence, it is possible
to determine the number of states below an energy E by calculating the
available volume in phase space below energy E, and dividing the result by

hY. This is expressed mathematically as follows:

Nav (B) = / O (E - H(p,q) dpd"q, (2.30)

where © is the step function, as defined for equation 2.27.
The Weyl formula can be equivalently stated in terms of D4y (E), the

average density of states at an energy FE.

Day (B) = / 5(E - H (p,q) d"p dVq, (2.31)

where ¢ (z) is the Dirac delta function (the Dirac delta function is defined
such that [%°_k(z)d (z — o) dz = & (2¢), where & (z) is some function of

The reader is reminded that the Weyl formula describes the slow vari-
ation of N (E) and D (E) over large ranges of E. N (E) and D (E) also
contain fluctuations over short ranges of E, which shall be discussed in the

following section.
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The Gutzwiller trace formula

As explained in the introduction to section 2.3.1, the density of states D (E)
can be expressed as rapid fluctuations superimposed on a slowly-varying
background. The Gutzwiller trace formula [17, 19, 21, 22] relates the rapid
fluctuations in the density of states to the classical dynamics. In short, it
relates Dpg (E) (see equation 2.29) to the classical dynamics.

The derivation of the Gutzwiller trace formula is very involved [17, 21]
and shall not be reproduced here. It proceeds by relating the density of states
to a quantity called the Green’s function, which is useful tool in quantum
and classical mechanics. The Green’s function is then approximated via a

summation of trajectories. The result is:
_ 1 i(S;(E)/h+¢;)
Dos (E) = — zj:Aje i i), (2.32)

Equation 2.32 is a summation over periodic orbits, both stable and un-
stable. The index j labels each orbit. S; (E) is the action of the 5 orbit, A;
is a numerical coefficient which depends on the orbital period and stability,
and ¢; is a phase factor which depends on the topology of the orbit.

The Gutzwiller trace formula can be interpreted as follows. Consider a
Taylor expansion of the term in equation 2.32 for the j*® orbit about some

energy FEjy:

Aj is (B)/ gy 2 i, (B0) b (B-Eo)h. (2.33)
wh wh

Hence, using the result 22 = T (see equation 2.15
oK

Aj S (B) I gy A i (Fo) [Ty (B o) /b

~ __J
~

h h , (2.34)

where T is the period of the 4™ orbit. Equation 2.34 shows that orbit j
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produces periodic fluctuations in the density of levels. These fluctuations

have a period dE; given by:

>

SE; (2.35)

These fluctuations are known as Gutzwiller fluctuations.

A more thorough examination of the Gutzwiller Trace formula reveals
that the coefficients A; are large for stable, or not very unstable, orbits.
These tend to be the shortest, simplest orbits. Calculations for particu-
lar systems have demonstrated that the Gutzwiller fluctuations are indeed
dominated by the shortest, simplest periodic orbits [19, 23].

It should also be noted that Gutzwiller fluctuations can be produced
by so-called ‘ghost’ trajectories. Ghost trajectories [21, 24] are orbits that
exist in a slightly different system. Imagine, for example, two very similar
systems: system S and system S’. A particular classical orbit O may exist
in §’, but not in S. As the system parameters of S’ approach those of S, the
classical path O disappears abruptly, but the quantum mechanics changes
smoothly. To be precise, the action of O acquires an imaginary component,
so that the path contributes an exponentially decaying term to the Trace
formula. Consequently, the effect of the path O can persist in the quantum
mechanics even if it has disappeared from the classical analogue. Hence, it

is known as a ‘ghost’ orbit.

2.3.2 Wavefunction scarring

This effect was first observed by Heller [23], when studying chaos in a bil-
liard stadium. He observed that certain wavefunctions showed enhanced

regions of probability density along an unstable classical path, and little
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probability density elsewhere. He named this effect wavefunction scarring.
Scarred wavefunctions occur periodically in the energy level spectrum, with
a separation of AE = %, where T is the period of the unstable orbit. The
reader will note that this energy level spacing is the same as the period of
the fluctuations in the density of levels predicted by the Gutzwiller trace for-
mula. In fact, wavefunction scarring and Gutzwiller fluctuations are closely
related. They are both a consequence of the quantisation of periodic orbits.
They are not found independently of each other.

The Correspondence Principle states that the predictions of quantum
mechanics should converge towards the predictions of classical mechanics in
the limit of high quantum numbers, when the spacing between energy levels
is much less than the energy. This might lead the theorist to expect that, for
large quantum numbers, the wavefunctions of systems with chaotic classical
analogues should not be localised in one part of phase space, since a chaotic
classical trajectory explores all of the available phase space. The theorist
might imagine that the wavefunctions would have a smooth appearance,
filling all available phase space and showing little structure. Berry [25] had
proposed this idea before Heller’s discovery, so scarring came as a surprise
to the world of quantum chaos. However, scarring does not contradict the
Correspondence Principle. Classical mechanics dictates that although an
infinite number of unstable periodic orbits exist, they occupy an infinites-
imally small volume of phase space. They are said to be of zero measure.
In the same way, in the limit of high quantum numbers the enhancement of
probability density along the scarring path (the scar strength) must tend to
7€ero.

Generally, scarring is most prevalent for intermediate values of quantum

number. If the quantum numbers are low, there may be insufficient numbers
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of antinodes in the wavefunction to effectively trace out a classical orbit. In
the limit of high quantum numbers, the scar strength tends to zero, and the
wavefunctions conform to Berry’s conjecture. However, scarring has been
shown to survive up to quantum numbers of over a million [26].

Heller supported his results by considering the propagation of a Gaussian
wavepacket along a periodic orbit [23, 27]. This allowed him to estimate the
modulations in the energy spectrum, and the scarring strength as a function
of the stability of the orbit. Other theorists have also attempted calculations
to substantiate the phenomenon of scarring. Bogomolny [28] considered the
squared modulus of the wavefunction, averaged over a short range of energy
and position. He then derived an expression for this “smoothed” wavefunc-
tion via a classical expression for the Green’s function. His work confirmed
that the scarring effect fluctuates in strength with the same periodicity pre-
dicted by the Gutzwiller formula. Berry [29] improved on this work by
performing a similar calculation without averaging the wavefunction spa-

tially.

2.3.3 Wigner functions

In classical mechanics, it is possible to define a distribution f (p,q), such
that f (p,q) dp dq is the probability of the system having p and q values
in the small phase space volume dp dq around the phase space coordinates
(p,q)- It would be useful to have a quantum mechanical equivalent for this
function, so that the classical and quantum mechanical phase spaces could
be compared. Unfortunately, it is impossible to define a true phase space
probability distribution function for a quantum mechanical particle, because
the Heisenberg uncertainty principle limits the detail in phase space to an

area ~ g However, it is possible to define a phase space “quasiprobability”
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distribution function for a quantum-mechanical particle, which would re-
semble a phase space distribution function. Wigner attempted to find such
a function, and derived the following result, which is known as the Wigner

function [22, 30, 31].

1 o0 A A\ —ip
W(p,Q)Zh—N/ ‘I’*(q+§)\11(q—§)e P DY (2.36)

—0C

where N is the number of degrees-of-freedom, and A is a position vector.

In short, the Wigner function is a quantum mechanical equivalent of a
classical phase space plot. As for its classical equivalent, the Wigner function
generally has too many dimensions to be easily represented or envisaged.
So, theorists usually examine a particular plane of the Wigner function, and
compare it to a corresponding Poincaré section.

Wigner faced several problems when he derived this function. The most
fundamental is the limitations on the detail in phase space set by the Heisen-
berg uncertainty principle, as has been discussed already. Secondly, since
he wanted to derive a phase space function from a wavefunction, he was
forced to derive a function of 2N variables from a function of N variables.
Consequently, he knew he would have some freedom to choose the form of
his result. The Wigner function also has an additional problem which is not
shared by quantum-mechanical distribution functions in general: it can be
negative. How can the Wigner function be interpreted as a probability if it
can have negative values?

In response to these objections, Wigner examined the properties of his
function, and possible alternatives. He showed that integration of the Wigner
function over all momentum space yields the square modulus of the wave-

function. In addition, he showed that the integration of the Wigner function
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over all real space yields the square modulus of the wavefunction in momen-
tum space (i.e. the Fourier transform of the wavefunction). In fact, the
integration of the Wigner function with any function of position or momen-
tum over all momentum space and real space yields the correct quantuimn-
mechanical expectation value of that function. He then proved that there
is no function that satisfies these conditions and is always positive, which
does not include more terms in W. Hence, he chose the Wigner function as
his phase space quasiprobability distribution function, as, in his words, “it
seems to be the simplest”.

It is also worth noting Berry’s work [32] on the form of the Wigner
function in the classical limit (i.e. as A — 0). He showed that for an
integrable system, the Wigner function converges to a delta function on the
corresponding classical torus in phase space. For the non-integrable case, he
found that it was far more difficult to derive an analytic theory to describe
the Wigner function in the classical limit. He proposed the use of numerical
methods to investigate the Wigner functions for non-integrable systems.

Numerical studies to support the use of Wigner functions in the study of
quantum chaos were first carried out by Hutchinson and Wyatt [33]. They
studied the behaviour of the Wigner function, compared to the Poincaré
section, during the transition to chaos. The Wigner functions and Poincaré
sections showed close correlation. Dando and Monteiro [34] studied the
Wigner functions of a quantum chaotic system in more depth. They com-
pared the Wigner functions with the corresponding Poincaré section, and
also with the corresponding Husimi function, which is a possible alternative
quasiprobability function. They concluded that the Wigner functions repro-
duce the Poincaré sections with greater sharpness than the corresponding

Husimi functions, and so are able to resolve more detail from the classical
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phase space.
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Chapter 3

Bose-Einstein Condensation

3.1 Introduction

Imagine a collection of bosons (particles with integral spin) trapped in some
kind of box or potential field. As the temperature is lowered, the bosons
move into lower and lower quantum states of the container. Eventually, a
macroscopic fraction of the bosons will enter the lowest quantumn state of the
system (the ground state). This phenomenon is called Bose-Einstein conden-
sation [11, 35]. Bose-Einstein condensation is only possible for bosons, since
the Pauli exclusion principle forbids fermions (particles with half-integral
spin) to enter the same quantum state.

Bose-Einstein condensation occurs abruptly when the temperature drops
below a certain value, known as the critical temperature. At this point
there are discontinuities in thermodynamic quantities of the system (or their
derivatives). Hence, Bose-Einstein condensation is considered to be a phase
transition, and Bose-Einstein condensates (BECs) are regarded as a new
state of matter. Bose-Einstein condensation in dilute gases was first achieved

in 1995, using rubidium [36], lithium [37] and sodium [38].
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Since Bose-Einstein condensation is essentially a relatively simple quan-
tum mechanical concept, it may not surprise the reader that the basic theory
was established many years ago. Nonetheless, it is remarkable to reflect that
the theory began a full 70 years before the realisation of dilute gas BECs
in 1995! In 1924, Bose wrote a paper [39] which discussed the statistics
of photons, and sent it to Einstein for comments. Einstein recognised the
significance of the paper, and extended the work to describe non-interacting
massive bosons. He predicted that below a certain temperature, a finite
fraction of the total number of particles would reside in the lowest energy
single-particle state.

In 1938, Fritz London suggested that superfluid *He could be a manifes-
tation of Bose-Einstein condensation [40]. His hypothesis was correct, and
superfluid “He became the prototype BEC. However, superfluid *He dif-
fers from dilute gas BECs in the respect that there are strong interactions
between helium atoms, with the result that the number of atoms in the zero-
momentum state is reduced, even at absolute zero. Superconductors have
been qualitatively modelled as Bose-Einstein condensates of electron pairs,
which are known as Cooper pairs. However, the correspondence is not per-
fect, since the Cooper pairs break up above the critical temperature, whilst
the atoms in a dilute gas BEC do not. Consequently, the properties of a
superconductor are quantitatively very different to those of a corresponding
dilute gas BEC.

When Bose-Einstein condensation occurs, the wavefunctions of the par-
ticles overlap. For this to occur, the de Broglie wavelengths of the particles
must exceed the mean particle spacing. This condition can be satisfied by
increasing the de Broglie wavelength and/or decreasing the inter-particle

spacing. Both of the above criteria are, in principle, easily achievable ex-
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perimentally by lowering the temperature and increasing the density respec-
tively.

These ideas led experimentalists to attempt to realise a BEC from a gas
of bosonic atoms. Unfortunately, a gas will normally liquefy or solidify at
a far higher temperature than it Bose-Einstein condenses. Consequently,
the experimentalists were forced to use gases of very low density (typically
10'3-10% cm~3). At low densities, three-body collisions are rare, and so the
rate at which atoms clump together into clusters is slow. As a result, the
gases can exist in a metastable state for a period of seconds or even minutes.

Since the experimentalists are forced to use gases of low density, the
atomic de Broglie wavelengths have to be large to exceed the inter-atomic
spacing. This means that the temperature has to be very low indeed. In fact,
the required temperatures are less than a microkelvin. The technical chal-
lenges associated with achieving these extreme conditions are monumental,
and it took 15 years of work to overcome them. The work culminated with
the award of the 1997 Nobel prize in physics for the cooling and trapping
techniques which made dilute gas BECs possible.

Bose-Einstein condensation of dilute gases was first achieved in June
1995 by a group at JILA in Boulder, Colorado, led by Eric Cornell and Carl
Wieman [36]. They attempted to create a BEC from Rubidium-87 atoms.
Alkali atoms are a popular choice since they have suitable spectra for laser
cooling. Wieman and Cornell optically cooled the Rb gas in a magneto-
optical trap (MOT), and then transferred the atoms into a magnetic time
orbiting potential (TOP) trap for further evaporative cooling (see chapter
1 for a discussion of these techniques). In this way, they successfully cre-

3

ated a BEC of a few thousand atoms, at densities of order 10'? cm~3 and

temperatures of order 100nK.

57



This experiment was quickly followed by the work of Hulet’s group at
Rice university in Texas [37], and Ketterle’s group at MIT in Massachusetts
[38]. Hulet created a BEC of Lithium-7 atoms, while Ketterle chose sodium.
Ketterle improved on the work of his predecessors by creating a BEC of
5 x 10° sodium atoms at densities in excess of 10 cm~3. Currently, dilute
gas BECs typically contain a few thousand to several million atoms, at
densities of 10'3-10'% cm~3.

BECs are a manifestation of quantum mechanics on a large scale. They
represent a unique experimental opportunity, since their remarkable dynam-
ics can be imaged directly by optical means. Furthermore, they link many
branches of physics, such as atomic physics, statistical physics and quantum
optics.

This chapter discusses the statistical mechanics of BECs (section 3.2),
the effect of interactions between the bosons (section 3.3), and how a con-
densate can be modelled theoretically (section 3.4). The author also includes
an examination of the characteristic topological excitations of BECs, which

shall be described in sections 3.5 and 3.6.

3.2 The transition temperature and condensate

fraction
As was explained in the previous section, when Bose-Einstein condensation
occurs the atomic wavepackets overlap. Hence, it is possible to derive an ap-

proximate expression for the transition temperature by equating the atomic

wavelength A with the mean atom spacing:
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where n is the atom density. (N.B. It is emphasised that this criterion is
not a definition of Bose-Einstein condensation; it is a consequence of Bose-
Einstein condensation.)

The quantity A is equated to the thermal de Broglie wavelength, which
is the thermal average wavelength of a free particle in a three-dimensional

system. The thermal de Broglie wavelength is conventionally defined as

2mh?2
=4/ — 2
A= kT (3.2)

where m is the mass of each atom in the condensate. By substituting equa-
tion 3.2 into the condition 3.1, the following expression for the transition
temperature T, is obtained:

_ 27rh2n§

T, = (3.3)

mkp

In fact, a more rigorous calculation shows that equation 3.3 gives a value of
T. which is approximately double that of a uniform Bose gas in a box. The
exact value of T, is generally difficult to derive, since it depends on the shape
of the box or confining potential, the number of atoms in the condensate
and the strength of the interactions between the atoms. Nonetheless, equa-
tion 3.3 offers the theorist a “rough-and-ready” estimate of the transition
temperature, which is accurate to within an order of magnitude, and also a
qualitative understanding of the physics involved.

In order to derive a more accurate expression for the transition temper-
ature, the theorist must consider the statistical mechanics of the problem.
The following calculations concentrate on the case of a BEC in a harmonic-
oscillator potential, since this form of atom trap is commonly used in ex-

periment, and shall be the focus of this study. The potential energy of a
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three-dimensional anisotropic harmonic-oscillator has the following form:

m
Viz,y,z) = -5 ( 222 4 waQ + w§z2) . (3.4)

The energy levels of such a potential are

1 1 1
E (ng,ny,n,) = (nw + 5) hw, + (ny + 5) Fuwy + (nz + 5) hw,, (3.5)

where the quantum numbers n; have integer values greater than or equal to
Zero.

For energies that are large compared to hw;, the zero-point energy %
can be neglected, and n; can be treated as a continuous variable. As a
result of these approximations, it is useful to introduce a three-dimensional
coordinate system with energy axes E;, E, and E,, which are equal to
Nghwg, nyhw, and n,hw, respectively. Since n; must be greater than or
equal to zero, the theorist only considers the octant of this coordinate system
for which n; > 0.

The total energy of the oscillator E is equal to E, + Ey + E,, so a state
with energy E must lie somewhere on the plane E = E; + E, + E,. Each
quantum state occupies a volume of h3wwwywz in this coordinate space.

Now consider the volume v (E) of E;, E,, E, space containing states
whose energy is less than the value E. This may be approximated by
calculating the volume in the octant n; > 0, enclosed by the plane £ =

E,+ E, + E,:

QAE):[f[AEJ%{AEJQJ%MQ}M%]M%. (3.6)

The reader will now appreciate the reason for choosing this coordinate sys-
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tem. The value of v (E) divided by the known volume occupied by each
state yields the function N (E), the approximate number of states below
energy E. (This derivation is very similar to that used to obtain the Weyl

formula in section 2.3.1.)

1 E[ pE-Ey ( pE—Ey—E,
N(E) = ——— . .
(B) = o /0 [ /0 { /0 dEz}dEy] dE,.  (3.7)

The integrals in equation 3.7 can be easily evaluated, which leads to the

result
E3

NE)= —F—7—.
(B) 6h3wywyw,

(3.8)

The density of states at energy E, D (E), is related to the function N (E)

by the general expression (see also equation 2.29):

D(E) = . (3.9)

Hence, the approximate density of states for a three dimensional harmonic-

oscillator is determined by differentiating equation 3.8 with respect to en-

ergy:

_dN (E) E?

D(FE = .
(E) dE 2R3 wywyw,

(3.10)

This example illustrates that, more generally, for a confining potential of

arbitrary shape and dimension, the density of states is usually of the form:
D(E) = C,EX!, (3.11)

where x and C, are constants. In the example of a three-dimensional har-

1

WBesgargs This general form for the

monic oscillator, x = 3 and C, =

density of states will be used in the following calculations in order to derive
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a universal expression for T,, and to illustrate how T, depends on the form
of the confining potential.

As was explained in the previous section, Bose-Einstein condensation can
only occur for bosonic particles, since the Pauli exclusion principle forbids
fermions to enter the same quantum state. The statistical mechanics of
bosons are described by Bose-Einstein statistics. According to Bose-Einstein
statistics, the average number of particles occupying a state n at an energy

E, is given by
1

Ny (E") = e(Bn—pw)/kgT 1~

(3.12)

where p is the chemical potential [41]. It follows that the total number of

particles in the system, N, is

1
N=) Ny(B)=) (e (3.13)

As explained in the previous section, Bose-Einstein condensation occurs
when a macroscopic fraction of the bosons enter the ground state (i.e. when
the number of bosons in the ground state is of order N). However, at this
stage of the discussion, it is more convenient to consider the number of
particles in ezcited states N, and use this to infer the number of particles
in the ground state Ny. From equation 3.13, it follows that the number of

bosons in excited states is given by:

1
Neg=N-No=)»_ E T 1 (3.14)
n#0

This summation can be approximated by an integral [35]:

o dn
N,y =N — Ny = /0 —ET— T - (3.15)
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It is more convenient to perform the integration in equation 3.15 over energy
E rather than over the quantum number n. To do this, the zero-point energy
is ignored, so that the ground state has energy Ey = 0. This approximation
is valid in the limit of a large number of particles N. The change of variable

is carried out using the relation in equation 3.9:

) dE
Neyy=N—Ny= / EkaT C- (3.16)

The transition temperature T, is now defined as the highest temperature
at which the macroscopic (i.e. of the order of N) occupation of the lowest-
energy state appears [11, 35]. This means that above T, all of the particles
can be accommodated in excited states, but below T, at least some of
the particles must be in the lowest-energy state. The highest temperature
at which this transition can occur is attained when the chemical potential
p = Ey [11].

Now consider how g varies with temperature. At high temperatures,
N, (Ep) << 1, hence from equation 3.12 y << Eyj. As the temperature
drops, N, (Ep) increases, and hence y increases. However, y cannot exceed
Ey, or N, (Ep) would become negative, and hence unphysical. At the tran-
sition temperature, u is equal to Ey, and remains equal to it if the gas is
cooled to lower temperatures [11, 35].

The transition temperature is determined by satisfying the condition
that all the particles are in excited states, i.e. N = N,;. Below the transition
temperature this can no longer be true. Since the ground state energy is

set to zero in equation 3.16, the chemical potential is also set to zero [L1].
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Hence, at the transition temperature equation 3.16 becomes:

* D(E) dE

N:New: eE/kBT—c_]_ .

(3.17)

The density of states D (F) is now replaced by the general form given in
equation 3.11. Equation 3.17 is then rewritten in term of the dimensionless

variable w = E/kgT,:

% X~ 1 du
N = CX (kBTC)XA ewi—]_ (3.18)
Equation 3.18 contains the standard integral
% X~ du
EEE——— .
| ST 0. (3.19)

where I' () is the gamma function and { () is the Reimann zeta function.

Hence, it follows from equations 3.18 and 3.19 that:

NUx
T, = )
kg [CxT (x) ¢ (x)]"/X

(3.20)

Equation 3.20 is now applied to the specific case of a condensate in a
three-dimensional harmonic oscillator potential. For this potential, y = 3
and C, = m (see equation 3.10). Also, I'(3) = 2 and ( (3) =~ 1.202.

Hence, equation 3.20 can be simplified to the following useful form:

F 1
T, ~45 | — 3 .
v 5(100)N3 nk, (3.21)

where F is the geometric mean of the trap frequencies F; in Hz. i.e.

F = (F,F,F,)3 . (3.22)

W=
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A typical experiment might produce a condensate of 10* atoms in a trap of
frequency 30 Hz in each axial direction [42]. According to equation 3.21, the
transition temperature for such a condensate would be about 30 nK.

Now consider a uniform Bose gas in a three-dimensional box of volume

V. In this case, x = 3 and Cy \%’”223 [11]. Also, T'(3) = 4 and

¢ (3) =~ 2.612. Hence, equation 3.20 can be simplified to the following form:
K2ns

~ 3.31
mkp ’

(3.23)

which is approximately half the rough estimate of T, in equation 3.3.

The reader should be aware that several approximations were made in the
derivation of equation 3.20. Most importantly, the derivation assumes that
the condensate contains an infinite number of particles, and consequently
neglects the effects of the zero-point motion. In reality, there is a shift in the
value of T, as predicted by equation 3.20 because the number of particles in
the condensate in finite. A calculation of this shift will not be included in
this report. The finite-size correction tends to reduce 7, by a factor of order
1% [11, 35].

Below the transition temperature, the particles begin to drop into the
lowest energy state. As the temperature decreases further, the number of
particles in excited states becomes smaller and smaller. The fraction of
particles in the lowest energy state is known as the condensate fraction
[11, 35]. The condensate fraction can be derived by considering the number
of particles in excited states as a function of temperature. An expression for
this number has already been derived in equation 3.16, which is reproduced

below:

) dE
Nog=N—Ny= / EkaT - (3.24)
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As before, y is set to zero and the density of states D (E) is replaced by the
general form given in equation 3.11. The equation is then rewritten in term

of the dimensionless variable w = E/kpT,:

%0 X1 dyy
New = Ol TP [ o = O TP T (0C 00 (329

(using the standard result in equation 3.19). When T' = T,, N, = N, and

SO

N = Cy (kaTe)*T (x) ¢ (x) - (3.26)

Dividing equation 3.25 by equation 3.26 gives

N, T\*
== . 3.27
¥~ (z) 620
Hence, the number of particles in the condensate Ny is:
T X
N0:N—New:N[1— (—) ] (3.28)
T,

Again, the reader should be aware that approximations were made in
the derivation of equation 3.28. Most importantly, it was assumed that the
number of bosons is large, and that there are no interactions between them.
When these effects are taken into account, there is a slight reduction in the
condensate fraction as stated in equation 3.28 [35]. In fact, as a result of
the interactions between the particles the condensate fraction is always < 1,
even at absolute zero.

Below the transition temperature, the condensate appears as a sharp
peak in the density of the atom cloud, superimposed on a broad background
corresponding to excited bosons. As the temperature drops, the condensate

fraction increases, and so the sharp peak becomes more pronounced. Sim-
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ilarly, the momentum distribution of the condensate is far narrower than
that of the excited bosons. The sharp peaks in the density and momentum
distributions are a signature of Bose-Einstein condensation [11, 35]. This
is the principal piece of evidence with which experimentalists support their
claim to have achieved Bose-Einstein condensation.

At the transition temperature, there are discontinuities in the thermody-
namic properties of the Bose gas (or their derivatives). The precise nature of
these discontinuities depends on the box or confining potential. For exam-
ple, at the transition temperature there is a discontinuity in the specific heat
of a Bose gas in a three-dimensional harmonic oscillator potential. These
discontinuities demonstrate why Bose-Einstein condensation is considered
to be a phase transition, and Bose-Einstein condensates are regarded as a

new state of matter.

3.3 Interactions between atoms

The atom-atom interaction potential is, in general, a complicated function of
the atomic separation. At low separations there is a strong repulsive core due
to the overlapping of electron clouds. At large separations there is attraction
due to the Van der Waals interaction. However, for the low densities and low
temperatures associated with dilute gas BECs, the interatomic interactions
can be characterised by a single parameter: the s-wave scattering length
[11, 35, 43, 44].

At the densities characteristic of dilute gas BECs, three-body collisions
are rare, and so the interatomic interactions can be modelled as two-body
scattering events. The corresponding wavefunction ¢ in the centre-of-mass
frame is a sum of an incoming plane wave and an outgoing scattered wave,

se (r). If the direction of travel of the incoming plane wave is defined to be
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the z-axis, then

P = e + Pse (r) - (3.29)

For large interatomic separations, the scattered wave is an outgoing spherical

ik

—, where f (k) is the scattering amplitude, k is the wavevector

wave f (k) &
of the scattered wave, and r is the radial distance from the scattering event.
It is assumed that the interatomic interaction is spherically symmetric, and
that the scattering amplitude depends only on the scattering angle 3, which
is the angle between z-axis and the direction of the scattered particle. For

these approximations, equation 3.29 becomes:

ezkr

¥ = et + f(B) (3.30)

In dilute gas BECs, the de Broglie wavelength is large compared to
the range of the interatomic forces, and the energy of the bosons is small
compared with the mean atom-atom interaction potential. In this limit,
only scattering of atoms in the zero orbital angular momentum state (I = 0)
contributes to the total scattering amplitude [11, 43]. Scattering of particles
in the [ = 0 state is known as s-wave scattering. As a result, f (3) approaches
a constant value, denoted by —a, and the exact shape of the interatomic
potential is unimportant. The parameter a is known as the s-wave scattering
length. In the low energy limit, & — 0, so the wavefunction 1 in equation 3.30

can be written

b = (1 _ 9) . (3.31)

r

By expanding the wavefunction % in terms of Legendre polynomials, it can

be shown that the scattering cross-section ¢ in this low energy limit is [11, 43]

o = 4ma’. (3.32)
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This equation illustrates that the scattering length also determines the effec-
tive range of the interatomic potential. In fact, the effect of the interatomic
potential is equivalent to that of a hard sphere of radius a. (Note that the
quantum-mechanical cross-section given in equation 3.32 is four times the
classical value in this low energy limit.)

The quantity a is used to characterise the effective average interactions
within a dilute gas BEC, avoiding the need to consider the details of atomic
scattering events. It can have either positive or negative values, which rep-
resent repulsive and attractive interactions respectively. Since the BEC is
dilute, the interatomic spacing is large compared to the scattering length.
Consequently, the s-wave scattering potential can be modelled as an effective

zero-range potential [11, 35, 44]:
Ve—-1)=Upd(r—1), (3.33)

where r and f are the positions of two particular atoms, § is the Dirac delta

function (defined in section 2.3.1), and

Uy = Arhla .

— (3.34)

This result is used to derive a quantum-mechanical model of the BEC in the
following section.

In the derivation of equation 3.33, it was assumed that the scattering
length is small compared to the interatomic spacing. This is a required
condition for the BEC to be weakly interacting, or, equivalently, for the
condensate fraction to be large. The reader will also recall that, in a BEC,
the de Broglie wavelength is larger than the interatomic spacing. Hence,

for weakly-interacting dilute gas BECs, the following inequality must be
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satisfied:

A>n"3 >>a. (3.35)

3.4 The Gross-Pitaevskii equation

In 1961, Gross and Pitaevskii independently derived a non-linear Schrodinger
equation to describe BECs [45]. It uses a mean field approach to model the
interactions between the bosons. Despite its simplicity, and the assumptions
made in its derivation, it accurately (typically to within an error of a few
per cent) reproduces the density and momentum profiles observed in BECs,
and even their dynamics and excitations.

The derivation of the Gross-Pitaevskii equation assumes that all of the
N bosons in the BEC occupy the same quantum state. Strictly, this is only
true for non-interacting particles at zero temperature. At finite tempera-
ture, some bosons occupy excited states. The interactions cause a further
reduction in the condensate fraction, which persists even at absolute zero.
However, the assumption is approximately true for low temperatures and
weak interactions!.

If the N bosons all reside in the single-particle state w, the wavefunction

of the condensed state 1/ can be written
% (r) = Niw (r), (3.36)

where N is the number of bosons in the condensate. The single-particle

wavefunction w is normalised in the usual way:

/Iw (r)]? dr =1, (3.37)

'Weak interactions are characterised by the condition that the scattering length is
much less than the interparticle spacing.
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which means that

/|¢ (r)|? dr = N. (3.38)

Hence, |4 (r)|* is interpreted as the number of atoms per unit volume, or
simply the density of the condensate.

The effective many-body Hamiltonian of the condensate wavefunction is

N 2
H= Z [;’—m +V (ri)] + Uy Z 8 (r; — 1), (3.39)
i=1 1<J
where
4 2
U, = e (3.40)
m

The terms within the first summation are the familiar kinetic and potential
energy terms (V (r) being the external potential). The interactions are mod-
elled by a zero-range potential, which was discussed in the previous section
(see equation 3.33). The strength of the potential is characterised by the
s-wave scattering length a. (The reader is reminded that this model of the
interactions is valid in the limit of low energies and weak interactions.)
Proceeding from the many-body Hamiltonian, it is possible to derive an
expression for the energy of the condensate wavefunction. The energy is
then minimised with respect to variation of 1 in order to obtain the optimal
form for 1. This procedure yields the following Schrédinger equation [11, 35]

9y (r) r?

" __»
¢ ot 2m

V2 (r) + V (r) 9 (r) + Ug |9 (1) * 9 (x) - (3.41)

Equation 3.41 is the time-dependent Gross-Pitaevskii equation [11, 35, 44,
45]. The first and the second terms on the right-hand side of the equation
are respectively the usual kinetic and potential energy terms of an ordinary

Schrédinger equation. The third term on the right-hand side of the equation
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is a mean field term which accounts for the interatomic interactions. It
can be thought of as an additional potential term. Each particle feels this
“additional potential” due to the mean field of all the other particles in the
condensate. Given this interpretation, it is not surprising that the term is
proportional to |1 (r)|?, namely the density of the condensate.
There is a corresponding time-independent Gross-Pitaevskii equation
[11, 35], which describes static BECs:
n_, 2
pyp (r) = Vi (r) + V (r) ¢ (r) + U [¥ (r)[" 4 () . (3.42)

T 2m

Notice that the energy eigenvalue in equation 3.42 is the chemical potential,
rather than the energy per particle as it is in the usual Schrodinger equation.
The chemical potential is equal to the energy per particle for non-interacting
particles in the same quantum state. However, the same is not true for
interacting particles.

Due to the non-linear |4 (r)* term, it is difficult to solve the Gross-
Pitaevskii equation analytically. It is only possible for very simple examples,
such as the ground state of a BEC in a box with infinitely hard walls [45, 46].
However, these examples have illustrated some fundamental behaviour of
BEC:s.

Counsider, for example, a condensate in a potential which is zero for
z > 0, and infinite for x < 0. Clearly, as « tends to zero from positive
values the wavefunction ¢ must also tend to zero, and must remain zero
for all negative z. For large z, the wavefunction approaches some ‘bulk’
value. The distance over which the wavefunction grows from zero to the
‘bulk’ value is characterised by a length scale &.

The interaction term minimises its contribution to the energy of the
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wavefunction by spreading the atoms as widely as possible, and hence tends
to reduce the value of €. The kinetic energy term minimises its contribution
to the energy of the wavefunction by making V24 (r) as small as possible,
and hence tends to increase the value of £&. The value of £ is obtained
by equating the interaction energy term and the kinetic energy term. The
interaction energy term is of order nly, where n is the density. The kinetic

energy term is of order % Equating these two values yields the result:

h2
which gives
1
¢ = Nk (3.44)

The quantity ¢ is known as the healing length [11, 35]. It is the characteristic
length scale of fluctuations in the condensate density. It is of importance in
the description of topological condensate excitations, as shall be discussed
in sections 3.5 and 3.6.

Further results can be derived from the Gross-Pitaevskii equation. To
proceed, multiply the time-dependent Gross-Pitaevskii equation (equation
3.41) by ¢* (r), and then subtract the complex conjugate of the resulting

equation. This algebra yields

8 || oo N
5 TV %(1/1 Vip — pVip*) | = 0. (3.45)

Equation 3.45 has the form of a continuity equation for particle density,
given by
on

s + V- (nv) =0, (3.46)

where v is the local velocity of the atoms in the condensate. By inspection
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of equations 3.45 and 3.46, v can be written

__h (VY —pVYT)
V=g o7 . (3.47)

If the condensate wavefunction ¢ is then written in terms of its amplitude
and phase,

P = AP, (3.48)
it follows from equation 3.47 that

v= %w (r,1). (3.49)

Equation 3.49 shows that the velocity of the condensate is proportional to
the derivative of the condensate wavefunction phase [11, 35]. This result
is important in the description of topological BEC excitations, as shall be

discussed in sections 3.5 and 3.6.

3.5 Solitons

Solitons are topological excitations characteristic of BECs. They are lo-
calised disturbances in the atom density which travel through BECs with-
out spreading, and generally behave like particles [11, 47, 48, 49]. Solitons
propagate like waves, so they are also known as solitary waves.?

The form of solitons in BECs depends on the sign of the s-wave scattering

length a. If a is positive (repulsive interactions), as is the case in this study,

solitons are characterised by a local density minimum, and a sharp phase

’In the literature there is some controversy over the definition of the word soliton.
In some cases, the definition requires that the disturbances exhibit special properties,
which might include, for example, that they should repel at short range. However, usually
collisional properties are not considered, and the terms soliton and solitary wave are taken
to be synonymous [11, 48]. This convention shall be accepted in this study.
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gradient of the wavefunction at the position of the minimum. These solitons
are known as dark solitons. This category of solitons is further divided into
black solitons and grey solitons. Black solitons have a density minimum
of zero, and a sharp phase change of 7 at the position of the minimum
(see figure 3.1). Grey solitons have a density minimum greater than zero,
and a smoother phase change of modulus less than 7 at the position of
the minimum. It will be shown later in this section that black solitons are
stationary, and grey solitons are non-stationary. If a is negative (attractive
interactions), solitons are characterised by a peak in the density, which has
no associated phase jump. These solitons are known as bright solitons.

Solitons preserve their form because the interaction term in the Hamil-
tonian balances the dispersion (spreading) of the wavefunction caused by
the kinetic energy term. Consider, for example, a dark soliton in a BEC
in which the interactions are repulsive. The kinetic energy is related to the
second derivative of the wavefunction, so it is minimised by smoothing out
sharp fluctuations. This effect broadens the soliton. However, the repulsive
interactions attempt to force particles into the minima, and hence narrow
the soliton. For a particular soliton width, these two effects balance.

It is now clear why dark solitons occur in BECs which have repulsive
interactions, and why bright solitons occur in BECs which have attractive
interactions. In both cases the kinetic energy tends to broaden the soli-
ton, and the interactions tend to narrow the soliton. This infers a density
minimum if the interactions are repulsive, and a density maximum if the
interactions are attractive.

The one-dimensional time-dependent Gross-Pitaevskii equation possesses
stable soliton solutions. Consider the simple case of a single soliton prop-

agating at a velocity v, through an otherwise uniform BEC, for which the
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(a)

0 ——Y———— X/&

(b)

Figure 3.1: Density profile (a) and phase profile (b) of a black soliton. The

position variable z is in units of healing length £. The constant ny denotes
the bulk condensate density.

3 X/
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interactions are repulsive. As the spatial coordinate = approaches infinity or
negative infinity, the condensate density n approaches a non-zero value nyg.
The soliton does not change its shape, so x and the time ¢ can only appear
in the solution in the combination z —v,t. Such a solution can be derived by
means of the continuity equation (equation 3.46) [11]. When the boundary
conditions n — ng as x — +oo are applied, the following expression for the

condensate density can be obtained:

1 (,) = Nnin + (N0 — Nmin) tanh? [g”x;izlt] , (3.50)
where
¢ = S S : (3.51)
- (2)
in which
v, = Y0 (3.52)
m

The quantity vs is the velocity of sound in the uniform BEC. Note that
equation 3.51 shows that the soliton speed v, cannot exceed the speed of
sound v,.

Further algebra shows that there is a phase change Ay between z = oo

and z = —o0o. The relationship between Ay, 1y, and v, is given below:
Uz Ad) Nmin
— = — | =—. 3.53
o cos( 5 ) o (3.53)

Equation 3.50 describes a notch in the condensate density which travels
without altering its shape or velocity. The density at the bottom of the
notch is nypin, and the width of the notch is described by the parameter £'.

When the soliton is stationary (vy = 0), & =&, nmin = 0 and Ay = 7. This
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means that the notch is narrow, its point reaches zero density, and it has a
sharp m phase change across it. This is the description of a black soliton,
which was defined earlier in this section (see also figure 3.1). Hence, the
analysis demonstrates that black solitons are stationary. As the soliton’s
speed increases, it becomes wider and shallower, and the associated phase
change becomes smaller and smoother (see equations 3.51 and 3.53). This
is the description of a grey soliton, which was defined earlier in this section.
Hence, the analysis demonstrates that grey solitons are non-stationary.

Studies of the motion of dark solitons have shown that they generally
behave like particles [11, 50]. Unless they are subject to an external force, or
they encounter fluctuations in condensate density, their acceleration remains
zero (see equation 3.50). By considering the energy of the soliton, it is
possible to derive an expression for the soliton’s velocity in the presence
of an external spatially-varying potential [L1]. The result shows that the
motion of solitons in an external potential is equivalent to the motion of a
single particle of mass 2m in the same potential.

Although solitons are stable in model one-dimensional uniform systems
at zero temperature, they are unstable in real three-dimensional systemns.
This is because the speed and shape of the soliton depends on the local
speed of sound s, which is a function of the density n. Perturbations in
the density of the condensate, or fluctuations in the density due to the
confining potential, cause different parts of the soliton to move at different
velocities. Hence the soliton bends (refracts), and eventually snaps into
separate sections. This effect is known as the snake instability [49, 51]. It
causes solitons to break up into more stable topological excitations, such
as vortex lines, or vortex rings. These excitations shall be examined in the

following section.
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3.6 Vortices

Vortices, like solitons, are characteristic topological excitations of a BEC
[11, 35, 49, 52, 53]; but, in contrast to solitons, they are stable in two
and three dimensions. They can occur in various forms, such as vortex
lines or vortex rings. Vortex formation has also been observed in superfluid
Helium in response to rotation, and in superconductors in response to the
application of a magnetic field. Vortices are a consequence of the existence
of a macroscopic wavefunction, which describes the BEC.

The exact form of the vortex depends on the manner of its creation and
on the dimensionality of the BEC. However, generally vortices appear as a
line of zero density, around which condensate circulates. In short, they have
the appearance of a whirlpool in a river. To understand the nature and
origin of vortices, it is necessary to consider the phase of the condensate.

The condensate wavefunction is single-valued, i.e. at any point in space
the wavefunction has just one particular value. Consequently, if the theorist
imagines a closed loop in the BEC, which begins at a particular point and
ends at that same point, the change in phase around the path must be an

integer multiple of 27. This is expressed mathematically as follows:

Ap = %V(ﬁ -dl = 2mq, (3.54)

where ¢ is the phase, 1 is the positional coordinate on the loop and ¢ is an

integer. The circulation A around the closed loop is defined as

A= f{ v-dl, (3.55)

where v is the velocity. Using the relationship between v and ¢ given in
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equation 3.49, and the result in equation 3.54, it follows from equation 3.55

that:
h

A:E%Vgé-dl:EQﬂq:q—. (3.56)
m m m

This result shows that circulation in BECs is quantised in units of %

Now imagine a BEC which contains one vortex. If the closed loop hap-
pens to enclose the vortex, then the circulation will be finite, and |g| > 1.
The wavefunction corresponding to this example can be modelled most sim-
ply in cylindrical polar coordinates. If the vortex is defined to be at the

position p = 0, the condensate wavefunction may be written as

¥ (p,p,2) = A(p, z) €%, (3.57)

The reader will observe that in following a closed path which encloses the
line p = 0, ¢ must increase by 27. Consequently, the phase change around
such a path is 2mq, and the circulation is q%.

In order to describe the velocity of the condensate around the vortex,
the relationship between v and ¢ (equation 3.49) must be expressed in cylin-
drical polar coordinates. This has been done below for the specific case of

the velocity in the ¢ direction:

_ h1dg

For the wavefunction given in equation 3.57

h

2tmp

Vo =g (3.59)

Equation 3.59 explains the characteristic features of a vortex. It states that

there is a constant velocity in the ¢ direction for a particular value of p.

80



This is the characteristic feature of condensate circulating around a vortex.
The equation also shows that the velocity increases as p decreases. Hence,
as p — 0, the kinetic energy of bosons in the condensate tends to infinity.
To avoid this problem, the density of the condensate must tend to zero as
p — 0 (i.e. if |g| > 1 then A — 0 as p — 0). This explains the characteristic
feature of a zero in the density at the centre of a vortex.

Further conclusions can be drawn from equation 3.59. Using the classical

expression for the angular momentum L, namely,
L=m(rxv), (3.60)

it follows from equation 3.59 that the angular momentum of each particle
about the axis p = 0 is gh. Hence, the total angular momentum about the
axis p = 0 is Ngh.

The Gross-Pitaevskii equation has solutions for BECs which contain vor-
tices. If the wavefunction in equation 3.57 is substituted into the time-
independent Gross-Pitaevskii equation (equation 3.42) in cylindrical polar
coordinates, the following expression for A (p, z) is obtained:

h2v2 h2 q2
" 2m | 2mp?

+V (p,2) + UoA® (p, 2)| A(p,z) = pA(p,z).  (3.61)

Compare the above equation for the case of no vortex (¢ = 0) to the case of
a single vortex at p = 0 (|g| > 1). The only difference between the two cases
is that for |g| > 1, the equation contains an extra term in p%. This term will
become large as p — 0, which confirms the earlier conclusion that if |g| > 1
then A — 0 as p— 0.

The length scale over which A — 0 determines the typical size of a

vortex. Let us suppose that the condensate is infinite, and that the potential
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is uniform. So, V (p, z) is set to zero, and A tends to a constant value Agy
as p — 00. Given these conditions, equation 3.61 can be solved numerically.
Unsurprisingly, the calculation reveals that A — 0 on the scale of the healing
length (see equation 3.44). Hence, the vortex is about two healing lengths
wide.

In three-dimensional condensates, vortices appear as vortez lines or vor-
tex rings. The example wavefunction in equation 3.57 describes a vortex
line. A vortex line is so called because the core of the vortex lies on a line
(the p = 0 line in the case of equation 3.57). A vortex ring is similar to a
vortex line, but the core forms a closed loop rather than an open-ended line.
Its form can be compared to that of a smoke ring.

The above discussion pertains to the general case of a vortex for which
lg| > 1. In fact, vortices for which |g| > 1 are unstable, and a BEC prefer-
entially forms multiple vortices rather than a large single vortex [45, 53].

Vortices have been produced in experiment by imparting angular mo-
mentum to the condensate by rotating an anisotropic trap [52, 53]. In this

study, vortices are produced indirectly via the decay of dark solitons [49, 51].
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Chapter 4

Classical and quantum
mechanical descriptions of an
atom in an optical lattice

and a tilted harmonic trap

4.1 Introduction

As discussed in chapter 2, chaos is a classical idea, and can only be defined
in classical terms. This leaves the physicist in some doubt as to what the
term “quantum chaos” actually means. A more precise, but less concise
name for this topic might be “the study of quantum systems with chaotic
classical analogues.” The “chaos” in quantum chaos is identified by com-
paring the quantum systems with their classical equivalents. Since optical
lattices (OLs) can be used to investigate both classical energy band trans-
port (see sections 1.2.1 and 1.3.5) and the corresponding quantised states,
(Wannier-Stark ladders, see section 1.3.5), they are well-suited to experi-
mental studies of the classical-quantum correspondence. Consequently, OLs
are an ideal tool for exploring quantum chaos. OLs have already been used

to realise the quantum d-kicked rotor, which served as a model system for
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the study of quantum chaos for many years [21].

This chapter discusses an uncharged sodium atom moving in a one-
dimensional OL, confined by a three-dimensional harmonic magnetic trap.
Sodium was chosen because it has been manipulated in magnetic traps and
OLs in recent experiments [7, 38]. See figure 4.1 for a schematic representa-
tion of the system. The magnetic trap can be tilted with respect to the OL,
whose orientation is fixed. To describe this, the axis of the OL is defined to
be the z-axis, and the symmetry axes of the magnetic trap are defined to
be the z;-axis and the z;-axis. The angle between the principle axis of the
magnetic trap (the z; axis) and the axis of the OL (the z-axis) is defined
as 6. The frequencies of the trap are sufficiently low for the trap to have a
negligible effect on the band structure of the OL.

When one of the symmetry axes of the trap is aligned with the axis of
the OL, i.e. 8 = 0° or 90°, the sodium atom follows regular classical paths.
But tilting the symmetry axis away from these directions brings about a
transition from stable regular motion to mixed stable-chaotic dynamics [54,
55]. The unique feature of this system is that the chaotic classical dynamics
originate from an intrinsically quantum-mechanical property of the OL: the
band structure. Similar dynamics have been reported for electrons in a
semiconductor superlattice with a tilted magnetic field [56]. In both systems
the one-dimensional lattice gives rise to an anisotropic and energy-dependent
effective mass, which induces mixed stable-chaotic dynamics.

In this chapter, the system is examined using both quantum and semi-
classical theory for various values of 8. The connections between classical
and quantum-mechanical descriptions, as described in chapter 2, are ex-
plored.

The parameters chosen for this study have been used in experiments to
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Figure 4.1: Schematic diagram showing orientation of the OL and tilted
harmonic trap. Ellipses show contours of potential energy in the 2 — z plane
for a sodium atom confined by a harmonic trap with symmetry axes parallel
to the z;- and z;-directions. The contours range from 10 to 40 peV at 10
peV intervals. The z;-symmetry axis of the harmonic potential is tilted at
an angle @ to the z-axis and laser field. Horizontal line indicates scale, where
d is the spatial period of the OL.
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detect Wannier-Stark ladders [7] (see also section 1.3.5), and to create Bose-
Einstein condensates [38] (see also chapter 3). Similar parameters have been
used to observe Bloch oscillations of cesium atoms in an optical lattice [5]
(see also section 1.3.5). It is therefore emphasised that the effects discussed
in this chapter should be accessible to experiment. The classical trajectories
could be observed directly in a similar experiment to that used to detect the
Bloch oscillations of cesium atoms [5]. Moreover, since the initial positions
and velocities of the atoms are well defined and can be tailored at will,
such experiments might also be able to map out Poincaré sections directly.
In addition, it might be possible to investigate the quantised states in the
lowest band by driving transitions to essentially free motion in higher bands

[6, 7.

4.2 The quantum mechanics of the system

The potential energy of a sodium atom in the OL can be described by the

following equation:

Vor, (z) = Vp sin? (%) . (4.1)

For the system considered in this chapter, Vj is 562.52 peV, and the OL
period d = % = 294.5 nm, where A is the wavelength of the laser light.
These OL parameters have been realised in recent experiments [7]. The
form of Vo, (z) is shown in figure 4.2(a).

The potential energy of the sodium atom in the confining magnetic trap
18:

m
Vcrap(xa Y, z) = E ( a%x% + w5y2 + wng) 3 (4'2)

where m is the mass of a single Na atom, and w;, wy and w, are the trap

angular frequencies in the z;, y and z; directions respectively.
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Figure 4.2: (a) Solid curve shows potential energy V(z) of a sodium atom in
the OL. Gray rectangles show energy ranges of the first and second energy
bands of the OL. (b) Ey(p,) dispersion relation calculated for the first energy
band, where p, = hk, is the crystal momentum corresponding to wavevector
ky.
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Equipotentials of the harmonic trap in the z-z plane are shown in fig-
ure 4.1. The z;- and z;-axes correspond respectively to the z- and z- axes
tilted through an angle 6, as shown in figure 4.1. The two sets of coordinates

are related by

zy =xcosf+ zsinf and 2z = —xsinf + zcosh. (4.3)

The angular frequencies were chosen such that the change in magnetic po-
tential energy across one lattice period is much less than the width of the
lowest energy band. This ensures that the band structure is not broken
by the trap. The trap frequencies w, = 1479 rad s~!, w, = 4702 rad s71,
and w, = 2561 rad s~' are taken from experiments on sodium atoms in the
F =1, mp = —1 state [38].!

The quantum-mechanical Hamiltonian for the system is

AP P B maa a2y (z) 4.4
- 2m 2m 2m E (wth WyY wzzt) oL \Z), ( . )
where

X )

be = —ihg (4.5)

R . 0

py:—lﬁa—y, (46)
and

X )

Pz = —iho (4.7)

are the momentum operators. The first three terms in equation 4.4 corre-

spond to the kinetic energy of the sodium atom in the z, y and z directions

!This form of harmonic potential assumes that all of the atoms have the same magnetic
sublevel mp. If there is a mixture of sublevels, all of the atoms follow qualitatively similar
classical paths, but the details of the phase space depend on mp. See section 1.3.3 for a
more detailed treatment of magnetic trapping.
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respectively. The last two terms correspond to the potential energy due to
the magnetic trap and OL.

The reader will notice that there are no coupling terms between y and
the other coordinates. Consequently, the Hamiltonian can be written as the

sum of an operator H; in z and z, and an operator Hs in y, as shown below:

{I:I1 + fIQ} Wz,y,2) = Egy 0z, y,2), (4.8)
where
2 A P, Mmooy 2 2
H = o ot o (waz; +wiz) + Vou (z), (4.9)
2 ﬁi m 9 2
Hy = am + S Wyl (4.10)

and Q(z,y, z) is the eigenfunction corresponding the the eigenvalue of total
energy F;, .. This means that the motion in the y-direction can be sep-
arated from that in the z-z plane. Consequently, the wavefunction can be
considered as a product of a function ¥(z, z) in z and z, and a function Z(y)

in y. This new form for the wavefunction is substituted into equation 4.8:
{8+ B} W(z,2)8() = Buy, 9 (2, 2)E(y). (4.11)
Expanding the bracket gives
H\U(z,2)E(y) + HaU(2,2)E(y) = {Ey. + By} U(z,2)2(y),  (4.12)

where E, , is the energy associated with the motion in z- and z-directions,
and E, is the energy associated with the motion in the y-direction. (N.B.

Egy.. = Eg, + Ey.) By separating the variables, equation 4.12 can written
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as the two independent equations, 4.13 and 4.14:
H\Y(z,2) = B, ,¥(z, 2), (4.13)

and

HE(y) = B,E (). (4.14)

Of these two equations, equation 4.13 is the most important. The solutions
to equation 4.14 are simple harmonic oscillator states. From this point on,
only equation 4.13 will be considered. The following sections discuss the
two-dimensional energy eigenfunctions ¥(z, z) of the Hamiltonian operator

Hy, and then the equivalent semi-classical atom trajectories.

4.2.1 Analysis of the full quantum-mechanical Hamiltonian

The eigenfunctions of the Hamiltonian 4.9 are calculated by expressing them
as a summation of basis states. Since the wavefunctions are two-dimensional,
each basis state is the product of a function in £ and a function in z. This

is summarised in the equation below:
U(z,2) = Y crnbr(@) ful2)- (4.15)
r,n

Once the basis states have been chosen, the time-independent Schrodinger
equation can be expressed as a matrix problem. This is solved by using
standard routines to extract the eigenvalues and eigenvectors of the matrix.
The eigenvalues correspond to the energy levels E; , and the eigenvectors
are the coefficients ¢, ;, from which the wavefunctions can be constructed.
The most crucial difficulty is choosing a suitable basis set. Most impor-

tantly, the technique requires that the basis states are orthogonal. Further-
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more, the number of required basis states, and thus the size of the matrix, is
greatly reduced if the basis set is physically reasonable. In short, the basis
states should ‘look’ like a small part of the wavefunction.

Simple harmonic oscillator (SHO) states were chosen as the functions
fn (2), as they are exact eigenfunctions of the Hamiltonian if § = 0. The

SHO states are given by [57]

1 2
_(muwg\z 1 _mwgz® MWy
ORI Tl (z r ) ’ (4.16)
where
wp = \/w% sin? 0 + w2 cos? 6 (4.17)

and H, is the n*® Hermite polynomial. On calculation of the matrix elements
this choice of basis set is shown to be wise, since it results in the matrix being
composed of just three bands. Consequently, the matrix can be stored in a
compressed form, thus reducing demand on memory and computing time.
As for the functions b, (z), it would seem sensible to use eigenfunctions
of the OL potential. However, these eigenfunctions are Bloch states, which
are completely delocalised. Such functions would be awkward to use, and
it is unclear how they should be normalised. Therefore, Wannier functions
[68] were chosen to be the functions b, (z). Wannier functions are linear

combinations of Bloch states, defined by [58]

us

bo(z) = 2 / ! eirkdgy, (1) dk (4.18)

:% .

d

where d is the period of the lattice, r is an integer specifying the index of
the basis state, and ®(z) is the Bloch state corresponding to wavenumber

k in a particular band. (In this study the energies considered are not high
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enough to allow transitions into the second band. Hence, the functions ®(x)
are Bloch states of the first band of the OL.) In order to completely define
the Wannier functions, it is necessary to specify the phase of the Bloch
functions. The phase was adjusted to satisfy the following two conditions

[58]:
(a) ®_g(x) = ®;(x) This keeps the Wannier functions real.
(b) ®(z) is real at the point where |®(z)|? is largest.

Each Wannier function corresponds to a particular lattice period and
a particular band. The Wannier function b,(z) is peaked sharply around
the r*" well in Vor, (z), and decays rapidly outside it (see figure 4.3). These
properties make them particularly suitable for constructing a basis set, since
they enable the theorist to control the spatial width of the wavefunction, and
also which bands are mixed into it. Furthermore, the functions are physically
reasonable, as they are strongly peaked in a lattice well. Finally, but most
importantly, Wannier functions in different wells and/or in different bands
are orthogonal [58].

In order to calculate the Wannier functions, it is first required to de-
termine the Bloch states for the OL. These Bloch states satisfy the one-
dimensional Schrodinger equation

—R2 d?®y,

. T
S + Vosin® (7) &, = E,®y, (4.19)

where Ej is the eigenvalue corresponding to wavevector k. This equation

can be reduced to the following form:

2oy, .
W + {g —2q COS(QZ‘)} ®, =0, (420)
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Figure 4.3: Wannier function by as a function of z for the lowest band in

the OL potential (equation 4.1).

where
2md? Vo
9= W (Ek - 7) ’
_ _mVod2
1= " 92p2
and
G-
==

(4.21)

(4.22)

(4.23)

Equation 4.20 is a well known equation called Mathieu’s equation [59], and

its solutions are known as Mathieu functions. In this case, it is necessary to

find Mathieu functions which satisfy Bloch’s theorem (see section 1.2):

Oy (z +d) = e*I0y(2),
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or equivalently

B () = up(z)e™?, (4.25)

where u(z) has the periodicity of the lattice. Equation 4.25 can be rewrit-

ten in terms of the variable Z in the following way:

where Py(Z) has the periodicity 7. The quantity v is known as the char-
acteristic exponent, and is related to the wavevector £ by the following
relationship:

y="2 (4.27)

The solutions which obey equation 4.26 are known as Floquet solutions

[59]. They can be calculated using the following summation [59]:

j=o00
F (&)= ) cgelT¥8, (4.28)

j=—o0

The coeflicients cy; are related by the following relationships:

Gm=-T"" form>0, (4.29)
Cm—2
and
Hopm=5"2 " form>0, (4.30)
C—m
where
1
Gm = 77— - , (4.31)
m Vm+2 W
1
H_p= - , (4.32)
V—m—2 V—m—4—V T



and

V=217 (4.33)

(The variables g and g are defined in equations 4.21 and 4.22 respectively.)

Since g is a function of energy, the coefficients V,, cannot be calculated
until the relationship between v (i.e. k, the wavevector) and energy has
been determined. That is to say, the dispersion relation must be calculated.

This is done using the condition
HyGy=1, (4.34)

which follows from equations 4.29 and 4.30. The quantities Hy and Gy
depend on both v and E, through the relations 4.31, 4.32, 4.33 and 4.21.
For each value of v, a bracketing and bisection technique was used to find
the value of energy for which equation 4.34 holds. This technique yielded
the band structure Ej (p,), where p, = hk, shown in figure 4.2.

Once the dispersion relation is known, equations 4.29 to 4.33 can be
used to determine the ratios of the coefficients c¢,,. Their values are then
determined by setting ¢g arbitrarily to one. Finally, the Bloch functions are
obtained using equations 4.28, 4.27 and 4.23, and normalised according

to the following condition:

d
/0 @ (z)|* dz = 1. (4.35)

The Wannier functions can now be calculated using equation 4.18.
Once the basis set has been determined, it is possible to substitute equa-
tion 4.15 into the time-independent Schrédinger equation to derive ex-

pressions for the elements of the Hamiltonian matrix. However, in order to
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proceed, the basis set and the Hamiltonian matrix must depend on the same
set of coordinates. Unfortunately, the Hamiltonian (equation 4.9) presently
contains terms in z; and z;. These must be expanded in terms of = and z.

After simplification, the following Schrodinger equation is obtained:

{I:Iw + H, +v2? + na:z} U(z,z) = EV(z,z), (4.36)
where
A h? 6?
H=—- 2 .
o 5 g2 T VoL (), (4.37)
f R 8% moy 2 .2 2
HZ:_%@-FE( wSln 0+CUZCOS 0)2 , (4.38)
7= 5 (@} cos?0+w?sin’0), (4.39)
n= % sin(20) (w2 — w?), (4.40)

and F = E,, is the energy associated with motion in the z-z plane (the
subscripts have been omitted as E, will not be considered again). The OL
potential Vor, (z) is defined in equation 4.1.

The expansion of the eigenfunctions given in equation 4.15 is now easily
substituted into equation 4.36. In order to produce a more useful expression,
the resulting Schrédinger equation was multiplied through by the complex
conjugate of a particular basis state, i.e. b}, (z) f% (2), and then integrated

over all space. This procedure is shown in the following equation:

[ 5@ 2 ) (o B s 12k 3 b)) d d

r,n

.y / b () £ () S rnbe () fu2) da dz. - (4.41)
T, n
By making use of the orthogonality of the basis states, equation 4.41 can be
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reduced to the following expression:

' ' '
Z Cr,n’PT T4 Crl o/ Qn + Z Cr,n’—lR:L T4 Z Cr,n’—l—lS;; T — ECT’,n’; (4'42)
T T T

where
P =10 Iy (4.43)
1
Q= () (4.44)
RT =/ LNy (4.45)
" 2mw; 3 )
and
' h 4
T =gy | ——/nI " 4.4
Sn n Qth\/ﬁ 3 > ( 6)
where
= / b, (z) Hab, (z) de, (4.47)
T
I;I’T = /b,’fl (z) z%b, (z) dz, (4.48)
T
Igl’T = /b,’fl (z) zb, (z) dz, (4.49)
T
and
wi = w2sin? 0 + w? cos? 6. (4.50)

Equation 4.42 can alternatively be expressed as a simple matrix problem:

H x C = EC, (4.51)

where H is the Hamiltonian matrix and C is a matrix of basis state coef-
ficients, corresponding to energy eigenvalue E. If the wavefunctions were

composed of just four basis states in each axial direction, this matrix prob-
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Figure 4.4: Schematic representation of the Hamiltonian matrix and the cor-
responding eigenvalue and eigenvector problem shown in equation 4.42. The
matrix is drawn for a basis set of four wannier functions and four harmonic
oscillator states. Elements labelled (1) are P™" + Qy,, those labelled (2) are

P those labelled (3) are RY™ or Sﬁ”r, and those labelled (4) are ¢,/ .
Since R, = S;’_T_Il (see text), the matrix is symmetric, and the elements
R and S, are denoted by the same label.

lem would be of the form shown in figure 4.4. N.B. By inspection of equa-
tions 4.45, 4.46 and 4.49, Ry, = S""; hence the matrix is symmetric.
Equation 4.51 is a typical eigenvector and eigenvalue matrix problem,
so standard routines [60] can be used to determine the values of C and E
which satisfy it. The choice of basis states can now be seen to be wise, as
a brief ingpection of equation 4.42 and figure 4.4 reveals that H is banded,
and sparsely populated by non-zero elements. Furthermore, since the matrix
is symmetric, only the upper half above and including the leading diagonal
needs to be calculated. Consequently, it can be stored in a compact format,

and is more easily diagonalized.

In practice, about one hundred basis states were used in each axial di-
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rection. As a result, H was a square matrix of ten thousand rows and ten
thousand columns, and C was a column matrix of ten thousand elements.
The number of basis states was chosen as follows. The theorist guesses the
required number of basis states, and solves the problem 4.51 for C and E.
By inspection of matrix C, the theorist determines the value of |c, | for
high values of r and n, compared to the largest value of |c,,|. If the ratio
of these two numbers is 0.1% or less, then the number of basis states was

deemed sufficient.

4.3 The semi-classical mechanics of the system

The band structure of the OL is a consequence of the translational symmetry
of the OL, (see section 1.2.) This translational symmetry is broken by
the magnetic trap, but the frequencies are sufficiently low such that it has
a negligible effect on the band structure. Hence, it is valid to treat the
trap potential as a perturbation of the optical potential. Time-dependent
perturbation theory yields a very simple equation, which summarises the
semi-classical mechanics [61] (see also section 1.2.1 which describes the semi-

classical model of band transport):

Force due to trap = —VVirap = Rk. (4.52)
where
_ M2 2 2.2
Virap = 5 (wozp +wiz;) - (4.53)

Equation 4.52 accounts for the laser potential via knowledge of the band
structure. Hence the only force directly considered in the equation is that

due to the magnetic trap.
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The atom velocity v is related to the dispersion curve by the following

relationship (see also equation 1.19):

_dE 10E(k)
where p is related to k by
P = (Pg,p,) = ik = A (ky, k) - (4.55)

The variable p; is a crystal momentum, and the variable p, is a true mo-
mentum.
The two semi-classical equations of motion 4.52 and 4.54 infer the

effective classical Hamiltonian

2
H (xa zapwapz) = By (pw) + 2p_’rzn + Vcrapa (4'56)

where Ej (pg) is the dispersion relation of the OL, and Virap is as defined in
equation 4.53.
By using equation 4.53, it is easy to substitute for Vi ,p in equation 4.52

and hence perform the differentiation to derive the following two equations

of motion:

d dk

% = hd—tw = —mw?z; cos § + mwz sind, (4.57)
and

d dk

% = hd—tz = —'mwgajt sinf — 'mwzzt cos 6. (4-58)

Equations 4.57 and 4.58, in conjunction with equation 4.54, determine the
semi-clagsical paths of the atoms. In order to calculate the atom trajectories,

equations 4.57 and 4.58 have to be numerically integrated. The method
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chosen was the fourth-order Runge-Kutta method [60].

The semi-classical trajectories were then used to plot Poincaré sections.
These diagrams provide the theorist with an instant overview of the dynamn-
ics for particular energies and tilt angle 6, (see section 2.2.4). In this case,
the diagrams were constructed by plotting a point on the z-p, plane each
time p, passed through zero from positive p, to negative p,. A wide range
of starting conditions, in terms of position and launch angle, was required

to build up a complete picture of the dynamics.

4.3.1 Locating periodic orbits

An orbit is periodic if the atom returns to the same point in phase space
after a period of time. Locating a periodic orbit, be it stable or unstable,
involves searching phase space for a point that fulfills this condition. This is
a computationally intensive process, not only because of the volume of phase
space to be searched, but also because the atom’s position in phase space
must be checked after each time step to determine whether it has returned
to its starting conditions. The technique chosen is known as the downhill
simplex method by Nelder and Mead [60]. The technique works as follows.
To begin, a guess is made of the starting conditions for a periodic orbit.
In this case, the starting conditions were defined in terms of a position on
the Poincaré section, i.e. p, was initially set to zero, and the coordinates z
and p,, which specify position on the Poincaré section, were considered to be
the variables. In order to obtain the value of x corresponding to a particular
position (z,p,) on the Poincaré section, the atom energy is equated to the

classical Hamiltonian (equation 4.56), i.e.

2
D m
B=FE(p)+ 35+ 5 (w2z] +w22). (4.59)
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This equation is quadratic in z, so there are two possible values of z which

satisfy it. Solving for z (see appendix A) yields

Tr =

2

mz cos 0sinf (wg —w%) + \/% (wg cos? 0 + w2 sin? 0) (E — Ey(0) — P_z)

2m

m (w2 cos? 6 + w2 sin® §)

(4.60)

(N.B. The term Ej (p,) has been replaced by Ej (0) since p, = 0 on the
Poincaré surface of section.) Further algebra (see appendix A) reveals that,

for the smaller value of z

dp dk m . P
d_tw = hd—tw = \/5 (w2 cos? 0 + w2 sin? 6) (E — By (0) - ﬁ) , (4.61)

and for the larger value of z

2

dp, . dk; m . 9. 2 2 cin2 _ bz
E-hﬁ_ \/2 (w2 cos? 6 + w2sin? ) | E — E, (0) 5 ) - (4.62)

Equations 4.61 and 4.62 show that the two possible values of = correspond
to the two conditions ‘%’” > 0 and ‘%’” < 0. The value of  chosen was the
latter, since this condition was used to construct the Poincaré sections.
Having determined the starting conditions, the atom is allowed to trace
out its trajectory until it strikes the Poincaré section again. A measurement
is made of the distance between the initial position on the Poincaré section,
and the final position. This distance between the initial and final positions
is considered to be a function (let us call it T(z,p,)) which depends on the
starting conditions for the atom path. In order to find a periodic orbit, the

variables z and p, must be adjusted to minimise the function T(z, p,) until
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it reaches zero.

The difficulty arises because the distance moved across the Poincaré
section depends on two variables, z and p,. Therefore, it is impossible to use
a simple bracketing and bisection technique to find a minimum in Y(z,p,).
Instead, a simplex is used. A simpler is a geometrical figure which moves
in parameter space. In this case the simplex is a triangle, and it travels
across the Poincaré section searching for minima in Y(z, p,). If it finds one,
it contracts and slides into the minimum. The simplex continues to shrink
until it has found the minimum to the desired accuracy.

The above explanation describes the method for finding simple periodic
orbits which always strike the Poincaré section in the same place. How-
ever, it is possible to conceive of more complicated orbits, which strike the
Poincaré section more than once before repeating themselves. In princi-
ple, separate searches have to be made for these longer orbits. However,
the results in section 4.5 show that only the shortest, simplest orbits affect
the energy level distribution and wavefunction patterns, as expected from
the Gutzwiller trace formula (see section 2.3.1). Hence, searches for highly

complicated orbits are not necessary.

4.4 Results for a trap tilt angle 6 = 0°

Setting € to zero considerably simplifies the Schrédinger equation (equa-

tion 4.36) to

h? 52 h
(4.63)

The term which couples the motion in the z and z direction has disappeared,

so the Hamiltonian can be written as the sum of a function in z and a
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function in z. The Hamiltonian is said to have become separable. This
means that the wavefunction can be written simply as a product of a function

in z, and a function in z. This is shown below:

U(z,z) = r(x)s(z). (4.64)
The function r(z) satisfies
R 92 m 4,
{_%W + o Wal + Vo (a:)} r(z) = Eyr(x), (4.65)

where E, is the energy associated with motion in the z direction. The
function s(z) satisfies

6 m
{—%@ + Ew§z2} s(z) = E,s(z), (4.66)

where E, is the energy associated with motion in the z direction. (N.B.
E=E,+ E,)

Since the Hamiltonian is separable, the dynamics in the 2 and z-directions
are independent. There are no terms in the Hamiltonian which link the two
directions, so no energy can be exchanged between them. Consequently, the
energy in the z-direction and the energy in the z-direction are constants of
the motion. Since there are two constants of the motion, and two degrees
of freedom, the system is integrable. Hence, the motion for § = 0 cannot be
chaotic.

In the z-direction, the sodium atom is a simple harmonic oscillator with
frequency w,, (equation 4.66). In the z-direction, the sodium atom performs
oscillations in a band, driven by the trap potential, (equation 4.65). This

motion is clearly stable. Figure 4.5 shows a brief selection of the wavefunc-
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tions, all of which have a very regular appearance. The wavefunctions have
been overlaid by periodic and quasi-periodic classical orbits to illustrate the
correspondence between the two theories. The dashed ellipses enclose the
classically allowed region for an atom of energy E, where E is the energy
of the eigenstate; i.e. each ellipse corresponds to the trap equipotential
Virap (¢,2) = B — B, (0). 2

The stability of the system for 8§ = 0° is also illustrated by the Poincaré
section, (figure 4.6(a)). The nested ellipses are slices through the tori of
quasi-periodic orbits, and correspond to simple harmonic motion in the z-
direction. The Poincaré section for 8 = 90° (figure 4.6(f)) is very similar, and
evidently also stable. This is because setting € to 90° generates equations
of exactly the same form as equation 4.63, the only difference being that
the frequencies w, and w, are swapped. However, all the other Poincaré
sections in figure 4.6 for intermediate trap tilt angles show more compli-
cated behaviour. All of them contain concentric sets of points correspond-
ing to quasi-periodic orbits, plus the apparently random, even distribution
of points signifying chaotic dynamics. This regime of mixed stable-chaotic

motion will now be considered in more detail.

4.5 Results for a trap tilt angle 6 = 30°

As @ is increased from 0°, the regular, quasi-periodic orbits become dis-
torted. Figure 4.7(a) shows a typical quasi-periodic orbit for § = 0°, and
figure 4.7(b) shows a similar trajectory for 8 = 30°. At 6 = 30°, this type
of trajectory is still quasi-periodic and stable, but now only occupies part

of the phase space. Such trajectories produce the crescent-shaped stable

*The term E, (0) originates from the quantum confinement of the atom in each quantum
well of the OL, and must be included in this expression since it represents the effective
zero of energy for the semi-classical dynamics.

105



— -
T e o m— -

.r'v ’ V 1’

“‘w

W

Ax

\ Py V4
N |i I' 7

~ o l”l 1||| -
“__ _——

Figure 4.5: Energy eigenfunctions for 8 = 0°, overlaid by the corresponding
classical orbits. The upper and lower wavefunctions are overlaid by periodic
orbits, and the middle wavefunction is overlaid by a quasi-periodic orbit.
The dashed ellipses enclose the classically allowed region for an atom of
energy E (see text).
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Figure 4.6: Poincaré sections in the (z,p,) plane through the classical phase
space calculated for atoms in the first energy band of the OL with 8 = 0°
(a), 15° (b), 30° (c), 45° (d), 60° (e), and 90° (f). Each section is constructed
from 220 different trajectories with E = 237.3 peV. Areas of black squares
equal 7.
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islands towards the left hand sides of the Poincaré sections in figures 4.6(b)
and 4.6(c), which correspond to 8 = 15° and 30° respectively. Towards the
right hand sides of figures 4.6(b) and 4.6(c) are regions of phase space which
contain an apparently random, even distribution of points. These regions
are indicative of chaotic behaviour, and are known as chaotic seas.

The chaotic region of the phase space grows quickly as 8 increases from
zero. It occupies a significant fraction of the phase space for 8 = 15°, (fig-
ure 4.6(b)), and is very well developed when 6 reaches 30°, (figure 4.6(c)).
The highly irregular path of a typical chaotic trajectory is shown in fig-
ure 4.7(d). Periodic orbits do exist in the chaotic sea, and an example is
shown in figure 4.7(c). These periodic orbits are extremely unstable, since
an arbitrarily small change in the initial conditions causes the atom path
to deviate rapidly from the periodic orbit, and thereafter follow a highly
irregular path like that shown in figure 4.7(d).

The chaotic seas in figures 4.6(b) and 4.6(c) are enclosed by rings gen-
erated by stable quasi-periodic orbits. These rings are the remnants of the
elliptical phase space structure at § = 0° (figure 4.6(a)). The chaotic sea
contains several additional stable islands, which gradually shrink and then
vanish as § increases.

When € is increased to 45° (figure 4.6(d)), the stable islands within
the chaotic sea disappear, and there are no longer any ring shaped islands
surrounding the chaotic sea. Raising 6 to 60° (figure 4.6(e)) increases the
size of the chaotic sea, which now encloses all of the stable islands. As 6 is
increased beyond 60°, these stable islands grow until they occupy the entire
phase space when 6 reaches 90° (figure 4.6(f)).

The mix of chaotic and stable behaviour in the classical phase space for a

tilt angle of 30° is reflected in the nature of the quantum-mechanical results.
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Figure 4.7: Classical orbits in the # — z plane calculated for atoms in the
first energy band of the OL with energy E = 235.8 peV and 8 = 0° (a)
and 30° (b)-(d). The dashed ellipses show the classically allowed locus for
E = 235.8 peV. Orbits (c) and (d) both start from rest but with slightly
different initial positions. Axes inset show orientation of symmetry axis x;
of the harmonic trap relative to the (z-) axis of the laser field. Horizontal
line indicates scale.
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Figures 4.8(a) and 4.8(b) show eigenfunctions for § = 30°, which have a sta-
ble and a chaotic character respectively. A dashed ellipse has been included
on both figures to indicate the classically allowed locus. Figure 4.8(a) has
been overlaid by a semi-classical trajectory to illustrate the correspondence
between the semi-classical and quantum-mechanical results.

Each wavefunction can be related directly to the classical phase space via
its Wigner function [30, 34]. As described in section 2.3.3 (see equation 2.36),

the Wigner function is defined as

1 © A A\ —ip
W(p,Q)Zh—N/ o (q+§)\11(q—§)e B2 ), (4.67)

—00

where A is a position vector, and N is the number of degrees-of-freedom,

which in this case is two. Setting N = 2 simplifies equation 4.67 to

1 [ [ A A
—00 v —0C0
A

v (w -5 %) e Mt g, (4.68)

If the Wigner functions are to be directly comparable to the Poincaré
sections (figure 4.6), they must be plotted on the same z-p, plane in phase
space. This means that p, should be set to zero, as for the Poincaré sec-
tions. Setting p, to zero for a particular pair of z-p, coordinates implies
two possible values of z for a particular semi-classical energy. These values
of z are determined by equating the energy eigenvalue F to the classical

Hamiltonian (equation 4.56), i.e.

2

m
E = Ey (ps) + 5—72 + 5 (w2z] + wizd). (4.69)

This equation has already been solved for z (see equation 4.60 and ap-
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Figure 4.8: Left: probability density plots in the z — z plane (coordinate
axis shown top left) for eigenstates of the system with 8 = 30° and (n, E,)
— (674, 235.8 peV) (a), (760, 238.0 peV) (b), (670, 235.7 peV) (c), (675,
235.9 peV) (d). The dashed ellipses denote the classically allowed locus.
Classical paths associated with wavefunctions (a), (c) and (d) are overlaid.
Right: the corresponding Wigner functions Wy (z,p,) (white << 0, gray
= 0, black >> 0) with coordinate axes shown top right. The coordinate
ranges of the Wigner functions are approximately -9um < z < 9um and
—7x10"2kg ms™! < p, < 7x10"2kg ms™!, as in figure 4.6(c). Crosses in
(c) and (d) indicate the points where the classical orbits shown on the left
of the figure strike the Poincaré section in figure 4.6(c).
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pendix A). It was shown that the two possible values of z correspond to
the two conditions ‘%’” > 0 and ‘%’” < 0 (see equations 4.61 and 4.62
and appendix A). In order to be consistent with the Poincaré sections,
the Wigner functions were constructed using the latter value of . Hence,

the Wigner function W (z, z,py, p,) (equation 4.68) is reduced to a two-

dimensional function of z and p,, given by

4 [ [ A A
W(z,pz):ﬁ/0 /0 \P*($+7w,z+7z)

v (w - >\2—wz - %) e P  Dyd),.  (4.70)

The two-dimensional Wigner functions corresponding to the the wave-
functions shown in figure 4.8 are shown to the right of the appropriate wave-
function. For ease of comparison, each Wigner function is overlaid with a
dotted outline of the stable islands in the Poincaré section for § = 30° (fig-
ure 4.6(c)). On comparison with the semi-classical phase space, the Wigner
function in figure 4.8(a) is found to be concentrated in the large crescent-
shaped stable island on the left-hand side of the Poincaré section. The
Wigner function extends across all of the invariant curves within this stable
region, suggesting that the wavefunction is associated with all of the stable
orbits in this area of phase space, rather than a single path. Conversely, the
Wigner function below (figure 4.8(b)) is concentrated in the chaotic sea of
the Poincaré section. The extended nature of the Wigner function across the
entire chaotic region shows that the wavefunction corresponds to aperiodic
chaotic motion, which accounts for its complex, diffuse form.

Figure 4.8 also shows that some wavefunctions can be associated with

particular periodic semi-classical orbits. The wavefunction in figure 4.8(c) is
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localised along the stable periodic orbit? (overlaid) that lies at the centre of
the large crescent-shaped stable island on the left hand side of the Poincaré
section (figure 4.6(c)). The corresponding Wigner function is shown to the
right of the wavefunction. It is clearly peaked in the large stable region of
the classical phase space. The point where the orbit strikes the Poincaré
section is marked by a cross, which lies in the region of highest Wigner
function amplitude.

The wavefunction in figure 4.8(d) is localised along the two overlaid
stable periodic orbits (see footnote 3), which reflects the symmetry of the
systemn under 180° rotation. The orbit on the right-hand side strikes the
Poincaré section in the centre of the small stable island within the chaotic

sea (figure 4.6(c)). The left-hand orbit does not strike the Poincaré section,

dps

4+ > 0. At the outer turning point

since when p, = 0 along this path,
of these orbits, the atom paths are bounded by the dashed equipotential of
the harmonic trap. But at the inner turning points, the motion is reversed
by Bragg reflection at the edge of the first Brillouin zone. As before, a
cross has been superimposed on the Wigner function to show where the
orbit strikes the Poincaré section, and again it lies in the region of highest
Wigner function amplitude.

Figure 4.9 shows five wavefunctions overlaid by another semi-classical
periodic orbit. Consider initially the third wavefunction from the top. The
wavefunction is concentrated around the overlaid S-shaped periodic orbit.

In figure 4.10, the peak in the Wigner function (black region) again coincides

with the point where the the orbit strikes the corresponding Poincaré section

3The wavefunction in figure 4.8(c) is a special case in which the probability density
closely resembles the stable periodic orbit at the centre of the stable island in phase space.
More generally, the wavefunctions associated with stable motion resemble orbits away
from the centre of the stable island in phase space, and cannot be associated with a single
stable periodic orbit (see, for example, figure 4.8(a)).
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(marked by a cross). However, this example is different to those shown in
figures 4.8(c) and (d) because the S-shaped orbit is unstable. Figure 4.10
confirms that S-shaped orbit strikes the Poincaré section within the chaotic
sea. This is an example of wavefunction scarring (see section 2.3.2).

Wavefunctions which are localised around particular unstable but peri-
odic orbits tend to appear regularly in the energy level spectra [23]. Theory
predicts that such wavefunctions are spaced at energies of %, where T is the
period of the orbit (see sections 2.3.1 and 2.3.2). This effect is illustrated
for the scarred states shown in figure 4.9. The figure shows a sequence of
five scarred states, overlaid by the S-shaped semi-classical orbit, alongside
the energy level spectra. At the bottom of the figure an unscarred state is
included for comparison. The position of the scarred states is marked by an
elongated solid line in the spectra, which is connected to the corresponding
wavefunction by a solid arrow. The line spectra shows that adjacent scarred
states are separated by an energy of approximately 0.53 peV. This agrees
with the predicted value of 7%, obtained from the orbit period Ts = 7.8 ms,
to within 1%.

The energy level spectrum in figure 4.9 exhibits the complex, aperiodic
distribution characteristic of nonintegrable systems. Despite this complex-
ity, the sequences of scarred wavefunctions illustrate that there are profound
links between the energy level spectrum and the semi-classical dynamics.
The ideas discussed in section 2.3.1 are now applied to investigate the ex-
tent to which it is possible to relate the semi-classics to the energy level
statistics.

The number of energy levels below an energy F is given by the staircase

function

N(E)=) ©(E-E,), (4.71)
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Figure 4.9: Horizontal lines: energy eigenvalues for § = 30°. Longer lines
mark the energies of the scarred wavefunctions shown on the right of the
figure (top five plots) with spatial axes inset. The S-shaped unstable periodic
orbits (black curves) are overlaid on the probability density plots (white =
0, black = high) of each scarred wavefunction. The probability distribution
of an unscarred wavefunction (bottom plot) is shown for comparison. In
each wavefunction plot, the dashed ellipse shows the equipotential energy
curve of the harmonic trap defined by V(z,z) = E, — E(0).
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Figure 4.10: Wigner function W, (z,p,) (white << 0, grey = 0, black >> 0)
corresponding to the third scarred wavefunction from the top in figure 4.9.
Cross indicates the point where the S-shaped scarring orbit crosses the p, =
0 plane with ‘%’” < 0. Dotted lines show the outlines of the stable islands
in the corresponding mixed stable-chaotic phase space (which is shown in
detail in figure 4.6(c)).
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where © (E — E,,) is the step function of unit height (see section 2.3.1).
The solid curve in figure 4.11(a) shows N (E) for N (E) < 20 and 6 =
30°. The curve contains sudden steps, which originate from the energy
quantization. However, this jagged structure is superimposed on a smoothly-
varying background. Hence it is possible to consider the density of states
as the sum of two terms: a slowly-varying, local average density of levels,
Dy (E), and a rapidly-oscillating contribution, Dpg (E). This idea is more

fully explored in section 2.3.1, and is summarised in the equation
D(E) = Dav (E) + Dos (E). (4.72)

The slowly-varying contribution to the density of states can be linked
to the semi-classics via the Weyl formula. The Weyl formula predicts a
system’s density of states by simply integrating over the available phase
space at a particular energy, (see section 2.3.1). It is stated below for a two

dimensional system:

1
Day (B) =5 [ 1B~ H(w prp)} dudsdpo dp, (47)

where § is the Dirac delta function.

A difficulty arises since the Hamiltonian for this system is most conve-
niently expressed in terms of the tilted spatial coordinates z; and z;, (see
equation 4.9). However, the integrals with respect to z; and z; can be related

to those with respect to  and z by

/5 {E — H (x4, 2, g, P2) } dxy d2g dpg dp, =

/ §{E — H (2,7 pe,ps)} 13| de dz dpg dp,, (4.74)
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Figure 4.11: (a) N(E) (solid curve) and N4y (E) (dashed curve) plots cal-
culated for 8 = 30°. (b) Fourier power spectrum of Dpg (F) in the range
224.6 peV < E < 247.1 peV, shown as function of time 7. Inset: peri-
odic atom orbits corresponding to the peaks marked by solid arrows. El-
lipses show the equipotential energy curve of the harmonic trap defined by
V (z,2z) = E — Ey (0), with E = 237.3 peV. The origin of peaks 1-3 (dotted
arrows) is described in the text.
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where |J| is the determinant of the Jacobian matrix

Ozt Omt

J=| % 9% |, (4.75)
Ozt Ozt
dx Jz

By making the appropriate substitutions using equation 4.3, the determinant

of the Jacobian can be evaluated as shown below:

cosf sinf 9 9
13| = = |cos” 6 + sin” 4] = 1. (4.76)
—sinf cosf

This means that the integral with respect to z; and z; is equivalent to the

integral with respect to z and z. Hence, equation 4.73 can be rewritten as

1
Day (E) = 2 / 0 {E — H (x4, 2¢, P, Pz) } iy dzy dpy dp,. (4.77)

The semi-classical Hamiltonian (equation 4.56) is now substituted for H

8o the integration can be performed.

DAV(E):hl—g/pz/pw/zt/wt
2 1

1
) {E — Ey(pg) — 5—72 - imwixf - imwgz?} dzy dzy dpy dp,.  (4.78)

Due to the change in variables from z to z; and from z to z;, equation 4.78
contains no terms in . As a result, the density of states is independent
of tilt angle. Evaluating the integral in equation 4.78 (see appendix B for

details of calculation) yields

Th
2 2 d
D E)=4/——F0F— E—-F . 4.
w (B =\ [ VE= B @)

119



It is more convenient to express this in terms of the number of states, which

is related to the density of states by

E—-F
Nuv (E /DAV JdE =/ — 3wwwzh7r/ { b(pw)}2dpw

(4.80)
The integral in equation 4.80 has to be evaluated numerically, since Ej (p;)
is not expressible in closed form.

Figure 4.11(a) shows N (E) (solid curve) and N4y (E) (dashed curve)
plotted on the same axes. Even though N4y (E) is derived from an effec-
tive classical Hamiltonian (equation 4.56), it gives a good approximation
to the N (E) staircase function obtained from full quantum-mechanical cal-
culations. This supports the premise that a semi-classical picture of band
dynamics is valid. Although N (E) closely follows the smooth N4y (E)
function, it oscillates about it in a sharp, erratic fashion. This reminds the
theorist that the density of states is a combination of two components: a
smooth, slowly-varying component, and an irregular, rapidly-varying com-
ponent. This idea was explained in section 2.3.1, and outlined in equa-
tion 4.72.

Theory predicts that periodic orbits impose periodic modulations in
Dos (E), which are known as Gutzwiller fluctuations (see section 2.3.1).
They have an energy period of %, where T is the period of the orbit respon-
sible. The importance of periodic orbits has already been demonstrated
in the example of the S-shaped scarred wavefunctions (figure 4.9), which
occurred regularly in the energy level spectrum. In order to identify the

periodic fluctuations in Dgg (E), its Fourier transform F (T') was taken as
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follows:

Eny _iET Eny _iET
F(0)= | " Dos(B)e Fdn = | D ()~ Day (E))eFdb.
Ny Ny

(4.81)
The theorist chooses a suitable energy range over which to perform this
integration. The limits of the integration must be sufficiently far apart for
the energy range to contain many Gutzwiller fluctuations. However, the
limits must also be sufficiently close together to ensure that the phase space
structure does not change radically over the range of energy.
D (E) is simply a stick spectrum, so it can be represented by a sum of
d-functions as shown in equation 4.82. A Welch window function W (E) [60]

has also been included to suppress ringing in the Fourier transform.

En, | N2 -
F(T):/ > 6(E—E;)— Day (BE)| W(E)e = dE,  (4.82)

Eni |j=M
where
2FE — En, — En )2
W(E)=1- 2 L. 4.83
() =1 - (22 2o (1.83)
It follows directly from equation 4.82 that
N> iE;T En i
F(T)=Y W(EB)e + — [ Day(EyW(E)e % dE, (4.84)
J=Ni BNy

where D 4y (E) is given by equation 4.79.

F (T) is plotted in figure 4.11(b). The three peaks marked by solid ar-
rows occur at T = 2.50ms, 3.08ms and 7.77ms. These times correspond to
the periods of the orbits shown as insets in figure 4.11(b). The two shortest
orbits are stable, and were previously shown in figure 4.8. The longest of the

three orbits is the familiar unstable S-shaped orbit, studied in figures 4.7(c)
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and 4.9. The peaks in the Fourier transform have a finite width since the
periods of the orbits gradually change over the range of energies studied.
There are three additional peaks indicated by dotted arrows, labelled 1-3.
Peaks 1 and 3 are harmonics of the maxima at 2.50ms and 3.08ms respec-
tively. There is no periodic orbit corresponding to peak 2. It probably

originates from complex ‘ghost’ trajectories [24] (see section 2.3.2).
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Chapter 5

Creation of solitons and
vortices by Bragg reflection
of Bose-Einstein condensates

in an optical lattice

5.1 Introduction

Over the past three years, several techniques have been developed to create
and detect topological excitations in dilute gas Bose-Einstein condensates.
In analogy to the famous ‘rotating bucket’ experiment with liquid helium,
it is possible to create vortex lattices by rotating the condensate [52, 53].
More recently, Strecker et al. successfully created chains of bright solitons
by inverting the sign of the scattering length [62]. Many of the techniques
involve using laser potentials to modify the phase or density profile of the
condensate. Some groups used the homogeneous dipole potential of a laser
beam to imprint a phase shift of approximately = on one side of a conden-
sate [47, 48]. The resulting phase slip produces a dark soliton. Burger et

al. [63] later used a focused laser to create a local minimum in a condensate
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on the scale of the healing length, which then evolves into pairs of solitons.
Other groups used similar techniques, but moved the laser potential in or-
der to produce pairs of vortices with opposite circulation [64, 65]. In this
study, Bragg reflection is proposed as a new mechanism for manipulating
the condensate phase and density, hence producing solitons and vortices.

This chapter discusses dilute rubidium (8’Rb) gas condensates, which
are accelerated through the lowest band of a one-dimensional OL. This may
lead to Bloch oscillations, depending on the system parameters. Experi-
ments have confirmed that for low equilibrium peak densities, typically 1014
cm~3 or lower, 8’Rb condensates undergo Bloch oscillations in OLs [42, 66].
Hitherto, numerical studies have not related such motion to changes in the
internal structure of the condensate [67, 68, 69]. This chapter uses the two
and three-dimensional Gross-Pitaevskii equations to examine the topological
excitations produced via Bragg reflection, and the subsequent breakdown of
Bloch oscillations.

The system studied in this chapter is summarised in figure 5.1, and
shall be referred to as system A. A dilute gas condensate of 1.2 x 10* 8"Rb
atoms is prepared in a one-dimensional OL and a harmonic magnetic trap.
The potential energy profiles due to the OL and the trap are described

respectively by the following equations:

. o (T
VoL (z) = Vp sin? (7) , (6.1)
m
Viap(z,3) = ™ (w202 + 24P+ u257) 52

Figure 5.1(a) shows the potential energy profile due to the OL, (solid line).
The depth of the OL V = 1.65FEg = 23.3 peV, and period d = % = 397.5

nm, are taken from experiment [69]. The periodic potential of the OL pro-
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duces a band structure, which was calculated using Mathieu functions, as in
section 4.2. The energy range of the lowest band is indicated in figure 5.1(a)
by a grey rectangle. As the figure shows, the width of the lowest band, Agw,
is 0.67 Eg (10.0 peV). The bottom of the second band is above the top of the
OL potential at 2.15 ER (32.2 peV). The trap frequencies of w, = 27 x 50
rad s~! and wy = w, = 27 x 35 rad s~! are attainable in experiment [42, 69].
In figure 5.1(a), the trap potential energy along y = z = 0 (dotted line) is
plotted on the same axes as the OL potential energy. The reader will notice
that the change in trap potential across each lattice period is much less than
the band width of the lowest band. Consequently, the harmonic trap only
weakly perturbs the band structure.

At the start of the simulation (¢=0) the condensate is in the ground
state of the OL and harmonic magnetic trap. (The method of calculating
the ground state is described in section 5.3.) Figure 5.1(b) shows the one-
dimensional profile of this condensate ground state along y = z = 0. The
reader will notice that the density profile of the condensate is modulated
by the peaks and troughs in the OL potential. The peak density is at the
trap minimum, which is initially at £ = 0. At time ¢ = 0, the harmonic
trap is displaced along the OL direction, which is defined as the z-axis,
(see figure 5.1). Displacing the trap increases the potential energy of the
condensate, hence driving it into oscillation. If the trap is displaced by a
distance Az (see figure 5.1(b) inset), the increase in the potential energy
AV of an atom in the condensate can be approximated as

1
AV ~ Emwg (Az)?. (5.3)

This potential energy is then converted into kinetic energy as the condensate
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Figure 5.1: (a) Solid curve: potential energy profile of the OL. Grey rectan-
gle: energy range of the lowest energy band. Dotted curve: z-dependence
of the harmonic potential energy for y = z = 0 (p = 0). (b) Initial density
profile of the condensate, along y = z = 0 (p = 0). Inset: density profile and
z-dependence of the harmonic potential energy (dotted) immediately after
trap displacement.
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is accelerated up the first energy band. If the condensate is to reach the top
of the band and undergo Bragg reflection, the increase in potential energy
AV must equal or exceed the band width Agw. This implies the following

lower limit on the trap displacement:

2Apw

Az > 3
mw?

=15 pm. (5.4)

The dynamics of the condensate, both in terms of its centre of mass
motion and its internal structure, are wildly different depending on whether
the trap displacement is below or above this critical value. The two regimes

will be investigated in sections 5.4 and 5.5 respectively.

5.2 Numerical integration of the Gross-Pitaevskii

equation

In this study, the dynamics of Bose-Einstein condensates are simulated by
numerically solving the Gross-Pitaevskii equation. This equation assumes
that the mean interparticle spacing is much greater than the scattering
length, and that the condensate is at zero temperature (see section 3.4).
The condensates considered here have densities of order 10 c¢cm™3, which
implies a mean particle spacing of approximately 200 nm. This is approxi-
mately forty times the scattering length ¢ = 5.4 nm. The latter agsumption
that the condensate is at zero temperature is, in practice, a good approxi-
mation for temperatures well below the transition temperature.

For a condensate in a three-dimensional harmonic oscillator potential,
the transition temperature is given by [11]:

F

1
TC ~ 4.5 (m) N3 I].K, (55)
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where F is the geometric mean of the three oscillator frequencies (see sec-
tion 3.2, equation 3.21). For the parameters specified in section 5.1 the
transition temperature is 40nK.

The time-dependent Gross-Pitaevskii equation, as stated in section 3.4,

equation 3.41, is

2
w0 g ) 4 Ve 9 @ Do PR ), (56)
m
where
Uy = 47rh2a. (5.7)
m

(For 8"Rb the scattering length ¢ = 5.4 nm.) In this study, it was most
convenient to incorporate the external potential and interaction terms into

one effective potential. Hence equation 5.6 becomes

LO0p(r) R
ih = _—%v%p (r)+V (r)y(r), (5.8)
where
V (1) = Vet (x) + Uo ¢ ()| (5.9)

For this system, the external potential Ve (r) is composed of an optical

lattice term and a harmonic magnetic trap term:
‘/ext (I‘) = VOL (1‘) + %rap (I‘) . (510)

In order to solve equation 5.8 in two dimensions, it is expressed in the

following form:

ov R 0% R 92
) e L L O v 11
i ot 2m 0x2  2m Oy? +Vi(ey) T, (5:.11)
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where

V (2,y) = VoL() + Virap(2,y) + Uy |9]*. (5.12)

Initially, three-dimensional calculations appeared impossible due to the
limitations of computer speed and memory, so equation 5.11 was solved to
generate two-dimensional results. These calculations were later extended
to three dimensions by exploiting the cylindrical symmetry of the problem,
hence avoiding making more demands on computer memory and time. Since
three-dimensional simulations are closer to the reality of current condensate
experiments, this report shall put most emphasis on the three-dimensional
calculations, and only briefly describe how the two-dimensional calculations
compare.

The three-dimensional calculations were performed by expressing equa-
tion 5.8 in cylindrical polar coordinates:

"ot T To2m 9p2

Loy R (0% Py 10y 1 0%
o {Wwpﬁ;a—p*?a—w

} +V(z,p) 1, (5.13)

where p and ¢ are defined by

p=Vy?+22, (5.14)

@ = tan~" (g) : (5.15)

Since the external potential is cylindrically symmetrical around the z-axis,
there are solutions of equation 5.13 which are independent of ¢, as well
as solutions which are ¢-dependent. This study examines the evolution of
the lowest energy state of the optical lattice plus trap potential, so only
@-independent solutions are considered. As a result, 1) can be expressed as

a function of £ and p, and the 62—%’ term in equation 5.13 is equal to zero.
Jp
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Hence equation 5.13 becomes

L OV (z,p) _
ih ot - 2m

ﬁ_2{32¢(x,p)+32¢(w,p)+}3¢(x,p)}
Oz? dp? p Op

+V (z,p) ¢ (z,p). (5.16)

If the p’s are replaced by y’s, this equation is very similar to the two-
dimensional equivalent (equation 5.11). The only difference is the extra
%ﬁ”’) term in equation 5.16. The calculations in this report show that this
term rapidly becomes small as p increases from zero, and has little effect
on the dynamics. Consequently, the general behaviour in two and three
dimensions is essentially the same. Since this report concentrates on the
three-dimensional results, the remainder of this section will be dedicated to
solving the three-dimensional problem (equation 5.16). The method used
to solve the two-dimensional problem (equation 5.11) is exactly the same,
the only difference being that the %ﬁ’p) term is not present in the two-
dimensional case.

The non-linear |¥|? term makes the Gross-Pitaevskii equation impossible
to solve analytically, except in a few very simple cases. Hence, equation 5.16
must be integrated numerically to determine the time-dependent dynamics
of the system. This is done by representing the condensate on a grid of
points, and calculating the wavefunction at finite time steps. Consequently,
the derivatives are approximated from discrete points and the differential
equation 5.16 becomes an approximate finite-difference equation. This is
known as the finite-difference method.

Every time step, a small change to the wavefunction is calculated. Thus
the wavefunction evolves in time. In order to maintain a simple relationship

between the wavefunction at time step n and the wavefunction at time step
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n + 1, the first order temporal derivative in equation 5.16 is approximated
by
1
0wy Vi -9
at Ay ’

(5.17)

where A, is the size of each time step, and the integers 5 and [ are the
coordinates of a particular point on the rectangular wavefunction grid in
the x and p-directions respectively. The spatial derivatives with respect to

z are approximated by taking the Taylor expansions

o A2 5?0
. ~ W, A, — —= ___ 5.18
i+l R Yt Be o j,l+ 2 027 |’ (5.18)
and
ov A2 520
U, 12U, —A, — =z ___ 5.19
=1, 7l T Oz jyl+ 9 8£L‘2 il ( )

where A, is the grid spacing in the z-direction. Adding equations 5.18 and

5.19 yields
0% \I/j+1 1= 2\:[1_” + \Ilj—ll
—| = : : = (5.20)
022 |, A2
Subtracting equation 5.19 from equation 5.18 yields
ov Wyt — U1y
—| == 5.21
ox il 20, (5.21)

Using approximations 5.17, 5.20 and 5.21, together with equivalent expres-

sions for derivatives with respect to p, it is possible to rewrite equation 5.16
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as finite difference equation. The result is

—+1 .

Ui~V ik (VR - 29+ TR +
At 2m A%

B (W T2V V) | ih (U2, — 0% ,) —

2m A2 4mpA, it Pt ﬁ ¥

l\Iln

(5.22)

where A, is the grid spacing in the p-direction.

The reader will notice that every W value on the right-hand side of equa-
tion 5.22 corresponds to the condensate wavefunction at the n'® time step,
which means that the kinetic and potential energy terms are calculated from
the wavefunction at the n' time step. Since U” is known, the right-hand side
of the equation can be immediately evaluated, and the equation solved for
U+l Equation 5.22 is known as an ezplicit scheme, as it can be explicitly
solved using quantities already known. However, it would be equally valid
to calculate the kinetic and potential energy terms from the wavefunction
at the (n + 1) time step, by replacing all the U™’s on the right-hand side
of equation 5.22 with ¥™+1’s. In which case, the finite difference equation

is called an implicit scheme, and is given by

+1 . 1 1 1
R it T (e it T it VAN
At 2m A%
. n+1 n+1 n+1 .
ﬂ ‘I’]l+1_2‘1’ +\Ijj,l—1 n ih ( n+l \Iln—l—l)__vn—l—l gntl
2 A% 4mpAp 5l+1 51 hJ gl
(5.23)

Solving an implicit scheme is far more difficult than solving the corre-
sponding explicit scheme. This is because explicit scheme equations contain

just one grid-point value of ™! and so they can be solved individually.
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In contrast, implicit scheme equations contain several grid-point values of
U™+l and so are coupled. Both schemes have the disadvantage that dif-
ferent sides of the equation are centred at different times. Specifically, the
left-hand side of the explicit scheme (equation 5.22) is centred at time n+ 3,
while the right-hand side is centred at time n. The left-hand side of the im-
plicit scheme is also centred at time n+ %, but the right-hand side is centred
at time n+ 1. In order to create an equation which has both sides centred at
the same time, the theorist must take an average of the explicit and implicit
schemes. This is called the Crank-Nicolson method [60], which gives the
finite difference equation
v - O _ lx
Ay

+1 +1 +1
[2mA2 { Wit =295 + T 1l) + (074 — 205, + 07 u)}
{(wnl =20t 4 0t ) 4 (W, — 203+ 03 ,) )

ih
+1 +1
dmpA, {( ;LJH - \IJ;Ll 1) i — \IJ;'L,Z—I)}

i
hvj’g“qz"“ Vi ;{l] . (5.24)

2mA2

Equation 5.24 can be rearranged so all the ¥™t! terms are on the left-
hand side, and all U™ terms are on the right. The equation can then be
rewritten as a matrix problem and solved for ¥™*!. However, although
this method is, in principle, sound, in practice the matrices rapidly become
huge as the resolution of the grid increases. Unfortunately, for the system
considered in this report, it was found that computer time and memory
forbid an adequate grid resolution.

This problem was overcome by using the time splitting or operator split-

ting method [60]. In order to explain this technique, equation 5.24 has been
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rearranged as follows:

Ay
\IJ"+1 \I,nl + 7)(

1h 1 L L
o (2w v w20 w07}

it
{(wnl =20t 4 0t ) 4 (W, — 203+ 03 ,) )

2mA2
ih
+1 +1
dmpA, {( ;Lvl+1 - \IJ;LI 1) +( G — ],l—l)}

tignil
hV]" \IJ" 5 i ;‘l] . (5.25)
This equation is of the form:
Ut = 0 4+ AT, (5.26)
where
Ay
AT = —
5 X

ih 1 L .
[ { (32— 20 w) + (00— 20 1)
ih
+1 +1 +1
2mA2 {(\IJ;L’Z‘H B 2\11” \IJ;LZ 1) + G — 295 + UG 1)}
ih n—l—l n+1
dmpA, {( Jl+1 \IJJl 1) + VE JA+L J,l—l)}

V"+1\1:"+1 Lym "] (5.27)

TR goIL T

The single time step in equation 5.26 can be split into two steps by creating
1

an intermediate state \IJ;L?_2 between the states \Il;.‘,l and \IJ;‘?'I The first step

maps the wavefunction at time step n to that at time step n + %, and the

second step maps the wavefunction at time step n + % to that at time step
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n + 1. This is more easily explained mathematically. The first step is

1
)7 =0+ AT, (5.28)
and the second step is
ol = @"*2 + AT, (5.29)

In order for equations 5.28 and 5.29 to be equivalent to equation 5.26, A¥,
and AU, must satisfy
AT =AU, + AT, . (5.30)

Applying this splitting technique to equation 5.25 produces the following
equations, which are equivalent in form to equations 5.28 and 5.29:

n+y Ay ih n+ n-l— n+
Vit =ty [2mA2 (‘I’Hfz 2057 + 05 12’) -
T

ih ih
QmA% ( A+l T 2\11 +\IJ]l 1) + 4mpAp (\IJ;'L,H—I - \IJ;'L,Z—I)

) n—l—l n—l—l 7
_%ijl 2\11” 2 -5 jT,Ll ?,l]’ (5.31)

and

1 n+ At ih n+i n+ n+
Vi =Wt [2mA2 (‘I’Hﬁz 20,7+ 12l) -

ih in
+1 +1 +1 +1 +1
2mA2 (\I’ZH -2+ Vi 1) " am pA, (‘I’zlﬂ e 1)

i "+ n+g n+1 n—|—1
—5: Vi \IJ]7l2—ﬁV]7 v ] (5.32)

Careful inspection of equations 5.31 and 5.32 reveals that equation 5.25

has not been split quite as simply and exactly as the illustration in equa-
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tions 5.28 to 5.30. Consider the square bracket in equation 5.25. The first
line (uppermost) in the bracket corresponds to —2— terms, the second line
corresponds to Y terms, the third line corresponds to 3‘1’ terms, and the
forth line (bottom) corresponds to potential terms. The second line has
indeed been split exactly between the two equations. The first half of the
second line can be found in equation 5.32, while the second half can be found
in equation 5.31. The third line has also been split exactly. However, the
8 ‘I’ terms in equation 5.25 contain terms in U™ and terms in ¥™*! but
these are not found in equations 5.31 and 5.32. In their place are terms in
g3, However, a little thought will convince the reader that the sum of the

2y
dz2

%27‘%’ terms in equation 5.25. Similarly, the potential terms in equation 5.25

terms in equations 5.31 and 5.32 is a very close approximation to the

are not the exact sum of the potential terms in equations 5.31 and 5.32.
However, again they are are very close to being so.

So why have the terms in equation 5.25 not been split exactly between
the two equations 5.31 and 5.327 The answer is that the chosen split
allows the equations 5.31 and 5.32 to be written as two tridiagonal matrix
problems. These are far easier to solve, and require much less memory than
general matrix problems. Hence the computing problems associated with
equation 5.24 have been overcome by the operator splitting technique.

Rearranging equation 5.31 yields

4p It gl

) 1 ) 1A ) )
(zc,, - %) \If"l 1+ (1 — 245, — 4% Vu) ‘I’”z + (ch + P ) ‘I’nl+1 )

(5.33)

. . 1A 1 L L
- ZCz\I’] 1,1 + (1 + 24, + —tv'nﬂ) Ui - ZCz‘I’;L:fz =
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where S — m 3 (534)
z
hA;
= __"* 5.3
a‘nd gp 4mA% b ( )
RA
and v, = ﬁ. (5.36)

Similar simplification of equation 5.32 yields

4p It gl
i
4h

iy A iy
(% - sz) o+ (1 + 2ic, + —tv."“) o 4 (—% - zc,,) v

1
= 'ng\Il_;Lj 2,l + (1 — 2i¢, —

1 L1 11
VjT?) U iU 2. (5.37)

Equations 5.33 and 5.37 can be written in the form of the two matrix
equations

AU = B, (5.38)

and

AU = Byt (5.39)

where A, B, A’ and B’ are matrices with three non-zero diagonals, and ¥
is a column matrix. In order for the operator splitting method to be useful,
the matrices A and A’ have to be tridiagonal. This is only possible if the
method of storage of the wavefunction grid in the column matrix ¥ changes
between the two steps. When evaluating equation 5.38, the i*® value of the

column matrix ¥ and the grid position (4,!) are related by
i =1xGridW+j, (5.40)
and when evaluating equation 5.39 they are related by

i=7 x GridH +1 (5.41)
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where GridW and GridH specify respectively the number of points in the z-
and p-direction of the wavefunction grid.

The matrix problem in equations 5.38 and 5.39 can now be written in
the form:

MU = C, (5.42)

where M is tridiagonal, and ¥ and C are column matrices. The problem is
solved by writing matrix M as the product of two matrices L and U, where
L is lower triangular (has elements only on the leading diagonal and the
subsequent sub-diagonal), and U is upper triangular (has elements only on

the leading diagonal and the subsequent super-diagonal):

M=LxU. (5.43)

By substituting the product L x U for M as shown in equation 5.44, the

matrix problem 5.42 can be split into the two simpler matrix problems 5.45

and 5.46.
MU =(LxU)T=Lx(Ux¥)=C. (5.44)
If the column vector Y is defined by Y =U x ¥ | (5.45)
then equation 5.44 can be rewritten as L x Y = C. (5.46)

So rather than solving equation 5.42 for W directly, it is completely equiv-
alent to solve equation 5.46 for Y, and then solve equation 5.45 for W. But
what is the advantage of doing so? The advantage is that triangular matrix
problems are trivial to solve. The algorithm to solve (say) equation 5.46
works simply by evaluating the elements of Y in ascending order of index.
The theorist finds that, when solving for a particular element of Y, only ear-

lier elements of Y are needed for the calculation. This technique is known
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as LU decomposition followed by forward and backward substitution [60]. It
is a robust method that can be applied to any type of square matrix, but is
particularly efficient for tridiagonal matrices.

The reader may have noticed that one problem remains. Consider equa-
tion 5.38. If the equation is to be solved for \IJ"*'%, matrices A, B and "
must be known. However, the evaluation of matrix A requires the value of

n+i c . 1 . .
V,; ?, which in turn requires P"*t2. In order to resolve this, U™ is used to

1
estimate anl+2, which is in turn used to obtain an estimate of ¥"+2. This

estimate is called T"+2. T"+3 is then used to calculate a better estimate
of V]T_%. In effect, this process is a two step iteration towards U"+3. This
is more easily explained in mathematical form. The following four matrix
equations 5.47 to 5.50 inclusive summarise the calculations performed dur-
ing one time step. (N.B. In the following four equations, the round brackets

denote “is a function of”.)

A (I") T = B (1" ¥" = C (5.47)

A (\"13"+%) g™z = B (IM) U = C (5.48)

A (\1:"+%) gntl — B (\11"+%) g™tz =D (5.49)
A (\"13"“) gl — B/ (\Iz"+%) g™ =D (5.50)

The accuracy of this method depends on the size of the time steps and
grid spacings. The time steps have to be small on the time-scale of the
condensate motion. Typically, their values are of the order of microseconds.
The grid spacings in the z-direction have to be much less than the period
of the optical lattice. More generally, the grid spacings have to be small

on the scale of the healing length, so that features such as vortices can be

139



clearly resolved. These conditions are usually approximately equivalent, and

typically require a grid spacing of the order of ten nanometres.

5.3 Calculation of the ground state via an imagi-

nary time algorithm

In order to simplify the evolution of the condensate as much as possible
and eliminate any spurious effects, great care was taken to ensure that the
condensate was in its ground state at time ¢ = 0. The ground state chosen
was correct for the potential of the OL plus the undisplaced harmonic trap.

The ground state was calculated using an imaginary time algorithm [70].
This is an iterative technique that converges on the ground state, provided
that it begins with a reasonable initial guess of the ground state. It uses
the same equations as the real time simulations, except that every A; is
replaced by —iA;. Hence, the simulation is said to be running in imaginary
time. Specifically, equations 5.47 to 5.50 are solved as for the real time
simulations, but the elements of A, B, A’ and B’ are slightly different due
to the replacement of the A;’s. By inspection of A, B, A’ and B’, the
reader will conclude that this operation results in A, B, A’ and B’ being
completely real. Consequently, the ground state is completely real, which
reduces the computing time required to calculate it.

The method can be understood by expressing the initial guess Wyyess as
a sum of the eigenfunctions ¥,, of the condensate in the combined harmonic

trap and OL potential:

iEnt

\IJguess = chq’ne_ o (5'51)
n

where E, is the energy of eigenstate ¥,,, and ¢, is a weighting factor which
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determines the size of ¥,,’s contribution to the summation. If the wavefunc-
tion W gy, is to evolve in imaginary time, ¢ must be replaced by —it. This

converts equation 5.51 into equation 5.52:

Ent

Ugness = D cnUne™ 7 . (5.52)
n

Now, the magnitude of each term in the summation is decaying exponen-
tially in time. However, since the ground state Wy has the lowest energy,
it decays slower than all the other eigenstates of the system. Hence, if the
wavefunction is allowed to evolve in imaginary time for a long time, eventu-
ally only the contribution from the ground state will remain. Of course, the
ground state is also decaying in time, albeit slower than the other states, so
the wavefunction has to be re-normalised after each iteration. Otherwise,
the wavefunction tends to zero.

The ground state must be normalised to the total number of atoms in

the condensate N, as shown below:

///|\P|2pdpdxd<p:N. (5.53)
pJzdp

Since the wavefunction is independent of ¢, integration with respect to ¢

merely produces the constant 27. Hence, the normalisation condition is

N
|2 = . .54
/w/,,' Ppdpda=__ (5.54)

A slice through the condensate ground state along p = 0 is shown in fig-
ure 5.1(b). The modulations in the probability density are due to the OL
potential energy profile.

In the case of the two-dimensional calculations, the wavefunctions are
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two-dimensional functions of z and y, and independent of z. Consequently,
the integration with respect to z merely produces a constant L,, which is
the characteristic length of the condensate in the z-direction. Hence the

normalisation condition is:

N
// W% dz dy = - =Iay (5.55)
yJz z

L, is unknown, so the spread in the z-direction is taken to be the same as

the spread in the y-direction, which can be calculated as follows:

L,=L,= 2\// / U*y2Wdy dy . (5.56)
yJzx

Since L, changes during the evolution in imaginary time, so does I ,. How-

ever, this does not effect the algorithm’s success in finding the ground state.

The evolution of Ly, and the corresponding values L, and L,, were mon-
itored during imaginary time simulations. When the fluctuations of these
numbers became very small compared to their magnitude (about 0.1%), the
algorithmm was deemed to have converged. Typically, this required a simula-

tion of approximately 10 ms in imaginary time.

5.4 Results for a ‘small’ trap displacement of 10
pm

As discussed in section 5.1, the required trap displacement for the condensate
in system A to reach the Brillouin zone boundary is 15 um. For displace-
ments lower than this critical value, the condensate cannot undergo Bragg
reflection or Bloch oscillations. Consequently, the condensate oscillates back

and forth in the harmonic trap potential.
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In this parameter regime, the results of the two and three-dimensional
simulations agreed to an accuracy of order 0.1%. Consequently, only the
results of the three-dimensional calculations are presented.

Figure 5.2(a) shows how the mean (centre-of-mass) position of the con-
densate, < x >, varies in time for a trap displacement of 10 ym. When
the trap is displaced at ¢ = 0 ms, the condensate is in the ground state
of the OL and undisplaced harmonic trap. The trap displacement raises
the potential energy of the condensate by AV, which can be approximated
by the relation 5.3. As ¢ increases from zero, the condensate begins to
travel in the z-direction, into the harmonic trap potential well, converting
its newly-acquired potential energy into kinetic energy. This accelerates the
condensate up the first energy band. At ¢ = 5.3 ms, the condensate reaches
the bottom of the harmonic trap potential well, and begins to ride up the op-
posite side, converting its kinetic energy back into potential energy. When ¢
= 10.6 ms the condensate reaches the position < £ > = 20 pym, and all of its
kinetic energy has been spent climbing the opposite side of the trap. It then
falls back into the trap centre. The peak-to-trough amplitude of the motion
is simply double the trap displacement, indicating that the condensate is
undergoing simple periodic trap oscillations.

Inspection of figure 5.2(a) also reveals that there is no damping of the
oscillations, which infers that there is no dissipation of the energy associated
with the centre-of-mass motion. This is confirmed by the observation that
there are no changes in the internal structure of the condensate. The two
insets in figure 5.2(a) show the condensate at t = 10.7 ms (left inset) and ¢
= 21.3 ms (right inset). Both density profiles are the same as that at ¢ = 0
ms.

The results can also be interpreted by studying the distribution of the
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Figure 5.2: (a) (z) versus t for system A with Az = 10 ym. Insets: grey-
scale plots of density (black high) in z — p plane (axes inset) at ¢ =10.7 ms
(left) and 21.3 ms (right). (b) Grey-scale plot: |f(kg,t)|* (white = 0, black
high) for system A with Az = 10 ym. Open circles: points on corresponding
semiclassical trajectory k;(t). (c) Solid curve: (z) versus t for system A with
Az = 25 ym. Arrow marks first turning point. Dashed curve: corresponding
semiclassical orbit z(t). (d) As (b), but for Az = 25 ym.
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condensate in k-space. This is achieved by performing a Fourier transform

of the wavefunction along p = 0 at time :

f (k1) = / " 0 (2,0,4) e~y (5.57)

—0o0

The integration was performed over the line p = 0 to simplify the calculation
and produce a one-dimensional result.

The Fourier power spectrum, |f (kz,t)|?, corresponding to the motion in
figure 5.2(a) is shown in a reduced zone scheme in figure 5.2(b). The plot
confirms that at no point during the motion does the condensate cross the
Brillouin zone boundary. The trap halts the condensate’s passage through
the band at ¢ = 5.3 ms before it has gained sufficient kinetic energy to reach
the top of the band. Consequently, the condensate never Bragg reflects. The
distribution in k-space remains narrow throughout the motion, confirming
that there is no dissipation of the energy associated with the centre-of-mass
motion.

Since the condensate’s internal structure does not change with ¢ when
Az = 10 pm, the results can be understood by considering the motion
of a single point particle in the lowest energy band. The single particle
trajectories z (t) and ky (t) in real and reciprocal space are determined by
the same method used to determine semi-classical paths in section 4.3. In
figure 5.2(b) the Fourier power spectrum (grey-scale plot) is overlaid by the
corresponding single-particle k; () curve (white circles). The figure shows
that the condensate distribution in k-space is tightly concentrated around
the single-particle equivalent. The single-particle real-space trajectory, x (t),
is indistinguishable from the plot of < z > verses ¢t shown in figure 5.2(a).

This excellent agreement between the two theories demonstrates that for
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displacements below the critical value, the condensate behaves like a single
point particle, obeying semi-classical equations of motion. Given this fact, it
is not surprising that the two-dimensional and three-dimensional results are
almost identical in this parameter regime. Finally, it should be noted that
the agreement of the quantum mechanics with semi-classical theory confirms

the validity of this numerical solution of the Gross-Pitaevskii equation.

5.5 Results for a ‘large’ trap displacement of 25
pm

For displacements above the critical displacement, the condensate will reach
the Brillouin zone boundary and undergo Bragg reflection and Bloch oscilla-
tions. In this regime, the energy associated with the centre-of-mass motion
is dissipated by producing topological excitations in the internal structure
of the condensate. Consequently, the condensate dynamics can no longer be
described accurately by a simple semi-classical model.

The results of the two- and three-dimensional simulations are very similar
in this parameter regime. This section concentrates on the three-dimensional
results, but also draws attention to any discrepancies between the two-
dimensional and three-dimensional simulations.

Figure 5.2(c) shows how the mean (centre-of-mass) position of the con-
densate, < z >, varies in time following a trap displacement of 25 ym at
t = 0. The condensate performs periodic motion, similar to the oscillations
observed for a trap displacement of 10 ym. However, in contrast to the
previous results, the oscillations are now damped. Furthermore, the period
and amplitude of the oscillations have decreased despite the increase in trap

displacement. The grey-scale plot of |f (kg,t)|* (figure 5.2(d)) shows that
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the motion is fundamentally different to the previous case, since the con-
densate is now reaching the Brillouin zone boundary and undergoing Bragg
reflection.

As t increases from zero, the condensate’s mean k, value rises approxi-
mately linearly with ¢ until it reaches the Brillouin zone boundary at 2.6 ms
(see figure 5.2(d)). At this time, the condensate undergoes Bragg reflection,
which produces the first (arrowed) turning point in figure 5.2(c). The mean
k, value switches to the other edge of the first Brillouin zone and continues
to rise linearly with ¢. At £ = 5.1 ms, the mean k, value passes through
zero, and the condensate undergoes reflection bounded by the trap poten-
tial. This produces the second turning point in figure 5.2(c), at the lower
edge of the curve. All of the upper turning points on the curve are caused
by Bragg reflection, and all of the lower turning points are caused by trap
reflection. This analysis establishes that the condensate is performing Bloch
oscillations, but it fails to explain why the motion is damped. (The reader
should note that in this system the accelerating potential is quadratic rather
than linear, as is usually the case for Bloch oscillations.)

In an attempt to interpret the results, the dynamics are compared to
those of a single particle in the lowest energy band, obeying semi-classical
laws of motion and band transport. The single particle trajectories x (t)
and k; (t) in real and reciprocal space are determined by the same method
used to determine semi-classical paths in section 4.3. See figures 5.2(c) and
5.2(d), in which z (t) and &, (t) are shown respectively by the dashed curve
and open circles. Although the quantum and semi-classical results are rem-
iniscent of each other, there are major discrepancies. Namely, although the
two theories predict Bloch oscillations of the same period, the semi-classics

fails to account for the damping observed in the quantum mechanics (see

147



figure 5.2(c)). Also, for ¢ 2 7.5 ms multiple peaks appear in |f (kg, t)|2, and
after the full 25 ms, the Fourier transform of the condensate wavefunction
contains components at all values of k,. A single-particle model cannot
hope to explain this. The discrepancies between the two theories demon-
strate that the condensate is deviating from single-particle behaviour. The
damping of the motion and the loss of coherence in k-space observed in the
quantum-mechanical results indicate that energy is being dissipated via a
process that does not occur semi-classically.

The deviation from single-particle behaviour suggests that changes in
the internal structure of the condensate could explain the dynamics. To
identify these changes, figures 5.3 to 5.8 show key stages in the evolution of
the density (left-hand columns) and phase profile (right-hand columns). It is
immediately obvious that the internal structure of the condensate changes
dramatically throughout the motion. The various aspects of condensate
dynamics demonstrated in this figure will be discussed in detail in the re-
mainder of this section. However, the first point of interest is that as ¢
increases from zero, the density minima deepen and fall to zero at the first
Bragg reflection, (¢ = 2.6 ms). This is examined in detail in figure 5.9, which
shows cross-sections through the wavefunction probability density and phase
at p = 0.

The lower curves in figures 5.9(a), 5.9(b), and 5.9(c) show |¥(z,0,t)|*
just before (¢ = 2 ms), at (¢ = 2.6 ms), and just after (¢ = 3 ms) the
first Bragg reflection. The upper curves show the wavefunction phase, ¢(x),

which is defined as
_1 Im {¥}

¢(z) = tan Re (T} °

(5.58)

Figure 5.9 shows ¢(z) modulo 2.

Just before reflection (figure 5.9(a)), the density near the centre of the
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Figure 5.3: Left: Grey-scale plots of density (white = 0, black high) in z —p
plane (axes inset) for system A with Az = 25 ym at various times t. Right:
the corresponding phase profiles modulo 27 (white = 0, black = 27, phase is
not shown if corresponding probability density is less than 2% of maximum
value). No phase profile is shown for ¢ = 0 as the ground state is completely
real. Dotted vertical line indicates the plane £ = —6 ym. The range of ¢
values 0 < ¢ < 2.6 ms corresponds to the time interval between the start of
the simulation and the condensate’s first Bragg reflection.
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Figure 5.4: Left: Grey-scale plots of density (white = 0, black high) in z —p
plane (axes inset) for system A with Az = 25 ym at various times t. Right:
the corresponding phase profiles modulo 27 (white = 0, black = 27, phase is
not shown if corresponding probability density is less than 2% of maximum
value). Dotted vertical line indicates the plane £ = —6 ym. The range of ¢
values 2.6 < ¢ < 5.1 ms corresponds to the time interval between the first
Bragg reflection and the first trap reflection.
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Figure 5.5: Left: Grey-scale plots of density (white = 0, black high) in z — p
plane (axes inset) for system A with Az = 25 ym at various times t. Right:
the corresponding phase profiles modulo 27 (white = 0, black = 27, phase is
not shown if corresponding probability density is less than 2% of maximum
value). Dotted vertical line indicates the plane £ = —6 ym. The range of ¢
values 5.1 < ¢ < 7.8 ms corresponds to the time interval between the first
trap reflection and the second Bragg reflection. The black cross in plot (e)
marks the formation of the first significant soliton.
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Figure 5.6: Left: Grey-scale plots of density (white = 0, black high) in z —p
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plane (axes inset) for system A with Az = 25 ym at various times t. Right:

the corresponding phase profiles modulo 27 (white = 0, black = 27, phase is
not shown if corresponding probability density is less than 2% of maximum
value). Dotted vertical line indicates the plane z = —6 pym. The range of
t values 7.8 < ¢t < 10.2 ms corresponds to the time interval between the
second Bragg reflection and the second trap reflection. The black cross in

plot (a) marks the formation of the first significant soliton.
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Figure 5.7: Left: Grey-scale plots of density (white = 0, black high) in z —p
plane (axes inset) for system A with Az = 25 ym at various times t. Right:
the corresponding phase profiles modulo 27 (white = 0, black = 27, phase is
not shown if corresponding probability density is less than 2% of maximum
value). Dotted vertical line indicates the plane £ = —6 pym. This figure
shows further production of solitons and vortices, which creates a complex
interacting system. The region contained within the dashed box in plot (b)
is shown enlarged in figure 5.11.
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Figure 5.8: Left: Grey-scale plots of density (white = 0, black high) in
x — p plane (axes inset) for system A with Az = 25 um at various times t.
Right: the corresponding phase profiles modulo 27 (white = 0, black = 2,
phase is not shown if corresponding probability density is less than 2% of
maximum value). Dotted vertical line indicates the plane £ = —6 pm. This
figure shows that the condensate now contains many topological excitations,
which leads to the eventual expansion and fragmentation of the condensate.
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Figure 5.9: Density and phase profiles along p = 0 for the condensate in
system A with Az =25 pym and ¢t = 2 ms (a), 2.6 ms (b), 3 ms (c). In each
figure, the lower curve is the density profile, and the upper curve shows the
condensate phase modulo 27, with vertical scale indicated by bars of length
.
BEC has a minimum value of ~ 10'® cm™3, which is approximately half
that at ¢ = 0 (figure 5.1(b)). The local velocity along the z—direction,
vy = (h/m)d¢/dz, is > 0 throughout the condensate. At the point of Bragg
reflection (figure 5.9(b)), the density minima fall to zero at each peak in
Vor(z). At each zero, ¢ changes abruptly by = (upper curve in figure 5.9(b)).
Away from the discontinuities, d¢/dxr ~ 0, indicating that the BEC is at
rest. This variation of density and phase demonstrates that a standing wave
forms at the point of Bragg reflection. After reflection (figure 5.9(c)), the
density minima rise away from zero and d¢/dz becomes negative for all z,
as the condensate starts to move from right to left.

Figure 5.10 shows, for comparison, equivalent plots for a turning point
bounded by the harmonic trap, when &, passes through zero. The lower
curves in figures 5.10(a), 5.10(b), and 5.10(c) show |¥(z,0,t)|* just before
(t = 4.8 ms), at (¢ = 5.1 ms), and just after (¢ = 5.4 ms) the first trap
reflection. The upper curves show the wavefunction phase, ¢(z), modulo
2. The reader will notice that the density minima do not fall to zero,

and there are no discontinuities in the phase at reflection. Instead, ¢(x)
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Figure 5.10: Density and phase profiles along p = 0 for the condensate in

system A with Az = 25 ym and ¢ = 4.8 ms (a), 5.1 ms (b), 5.4 ms (c). In

each figure, the lower curve is the density profile, and the upper curve shows

the condensate phase modulo 27, with vertical scale indicated by bars of
length .

is approximately constant across the condensate at the point of reflection,
indicating that d¢/dxr ~ 0, and hence indicating that the condensate is
stationary. The standing wave shown in figure 5.9(b) is a consequence of
Bragg reflection, and does not occur for trap reflection.

In recent experiments, laser illumination was used to produce similar
individual density minima and/or 7 phase shifts, which subsequently evolved
into dark solitons [47, 48, 63]. By analogy, the standing wave might be
expected to generate a chain of stationary solitons. However, the reality is
more complicated. The formation of the standing wave leads to a variety
of behaviour, depending on the condensate density, the period of the Bloch
oscillations, and the time elapsed since the trap displacement. In the case of
a condensate in system A with a trap displacement of 25 um, the standing
wave formed on the first Bragg reflection (2.5 ms) produces no obvious
solitons. Instead, after reflection, the density minima rise away from zero
and d¢/dz becomes negative for all z, as the condensate starts to move from
right to left, (see figure 5.9(c)). However, the subsequent Bragg reflection

(7.5 ms) produces a large soliton in the centre of the condensate (marked
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by a cross in figure 5.5(e)).

After the second Bragg reflection, soliton production becomes more rapid.
The wavefronts of the solitons are curved by refraction originating from the
non-uniform density of the condensate [51], so they appear as white crescent
shapes in figures 5.6-5.8. As the solitons curve, they become unstable and
decay into vortex rings. This effect is known as snake instability [51]. An
example of a vortex ring produced via this process is shown in figure 5.7(b).
The vortex ring lies just inside the right-hand edge of the dashed box. The
images in figure 5.7 are two-dimensional slices through the condensate, so
the vortex ring appears as a pair of vortices with opposite circulation.

The region within the dashed box in figure 5.7(b) is enlarged in fig-
ure 5.11, which shows both the condensate density (figure 5.11(a)) and
phase (figure 5.11(b)). The region contains the vortex ring in the centre
of the condensate and the soliton immediately to the left of the vortex ring.
The core of the vortex ring intersects the plane of the image at two points,
which are enclosed by arrows. At these two points, there is a zero in the
condensate density. Around these points, the phase changes continuously
from 0 (white) to 27 (black), indicating quantised circulation in the direc-
tion of the arrows. The soliton is the white crescent on the left-hand side of
figure 5.11(a), which represents a region of zero density. In figure 5.11(b),
it appears as a curved line. This line marks an abrupt phase change from
37/2 (dark grey) on the left side of the line, to 7/2 (light grey) on the right
side of the line. The zero in the probability density and the 7 phase slip
indicate that the soliton is stationary.

Vortex formation dissipates the energy associated with the centre-of-
mass motion of the condensate, and hence damps the Bloch oscillations

(figure 5.2(c)). After multiple Bragg reflections, many solitons and vortices
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Figure 5.11: (a) Grey-scale plot of condensate density within dashed box
in Fig. 5.7(b) (white = 0, black high). Arrows show direction of circula-
tion around vortices. (b) Grey-scale plot of corresponding condensate phase
(white = 0, black = 27). Az =25 pym and ¢t = 10.9 ms.

are produced, creating a complex interacting system (figure 5.7(c) to fig-
ure 5.8(e)). Eventually, the condensate becomes irregular and fragmented
(figure 5.8), and loses all coherence in k-space (figure 5.2(d)). Consequently,
the Bloch oscillations break down.

The reader should note that it is impossible for vortex rings to form in
the two-dimensional simulations. In two dimensions, the solitons decay into
pairs of vortices with opposite circulation. A brief representation of the two-
dimensional results is shown in figures 5.12 and 5.13. The figures illustrate
that the dynamics in two and three dimensions are very similar.

Figure 5.12 shows images of a two-dimensional condensate at key mo-
ments of the simulation. Firstly, figure 5.12(a) shows the ground state of the
condensate in the combined potential of the optical lattice and undisplaced
harmonic trap, at time { = 0 ms. The condensate density is modulated by
the periodic potential of the optical lattice. Figure 5.12(b) shows the same

condensate at time £ = 7.5 ms, which corresponds to the point of the second
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Figure 5.12: Grey-scale plot of density (white=0, black high) for system A
in two dimensions with Az = 25 ym and ¢ = 0 ms (a), 7.5 ms (b), 10.7 ms
(c). Vertical dotted lines indicate £ = 0 in each case. Horizontal bar shows
scale. Cross in (b) marks centre of a soliton. Region with dashed box is
shown enlarged in figure 5.13. Arrows show direction of circulation around
vortices.

Bragg reflection. As for the three-dimensional simulations (see figure 5.6(a)),
a soliton has formed in the centre of the condensate. Figure 5.12(c) shows
the condensate for £ = 10.7 ms, by which time a pair of vortices has formed
via the snake instability of a soliton. The vortices are situated inside the
dashed box in figure 5.12(c), near the left-hand edge. They are enclosed by
two circular arrows, which indicate the direction of the circulation. Note
that the vortices have equal but opposite circulation. The dashed box also
contains a soliton, near the right hand edge.

Figure 5.13 is an enlargement of both the density and phase profile of
the condensate contained within the dashed box in figure 5.12(c). The
topological excitations show the same features by which they are charac-
terised in three dimensions, so figure 5.13 is qualitatively similar to the
three-dimensional equivalent in figure 5.11. The vortices are zeros in the
density, surrounded by circulating condensate. Around the vortices, the

phase changes continuously from 0 (white) to 27 (black), indicating quan-
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Figure 5.13: (a) Grey-scale plot of condensate density within dashed box
in Fig. 5.12(c) (white = 0, black high). Arrows show direction of circula-

tion around vortices. (b) Grey-scale plot of corresponding condensate phase
(white = 0, black = 27). Az =25 pym and ¢t = 10.7 ms.

tised circulation in the direction of the arrows. The soliton is a line of zero
condensate density, along which there is an abrupt phase change of «.

In the following chapter, Bloch oscillations and soliton and vortex pro-
duction are studied for different parameter regimes, as realised in recent
experiments [42, 69]. This throws more light on the mechanisms behind
soliton and vortex production, and reveals the different factors which deter-

mine the behaviour of the condensate.
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Chapter 6

Interpretation of
experiments and explosive
expansion of Bose-Einstein

condensates

6.1 Introduction

In the previous chapter, a Bose-Einstein condensate was driven into Bloch
oscillations, which were damped due to soliton and vortex formation. In this
chapter, the same effects shall be studied for different parameter regimes,
as realised in recent experiments. This reveals how the experiments can be
understood, and identifies regimes in which vortices trigger explosive ex-
pansion of the condensate. Furthermore, the study of different experiments
throws more light on the mechanisms behind soliton and vortex production,

and the factors which determine the behaviour of the condensate.
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6.2 Bloch oscillations of a Bose-Einstein conden-

sate, as studied by Morsch et al.

Bloch oscillations of Bose-Einstein condensates have recently been observed
by Morsch et al [42]. Their experiments differed from the system described in
the previous chapter (system A) in that the condensates were not driven into
oscillation by displacing the magnetic trap. Instead, the optical potential
was accelerated in the direction of the lattice by detuning the lasers. This
creates a constant force on the condensate in the rest frame of the atoms.
By this method, the group successfully observed Bloch oscillations.

The method of Morsch et al. has both advantages and disadvantages
compared to the method described in the previous chapter. One advantage
is that the optical potential can in principle be accelerated arbitrarily fast
and arbitrarily slowly. Hence there are no limits on the resulting force on
the condensate, and consequently no limits on the period and amplitude
of the Bloch oscillations. In contrast, for system A the condensate does
not Bragg reflect below a critical trap displacement. Hence there is a lower
limit on the force that may be applied to the condensate, and consequently
an upper limit on the period and amplitude of the Bloch oscillations. The
principal disadvantage of Morsch’s method is that the accelerating optical
lattice drags the condensate up one side of the magnetic trap. After sufficient
time has elapsed, the magnetic trap begins to significantly distort the band
structure. This ultimately leads to the breakdown of the Bloch oscillations.

Morsch’s system is summarised in figure 6.1, and shall be referred to as
system B. Figure 6.1(b) shows the density profile of Morsch’s condensate
along p = 0, which illustrates that its size and shape is very similar to the

condensate in system A (see figure 5.1). As for system A, the condensate
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is composed of 8"Rb atoms, and is prepared in a one-dimensional OL and
a harmonic magnetic trap. The number of atoms in the condensate has
been slightly reduced to 10%, and the trap frequencies have also dropped:
wg =27 x 30 rad 57! and w, = w, = 27 x 32 rad s™'. As a result, the peak

—3. compared

density of the condensate ground state is now 3.3 x 103 cm
to 4.3 x 10'3 cm™3 for system A. Figure 6.1(a) shows the potential energy
profile of the harmonic trap (dotted curve) along p = 0.

The optical lattice is also slightly different to that of system A. The
depth of the optical lattice is now Vy = 2.32FEr = 36.2 peV, and its period
is d = 3 = 390.0 nm (see figure 6.1(a) for the potential energy profile of
optical lattice along p = 0). As before, the band structure was calculated
using Mathieu functions (see section 4.2). The energy range of the lowest
band is indicated on figure 6.1(a) by a grey rectangle. As the figure shows,
the band width of the lowest band is 0.54 Er or 8.5 peV, slightly narrower
than that of system A, which is 0.67 Eg or 10.0 peV.

The numerical techniques that were used to simulate the behaviour of
system B are essentially exactly the same as those used to simulate the
behaviour of system A. However, it is important to consider the frame of
reference in which the Bloch oscillations are performed. In system A, the
lattice is stationary, so the condensate performs Bloch oscillations in the sta-
tionary laboratory frame. However, in system B, the condensate performs
Bloch oscillations in the rest frame of the lattice, which is accelerating with
respect to the laboratory frame. Hence, if Bloch oscillations are to be ob-
served, the motion of the lattice must be subtracted from the motion of the
condensate.

This point has important consequences when calculating the &, compo-

nents of the condensate wavefunction in system B. A simple Fourier trans-
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Figure 6.1: (a) Solid curve: potential energy profile of the OL in system
B. Grey rectangle: energy range of the lowest energy band. Dotted curve:
z-dependence of the harmonic potential energy for p = 0. (b) Initial density
profile of the condensate in system B, along p = 0.
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form, as done for system A (equation 5.57), will not generate the correct
result. The problem is solved by considering the phase of the condensate
wavefunction. Imagine a condensate which moved at the same velocity as
the optical lattice. According to equation 3.49, it would have a phase gra-
dient given by:

h d¢

— — = Speed of OL = at. (6.1)
m dx

where 4 is the constant acceleration of the lattice. Integrating equation 6.1

with respect to z yields
métz

b= (6.2)

This result can be used to transform the condensate wavefunction ¥ (x, p, t)
into an equivalent condensate wavefunction ¥’ (z,p,t), whose velocity is

equal to the original condensate’s velocity relative to the accelerating lattice:

_ imdtx

U (z,p,t) =V (z,p,t) e & . (6.3)

Hence, the wavevector components of the condensate in the band of the OL

are determined by evaluating:

oo L .
f(k,t) = / U (z,0,1) e="h ek gy (6.4)

—0co
6.2.1 Results for a lattice acceleration of 9.81 m/s?

In order to demonstrate Bloch oscillations of a Bose-Einstein condensate
experimentally Morsch et al. chose a lattice acceleration of 9.81 m/s?. This
section reproduces their results, and shows that their parameters were suit-
able for observing regular Bloch oscillations.

Figure 6.2 summarises the results of the simulation. Figure 6.2(a) shows

the displacement of the condensate’s mean position with respect to the lattice.
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Figure 6.2: (a) {z) — zor, versus t for system B with ¢ = 9.81 m/s%. (b)
Corresponding grey-scale plot of |f(kg,t)|> (white = 0, black high). (c) &
(d) Corresponding grey-scale plots of density (white = 0, black high) in z-p
plane (axes inset) for ¢ = 0 ms & 5 ms respectively. Plots are symmetrical
under reflection about p = 0. Horizontal bar shows scale.

To be precise, it shows the time evolution of (x) — zor,, where zop, is the

displacement of the lattice, defined by

1
ZoL = 5(’1752. (6.5)

Figure 6.2(b) shows the corresponding time evolution of | f(kz, t)|*.
Figure 6.2(b) shows that the condensate reaches the Brillouin zone bound-

ary at approximately 0.6 ms. As before, a standing wave is formed upon

166



Bragg reflection, which has a density node and associated m phase shift at
each maximum in Vpr,(z). But in this parameter regime, the standing wave
has no obvious effect on the dynamics. After reflection, the density minima
rise away from zero and the phase jumps become smaller and smoother. As
this happens, the mean &, value of the condensate continues to rise approx-
imately linearly, and the condensate starts to move from right to left in the
lattice frame. The condensate is performing Bloch oscillations.

The mean k; value of the condensate then continues to rise approxi-
mately linearly until it reaches the Brillouin zone boundary for the second
time at ~ 1.8 ms. Again the condensate undergoes Bragg reflection, and the
standing wave has no apparent effect. The condensate Bragg reflects five
times in total during the simulation, and yet no solitons are produced, and
the k;—distribution of the atoms remains very narrow (see figure 6.2(b)).
Figures 6.2(c) and (d) show images of the condensate in the z — p plane at
the start (¢ = 0 ms) and end (¢ = 5 ms) of the simulation respectively. The
images show that there has been almost no change in the internal structure
of the condensate during the motion. The only discernible change is that the
condensate has expanded slightly during the motion, due to the repulsive
interactions.

However, even though there has been little change in the condensate
wavefunction, the Bloch oscillations are not completely regular. By inspec-
tion of the (z) — zo1, curve (figure 6.2(a)), the reader will notice that the
period of the oscillations decreases during the motion. This is perhaps more
obvious in figure 6.2(b), which shows that the condensate’s mean k, value
rises at an increasing rate throughout the simulation. Furthermore, despite
the fact that no excitations have been formed, the Bloch oscillations are

clearly damped.
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This behaviour is due to the magnetic trap. As an illustration of this
effect, consider the example of the simulation summarised in figure 6.2. In
this case, the lattice drags the condensate towards more negative values of z,
hence pushing the condensate through the band in the positive k, direction.
As the condensate rides up the wall of the trap, it feels an additional force
from the trap, pushing it back towards larger values of z, into the trap
potential minimum. This positive force due to the trap adds to the force
imparted by the accelerating lattice, so that the condensate feels an ever
increasing total force driving it through k-space in the positive k; direction.
As a result, the period and amplitude of the oscillations become smaller
and smaller. Eventually, this effect will cause the band to break, and the
Bloch oscillations to break down. If the lattice were to be accelerated in the
opposite direction, the two forces would add in the same way to drive the
condensate in the negative k; direction. Hence, in this scenario, the period
and amplitude of the oscillations would also become smaller and smaller as

the experiment progressed.

6.2.2 Results for a lattice acceleration of 0.25 m/s?

Reducing the lattice acceleration reveals a new regime of condensate be-
haviour. At low accelerations, Bragg reflection seeds solitons which decay
into vortex rings. This disrupts the condensate and damps the Bloch oscil-
lations.

Figure 6.3 summarises the dynamics of the condensate for a lattice ac-
celeration of 0.25 m/s?. Figure 6.3(a) shows the time evolution of {(z) — zor,,
where z oy, is the displacement of the lattice, and figure 6.3(b) shows the cor-
responding time evolution of |f(kg, ). Inspection of figure 6.3(b) reveals

that the condensate reaches the Brillouin zone boundary at approximately
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Figure 6.3: (a) {z) — zor, versus t for system B with ¢ = 0.25 m/s%. (b)
Corresponding grey-scale plot of | f(kz,t)|* (white = 0, black high).

17.5 ms. As before, a standing wave is formed upon Bragg reflection, which
has a density node and associated 7 phase shift at each maximum in Vor,(z).
In this parameter regime, as for system A (see section 5.5), the standing wave
seeds solitons, two examples of which are marked by crosses in figure 6.4(b).
The solitons then swiftly decay via the snake instability into vortex rings.
Figure 6.4(c) shows an image of the condensate containing two such vortex
rings that have formed in the centre of the condensate. The core of each
vortex ring cuts the z-p plane at two points, which are enclosed by arrows
indicating the direction of circulation.

The formation of solitons and vortices disrupts the condensate, causing
it to lose coherence in k-space. Figure 6.3(b) shows that the k,—distribution
of the atoms is initially very narrow, but spreads across approximately half
the Brillouin zone after Bragg reflection. As a result, the Bloch oscillations
are severely damped (see figure 6.3(a)).

The reader should also note that, as in section 6.2.1, the magnetic trap

causes a distortion of the condensate’s motion through the band. This is
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Figure 6.4: Grey-scale plots of density (white = 0, black high) in z-p plane
(axes inset) for system B with ¢ = 0.25 m/s? and ¢t = 0 ms (a), 19.9 ms (b),
21.9 ms (c). Plots are symmetrical under reflection about p = 0. Horizon-
tal bar shows scale. Crosses in (b) mark centre of solitons. Arrows show
direction of circulation around vortices.
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reflected in figure 6.3(b), which shows that the condensate’s mean k, value

rises at an increasing rate throughout the simulation.

6.3 Dynamics of a Bose-Einstein condensate in an

optical lattice, as studied by Burger et al.

Burger et al. [69] studied the dynamics of a Bose-Einstein condensate in an
optical lattice, using the same method as described in the previous chapter.
However, the parameters that the group chose were very different. Burger et
al. explained their results in terms of a Landau instability of the condensate.
The theoretical work in this section disagrees with Burger’s interpretation,
and instead suggests that the instability of the condensate is due to rapid
vortex production, leading to explosive expansion of the condensate.

The system studied in this section is qualitatively the same as the system
studied in chapter 5 (system A). However, the frequencies of the harmonic
trap are now adjusted to create a long thin condensate: w, = 27 x 8.7 rad
s~! and wy = w, = 27 x 90 rad s~1. Furthermore, the total number of atoms
N4 is greatly increased to 3x 10%, with the result that the peak density of the
ground state increases to ~ 1.5 x 10'cm™3. The optical lattice is the same
as for system A (see section 5.1 and figure 5.1(a)). Figure 6.5(a) shows the
resulting ground state of the trap and optical lattice under these conditions.
This set of parameters corresponds to Burger’s recent experiments [69], and
shall be referred to as system C.

This section examines a simulation in which the trap is displaced by 150
pm. The critical trap displacement above which Bragg reflection occurs is 86
pm (see equation 5.4), so this is well within the Bloch oscillation regime. Al-

though the trap displacements considered here are much greater than those
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Figure 6.5: Grey-scale plots of density (white = 0, black high) in the z-p
plane (axes inset) for system C with Az = 150 ym and ¢ = 0 ms (a), 14.0
ms (b), and 18.0 ms (c). Plots are symmetrical under reflection about p = 0.
Horizontal bar shows scale. Region within dashed box in (b) is shown in
figure 6.8(a).

considered for system A, the resulting Bloch oscillations have longer periods
because the frequency of the trap in the z-direction is much smaller. The
results of section 6.2.2 suggest that slow Bloch oscillations promote soliton
and vortex production at the first Bragg reflection. Hence this parameter
regime might be expected to show rapid generation of excitations and a
resulting breakdown of the Bloch oscillations.

Furthermore, the higher density of the condensate in system C might also
be expected to promote soliton and vortex production. In order to explain
this, consider system A for a trap displacement of 25 pm (see section 5.5). At
the point of the first Bragg reflection, the local mean atom density ~ 3 x 103
cm ™3 near the centre of the condensate (see figure 5.9(b)). Consequently,
the healing length is approximately 0.5 ym ~ 1.25d, which infers that a

soliton would have a width w ~ 2¢ ~ 2.5d. Since this width is greater than

the separation of density minima and phase slips in the standing wave, it is
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awkward for solitons to form. If a soliton is to form, it must straddle several
OL periods, and hence extend across several density nodes and phase slips
in the standing wave.

It might be expected that solitons would form more readily if w < d.
This can be achieved in a high density condensate, which has a small healing
length and consequently a small soliton width w. In the case of system C,
the density is high enough such that the soliton width closely matches the
separation of density minima and phase slips in the standing wave. Hence,
the system might be expected to show rapid soliton and vortex production.

Figures 6.6(a) and 6.6(b) show the time evolution of (z) and |f (kg,t)|?
for a trap displacement of 150 ym. Figure 6.6(b) shows that the condensate
reaches the Brillouin zone boundary at approximately 13 ms. As for system
A, a standing wave is formed upon Bragg reflection, which has a density
node and associated m phase shift at each maximum in Vpr,(z). But in
this case, the local mean atom density at Bragg reflection is ~ 1.6 x 10"

3 near the centre of the condensate. Consequently, the healing length

cm™
is approximately 0.2 um ~ 0.5d, which infers that a soliton would have a
width w ~ 2¢€ ~ d. Hence the condition w < d is satisfied, and the theorist
would expect to observe rapid soliton production.

As a result of these factors, Bragg reflection causes the self-assembly of
~ 10 stationary solitons, which form a chain across the central third of the
condensate. Figure 6.5(b) shows the compact cigar-shaped density profile
of the condensate just after the first Bragg reflection. The region within the
box is shown enlarged in figure 6.8(a), which reveals ~ 5 stationary solitons
(extended white areas).

Figures 6.7 and 6.8 show several stages in the formation of the solitons,

and their subsequent decay into vortex rings. Figure 6.7 shows depressions

173



‘20t ]

g &
N :xo
510t |

0 5 10 15 20 25 0 5 10 15 20 25
t (ms) t (ms)

0

Figure 6.6: (a) (x) versus ¢ for system C with Az = 150 ym. (b) Corre-
sponding grey-scale plot of | f(kz,t)|? (white = 0, black high).

forming in the condensate, which evolve into the first solitons. Figure 6.8(a)
is the best image of the soliton chain. Unfortunately, it is difficult to find a
clear image of the chain of solitons because they decay so rapidly into vortex
rings. In figure 6.8(a), some of the solitons have already begun to break up,
whilst others are still forming. Since their decay is so rapid, the solitons
create a chain of vortex rings (seen most clearly in figures 6.8(b-c)), which
form a complex interacting system (see figure 6.8(c)).

The interactions now create a large internal strain, which causes the
condensate to explode laterally (perpendicular to the z-axis), resulting in
the diffuse and fragmented atom density profile shown in figure 6.5(c). The
explosion has a dramatic effect on the k;—distribution of the atoms (fig-
ure 6.6(b)), which is initially extremely narrow but, at the point of Bragg
reflection, spreads through the whole Brillouin zone. The condensate has
lost all coherence in k-space, so does not perform Bloch oscillations. Once
the condensate has reached the Brillouin zone boundary and performed the

first half of a Bloch oscillation, its centre-of-mass remains approximately sta-
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to the region within the dashed box in figure 6.5(b).
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tionary (see figure 6.6(a)). This provides an alternative explanation to the
damping observed by Burger et al. [69], who explain it in terms of Landau

instability.
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Chapter 7

Conclusion

7.1 Summary and overview

This thesis has used cold atoms in optical lattices as the basis for theoretical
studies of quantum chaos and Bose-Einstein condensation. The results have
illustrated that optical lattices are an extremely versatile tool for probing
aspects of solid state physics, atomic physics and quantum optics. Fur-
thermore, optical lattices offer unprecedented experimental control, so they
represent a unique opportunity to explore effects, such as Bloch oscillations,
which have previously been detected only indirectly.

Chapter 4 studied quantum chaos in a system of atoms in the lowest en-
ergy band of an optical lattice. In this example, there were different energy-
momentum dispersion relations for motion parallel and perpendicular to the
axis of the optical lattice, thereby inducing mixed stable-chaotic dynam-
ics. The system was described from a both a semi-classical and quantum-
mechanical perspective, and the two theories were related via phase space
analysis, wavefunction scarring, and fluctuations in the energy level spec-

trum. This system is unique because the chaos originates from an intrinsi-
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cally quantum-mechanical effect: the energy band of the optical lattice.

Chapters 5 and 6 examined the motion of Bose-Einstein condensates
in optical lattices. The results showed that Bose-Einstein condensates can
demonstrate effects which are normally associated with solid state physics,
such as Bragg reflection and Bloch oscillations. It was also shown how
these processes may generate solitons and vortices, depending on the system
parameters.

The topic of Bose-Einstein condensates in optical lattices was studied
via the examples of three systems, A, B and C, of which B and C were re-
alised in recent experiments. The results revealed how the experiments can
be understood, and identified regimes in which vortices trigger explosive ex-
pansion of the condensate. The study of three different condensate systeins
provides a comprehensive picture of the different factors which determine the
behaviour of condensates in optical lattices. The study of system B showed
that soliton production is promoted by slow Bloch oscillations, and the study
of system C showed that solitons are more readily formed in high density
condensates. However, the results for system A showed that short period
Bloch oscillations can produce solitons in condensates of low density, if the

condensate becomes sufficiently disrupted by multiple Bragg reflections.

7.2 Suggestions for further study

There is considerable current interest in the possible connections between
Bose-Einstein condensates and quantum chaos [71]. Since the systems dis-
cussed in chapters 4, 5 and 6 are similar, it may be possible to combine
the ideas in this thesis in order to create a system suitable for exploring
quantum chaos in Bose-Einstein condensates. Indeed, in chapter 4 it was

demonstrated that under certain conditions the collective dynamics of a
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condensate in an optical lattice are very similar to those of a point-like par-
ticle obeying semi-classical laws of motion. By analogy, the onset of chaos
for single atoms in an optical lattice may also be manifest in the collective
time-dependent dynamics and excitations of a condensate.

Chapter 6 presented simulations of experiments performed by Morsch
et al [42]. This group and the author are now in contact, and have shared
their results and ideas. It is hoped that the collaboration will continue in
the future, so that experimental results can confirm the predictions made in

chapters 5 and 6, and stimulate further theoretical work.
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Appendix A

Derivation of equations 4.60,

4.61 and 4.62

The starting point for the derivation is equation 4.59, reproduced below:

p? m o o 2.2

The quantities z; and 2; are then replaced by terms in z and z, using the

relationships given in equation 4.3:

2
m
o m

E =F,
b(0)+2m 5

[wﬁ (xQ cos? 0 + 22 sin” O + 22z cos fsin 6) +

w? (z°sin® 0 + 2% cos® 6 + 2zz cos Osind)] . (A.2)

z

(N.B. The term FEj (p,) has been replaced by Ej (0) since p, is set to zero

when plotting the Wigner functions.) Rearranging equation A.2 yields:

22 [ 2 cos? 0 +w?sin? 0)| + z [mzcosfsind (w2 — w?)] +
2 Z

2 mz?
E,(0)—E+ 2_z + 5 (w2sin®6 + w2 cos®§) = 0. (A.3)
m
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This is a quadratic equation in z, which can be solved in the usual way to

obtain equation 4.60, reproduced below:

Tr =

2m

mz cos 0sinf (wg —w%) + \/% (wg cos? 0 + w2 sin? 0) (E — Ey(0) — ﬁ)

m (w2 cos? 6 + w2 sin® §)

(A.4)
Now consider equation 4.57, shown below:
dk"w 2 2 :
hﬁ = —MmwyT¢ €os § + mw; 2z sin 6. (A.5)

Again, the quantities z; and z; are replaced by the expressions in z and z

given in equation 4.3:

h@ = —mw? cos O (2 cos 0 + zsinf)+mw? sinf (—zsinf + zcos ). (A.6
dt x 2z

Rearranging yields

h@ = —mz (w2 cos? 0 + w? sin 0) + mzcosOsin @ (w? —w2). (A7)
dt : ? o

But, from equation A.4,

2 cos® 0 + w2 sin® @) = mz cos Osinf (w? — w?)

mz (w -

m ) 7
+ E(wgc0s20+w§s1n 6) | E — E, (O)—% . (A.8)

The entire right-hand side of equation A.8 is now substituted for the term
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mz (w2 cos? 6 + w?sin?#) in equation A.T:

dky, _ [m o, , 5 3 _p
it = ]F\/E (wFcos?0 +wisin®6) ( E— B, (0)— =) . (A9)
Hence, for the smaller value of z
dbe Mmoo, o P}
h— = \/? (wZcos?d + wisin®f) | E— E 0 =5 (A.10)
and for the larger value of z
dkz _ _ M 5 o2 2 gin2 y73
hﬁ = —\/E (ww cos? 6 +wz s 0) E— Eb (O) - om . (A]']')

Hence equations 4.61 and 4.62 are obtained.
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Appendix B

Derivation of equation 4.79

from equation 4.78

The starting point for the derivation is equation 4.78, reproduced below:

Dav (E) = h1_2 /pz /pw /Zt /wt
p

2 1 1
) {E — Ey(pg) — ﬁ - imwga:? - imwgz?} dzy dzy dpy dp,. (B.1)

Firstly, the order of the integrals is changed, and the limits of the integration

over p, are set:

AV = 79
h? Pz STt S22 JO
2.2 2,2

2
5 {E — By (py) — 2= - T%T  TWA }dpz dz dzy dpg, (B.2)

2m 2 2

where p,_ . is the maximum possible value of p, at a particular energy E,

1.e.

Pamsx = V2 (E — By (0)). (B.3)
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Defining

u= —21’—7; , (B.4)
it follows that
du = —&dpz, (B.5)
m
and
P = V—2mu, (B.6)
hence
dp, = L (B.7)

v —=2mu

Equation B.2 is now rewritten in terms of wu:

Zmax

2m
h Pz (Bt

mwx mwz —m
By (ps t t _pg)l ™
5{" ( b(pe) + 5+, )}\/—Qmu

du dz; dzy dp,. (B.8)
Rearranging equation B.8 yields

o= [ [ [ [
Px v Tt zmax

mw x2 mw222 du

The integral with respect to u can now be performed, giving

Dav (E / / / dz dxy dpy
D /Tt \/ 2

gm Eb Da +%+%%_E)
(B.10)
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Rearranging equation B.10 gives

2m
Dyy (E) = 7z / / /
Pz STt J 2t
dzy dxy dp,

\/m2w§ ( : ) (2mE — 2mEy (p,) — m2w2a? — m?w2z})

(B.11)

2,2
mewy;

and hence

D (E) 2 / / / dz dzy dp;
AV =5 :
Wz Jo. JoJuw | [y (omB —2mB, (pe) — muiad) — 2
(B.12)
Now define

1
K= \/m2—w§ (2mE — 2mEy, (p,) — m?w2a?) | (B.13)

so that equation B.12 can be rewritten as

2 dzy dxy dp,
D E)= —— —_— B.14
AV ( ) hng /pw /wt /zt /—K,2 — Zt2 s ( )

and hence as

2 dz; dzxy dp
Dav (B) = 15 /,, /w i it e (B.15)
x i

— -
z.
t Ky l—%

Now consider the limits of the integration with respect to z;. The maximum

x

and minimum values of z; are set by conservation of energy, which requires

that:
2,2 2,2
5= B o)+ T @19
Rearranging equation B.16 for z; yields
1 2,22
2 = ) (2mE — 2mEy (p,) — m2w2a?) . (B.17)
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Hence, the limits of the integration with respect to z; are tx:

2 ® dz dxy dpg
T w2

The integral with respect to z; can be performed in terms of a new variable
v, defined as

. 2t
=—. B.19
sinv = — ( )

It follows that

dz; = Kk cosv dv. (B.20)

Hence, equation B.18 can be rewritten as

2 7 Kcosv dv dz; dp,
Dav (E) = m/ / /7r — > (B.21)
zJpe Jor J-F KV 1—sinwv

which simplifies to

2 3
z z

x t_%

The integral is now easily evaluated, giving

2
E4 t

Now consider the integration with respect to x;. Firstly, the limits of the
integration are set by considering conservation of energy, as was done in

equation B.16 for the integration with respect to z;:

2,2
MWL T}

2

E=E,(p.) + (B24)
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By rearranging equation B.24, the limits of the integration are obtained:

Ty ==+ V2mE — 2mEy (pg) .

Wy

Hence equation B.23 can be rewritten as

21 e 2mE—2mEy (pz)
Dy (E) = / / dxz; dpy.

2
h*w, 2mE—2mE;(ps)

The integration with respect to z; can now be performed:

27
Day (E) = 2o, / — V/2mE — 2mEy (pg)dps.

Rearrangement yields

D,y (E) = 44’”/ \/%\/E — By (pg)dpg,

2
h*mwyw, Jp,

and hence

2
Dav ()= [ VE B

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

The limits of the final integral are the boundaries of the first Brillouin zone,

ie. py = i%. Equivalently, the integral can be performed over the interval

0 < py <2, and the result doubled:

fud

2 2 d
D E)y=4/——F7F— E—-F dpy.
w (B) =\ [ By )i

Hence equation 4.79 is obtained.
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